Sample records for diet bold effects

  1. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    PubMed

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old) into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold's medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female) were significantly higher for C vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens, ranged from 0.1-0.25/d and were significantly higher on C vulgaris cultured in liquid fertilizer as compared to the other diets. The growth rates of M. macrocopa ranged from 0.1 to 0.38/d, and were highest with diets of C. vulgaris cultured in Bold medium and S. acutus cultured in fertilizer. Thus, regardless of the culture medium used, the growth rates of the evaluated zooplankton species were higher with Chlorella than with Scenedesmus. The peak population density was highest (2 800ind/mL) for A. fissa fed Chlorella that was cultured on liquid fertilizers, while B. rubens and M. macrocopa had peak abundances of 480 and 12ind/mL, respectively under similar conditions.

  2. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.

    PubMed

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham

    2017-11-01

    The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume and the maximum intensity of BOLD signal in the activated area M1 was determined for all studied volunteers. The current study allowed measuring regional brain volumes and neural network activity before and during an extended period of fasting using BOLD-fMRI. This demonstrated and confirmed the impact of fasting on human brain structure and function. Further studies are required to elucidate mechanisms and enable direct inference of a diet-induced OS effect on the brain.

  3. Human protein status modulates brain reward responses to food cues.

    PubMed

    Griffioen-Roose, Sanne; Smeets, Paul Am; van den Heuvel, Emmy; Boesveldt, Sanne; Finlayson, Graham; de Graaf, Cees

    2014-07-01

    Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. We investigated the effect of human protein status on neural responses to different food cues with the use of functional magnetic resonance imaging (fMRI). The food cues varied by taste category (sweet compared with savory) and protein content (low compared with high). In addition, food preferences and intakes were measured. We used a randomized crossover design whereby 23 healthy women [mean ± SD age: 22 ± 2 y; mean ± SD body mass index (in kg/m(2)): 22.5 ± 1.8] followed two 16-d fully controlled dietary interventions involving consumption of either a low-protein diet (0.6 g protein · kg body weight(-1) · d(-1), ~7% of energy derived from protein, approximately half the normal protein intake) or a high-protein diet (2.2 g protein · kg body weight(-1) · d(-1), ~25% of energy, approximately twice the normal intake). On the last day of the interventions, blood oxygen level-dependent (BOLD) responses to odor and visual food cues were measured by using fMRI. The 2 interventions were followed by a 1-d ad libitum phase, during which a large array of food items was available and preference and intake were measured. When exposed to food cues (relative to the control condition), the BOLD response was higher in reward-related areas (orbitofrontal cortex, striatum) in a low-protein state than in a high-protein state. Specifically, BOLD was higher in the inferior orbitofrontal cortex in response to savory food cues. In contrast, the protein content of the food cues did not modulate the BOLD response. A low protein state also increased preferences for savory food cues and increased protein intake in the ad libitum phase as compared with a high-protein state. Protein status modulates brain responses in reward regions to savory food cues. These novel findings suggest that dietary protein status affects taste category preferences, which could play an important role in the regulation of protein intake in humans. This trial was registered at www.trialregister.nl/trialreg/admin/rctview.asp?TC=3288 as NTR3288. © 2014 American Society for Nutrition.

  4. Grouping individual independent BOLD effects: a new way to ICA group analysis

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jung, Tzyy-Ping; Sejnowski, Terrence J.; Makeig, Scott

    2009-04-01

    A new group analysis method to summarize the task-related BOLD responses based on independent component analysis (ICA) was presented. As opposite to the previously proposed group ICA (gICA) method, which first combined multi-subject fMRI data in either temporal or spatial domain and applied ICA decomposition only once to the combined fMRI data to extract the task-related BOLD effects, the method presented here applied ICA decomposition to the individual subjects' fMRI data to first find the independent BOLD effects specifically for each individual subject. Then, the task-related independent BOLD component was selected among the resulting independent components from the single-subject ICA decomposition and hence grouped across subjects to derive the group inference. In this new ICA group analysis (ICAga) method, one does not need to assume that the task-related BOLD time courses are identical across brain areas and subjects as used in the grand ICA decomposition on the spatially concatenated fMRI data. Neither does one need to assume that after spatial normalization, the voxels at the same coordinates represent exactly the same functional or structural brain anatomies across different subjects. These two assumptions have been problematic given the recent BOLD activation evidences. Further, since the independent BOLD effects were obtained from each individual subject, the ICAga method can better account for the individual differences in the task-related BOLD effects. Unlike the gICA approach whereby the task-related BOLD effects could only be accounted for by a single unified BOLD model across multiple subjects. As a result, the newly proposed method, ICAga, was able to better fit the task-related BOLD effects at individual level and thus allow grouping more appropriate multisubject BOLD effects in the group analysis.

  5. Evaluation of Visceral Adipose Tissue Oxygenation by Blood Oxygen Level-Dependent MRI in Zucker Diabetic Fatty Rats.

    PubMed

    Shi, Hong-Jian; Li, Yan-Feng; Ji, Wen-Jie; Lin, Zhi-Chun; Cai, Wei; Chen, Tao; Yuan, Bin; Niu, Xiu-Long; Li, Han-Ying; Shu, Wen; Li, Yu-Ming; Yuan, Fei; Zhou, Xin; Zhang, Zhuoli

    2018-06-01

    This study aimed to investigate the feasibility of blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to evaluate visceral adipose tissue (VAT) oxygenation in Zucker diabetic fatty (ZDF) rats and its associations with systemic metaflammation. Five-week-old ZDF rats and Zucker lean (ZL) rats were fed a high-fat diet (HFD) for 18 weeks. A baseline BOLD-MRI scan of perirenal adipose tissue was performed after 8 weeks of HFD feeding, and then the rats were randomized to receive pioglitazone or a vehicle for the following 10 weeks. At sacrifice, BOLD-MRI scan, Hypoxyprobe-1 injection, and circulating T helper 17 (Th17), regulatory T (Treg) cells, and monocyte subtype flow cytometry analysis were performed. HFD feeding led to a significant increase in VAT BOLD-MRI R2* signals (20.14 ± 0.23 per second vs. 21.53 ± 0.20 per second; P = 0.012), an indicator for decreased oxygenation. R2* signal was significantly correlated with VAT pimonidazole adduct-positive area, insulin resistance, Th17 and Treg cells, CD43 + and CD43+ + monocyte subtypes, and VAT macrophage infiltration. Pioglitazone treatment improved the insulin resistance and was associated with a delayed progression of VAT oxygenation. This work demonstrated the feasibility of BOLD-MRI for detecting the VAT oxygenation status in ZDF rats, and the BOLD-MRI signals were associated with insulin resistance and systemic metaflammation in ZDF rats during the development of obesity. © 2018 The Obesity Society.

  6. GPS baseline configuration design based on robustness analysis

    NASA Astrophysics Data System (ADS)

    Yetkin, M.; Berber, M.

    2012-11-01

    The robustness analysis results obtained from a Global Positioning System (GPS) network are dramatically influenced by the configurationof the observed baselines. The selection of optimal GPS baselines may allow for a cost effective survey campaign and a sufficiently robustnetwork. Furthermore, using the approach described in this paper, the required number of sessions, the baselines to be observed, and thesignificance levels for statistical testing and robustness analysis can be determined even before the GPS campaign starts. In this study, wepropose a robustness criterion for the optimal design of geodetic networks, and present a very simple and efficient algorithm based on thiscriterion for the selection of optimal GPS baselines. We also show the relationship between the number of sessions and the non-centralityparameter. Finally, a numerical example is given to verify the efficacy of the proposed approach.

  7. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.

    PubMed

    Thomason, Moriah E; Glover, Gary H

    2008-01-01

    Recent studies have shown that blood oxygen level dependent (BOLD) response amplitude during short periods of breath holding (BH) measured by functional magnetic resonance imaging (fMRI) can be an effective metric for intersubject calibration procedures. However, inconsistency in the depth of inspiration during the BH scan may account for a portion of BOLD variation observed in such scans, and it is likely to reduce the effectiveness of the calibration measurement. While modulation of BOLD signal has been correlated with end-tidal CO2 and other measures of breathing, fluctuations in performance of BH have not been studied in the context of their impact on BOLD signal. Here, we studied the degree to which inspiration depth corresponds to BOLD signal change and tested the effectiveness of a method designed to control inspiration level through visual cues during the BH task paradigm. We observed reliable differences in BOLD signal amplitude corresponding to the depth of inspiration. It was determined that variance in BOLD signal response to BH could be significantly reduced when subjects were given visual feedback during task inspiration periods. The implications of these findings for routine BH studies of BOLD-derived neurovascular response are discussed.

  8. Examining the incremental and interactive effects of boldness with meanness and disinhibition within the triarchic model of psychopathy.

    PubMed

    Gatner, Dylan T; Douglas, Kevin S; Hart, Stephen D

    2016-07-01

    The triarchic model of psychopathy (Patrick, Fowles, & Krueger, 2009) comprises 3 phenotypic domains: Meanness, Disinhibition, and Boldness. Ongoing controversy surrounds the relevance of Boldness in the conceptualization and assessment of psychopathy. In the current study, undergraduate students (N = 439) completed the Triarchic Psychopathy Measure (Patrick, 2010) to examine the association between Boldness and a host of theoretically relevant external criteria. Boldness was generally unrelated to either prosocial or harmful criteria. Boldness rarely provided incremental value above or interacted with Meanness and Disinhibition with respect to external criteria. Curvilinear effects of Boldness rarely emerged. The findings suggest that Boldness might not be a central construct in the definition of psychopathic personality disorder. Implications for the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) psychopathic specifier are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  10. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  11. Fitness Consequences of Boldness in Juvenile and Adult Largemouth Bass.

    PubMed

    Ballew, Nicholas G; Mittelbach, Gary G; Scribner, Kim T

    2017-04-01

    To date, most studies investigating the relationship between personality traits and fitness have focused on a single measure of fitness (such as survival) at a specific life stage. However, many personality traits likely have multiple effects on fitness, potentially operating across different functional contexts and stages of development. Here, we address the fitness consequences of boldness, under seminatural conditions, across life stages and functional contexts in largemouth bass (Micropterus salmoides). Specifically, we report the effect of boldness on (1) juvenile survivorship in an outdoor pond containing natural prey and predators and (2) adult reproductive success in three outdoor ponds across three reproductive seasons (years). Juvenile survival was negatively affected by boldness, with bolder juveniles having a lower probability of survival than shyer juveniles. In contrast, bolder adult male bass had greater reproductive success than their shyer male counterparts. Female reproductive success was not affected by boldness. These findings demonstrate that boldness can affect fitness differently across life stages. Further, boldness was highly consistent across years and significantly heritable, which suggests that boldness has a genetic component. Thus, our results support theory suggesting that fitness trade-offs across life stages may contribute to the maintenance of personality variation within populations.

  12. Enhanced neural activation with blueberry supplementation in mild cognitive impairment.

    PubMed

    Boespflug, Erin L; Eliassen, James C; Dudley, Jonathan A; Shidler, Marcelle D; Kalt, Wilhelmina; Summer, Suzanne S; Stein, Amanda L; Stover, Amanda N; Krikorian, Robert

    2018-05-01

    Preclinical studies have shown that blueberry supplementation can improve cognitive performance and neural function in aged animals and have identified associations between anthocyanins and such benefits. Preliminary human trials also suggest cognitive improvement in older adults, although direct evidence of enhancement of brain function has not been demonstrated. In this study, we investigated the effect of blueberry supplementation on regional brain activation in older adults at risk for dementia. In a randomized, double-blind, placebo-controlled trial we performed pre- and post-intervention functional magnetic resonance imaging during a working memory (WM) task to assess the effect of blueberry supplementation on blood oxygen level-dependent (BOLD) signal in older adults with mild cognitive impairment, a risk condition for dementia. Following daily supplementation for 16 weeks, blueberry-treated participants exhibited increased BOLD activation in the left pre-central gyrus, left middle frontal gyrus, and left inferior parietal lobe during WM load conditions (corrected P < 0.01). There was no clear indication of WM enhancement associated with blueberry supplementation. Diet records indicated no between-group difference in anthocyanin consumption external to the intervention. These data demonstrate, for the first time, enhanced neural response during WM challenge in blueberry-treated older adults with cognitive decline and are consistent with prior trials showing neurocognitive benefit with blueberry supplementation in this at-risk population.

  13. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  14. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  15. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    PubMed Central

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain signature that should, in the future, be compared to other μ opioid agonists. PMID:27857679

  16. Age, sex and reproductive status affect boldness in dogs.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-09-01

    Boldness in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies have found that boldness is affected by breed and breed groups, influences performance in sporting dogs, and is affected in some cases by the sex of the dogs. This study investigated the effects of dog age, sex and reproductive status on boldness in dogs by way of a dog personality survey circulated amongst Australian dog owners. Age had a significant effect on boldness (F=4.476; DF=16,758; P<0.001), with boldness decreasing with age in years. Males were bolder than females (F=19.219; DF=1,758; P<0.001) and entire dogs were bolder than neutered dogs (F=4.330; DF=1,758; P<0.038). The study indicates how behaviour may change in adult dogs as they age and adds to the literature on how sex and reproductive status may affect personality in dogs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evolutionary Dynamics of Fearfulness and Boldness: A Stochastic Simulation Model

    PubMed Central

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced. PMID:22412859

  18. Evolutionary dynamics of fearfulness and boldness: a stochastic simulation model.

    PubMed

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced.

  19. [Life cannot consist of dreams alone: reflections on advertising and a healthy diet].

    PubMed

    Villagelim, Andréa Siliveste Brasil; Prado, Shirley Donizete; Freitas, Ricardo Ferreira; Carvalho, Maria Claudia da Veiga Soares; Cruz, Claudia Olsieski da; Klotz, Juliana; Freire, Gesseldo de Brito

    2012-03-01

    In this essay we present some thoughts on advertising and a healthy diet in the contemporary world, where consumption plays a highly relevant role. We seek to emphasize two aspects, among many others yet to be explored in the scientific literature in the food and nutritional field: the hegemony of the biomedical paradigm and the fragmentation of human life when advertising campaigns associate food with the idea of a healthy diet. We believe that we cannot merely live through advertisements in which our desires are triggered constantly and where the world is only dreams and the main goal is to sell more and earn more, even using some strategies for dissemination of biomedical and nutritional information. In our opinion, the merger between diet and health, i.e. a healthy diet, must involve enlightenment of the individual including information on quality in the context of social life in order to achieve the ideal of happiness. Individuals whose identities are fully formed both in dreams and reality can boldly seek knowledge and think about themselves in the world context, as well as zeal for their diet and health.

  20. Primary hepatocytes as an useful bioassay to characterize metabolism and bioactivity of illicit steroids in cattle.

    PubMed

    Giantin, Mery; Gallina, Guglielmo; Pegolo, Sara; Lopparelli, Rosa Maria; Sandron, Clara; Zancanella, Vanessa; Nebbia, Carlo; Favretto, Donata; Capolongo, Francesca; Montesissa, Clara; Dacasto, Mauro

    2012-10-01

    Cattle hepatocytes have already been used in veterinary in vitro toxicology, but their usefulness as a multi-parametric screening bioassay has never been investigated so far. In this study, cattle hepatocytes were incubated with illicit steroids/prohormones (boldenone, BOLD; its precursor boldione, ADD; dehydroepiandrosterone, DHEA; an association of ADD:BOLD), to characterize their transcriptional effects on drug metabolizing enzymes (DMEs) and related nuclear receptors (NRs), on cytochrome P450 3A (CYP3A) apoprotein and catalytic activity as well as to determine ADD and BOLD metabolite profiling. DHEA-exposed cells showed an up-regulation (higher than 2.5-fold changes) of three out of six NRs, CYP2B22 and CYP2C87; likewise, ADD:BOLD increased CYP4A11 mRNA levels. In contrast, a reduction of CYP1A1 and CYP2E1 mRNAs (lower than 2.5(-1)-fold changes) was noticed in ADD- and DHEA-incubated cells. No effect was noticed on CYP3A gene and protein expression, though an inhibition of 6β-, 2β- and 16β-hydroxylation of testosterone (higher than 60% of control cells) was observed in ADD- and BOLD-exposed cells. Finally, 17α-BOLD was the main metabolite extracted from hepatocyte media incubated with ADD and BOLD, but several mono-hydroxylated BOLD and ADD derivatives were detected, too. Collectively, cattle hepatocytes can represent a complementary screening bioassay, useful to characterize growth promoters metabolite profiling and their effects upon DMEs expression, regulation and function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Right anterior cerebellum BOLD responses reflect age related changes in Simon task sequential effects.

    PubMed

    Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G

    2018-01-31

    Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    PubMed

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (p<0.05) reduced measures of resting-state BOLD connectivity in the motor cortex. Baseline cerebral blood flow and spectral energy in the low-frequency BOLD fluctuations were also significantly decreased by caffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  3. Effect of surrounding vasculature on intravoxel BOLD signal.

    PubMed

    Chen, Zikuan; Caprihan, Arvind; Calhoun, Vince

    2010-04-01

    The nonlocal influence from distant magnetization will affect the magnetic field at a voxel in question. Existing reports on BOLD simulation only consider vasculature inside a single voxel, thus omitting the contribution from the surrounding regions. In this article, the authors study the effect of the surrounding vasculature on the magnetic field and the BOLD signal at a cortical voxel by numerical simulation. A cortical voxel is generated as a cubic bin filled with randomly networked capillary vessels. First, the authors generate a cortical voxel with a random vessel network and embed it in a greater voxel by filling its surrounding region with vasculatures by different strategies. Next, they calculate the blood-susceptibility-induced magnetic field (BOLD field) at the voxel of interest (VOI) by a Fourier transform technique for different surrounding scenarios and varying surrounding extent. The BOLD field inhomogeneity is described by a radial distribution with a collection of cubic shell masks. The surrounding extent is defined by a collection of concentric cubes, which encase the VOI. Given a BOLD field in the presence of surrounding vasculature, they calculate BOLD signals by intravoxel dephasing. The influence from the surroundings on the BOLD field at a voxel in question mainly happens at the boundary. The most influence to the BOLD signal is from the inner surroundings. For a 160 x 160 x 160 microm3 voxel embedded in a 480 x 480 x 480 microm3 greater region, the surroundings could disturb the magnetic field by an amount in the range of [-0.002, 0.010] ppmT and could change the BOLD signal ratio in the range of [2.5%, 10%]. (These results were generated from the setting of delta(chi b)B0 = 3 ppmT, capillary = {2.5,6,9} microm, and relaxation time = 60 ms). The surrounding vasculature will impose a magnetic field disturbance at the voxel in question due to the nonlocal influence of magnetization. Simulation results show that the surrounding vasculature significantly alters the magnetic field (up to 0.01 ppmT) and BOLD signal (typically no more than 10%) at the central voxel and thus should be considered in accurate BOLD modeling.

  4. Risky business: Changes in boldness behavior in male Siamese fighting fish, Betta splendens, following exposure to an antiandrogen.

    PubMed

    Dzieweczynski, Teresa L; Portrais, Kelley B; Stevens, Megan A; Kane, Jessica L; Lawrence, Jaslynn M

    2018-04-01

    Components of boldness, such as activity level and locomotion, influence an individual's ability to avoid predators and acquire resources, generating fitness consequences. The presence of endocrine disrupting chemicals (EDCs) in the aquatic environment may affect fitness by changing morphology or altering behaviors like courtship and exploration. Most research on EDC-generated behavioral effects has focused on estrogen mimics and reproductive endpoints. Far fewer studies have examined the effects of other types of EDCs or measured non-reproductive behaviors. EDCs with antiandrogenic properties are present in waterways yet we know little about their effects on exposed individuals although they may produce effects similar to those caused by estrogen mimics because they act on the same hormonal pathway. To examine the effects of antiandrogens on boldness, this study exposed male Siamese fighting fish, Betta splendens, to a high or low dose of one of two antiandrogens, vinclozolin or flutamide, and observed behavior in three boldness assays, both before and after exposure. Overall, antiandrogen exposure increased boldness behavior, especially following exposure to the higher dose. Whether or not antiandrogen exposure influenced boldness, as well as the nature and intensity of the effect, was assay-dependent. This demonstrates the importance of studying EDC effects in a range of contexts and, at least within this species, suggests that antiandrogenic compounds may generate distinct physiological effects in different situations. How and why the behavioral effects differ from those caused by exposure to an estrogen mimic, as well as the potential consequences of increased activity levels, are discussed. Exposure to an antiandrogen, regardless of dose, produced elevated activity levels and altered shoaling and exploration in male Siamese fighting fish. These modifications may have fitness consequences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Oxygen-induced frequency shifts in hyperoxia: a significant component of BOLD signal.

    PubMed

    Song, Youngkyu; Cho, Gyunggoo; Chun, Song-I; Baek, Jin Hee; Cho, HyungJoon; Kim, Young Ro; Park, Sung Bin; Kim, Jeong Kon

    2014-07-01

    In comparison to the well-documented significance of intravascular deoxyhemoglobin (deoxyHgb), the effects of dissolved oxygen on the blood-oxygen-level-dependent (BOLD) signal have not been widely reported. Based on the fact that the prolonged inspiration of high oxygen fraction gas can result in up to a sixfold increase of the baseline tissue oxygenation, the current study focused on the influence of dissolved oxygen on the BOLD signal during hyperoxia. As results, our in vitro study revealed that the r1 and r2 (relaxivities) of the oxygen-treated serum were 0.22 mM(-1) · s(-1) and 0.19 mM(-1) · s(-1) , respectively. In an in vivo experiment, hyperoxic respiration induced negative BOLD contrast (i.e. signal decrease) in 18-42% of measured brain regions, voxels with accompanying significant decreases in both the T(*)2 (-12.1% to -19.4%) and T1 (-5.8% to -3.3%) relaxation times. In contrast, the T(*)2 relaxation time significantly increased (11.2% to 14.0%) for the voxels displaying positive BOLD contrast (in 41-50% of the measured brain), which reflected a hyperoxygenation-induced reduction in tissue deoxyHgb concentration. These data imply that hyperoxia-driven BOLD signal changes are primarily determined by the counteracting effects of extravascular oxygen and intravascular deoxyHgb. Oxygen-induced magnetic susceptibility was further demonstrated by the study of 1 min hypoxia, which induced BOLD signal changes opposite to those under hyperoxia. Vasoconstriction was more common in voxels with negative BOLD contrast than in voxels with positive contrast (% change of blood volume, -9.8% to -12.8% versus 2.0% to 2.2%), which further suggests that negative BOLD contrast is mainly evoked by an increase in extravascular oxygen concentration. Conclusively, frequency shifts, which are induced by the accumulation of oxygen molecules and associated magnetic field inhomogeneity, are a significant source of the negative BOLD contrast during hyperoxia. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Effect of hunger level and time of day on boldness and aggression in the zebrafish Danio rerio.

    PubMed

    Ariyomo, T O; Watt, P J

    2015-06-01

    The effect of two environmental variables, hunger level (fed or not fed before behavioural assays) and time of day (morning or afternoon), on the boldness and aggressiveness of male and female zebrafish Danio rerio, was tested. The results showed that neither hunger level nor time of testing influenced boldness in males and females, but hunger level significantly affected aggression in females when compared with males. © 2015 The Fisheries Society of the British Isles.

  7. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    PubMed

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  8. Early anti-correlated BOLD signal changes of physiologic origin.

    PubMed

    Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H

    2014-02-15

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. Published by Elsevier Inc.

  9. Early anti-correlated BOLD signal changes of physiologic origin

    PubMed Central

    Bright, Molly G.; Bianciardi, Marta; de Zwart, Jacco A.; Murphy, Kevin; Duyn, Jeff H.

    2014-01-01

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. PMID:24211818

  10. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study.

    PubMed

    Kraus, Thomas; Kiess, Olga; Hösl, Katharina; Terekhin, Pavel; Kornhuber, Johannes; Forster, Clemens

    2013-09-01

    It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  12. Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.; Skupsky, S.

    1990-08-01

    The uniformity of focused laser beams, that has been modified with randomly phased distributed phase plates (C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Kato and Mima, Appl. Phys. B {bold 29}, 186 (1982); Kato {ital et} {ital al}., Phys. Rev. Lett. {bold 53}, 1057 (1984); LLE Rev. {bold 33}, 1 (1987)), can be improved further by constructing patterns of phase elements which minimize phase correlations over small separations. Long-wavelength nonuniformities in the intensity distribution, which are relatively difficult to overcome in the target by thermal smoothing and in the laser by, e.g., spectral dispersion (Skupsky {ital et} {italmore » al}., J. Appl. Phys. {bold 66}, 3456 (1989); LLE Rev. {bold 36}, 158 (1989); {bold 37}, 29 (1989); {bold 37}, 40 (1989)), result largely from short-range phase correlations between phase plate elements. To reduce the long-wavelength structure, we have constructed phase patterns with smaller short-range correlations than would occur randomly. Calculations show that long-wavelength nonuniformities in single-beam intensity patterns can be reduced with these masks when the intrinsic phase error of the beam falls below certain limits. We show the effect of this improvement on uniformity for spherical irradiation by a multibeam system.« less

  13. The Effect of Letter-stroke Boldness on Reading Speed in Central and Peripheral Vision

    PubMed Central

    Bernard, Jean-Baptiste; Kumar, Girish; Junge, Jasmine; Chung, Susana T.L.

    2013-01-01

    People with central vision loss often prefer boldface print over normal print for reading. However, little is known about how reading speed is influenced by the letter-stroke boldness of font. In this study, we examined the reliance of reading speed on stroke boldness, and determined whether this reliance differs between the normal central and peripheral vision. Reading speed was measured using the rapid serial visual presentation paradigm, where observers with normal vision read aloud short single sentences presented on a computer monitor, one word at a time. Text was rendered in Courier at six levels of boldness, defined as the stroke-width normalized to that of the standard Courier font: 0.27, 0.72, 1, 1.48, 1.89 and 3.04× the standard. Testings were conducted at the fovea and 10° in the inferior visual field. Print sizes used were 0.8× and 1.4× the critical print size (smallest print size that can be read at the maximum reading speed). At the fovea, reading speed was invariant for the middle four levels of boldness, but dropped by 23.3% for the least and the most bold text. At 10° eccentricity, reading speed was virtually the same for all boldness <1, but showed a poorer tolerance to bolder text, dropping by 21.5% for 1.89x boldness and 51% for the most bold (3.04x) text. These results could not be accounted for by the changes in print size or the RMS contrast of text associated with changes in stroke boldness. Our results suggest that contrary to the popular belief, reading speed does not benefit from bold text in the normal fovea and periphery. Excessive increase in stroke boldness may even impair reading speed, especially in the periphery. PMID:23523572

  14. The effect of letter-stroke boldness on reading speed in central and peripheral vision.

    PubMed

    Bernard, Jean-Baptiste; Kumar, Girish; Junge, Jasmine; Chung, Susana T L

    2013-05-24

    People with central vision loss often prefer boldface print over normal print for reading. However, little is known about how reading speed is influenced by the letter-stroke boldness of font. In this study, we examined the reliance of reading speed on stroke boldness, and determined whether this reliance differs between the normal central and peripheral vision. Reading speed was measured using the rapid serial visual presentation paradigm, where observers with normal vision read aloud short single sentences presented on a computer monitor, one word at a time. Text was rendered in Courier at six levels of boldness, defined as the stroke-width normalized to that of the standard Courier font: 0.27, 0.72, 1, 1.48, 1.89 and 3.04× the standard. Testings were conducted at the fovea and 10° in the inferior visual field. Print sizes used were 0.8× and 1.4× the critical print size (smallest print size that can be read at the maximum reading speed). At the fovea, reading speed was invariant for the middle four levels of boldness, but dropped by 23.3% for the least and the most bold text. At 10° eccentricity, reading speed was virtually the same for all boldness <1, but showed a poorer tolerance to bolder text, dropping by 21.5% for 1.89× boldness and 51% for the most bold (3.04×) text. These results could not be accounted for by the changes in print size or the RMS contrast of text associated with changes in stroke boldness. Our results suggest that contrary to the popular belief, reading speed does not benefit from bold text in the normal fovea and periphery. Excessive increase in stroke boldness may even impair reading speed, especially in the periphery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of Time on Gypsum-Impression Material Compatibility

    NASA Astrophysics Data System (ADS)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p < 0.05). Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  16. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.

    PubMed

    Brocka, Marta; Helbing, Cornelia; Vincenz, Daniel; Scherf, Thomas; Montag, Dirk; Goldschmidt, Jürgen; Angenstein, Frank; Lippert, Michael

    2018-04-30

    Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-11-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and "risky" (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.

  18. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes

    PubMed Central

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-01-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete. PMID:25540696

  19. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Kane, Jessica L; Campbell, Brennah A; Lavin, Lindsey E

    2016-01-01

    The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual’s success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes.

  20. Extent of BOLD Vascular Dysregulation Is Greater in Diffuse Gliomas without Isocitrate Dehydrogenase 1 R132H Mutation.

    PubMed

    Englander, Zachary K; Horenstein, Craig I; Bowden, Stephen G; Chow, Daniel S; Otten, Marc L; Lignelli, Angela; Bruce, Jeffrey N; Canoll, Peter; Grinband, Jack

    2018-06-01

    Purpose To determine the effect that R132H mutation status of diffuse glioma has on extent of vascular dysregulation and extent of residual blood oxygen level-dependent (BOLD) abnormality after surgical resection. Materials and Methods This study was an institutional review board-approved retrospective analysis of an institutional database of patients, and informed consent was waived. From 2010 to 2017, 39 treatment-naïve patients with diffuse glioma underwent preoperative echo-planar imaging and BOLD functional magnetic resonance imaging. BOLD vascular dysregulation maps were made by identifying voxels with time series similar to tumor and dissimilar to healthy brain. The spatial overlap between tumor and vascular dysregulation was characterized by using the Dice coefficient, and areas of BOLD abnormality outside the tumor margins were quantified as BOLD-only fraction (BOF). Linear regression was used to assess effects of R132H status on the Dice coefficient, BOF, and residual BOLD abnormality after surgical resection. Results When compared with R132H wild-type (R132H-) gliomas, R132H-mutated (R132H+) gliomas showed greater spatial overlap between BOLD abnormality and tumor (mean Dice coefficient, 0.659 ± 0.02 [standard error] for R132H+ and 0.327 ± 0.04 for R132H-; P < .001), less BOLD abnormality beyond the tumor margin (mean BOF, 0.255 ± 0.03 for R132H+ and 0.728 ± 0.04 for R132H-; P < .001), and less postoperative BOLD abnormality (residual fraction, 0.046 ± 0.0047 for R132H+ and 0.397 ± 0.045 for R132H-; P < .001). Receiver operating characteristic curve analysis showed high sensitivity and specificity in the discrimination of R132H+ tumors from R132H- tumors with calculation of both Dice coefficient and BOF (area under the receiver operating characteristic curve, 0.967 and 0.977, respectively). Conclusion R132H mutation status is an important variable affecting the extent of tumor-associated vascular dysregulation and the residual vascular dysregulation after surgical resection. © RSNA, 2018 Online supplemental material is available for this article.

  1. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Functional magnetic resonance imaging in chronic ischaemic stroke.

    PubMed

    Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana

    2016-10-05

    Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  3. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with excitation wavelengths in the near infrared (NIR). The (NIR) wavelength regime, 750- 1100nm, penetrates deep (>100 μm) into tissue, and has been used to image to depths of up to 1 mm. Further, the longer excitation wavelengths are less absorbing than the traditional ultraviolet wavelengths used in confocal microscopy, and are consequently less damaging. As a result, (TPEF) is presently the preferred tool for visualizing dynamics by biologists. One important aspect of imaging living systems, however, is that they move! This adds to the challenge of trying to study some particular biological function(s). This thesis begins to address this issue by combining a simple micro controller circuit that can be linked to a remote focusing scheme that will make it possible to lock a focal plane to a specific depth inside a living, moving specimen.

  4. Spatial Nonuniformity of the Resting CBF and BOLD Responses to Sevoflurane: In Vivo Study of Normal Human Subjects With Magnetic Resonance Imaging

    PubMed Central

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2009-01-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF–BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. PMID:17948882

  5. Caffeine Increases the Linearity of the Visual BOLD Response

    PubMed Central

    Liu, Thomas T.; Liau, Joy

    2009-01-01

    Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278

  6. Large enhancement of perfusion contribution on fMRI signal

    PubMed Central

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2012-01-01

    The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206

  7. Spatial Mnemonic Encoding: Theta Power Decreases and Medial Temporal Lobe BOLD Increases Co-Occur during the Usage of the Method of Loci

    PubMed Central

    Volberg, Gregor; Goldhacker, Markus; Hanslmayr, Simon

    2016-01-01

    Abstract The method of loci is one, if not the most, efficient mnemonic encoding strategy. This spatial mnemonic combines the core cognitive processes commonly linked to medial temporal lobe (MTL) activity: spatial and associative memory processes. During such processes, fMRI studies consistently demonstrate MTL activity, while electrophysiological studies have emphasized the important role of theta oscillations (3–8 Hz) in the MTL. However, it is still unknown whether increases or decreases in theta power co-occur with increased BOLD signal in the MTL during memory encoding. To investigate this question, we recorded EEG and fMRI separately, while human participants used the spatial method of loci or the pegword method, a similarly associative but nonspatial mnemonic. The more effective spatial mnemonic induced a pronounced theta power decrease source localized to the left MTL compared with the nonspatial associative mnemonic strategy. This effect was mirrored by BOLD signal increases in the MTL. Successful encoding, irrespective of the strategy used, elicited decreases in left temporal theta power and increases in MTL BOLD activity. This pattern of results suggests a negative relationship between theta power and BOLD signal changes in the MTL during memory encoding and spatial processing. The findings extend the well known negative relation of alpha/beta oscillations and BOLD signals in the cortex to theta oscillations in the MTL. PMID:28101523

  8. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    PubMed

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  9. "Boldness" in the domestic dog differs among breeds and breed groups.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, p<0.001), as did breed group (F=10.66, numDF=8, denDF=772, p<0.001). Herding and gundog groups were broken into sub-groups based on historic breed purpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; p<0.001), and tending and loose-eyed herding breeds were bolder than heading and cattle-herding breeds (Reg. Coef.=1.744; S.E.=0.866; p=0.045 and Reg. Coef.=1.842; S.E.=0.693; p=0.0084, respectively). This study supports the existence of the shy-bold continuum in dogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity

    PubMed Central

    Halani, Sheliza; Kwinta, Jonathan B.; Golestani, Ali M.; Khatamian, Yasha B.; Chen, J. Jean

    2016-01-01

    Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4 mm Hg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease. PMID:25655446

  11. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  12. Spatial nonuniformity of the resting CBF and BOLD responses to sevoflurane: in vivo study of normal human subjects with magnetic resonance imaging.

    PubMed

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2008-12-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF-BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. Copyright 2007 Wiley-Liss, Inc.

  13. The spatio-temporal mapping of epileptic networks: Combination of EEG–fMRI and EEG source imaging

    PubMed Central

    Vulliemoz, S.; Thornton, R.; Rodionov, R.; Carmichael, D.W.; Guye, M.; Lhatoo, S.; McEvoy, A.W.; Spinelli, L.; Michel, C.M.; Duncan, J.S.; Lemieux, L.

    2009-01-01

    Simultaneous EEG–fMRI acquisitions in patients with epilepsy often reveal distributed patterns of Blood Oxygen Level Dependant (BOLD) change correlated with epileptiform discharges. We investigated if electrical source imaging (ESI) performed on the interictal epileptiform discharges (IED) acquired during fMRI acquisition could be used to study the dynamics of the networks identified by the BOLD effect, thereby avoiding the limitations of combining results from separate recordings. Nine selected patients (13 IED types identified) with focal epilepsy underwent EEG–fMRI. Statistical analysis was performed using SPM5 to create BOLD maps. ESI was performed on the IED recorded during fMRI acquisition using a realistic head model (SMAC) and a distributed linear inverse solution (LAURA). ESI could not be performed in one case. In 10/12 remaining studies, ESI at IED onset (ESIo) was anatomically close to one BOLD cluster. Interestingly, ESIo was closest to the positive BOLD cluster with maximal statistical significance in only 4/12 cases and closest to negative BOLD responses in 4/12 cases. Very small BOLD clusters could also have clinical relevance in some cases. ESI at later time frame (ESIp) showed propagation to remote sources co-localised with other BOLD clusters in half of cases. In concordant cases, the distance between maxima of ESI and the closest EEG–fMRI cluster was less than 33 mm, in agreement with previous studies. We conclude that simultaneous ESI and EEG–fMRI analysis may be able to distinguish areas of BOLD response related to initiation of IED from propagation areas. This combination provides new opportunities for investigating epileptic networks. PMID:19408351

  14. The effect of boldness on decision-making in barnacle geese is group-size-dependent

    PubMed Central

    Kurvers, Ralf H. J. M.; Adamczyk, Vena M. A. P.; van Wieren, Sipke E.; Prins, Herbert H. T.

    2011-01-01

    In group-living species, decisions made by individuals may result in collective behaviours. A central question in understanding collective behaviours is how individual variation in phenotype affects collective behaviours. However, how the personality of individuals affects collective decisions in groups remains poorly understood. Here, we investigated the role of boldness on the decision-making process in different-sized groups of barnacle geese. Naive barnacle geese, differing in boldness score, were introduced in a labyrinth in groups with either one or three informed demonstrators. The demonstrators possessed information about the route through the labyrinth. In pairs, the probability of choosing a route prior to the informed demonstrator increased with increasing boldness score: bolder individuals decided more often for themselves where to go compared with shyer individuals, whereas shyer individuals waited more often for the demonstrators to decide and followed this information. In groups of four individuals, however, there was no effect of boldness on decision-making, suggesting that individual differences were less important with increasing group size. Our experimental results show that personality is important in collective decisions in pairs of barnacle geese, and suggest that bolder individuals have a greater influence over the outcome of decisions in groups. PMID:21123271

  15. The effect of boldness on decision-making in barnacle geese is group-size-dependent.

    PubMed

    Kurvers, Ralf H J M; Adamczyk, Vena M A P; van Wieren, Sipke E; Prins, Herbert H T

    2011-07-07

    In group-living species, decisions made by individuals may result in collective behaviours. A central question in understanding collective behaviours is how individual variation in phenotype affects collective behaviours. However, how the personality of individuals affects collective decisions in groups remains poorly understood. Here, we investigated the role of boldness on the decision-making process in different-sized groups of barnacle geese. Naive barnacle geese, differing in boldness score, were introduced in a labyrinth in groups with either one or three informed demonstrators. The demonstrators possessed information about the route through the labyrinth. In pairs, the probability of choosing a route prior to the informed demonstrator increased with increasing boldness score: bolder individuals decided more often for themselves where to go compared with shyer individuals, whereas shyer individuals waited more often for the demonstrators to decide and followed this information. In groups of four individuals, however, there was no effect of boldness on decision-making, suggesting that individual differences were less important with increasing group size. Our experimental results show that personality is important in collective decisions in pairs of barnacle geese, and suggest that bolder individuals have a greater influence over the outcome of decisions in groups.

  16. Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

    NASA Astrophysics Data System (ADS)

    Tuccari, G.; Bezrukovs, Vl.; Nechaeva, M.

    2012-12-01

    A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information can then allow exploring easily the desired range of search for unknown or not fully determined orbit objects. These features make Radar VLBI personality most useful in the space debris measurements. DBBC sistēma izstrādāta Noto Radioastronomijas institūtā. Sistēmas galvenaisuzdevums - palielināt visa Eiropas VLBI tīkla jutību - realizēts, palielinotvisas novērojamās joslas platumu un pielietojot ciparu signālu apstrādes metodes.Izejas datu plūsma palielināta no 1 līdz 4 Gbps katram radioteleskopam un visasoperācijas, kas saistītas ar signālu apstrādi (frekvences pārveidošana, pastiprinājums,iekšējie ģeneratori, utt.), realizētas digitālā formā, kas ļauj iegūt nozīmīgusuzlabojumus atkārtojamībā, precizitātē, vienkāršībā, nemaz neminot vispārzināmāspriekšrocības, ko nodrošina digitālo tehnoloģiju izmantošana. Maksimālā ieejassignāla frekvenču josla ir 3.5 GHz, un momentānais joslas platums ir līdz 1 GHz uzkatru no astoņiem iespējamajiem RF/IF kanāliem. Šī datu reģistrācijas sistēma irļoti veiktspējīga platforma ne tikai EVN, bet arī citiem radioastronomijas pielietojumiem,un papildus tiek izstrādāta vesela virkne programmatūras pakotņu, kasvēl vairāk paplašina sistēmas funkcionalitāti. Tas ietver PFB (Polifāzes FiltruBanka) uztvērējus "Spectra”, kas piemēroti augstas izšķirtspējas spektroskopijasvajadzībām. Papildus realizēts jaunas programmatūras risinājums, ar mērķiizmantot DBBC sistēmu kā daudzfunkcionālu datu ciparošanas iekārtu, kasizmantojama bistatiskiem radara novērojumiem, tai skaitā arī radara VLBInovērojumiem. Šāda veida novērojumos tiek pētīta kosmisko atlūzu populācija,nodrošinot iespēju detektēt pat centimetra izmēru objektus. Debess apgabalaapstarošanai tiek izmantots jaudīgs raidītājs, un tiek analizēts atbalss signāls, kasatstarojas no zināmiem vai nezināmiem objektiem un tiek uztverts ar vienu vaivairākiem teleskopiem uz Zemes, tādējādi realizējot vienas antenas vai interferometrisku signāla detektēšanu. DBBC sistēma ar radara VLBI programmatūruspēj realizēt augstas izšķirtspējas spektra analīzi, saglabājot atbalss signālu arsagaidāmo frekvenci centrālajā zonā un ieskaitot nepieciešamās Doplera frekvencesnobīdes korekcijas. Tālāk, izmantojot dažādus ievadparametrus, iespējamspielietot ļoti ilgu integrācijas laiku ārkārtīgi vāju signālu detektēšanai. Izmantojotreālā laika informāciju, turpmāk ir iespējams viegli analizēt nepieciešamo apgabaluun detektēt nezināmus objektus vai objektus ar neprecīzi zināmiem orbītu parametriem.Rakstā izklāstītas paredzamās minētās programmatūras funkcijas un tāsizmantošanas plāni pirmajos novērojumos.

  17. Ecological consequences of the bold-shy continuum: the effect of predator boldness on prey risk.

    PubMed

    Ioannou, C C; Payne, M; Krause, J

    2008-08-01

    Although the existence of different personality traits within and between animal populations has been relatively well established, the ecological implications of this variation remain neglected. In this study we tested whether differences in the boldness of pairs of three-spined sticklebacks led to differential predation risk in their prey, Chironomidae larvae. Bolder pairs, those that left a refuge and crossed the tank mid-line sooner, ate a greater proportion of prey in 10 min than less bold fish (therefore prey were at a greater per capita risk). Fish crossed the mid-line more rapidly when a larger number of prey were presented, suggesting they accepted greater risk in return for a larger foraging reward. Perception of predation risk also affected the differences between fish in boldness, as larger fish crossed the mid-line sooner after leaving the refuge (larger fish are less at risk from predation). Hence, an interesting trophic interaction occurs, where the risk experienced by the chironomid larvae is determined by the risk perceived by their predators. Through the variation generated by boldness, a form of behaviourally mediated trophic cascade can occur within (as well as between) communities.

  18. Amphetamine modulates brain signal variability and working memory in younger and older adults.

    PubMed

    Garrett, Douglas D; Nagel, Irene E; Preuschhof, Claudia; Burzynska, Agnieszka Z; Marchner, Janina; Wiegert, Steffen; Jungehülsing, Gerhard J; Nyberg, Lars; Villringer, Arno; Li, Shu-Chen; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman

    2015-06-16

    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI-based blood oxygen level-dependent (BOLD) signal variability (SD(BOLD)) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SD(BOLD) levels in the presence of AMPH. Drug session order greatly moderated change-change relations between AMPH-driven SD(BOLD) and reaction time means (RT(mean)) and SDs (RT(SD)). Older adults who received AMPH in the first session tended to improve in RT(mean) and RT(SD) when SD(BOLD) was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SD(BOLD) decreased (for RT(mean)) or no effect at all (for RT(SD)). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.

  19. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys.

    PubMed

    Atabaki, A; Marciniak, K; Dicke, P W; Karnath, H-O; Thier, P

    2014-03-01

    Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  1. Task-evoked BOLD responses are normal in areas of diaschisis after stroke.

    PubMed

    Fair, Damien A; Snyder, Abraham Z; Connor, Lisa Tabor; Nardos, Binyam; Corbetta, Maurizio

    2009-01-01

    Cerebral infarction can cause diaschisis, a reduction of blood flow and metabolism in areas of the cortex distant from the site of the lesion. Although the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal is increasingly used to examine the neural correlates of recovery in stroke, its reliability in areas of diaschisis is uncertain. The effect of chronic diaschisis as measured by resting positron emission tomography on task-evoked BOLD responses during word-stem completion in a block design fMRI study was examined in 3 patients, 6 months after a single left hemisphere stroke involving the inferior frontal gyrus and operculum. The BOLD responses were minimally affected in areas of chronic diaschisis. Within the confines of this study, the mechanism underlying the BOLD signal, which includes a mismatch between neuronally driven increases in blood flow and a corresponding increase in oxygen use, appears to be intact in areas of chronic diaschisis.

  2. Personality in the cockroach Diploptera punctata: Evidence for stability across developmental stages despite age effects on boldness.

    PubMed

    Stanley, Christina R; Mettke-Hofmann, Claudia; Preziosi, Richard F

    2017-01-01

    Despite a recent surge in the popularity of animal personality studies and their wide-ranging associations with various aspects of behavioural ecology, our understanding of the development of personality over ontogeny remains poorly understood. Stability over time is a central tenet of personality; ecological pressures experienced by an individual at different life stages may, however, vary considerably, which may have a significant effect on behavioural traits. Invertebrates often go through numerous discrete developmental stages and therefore provide a useful model for such research. Here we test for both differential consistency and age effects upon behavioural traits in the gregarious cockroach Diploptera punctata by testing the same behavioural traits in both juveniles and adults. In our sample, we find consistency in boldness, exploration and sociality within adults whilst only boldness was consistent in juveniles. Both boldness and exploration measures, representative of risk-taking behaviour, show significant consistency across discrete juvenile and adult stages. Age effects are, however, apparent in our data; juveniles are significantly bolder than adults, most likely due to differences in the ecological requirements of these life stages. Size also affects risk-taking behaviour since smaller adults are both bolder and more highly explorative. Whilst a behavioural syndrome linking boldness and exploration is evident in nymphs, this disappears by the adult stage, where links between other behavioural traits become apparent. Our results therefore indicate that differential consistency in personality can be maintained across life stages despite age effects on its magnitude, with links between some personality traits changing over ontogeny, demonstrating plasticity in behavioural syndromes.

  3. Personality in the cockroach Diploptera punctata: Evidence for stability across developmental stages despite age effects on boldness

    PubMed Central

    Mettke-Hofmann, Claudia; Preziosi, Richard F.

    2017-01-01

    Despite a recent surge in the popularity of animal personality studies and their wide-ranging associations with various aspects of behavioural ecology, our understanding of the development of personality over ontogeny remains poorly understood. Stability over time is a central tenet of personality; ecological pressures experienced by an individual at different life stages may, however, vary considerably, which may have a significant effect on behavioural traits. Invertebrates often go through numerous discrete developmental stages and therefore provide a useful model for such research. Here we test for both differential consistency and age effects upon behavioural traits in the gregarious cockroach Diploptera punctata by testing the same behavioural traits in both juveniles and adults. In our sample, we find consistency in boldness, exploration and sociality within adults whilst only boldness was consistent in juveniles. Both boldness and exploration measures, representative of risk-taking behaviour, show significant consistency across discrete juvenile and adult stages. Age effects are, however, apparent in our data; juveniles are significantly bolder than adults, most likely due to differences in the ecological requirements of these life stages. Size also affects risk-taking behaviour since smaller adults are both bolder and more highly explorative. Whilst a behavioural syndrome linking boldness and exploration is evident in nymphs, this disappears by the adult stage, where links between other behavioural traits become apparent. Our results therefore indicate that differential consistency in personality can be maintained across life stages despite age effects on its magnitude, with links between some personality traits changing over ontogeny, demonstrating plasticity in behavioural syndromes. PMID:28489864

  4. Acute exposure to 17α-ethinylestradiol alters boldness behavioral syndrome in female Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Marks, Jodi M; Logan, Brittney

    2014-09-01

    The role of anthropogenic sources in generating, maintaining, and influencing behavioral syndromes has recently been identified as an important area of future research. Endocrine disrupting chemicals are prevalent and persistent in aquatic ecosystems worldwide. These chemicals are known to have marked effects on the morphology and behavior of exposed individuals and, as such, may serve as a potential influence on behavioral syndromes. However, both the effects of exposure on behaviors beyond courtship and aggression and how exposure might affect behavioral variation at the individual level are understudied. To address this question, we examined boldness behavior in female Siamese fighting fish in three different assays (Novel Environment, Empty Tank, Shoaling) both before and after they were exposed to the estrogen mimic, 17α-ethinylestradiol (EE2). EE2 influences courtship, aggression, and boldness in males of this species but its effects have not been examined in females, to our knowledge. Females were tested multiple times in each assay before and after exposure so that behavioral consistency could be examined. A behavioral syndrome for boldness and activity level occurred across the three assays. The reductions in boldness and loss of the behavioral syndrome that resulted from EE2 exposure were surprising and suggest that the effects of EE2 exposure on female behavior and physiology should be examined more frequently. This study is one of the first to examine the effects of EE2 in females as well as on correlated behaviors and emphasizes the importance of examining the effects of endocrine disrupting chemicals on individual behavioral variation and consistency. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Metabolism study of boldenone in human urine by gas chromatography-tandem mass spectrometry.

    PubMed

    Wu, Xinchen; Gao, Feng; Zhang, Wenxin; Ni, Jian

    2015-11-10

    Boldenone (BOLD), an anabolic steroid, is likely to be abused in livestock breeding and in sports. Although some of BOLD metabolites in human urine, such as 5β-adrost-1-en-17β-ol-3-one (BM1), have been detected, investigations on their excretion patterns for both genders are insufficient. Moreover, little research on 17α-BOLD glucuronide as a metabolite in human urine has been reported. The aim of this study is to make a contribution to the knowledge of 17β-BOLD metabolism in humans. Three male and three female volunteers were orally administrated with 30mg 17β-BOLD. Urine samples were collected and analyzed with gas chromatography-tandem mass spectrometry. The data proved that 17β-BOLD, BM1, and 17α-BOLD were excreted in urine in both free and glucuronic conjugated forms after administration of 17β-BOLD. For most subjects, the urinary concentrations of BM1 were higher than that of 17β-BOLD. 17α-BOLD was excreted in small amounts. 17α-BOLD, 17β-BOLD, and BM1 were present naturally in urine with low concentrations. Administration of 30mg 17β-BOLD could not influence the excretion profiles of urinary androsterone, etiocholanolone, and testosterone/epitestosterone ratio. There were no differences in BOLD metabolic patterns between man and woman. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Plasticity varies with boldness in a weakly-electric fish.

    PubMed

    Kareklas, Kyriacos; Arnott, Gareth; Elwood, Robert W; Holland, Richard A

    2016-01-01

    The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.

  7. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    PubMed

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  8. BOLD response to semantic and syntactic processing during hypoglycemia is load-dependent.

    PubMed

    Schafer, Robin J; Page, Kathleen A; Arora, Jagriti; Sherwin, Robert; Constable, R Todd

    2012-01-01

    This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at ∼50mg/dL); in the other, plasma glucose was maintained at euglycemic levels (∼100mg/dL). During scans subjects were presented with sentences of contrasting syntactic (embedding vs. conjunction) and semantic (reversibility vs. irreversibility) load. Semantic factors dominated the overall load effects on both performance (p<0.001) and BOLD response (p<0.01, corrected). Differential BOLD signal was observed in frontal, temporal, temporo-parietal and medio-temporal regions. Hypoglycemia and syntactic factors significantly impacted performance (p=0.002) and BOLD response (p<0.01, corrected) in the reversible clause conditions, more extensively in reversible-embedded than in reversible-conjoined clauses. Hypoglycemia resulted in a robust decrease in performance on reversible clauses and exerted attenuating effects on BOLD unselectively across cortical circuits. The dominance of reversibility in all measures underscores the distinction between the syntactic and semantic contrasts. The syntactic is based in a quantitative difference in algorithms interpreting embedded and conjoined structures. We suggest that the semantic is based in a qualitative difference between algorithmic mapping of arguments in reversible clauses and heuristic linking in irreversible clauses. Because heuristics drastically reduce resource demand, the operations they support would resist the load-dependent cognitive consequences of hypoglycemia. © 2011 Elsevier Inc. All rights reserved.

  9. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Culver, Joseph P.; Thompson, John H.; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2002-01-01

    Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.

  10. Increased fMRI Sensitivity at Equal Data Burden Using Averaged Shifted Echo Acquisition

    PubMed Central

    Witt, Suzanne T.; Warntjes, Marcel; Engström, Maria

    2016-01-01

    There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics. PMID:27932947

  11. Population, sex and body size: determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio.

    PubMed

    Roy, Tamal; Bhat, Anuradha

    2018-01-01

    This study (1) investigated variation among populations and the effects of sex and body size on boldness, activity and shoal-association tendency among wild zebrafish, and (2) tested for existence of correlations between behaviours, controlling for sex and body size. Individuals across four natural populations were tested for general activity in a novel situation, number of predator inspections undertaken and tendency to associate with a conspecific shoal in the presence of predators. Results showed a significant effect of population on boldness with a population from high-predation habitat being bolder than populations from low-predation habitats. Males showed significantly higher tendencies than females to associate with a conspecific shoal in the presence of predators. Further, a negative relationship was found between activity and boldness only within two low-predation populations. Individual body size had a strong effect on the activity-boldness relationship within the low-predation population from flowing water habitat. Smaller fish were bolder and less active while larger fish were more cautious and active. Overall, the results indicated that while population-level behavioural responses might be shaped by predation pressure, state-dependent factors could determine behavioural correlations among individuals within populations.

  12. Population, sex and body size: determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio

    PubMed Central

    Roy, Tamal

    2018-01-01

    This study (1) investigated variation among populations and the effects of sex and body size on boldness, activity and shoal-association tendency among wild zebrafish, and (2) tested for existence of correlations between behaviours, controlling for sex and body size. Individuals across four natural populations were tested for general activity in a novel situation, number of predator inspections undertaken and tendency to associate with a conspecific shoal in the presence of predators. Results showed a significant effect of population on boldness with a population from high-predation habitat being bolder than populations from low-predation habitats. Males showed significantly higher tendencies than females to associate with a conspecific shoal in the presence of predators. Further, a negative relationship was found between activity and boldness only within two low-predation populations. Individual body size had a strong effect on the activity–boldness relationship within the low-predation population from flowing water habitat. Smaller fish were bolder and less active while larger fish were more cautious and active. Overall, the results indicated that while population-level behavioural responses might be shaped by predation pressure, state-dependent factors could determine behavioural correlations among individuals within populations. PMID:29410809

  13. Task effects on BOLD signal correlates of implicit syntactic processing

    PubMed Central

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  14. Task effects on BOLD signal correlates of implicit syntactic processing.

    PubMed

    Caplan, David

    2010-07-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed.

  15. Heritability of boldness and aggressiveness in the zebrafish.

    PubMed

    Ariyomo, Tolulope O; Carter, Mauricio; Watt, Penelope J

    2013-03-01

    Behavioural traits that are consistent over time and in different contexts are often referred to as personality traits. These traits influence fitness because they play a major role in foraging, reproduction and survival, and so it is assumed that they have little or no additive genetic variance and, consequently, low heritability because, theoretically, they are under strong selection. Boldness and aggressiveness are two personality traits that have been shown to affect fitness. By crossing single males to multiple females, we estimated the heritability of boldness and aggressiveness in the zebrafish, Danio rerio. The additive genetic variance was statistically significant for both traits and the heritability estimates (95 % confidence intervals) for boldness and aggressiveness were 0.76 (0.49, 0.90) and 0.36 (0.10, 0.72) respectively. Furthermore, there were significant maternal effects accounting for 18 and 9 % of the proportion of phenotypic variance in boldness and aggressiveness respectively. This study shows that there is a significant level of genetic variation in this population that would allow these traits to evolve in response to selection.

  16. Using CO5BOLD models to predict the effects of granulation on colours .

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Prakapavičius, D.; Kučinskas, A.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.

    In order to investigate the effects of granulation on fluxes and colours, we computed the emerging fluxes from the models in the CO5BOLD grid with metallicities [M/H]=0.0,-1.0,-2.0 and -3.0. These fluxes have been used to compute colours in different photometric systems. We explain here how our computations have been performed and provide some results.

  17. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network

    PubMed Central

    Boettiger, Charlotte A.; Kelley, Elizabeth A.; Mitchell, Jennifer M.; D’Esposito, Mark; Fields, Howard L.

    2009-01-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with Naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROI) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX’s therapeutic effects. PMID:19258022

  18. Recent social conditions affect boldness repeatability in individual sticklebacks.

    PubMed

    Jolles, Jolle Wolter; Aaron Taylor, Benjamin; Manica, Andrea

    2016-02-01

    Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus , during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects.

  19. Recent social conditions affect boldness repeatability in individual sticklebacks

    PubMed Central

    Jolles, Jolle Wolter; Aaron Taylor, Benjamin; Manica, Andrea

    2016-01-01

    Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus, during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects. PMID:26949265

  20. Bold Leadership, Real Reform 2.0: Improving Efficiency, Cutting Costs, and Expanding College Opportunity

    ERIC Educational Resources Information Center

    American Council of Trustees and Alumni, 2017

    2017-01-01

    Trustees face complex choices related to costs and efficiency as they navigate new accountability policies, financial headwinds, and a changing global marketplace for college education. The latest release in a series of trustee guides from the American Council of Trustees and Alumni's Institute for Effective Governance, "Bold Leadership, Real…

  1. One loop back reaction on power law inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramo, L.R.; Woodard, R.P.

    1999-08-01

    We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger [J. Math. Phys. {bold 2}, 407 (1961); {ital Particles, Sources and Fields} (Addison, Wesley, Reading, MA, 1970)] with the Feynman rules recently developed by Iliopoulos {ital et al.} [Nucl. Phys. B {bold 534}, 419 (1998)]. We find no significant effect, in marked contrast to the result obtained by Mukhanov and co-workers [Phys. Rev. Lett.more » {bold 78}, 1624 (1998); Phys. Rev. D {bold 56}, 3248 (1997)] for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back reaction. {copyright} {ital 1999} {ital The American Physical Society}« less

  2. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.

    PubMed

    Jackson, Melinda L; Hughes, Matthew E; Croft, Rodney J; Howard, Mark E; Crewther, David; Kennedy, Gerard A; Owens, Katherine; Pierce, Rob J; O'Donoghue, Fergal J; Johnston, Patrick

    2011-06-01

    Sleep loss, widespread in today's society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.

  3. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    PubMed

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect. © 2013. Published by Elsevier Inc. All rights reserved.

  4. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension.

    PubMed

    Vink, E E; Boer, A; Verloop, W L; Spiering, W; Voskuil, M; Vonken, E; Hoogduin, J M; Leiner, T; Bots, M L; Blankestijn, P J

    2015-07-01

    Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m(2); p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. • Renal denervation significantly decreased ambulatory blood pressure. • Renal denervation did not change renal oxygenation as determined by BOLD-MRI. • Absence of a change in renal oxygenation might be explained by autoregulation.

  5. Against Boldness

    ERIC Educational Resources Information Center

    Kennedy, Mary M.

    2010-01-01

    This special issue, "Bold Ideas for a New Era in Teacher Education, Teacher Preparation, and Teacher Practice," seeks to examine the impact of bold ideas on our field. Authors were asked to propose particular bold ideas that they wanted to examine. I proposed to examine the concept of bold ideas itself. In this article, I challenge the notion that…

  6. PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.

    PubMed

    Xia, Jing; Wang, Michelle Yongmei

    Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.

  7. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast

    NASA Astrophysics Data System (ADS)

    Wallace, Tess E.; Manavaki, Roido; Graves, Martin J.; Patterson, Andrew J.; Gilbert, Fiona J.

    2017-01-01

    Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ( Δ R\\text{adj}2   =  3.3  ±  2.1%) and improved the detection of BOLD activation (P  =  0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P  <  0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.

  8. Reduced BOLD response to periodic visual stimulation.

    PubMed

    Parkes, Laura M; Fries, Pascal; Kerskens, Christian M; Norris, David G

    2004-01-01

    The blood oxygenation level-dependent (BOLD) response to entrained neuronal firing in the human visual cortex and lateral geniculate nuclei was investigated. Periodic checkerboard flashes at a range of frequencies (4-20 Hz) were used to drive the visual cortex neurons into entrained oscillatory firing. This is compared to a checkerboard flashing aperiodically, with the same average number of flashes per unit time. A magnetoencephalography (MEG) measurement was made to confirm that the periodic paradigm elicited entrainment. We found that for frequencies of 10 and 15 Hz, the periodic stimulus gave a smaller BOLD response than for the aperiodic stimulus. Detailed investigation at 15 Hz showed that the aperiodic stimulus gave a similar BOLD increase regardless of the magnitude of jitter (+/-17 ms compared to +/-33 ms), indicating that flashes need to be precise to at least 17 ms to maintain entrainment. This is also evidence that for aperiodic stimuli, the amplitude of the BOLD response ordinarily reflects the total number of flashes per unit time, irrespective of the precise spacing between them, suggesting that entrainment is the main cause of the BOLD reduction in the periodic condition. The results indicate that, during entrainment, there is a reduction in the neuronal metabolic demand. We suggest that because of the selective frequency band of this effect, it could be connected to synchronised reverberations around an internal feedback loop.

  9. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function.

    PubMed

    Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O

    2014-04-01

    Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.

  10. The Boldest New Idea? An End to Bold Ideas

    ERIC Educational Resources Information Center

    Rothstein, Richard

    2011-01-01

    The past two decades have proven that bold, single-factor reform ideas have little power to change the face of education. Pundits and policymakers would have schools and school systems make grand changes to accommodate the reform idea du jour--and then profess the incompetence of schools and teachers when those changes prove less than effective.…

  11. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).

    PubMed

    Frederick, Blaise deB; Nickerson, Lisa D; Tong, Yunjie

    2012-04-15

    Confounding noise in BOLD fMRI data arises primarily from fluctuations in blood flow and oxygenation due to cardiac and respiratory effects, spontaneous low frequency oscillations (LFO) in arterial pressure, and non-task related neural activity. Cardiac noise is particularly problematic, as the low sampling frequency of BOLD fMRI ensures that these effects are aliased in recorded data. Various methods have been proposed to estimate the noise signal through measurement and transformation of the cardiac and respiratory waveforms (e.g. RETROICOR and respiration volume per time (RVT)) and model-free estimation of noise variance through examination of spatial and temporal patterns. We have previously demonstrated that by applying a voxel-specific time delay to concurrently acquired near infrared spectroscopy (NIRS) data, we can generate regressors that reflect systemic blood flow and oxygenation fluctuations effects. Here, we apply this method to the task of removing physiological noise from BOLD data. We compare the efficacy of noise removal using various sets of noise regressors generated from NIRS data, and also compare the noise removal to RETROICOR+RVT. We compare the results of resting state analyses using the original and noise filtered data, and we evaluate the bias for the different noise filtration methods by computing null distributions from the resting data and comparing them with the expected theoretical distributions. Using the best set of processing choices, six NIRS-generated regressors with voxel-specific time delays explain a median of 10.5% of the variance throughout the brain, with the highest reductions being seen in gray matter. By comparison, the nine RETROICOR+RVT regressors together explain a median of 6.8% of the variance in the BOLD data. Detection of resting state networks was enhanced with NIRS denoising, and there were no appreciable differences in the bias of the different techniques. Physiological noise regressors generated using Regressor Interpolation at Progressive Time Delays (RIPTiDe) offer an effective method for efficiently removing hemodynamic noise from BOLD data. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Kane, Jessica L

    2016-03-01

    As the use of pharmaceuticals and personal care products (PPCPs) continues to rise, these compounds enter the environment in increasing frequency. One such PPCP, fluoxetine, has been found in detectable amounts in aquatic ecosystems worldwide, where it may interfere with the behavior of exposed organisms. Fluoxetine exposure has been found to influence boldness and exploration in a range of fish species; however, how it might alter behavior in multiple contexts or over time is rarely examined. To this end, the effects of fluoxetine on boldness over time were studied in male Siamese fighting fish. Three different groups of males (0, 0.5 and 5 µg l(-1) fluoxetine) were tested in multiple boldness assays (empty tank, novel environment and shoal) once a week for 3 weeks to collect baseline measures and then at three different time points post-exposure. The effects of these varying exposure amounts on behavior were then examined for overall response, consistency and across-context correlations. Unexposed males were bolder in all contexts, were more consistent within a context, and had stronger between-context correlations than exposed males. Fluoxetine had dose-dependent effects on behavior, as males that received the higher dose exhibited greater behavioral effects. This study stresses the potential fitness consequences of fluoxetine exposure and suggests that examining behavioral effects of PPCPs under different dosing regimens and in multiple contexts is important to gain an increased understanding of how exposure affects behavior. © 2016. Published by The Company of Biologists Ltd.

  13. Can personality predict individual differences in brook trout spatial learning ability?

    USGS Publications Warehouse

    White, S.L.; Wagner, Tyler; Gowan, C.; Braithwaite, V.A.

    2017-01-01

    While differences in individual personality are common in animal populations, understanding the ecological significance of variation has not yet been resolved. Evidence suggests that personality may influence learning and memory; a finding that could improve our understanding of the evolutionary processes that produce and maintain intraspecific behavioural heterogeneity. Here, we tested whether boldness, the most studied personality trait in fish, could predict learning ability in brook trout. After quantifying boldness, fish were trained to find a hidden food patch in a maze environment. Stable landmark cues were provided to indicate the location of food and, at the conclusion of training, cues were rearranged to test for learning. There was a negative relationship between boldness and learning as shy fish were increasingly more successful at navigating the maze and locating food during training trials compared to bold fish. In the altered testing environment, only shy fish continued using cues to search for food. Overall, the learning rate of bold fish was found to be lower than that of shy fish for several metrics suggesting that personality could have widespread effects on behaviour. Because learning can increase plasticity to environmental change, these results have significant implications for fish conservation.

  14. [Does the individual adaptation of standardized speech paradigmas for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca's and Wernicke's areas].

    PubMed

    Konrad, F; Nennig, E; Ochmann, H; Kress, B; Sartor, K; Stippich, C

    2005-03-01

    Functional magnetic resonance imaging (fMRI) localizes Broca's area (B) and Wernicke's area (W) and the hemisphere dominant for language. In clinical fMRI, adapting the stimulation paradigms to each patient's individual cognitive capacity is crucial for diagnostic success. To interpret clinical fMRI findings correctly, we studied the effect of varying frequency and number of stimuli on functional localization, determination of language dominance and BOLD signals. Ten volunteers (VP) were investigated at 1.5 Tesla during visually triggered sentence generation using a standardized block design. In four different measurements, the stimuli were presented to each VP with frequencies of 1/1 s, (1/2) s, (1/3) s and (1/6) s. The functional localizations and the correlations of the measured BOLD signals to the applied hemodynamic reference function (r) were almost independent from frequency and number of the stimuli in both hemispheres, whereas the relative BOLD signal changes (DeltaS) in B and W increased with the stimulation rate, which also changed the lateralization indices. The strongest BOLD activations were achieved with the highest stimulation rate or with the maximum language production task, respectively. The adaptation of language paradigms necessary in clinical fMRI does not alter the functional localizations but changes the BOLD signals and language lateralization which should not be attributed to the underlying brain pathology.

  15. Non-neural BOLD variability in block and event-related paradigms.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-01-01

    Block and event-related stimulus designs are typically used in fMRI studies depending on the importance of detection power or estimation efficiency. The extent of vascular contribution to variability in block and event-related fMRI-BOLD response is not known. With scaling, the extent of vascular variability in the fMRI-BOLD response during block and event-related design tasks was investigated. Blood oxygen level-dependent (BOLD) contrast data from healthy volunteers performing a block design motor task and an event-related memory task requiring performance of a motor response were analyzed from the regions of interest (ROIs) surrounding the primary and supplementary motor cortices. Average BOLD signal change was significantly larger during the block design compared to the event-related design. In each subject, BOLD signal change across voxels in the ROIs had higher variation during the block design task compared to the event-related design task. Scaling using the resting state fluctuation of amplitude (RSFA) and breath-hold (BH), which minimizes BOLD variation due to vascular origins, reduced the within-subject BOLD variability in every subject during both tasks but significantly reduced BOLD variability across subjects only during the block design task. The strong non-neural source of intra- and intersubject variability of BOLD response during the block design compared to event-related task indicates that study designs optimizing for statistical power through enhancement of the BOLD contrast (for, e.g., block design) can be affected by enhancement of non-neural sources of BOLD variability. Copyright © 2011. Published by Elsevier Inc.

  16. Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart

    2016-11-01

    Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.

  17. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    PubMed

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach.

    PubMed

    Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea

    2016-10-15

    The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Predation environment affects boldness temperament of neotropical livebearers.

    PubMed

    Rasmussen, Josh E; Belk, Mark C

    2017-05-01

    Behavioral traits of individuals are important phenotypes that potentially interact with many other traits, an understanding of which may illuminate the evolutionary forces affecting populations and species. Among the five axes of temperament is the propensity to behave boldly in the presence of a perceived risk. To determine the effect of different predatorial regimes on boldness and fearfulness, we assessed the behavior of individuals in a novel portable swim chamber (i.e., forced open-field test) by Brachyrhaphis rhabdophora ( n  = 633). We used an information theoretic framework to compare generalized (logistic) linear fixed-effects models of predatorial regime (predator-free [ n  = 6] and predator [ n  = 4] sites), sex, and standard length (SL). Fish from predator sites were much more fearful in the novel arena than fish from nonpredator sites. This varied by length, but not by sex. At 48 mm SL, fish from nonpredator sites were 4.9 times more likely to express bold behavior (ambulation) in the novel swim chamber as fish from predator sites. Probabilities of "ambulating" within the swim chamber increased with size for nonpredator sites and decreased with size for predator sites.

  20. Small within-day increases in temperature affects boldness and alters personality in coral reef fish.

    PubMed

    Biro, Peter A; Beckmann, Christa; Stamps, Judy A

    2010-01-07

    Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3 degrees C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.

  1. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation

    PubMed Central

    Licata, Stephanie C.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2011-01-01

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 minutes after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20 mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem’s modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABAA receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. PMID:21640782

  2. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-03-31

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.

  3. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.

    PubMed

    Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin

    2018-01-01

    Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users.

    PubMed

    Nestor, Liam; Hester, Robert; Garavan, Hugh

    2010-01-01

    Despite an increased understanding of the pharmacology and long-term cognitive effects of cannabis in humans, there has been no research to date examining its chronic effects upon reward processing in the brain. Motivational theories regarding long-term drug use posit contrasting predictions with respect to how drug users are likely to process non-drug incentives. The reward deficiency syndrome (RDS) of addiction posits that there are deficits in dopamine (DA) motivational circuitry for non-drug rewards, such that only drugs of abuse are capable of normalizing DA in the ventral striatum (VS). Alternatively, the opponent process theory (OPT) holds that in individuals prone to drug use, there exists some form of mesolimbic hyperactivity, in which there is a bias towards reward-centred behaviour concomitant with impulsivity. The current study examined BOLD responses during reward and loss anticipation and their outcome deliveries in 14 chronic cannabis users and 14 drug-naive controls during a monetary incentive delay (MID) task. Despite no significant behavioural differences between the two groups, cannabis users had significantly more right VS BOLD activity during reward anticipation. Correlation analyses demonstrated that this right VS BOLD response was significantly correlated with life-time use and reported life-time cannabis joints consumed. No correlations between cannabis abstinence and BOLD responses were observed. We also observed a number of group differences following outcome deliveries, most notably hypoactivity in the left insula cortex in response to loss and loss avoidance outcome notifications in the cannabis group. These results may suggest hypersensitivity during instrumental response anticipation for non-drug rewards and a hyposensitivity to loss outcomes in chronic cannabis users; the implications of which are discussed with respect to the potentially sensitizing effects of cannabis for other rewards.

  5. Sex differences in a shoaling-boldness behavioral syndrome, but no link with aggression.

    PubMed

    Way, Gregory P; Kiesel, Alexis L; Ruhl, Nathan; Snekser, Jennifer L; McRobert, Scott P

    2015-04-01

    A behavioral syndrome is observed in a population when specific behaviors overlap at the individual level in different contexts. Here, we explore boldness and aggression personality spectra, the repeatability of shoaling, and possible associated correlations between the behaviors in a population of lab-reared zebrafish (Danio rerio). Our findings describe a sex-specific boldness-shoaling behavioral syndrome, as a link between boldness and shoaling behaviors is detected. The results indicate that bold males are likely to have a stronger shoaling propensity than shy males for unfamiliar conspecifics. Conversely, bold females are more likely to shoal than shy females, but only when presented with heterospecific individuals. Additionally, aggression does not correlate with boldness or shoaling propensity for either sex. A positive relationship between boldness and shoaling that differs by sex is contrary to most of the present literature, but could help to explain population dynamics and may also have evolutionary implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Validation of oxygen extraction fraction measurement by qBOLD technique.

    PubMed

    He, Xiang; Zhu, Mingming; Yablonskiy, Dmitriy A

    2008-10-01

    Measurement of brain tissue oxygen extraction fraction (OEF) in both baseline and functionally activated states can provide important information on brain functioning in health and disease. The recently proposed quantitative BOLD (qBOLD) technique is MRI-based and provides a regional in vivo OEF measurement (He and Yablonskiy, MRM 2007, 57:115-126). It is based on a previously developed analytical BOLD model and incorporates prior knowledge about the brain tissue composition including the contributions from grey matter, white matter, cerebrospinal fluid, interstitial fluid and intravascular blood. The qBOLD model also allows for the separation of contributions to the BOLD signal from OEF and the deoxyhemoglobin containing blood volume (DBV). The objective of this study is to validate OEF measurements provided by the qBOLD approach. To this end we use a rat model and compare qBOLD OEF measurements against direct measurements of the blood oxygenation level obtained from venous blood drawn directly from the superior sagittal sinus. The cerebral venous oxygenation level of the rat was manipulated by utilizing different anestheisa methods. The study demonstrates a very good agreement between qBOLD approach and direct measurements. (c) 2008 Wiley-Liss, Inc.

  7. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    PubMed

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-05

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  8. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers.

    PubMed

    Li, Bo; Gong, Ling; Wu, Ruiqi; Li, Anan; Xu, Fuqiang

    2014-07-15

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), one of the most powerful technologies in neuroscience, measures neural activity indirectly. Therefore, systematic correlation of BOLD signals with other neural activity measurements is critical to understanding and then using the technology. Numerous studies have revealed that the BOLD signal is determined by many factors and is better correlated with local field potentials (LFP) than single/multiple unit firing. The relationship between BOLD and LFP signals under higher spatial resolution is complex and remains unclear. Here, changes of BOLD and LFP signals in the glomerular (GL), mitral cell (MCL), and granular cell layers (GCL) of the olfactory bulb were evoked by odor stimulation and sequentially acquired using high-resolution fMRI and electrode array. The experimental results revealed a rather complex relationship between BOLD and LFP signals. Both signal modalities were increased layer-dependently by odor stimulation, but the orders of signal intensity were significantly different: GL>MCL>GCL and GCL>GL>MCL for BOLD and LFP, respectively. During odor stimulation, the temporal features of LFPs were similar for a given band in different layers, but different for different frequency bands in a given layer. The BOLD and LFP signals in the low gamma frequency band correlated the best. This study provides new evidence for the consistency between structure and function in understanding the neurophysiological basis of BOLD signals, but also reminds that caution must be taken in interpreting of BOLD signals in regard to neural activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Can personality predict individual differences in brook trout spatial learning ability?

    PubMed

    White, S L; Wagner, T; Gowan, C; Braithwaite, V A

    2017-08-01

    While differences in individual personality are common in animal populations, understanding the ecological significance of variation has not yet been resolved. Evidence suggests that personality may influence learning and memory; a finding that could improve our understanding of the evolutionary processes that produce and maintain intraspecific behavioural heterogeneity. Here, we tested whether boldness, the most studied personality trait in fish, could predict learning ability in brook trout. After quantifying boldness, fish were trained to find a hidden food patch in a maze environment. Stable landmark cues were provided to indicate the location of food and, at the conclusion of training, cues were rearranged to test for learning. There was a negative relationship between boldness and learning as shy fish were increasingly more successful at navigating the maze and locating food during training trials compared to bold fish. In the altered testing environment, only shy fish continued using cues to search for food. Overall, the learning rate of bold fish was found to be lower than that of shy fish for several metrics suggesting that personality could have widespread effects on behaviour. Because learning can increase plasticity to environmental change, these results have significant implications for fish conservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Investigating the dependence of BOLD contrast on oxidative metabolism.

    PubMed

    Schwarzbauer, C; Heinke, W

    1999-03-01

    Most functional magnetic resonance imaging (fMRI) studies are based on measuring the changes in the blood oxygenation level-dependent (BOLD) contrast that arise from a complex interplay between cerebral hemodynamics and oxidative metabolism. To separate these effects, we consecutively applied two different stimuli: visual stimulation (black/white checkerboard alternating with a frequency of 8 Hz) and hypercapnia (inspiration of 5% CO2). Changes in cerebral blood flow (deltaCBF) and the effective transverse relaxation time (T2*) were measured in an interleaved manner by combining a previously described spin-labeling technique with BOLD-based fMRI. In six healthy volunteers, T2* was significantly longer during hypercapnia than during visual stimulation, whereas the corresponding deltaCBF values were the same at the given level of significance (P<0.01). This finding is explained by a significant increase in oxygen consumption under visual stimulation. The average T2* changes in the visual cortex related to cerebral hemodynamics and oxidative metabolism were 10.6+/-3.0% and -4.7+/-1.2%, respectively, resulting in a net increase of 5.9+/-2.3%. Although the hemodynamic effect is dominant, the increase in oxidative metabolism gives rise to a significant decrease in BOLD contrast. The calculated average change in the cerebral metabolic rate of oxygen (CMRO2), 4.4+/-1.1% (N = 6), is in excellent agreement with previous results obtained by positron emission tomography.

  11. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach.

    PubMed

    Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.

  12. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level.

    PubMed

    Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J

    2016-09-01

    Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.

  13. Plasticity in animal personality traits: does prior experience alter the degree of boldness?

    PubMed

    Frost, Ashley J; Winrow-Giffen, Alexandria; Ashley, Paul J; Sneddon, Lynne U

    2007-02-07

    Theoreticians predict that animal 'personality' traits may be maladaptive if fixed throughout different contexts, so the present study aimed to test whether these traits are fixed or plastic. Rainbow trout (Onchorhyncus mykiss) were given emboldening or negative experiences in the forms of watching bold or shy individuals responding to novelty or winning or losing fights to examine whether prior experience affected boldness. Bold individuals that lost fights or watched shy demonstrators became more shy by increasing their latency to approach a novel object, whereas shy observers that watched bold demonstrators remained cautious and did not modify their responses to novelty. Shy winners became bolder and decreased their latency to approach a novel object, but shy losers also displayed this shift. In comparison, control groups showed no change in behaviour. Bold fishes given negative experiences reduced their boldness which may be an adaptive response; however, shy fishes may base their strategic decisions upon self-assessment of their relative competitive ability and increase their boldness in situations where getting to resources more quickly ensures they outcompete better competitors.

  14. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    PubMed

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  15. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla

    PubMed Central

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-01-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (~30%) and 0.28±0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (~5%) and 0.19±0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  16. Does social context affect boldness in juveniles?

    PubMed

    Loftus, Siobhan; Borcherding, Jost

    2017-12-01

    Differences in boldness are common between populations or between related species and are discussed as part of individual coping style, personality, or behavioral syndrome. Boldness has been found to be dependent on experience, social, and environmental contexts. The major aim of the present study was to establish an experimental environment that would allow analyzing the risk-taking behavior of 2 competing invasive goby species. Neogobius melanostomus was more active in the absence of a predator Sander lucioperca than N. fluviatilis and clearly spent more time "swimming" and "feeding" than N. fluviatilis . In addition, N. melanostomus was always faster than N. fluviatilis both when leaving the shelter and reaching offered food. Based on the different behaviors recorded, species-specific boldness scores were established using a principal component analysis. Although there was no overall difference in boldness scores between the 2 species, both competitive conditions and the effect of the predator played significant roles as factors influencing boldness. Neogobius melanostomus was more affected by the presence/absence of the predator than the social circumstances. Neogobius fluviatilis , on the other hand, was more active and bolder in competitive situations. However, when alone, N. fluviatilis was rather inactive and displayed altogether shy behavior, independent of the presence/absence of the predator. Thus, the study confirms the prediction that there are differences in behavior and behavioral plasticity, and therein predator-avoidance strategies, between ecologically similar species of goby living in sympatry. We argue that these differences may be related to differential habitat use of both invasive species that presently dominate the fish community in the Lower Rhine.

  17. Does social context affect boldness in juveniles?

    PubMed Central

    Borcherding, Jost

    2017-01-01

    Abstract Differences in boldness are common between populations or between related species and are discussed as part of individual coping style, personality, or behavioral syndrome. Boldness has been found to be dependent on experience, social, and environmental contexts. The major aim of the present study was to establish an experimental environment that would allow analyzing the risk-taking behavior of 2 competing invasive goby species. Neogobius melanostomus was more active in the absence of a predator Sander lucioperca than N. fluviatilis and clearly spent more time “swimming” and “feeding” than N. fluviatilis. In addition, N. melanostomus was always faster than N. fluviatilis both when leaving the shelter and reaching offered food. Based on the different behaviors recorded, species-specific boldness scores were established using a principal component analysis. Although there was no overall difference in boldness scores between the 2 species, both competitive conditions and the effect of the predator played significant roles as factors influencing boldness. Neogobius melanostomus was more affected by the presence/absence of the predator than the social circumstances. Neogobius fluviatilis, on the other hand, was more active and bolder in competitive situations. However, when alone, N. fluviatilis was rather inactive and displayed altogether shy behavior, independent of the presence/absence of the predator. Thus, the study confirms the prediction that there are differences in behavior and behavioral plasticity, and therein predator-avoidance strategies, between ecologically similar species of goby living in sympatry. We argue that these differences may be related to differential habitat use of both invasive species that presently dominate the fish community in the Lower Rhine. PMID:29492025

  18. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-07-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects which RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intrasubject amplitude variation across regions of activated cortex, and intersubject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and intersubject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the unscaled BOLD amplitude distribution, attenuated the neural activity-related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group before and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. Copyright © 2010 Wiley-Liss, Inc.

  19. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  20. The effects of link format and screen location on visual search of web pages.

    PubMed

    Ling, Jonathan; Van Schaik, Paul

    2004-06-22

    Navigation of web pages is of critical importance to the usability of web-based systems such as the World Wide Web and intranets. The primary means of navigation is through the use of hyperlinks. However, few studies have examined the impact of the presentation format of these links on visual search. The present study used a two-factor mixed measures design to investigate whether there was an effect of link format (plain text, underlined, bold, or bold and underlined) upon speed and accuracy of visual search and subjective measures in both the navigation and content areas of web pages. An effect of link format on speed of visual search for both hits and correct rejections was found. This effect was observed in the navigation and the content areas. Link format did not influence accuracy in either screen location. Participants showed highest preference for links that were in bold and underlined, regardless of screen area. These results are discussed in the context of visual search processes and design recommendations are given.

  1. Development and validation of a liquid chromatography-tandem mass spectrometry method for the separation of conjugated and unconjugated 17alpha- and 17beta-boldenone in urine sample.

    PubMed

    Gasparini, Mara; Assini, Walter; Bozzoni, Eros; Tognoli, Nadia; Dusi, Guglielmo

    2007-03-14

    Natural occurrence or illegal treatment of boldenone (BOLD) presence in cattle urine is under debate within the European Union. Separation of conjugated and unconjugated forms of 17alpha-boldenone (alpha-BOLD) and 17beta-boldenone (beta-BOLD) and presence of related molecules as androsta-1,4-diene-3,17-dione (ADD) appear critical points for the decision of an illegal use. The aim of this study is a new analytical approach of BOLD and ADD confirmation in cattle urine. The separation between conjugated and unconjugated forms of BOLD was obtained by a preliminary urine liquid-liquid extraction step with ethyl acetate. In this step the organic phase extracts only unconjugated BOLD and ADD, while BOLD in conjugated form remain in urine phase. Afterwards the urine phase, contains conjugated BOLD, was subjected to an enzymatic deconjugation. Solid-phase extraction (OASIS-HLB Waters) was used for the purification and concentration of analytes in organic and urine phases and liquid chromatography ion electrospray tandem mass spectrometry (LC-MS-MS) was applied for the confirmation of BOLD and ADD, using deuterium-labelled 17beta-boldenone (BOLD-d3) as internal standard. The method was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/CE. The results obtained demonstrate that the developed method show very high specificity, precision, trueness and ruggedness. Decision limits (CCalpha) smaller than 0.5 ng mL(-1) were obtained for each analyte.

  2. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  3. Focal BOLD-fMRI changes in bicuculline-induced tonic-clonic seizures in the rat

    PubMed Central

    DeSalvo, Matthew N.; Schridde, Ulrich; Mishra, Asht M.; Motelow, Joshua E.; Purcaro, Michael J.; Danielson, Nathan; Bai, Xiaoxiao; Hyder, Fahmeed; Blumenfeld, Hal

    2010-01-01

    Generalized tonic-clonic seizures cause widespread physiological changes throughout the cerebral cortex and subcortical structures in the brain. Using combined blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 9.4 T and electroencephalography (EEG) these changes can be characterized with high spatiotemporal resolution. We studied BOLD changes in anesthetized Wistar rats during bicuculline-induced tonic-clonic seizures. Bicuculline, a GABAA receptor antagonist, was injected systemically and seizure activity was observed on EEG as high amplitude, high-frequency polyspike discharges followed by clonic paroxysmal activity of lower frequency, with mean electrographic seizure duration of 349 s. Our aim was to characterize the spatial localization, direction, and timing of BOLD signal changes during the pre-ictal, ictal and post-ictal periods. Group analysis was performed across seizures using paired t-maps of BOLD signal superimposed on high resolution anatomical images. Regional analysis was then performed using volumes of interest to quantify BOLD timecourses. In the pre-ictal period we found focal BOLD increases in specific areas of somatosensory cortex (S1, S2) and thalamus several seconds before seizure onset. During seizures we observed BOLD increases in cortex, brainstem and thalamus and BOLD decreases in the hippocampus. The largest ictal BOLD increases remained in the focal regions of somatosensory cortex showing pre-ictal increases. During the post-ictal period we observed widespread BOLD decreases. These findings support a model in which “generalized” tonic-clonic seizures begin with focal changes before electrographic seizure onset, which progress to non-uniform changes during seizures, possibly shedding light on the etiology and pathophysiology of similar seizures in humans. PMID:20079442

  4. MORS Workshop: How Cognitive and Behavioral Factors Influence Command and Control

    DTIC Science & Technology

    2005-04-22

    respectively. Green represents the overlap of individual and social (yellow and blue) factors. Stress and emotion could not even be boxed into a...the terminal node of the model. or ae depicdsfols Red - Bold Yellow - Italics Blue - Underlined Green - Bold Italics, Underline 21 Current Models - n... Behavor . indv or 2 )signal detecton & t advere 2) cohort issue al)tshihard a physiologically realistic ) classficaton effects are 3) service culture

  5. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation.

    PubMed

    Licata, Stephanie C; Lowen, Steven B; Trksak, George H; Maclean, Robert R; Lukas, Scott E

    2011-08-15

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABA(A) receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 min after acute oral administration of zolpidem (0, 5, 10, or 20mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem's modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABA(A) receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data.

    PubMed

    Weiskopf, Nikolaus; Veit, Ralf; Erb, Michael; Mathiak, Klaus; Grodd, Wolfgang; Goebel, Rainer; Birbaumer, Niels

    2003-07-01

    A brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral-ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.

  7. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  8. The BOLD signal and neurovascular coupling in autism.

    PubMed

    Reynell, Clare; Harris, Julia J

    2013-10-01

    BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The BOLD signal and neurovascular coupling in autism

    PubMed Central

    Reynell, Clare; Harris, Julia J.

    2013-01-01

    BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors. PMID:23917518

  10. Negative BOLD with Large Increases in Neuronal Activity

    PubMed Central

    Khubchandani, Manjula; Motelow, Joshua E.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed

    2008-01-01

    Blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO2 modeling, we investigated how the signals are related during seizures in rats. We found that increases in hemodynamic, neuronal, and metabolic activity were associated with positive BOLD signals in the cortex, but with negative BOLD signals in hippocampus. Our data show that negative BOLD signals do not necessarily imply decreased neuronal activity or CBF, but can result from increased neuronal activity, depending on the interplay between hemodynamics and metabolism. Caution should be used in interpreting fMRI signals because the relationship between neuronal activity and BOLD signals may depend on brain region and state and can be different during normal and pathological conditions. PMID:18063563

  11. Influence of DARPP-32 genetic variation on BOLD activation to happy faces.

    PubMed

    Persson, Ninni; Lavebratt, Catarina; Ebner, Natalie C; Fischer, Håkan

    2017-10-01

    Dopaminergic pathways play a crucial role in reward processing, and advanced age can modulate its efficiency. DARPP-32 controls dopaminergic function and is a chemical nexus of reward processing. In 61 younger (20-30 years) and older adults (54% ♀) (65-74 years), we examined how blood-oxygen-level dependent (BOLD) activation to emotional faces, vary over genotypes at three single nucleotide polymorphism (SNPs), coding for DARPP-32 (rs879606; rs907094; 3764352). We also assessed age-magnification of DARPP-32 effects on BOLD activation. We found that major homozygote G, T or A genotypes, with higher cortical expression of DARPP-32, higher dopamine receptor efficacy, and greater bias toward positive cues, had increased functional connectivity in cortical-subcortical circuits in response to happy faces, engaging the dorsal prefrontal cortex (DLPFC), fusiform gyrus (FG) and the midbrain (MB). Local BOLD response to happy faces in FG, and MB was age-dependent, so that older carriers of the major G, T or A alleles showed lesser activation than minor genotypes. These genetic variants of DARPP-32 did not modulate BOLD response to angry faces, or engagement of the inferior occipital gyrus, to happy or angry faces. Taken together our results lend support for a potential role of DARPP-32 genetic variants in neural response to potential reward triggering cues. © The Author (2017). Published by Oxford University Press.

  12. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  13. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations.

    PubMed

    Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua

    2017-05-15

    Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity.

    PubMed

    Vanhoutte, G; Verhoye, M; Van der Linden, A

    2006-05-01

    This study was designed to determine brain activity in the hypothalamus-in particular the thermoregulatory function of the hypothalamic preoptic area (PO). We experimentally changed the body temperature in rats within the physiological range (37-39 degrees C) and monitored changes in blood oxygenation level-dependent (BOLD) MR signal. To explore PO activity we had to deal with general signal changes caused by temperature-dependent alterations in the affinity of oxygen for hemoglobin, which contributes to BOLD contrast because it is partly sensitive to the amount of paramagnetic deoxyhemoglobin in the voxel. To reduce these overall temperature-induced effects, we corrected the BOLD data using brain-specific correction algorithms. The results showed activity of the PO during body warming from 38 degrees C to 39 degrees C, supported by an increased BOLD signal after correction. This is the first fMRI study on the autonomous nervous system in which hypothalamic activity elicited by changes in the internal environment (body temperature) was monitored. In this study we also demonstrate 1) that any fMRI study of anesthetized small animals should guard against background BOLD signal drift, since animals are vulnerable to body temperature fluctuations; and 2) the existence of a link between PO activity and the sympathetically-mediated opening of the arteriovenous anastomoses in a parallel study on the rat tail, a peripheral thermoregulatory organ.

  15. Area-specific modulation of neural activation comparing escitalopram and citalopram revealed by pharmaco-fMRI: a randomized cross-over study.

    PubMed

    Windischberger, Christian; Lanzenberger, Rupert; Holik, Alexander; Spindelegger, Christoph; Stein, Patrycja; Moser, Ulrike; Gerstl, Florian; Fink, Martin; Moser, Ewald; Kasper, Siegfried

    2010-01-15

    Area-specific and stimulation-dependent changes of human brain activation by selective serotonin reuptake inhibitors (SSRI) are an important issue for improved understanding of treatment mechanisms, given the frequent prescription of these drugs in depression and anxiety disorders. The aim of this neuroimaging study was to investigate differences in BOLD-signal caused by administration of the SSRIs escitalopram and citalopram using pharmacological functional magnetic resonance imaging (pharmaco-fMRI). Eighteen healthy subjects participated in a placebo-controlled, randomized, double-blind study in cross-over repeated measures design. Each volunteer performed facial emotional discrimination and a sensorimotor control paradigm during three scanning sessions. Citalopram (20 mg/d), escitalopram (10 mg/d) and placebo were administered for 10 days each with a drug-free period of at least 21 days. Significant pharmacological effects on BOLD-signal were found in the amygdala, medial frontal gyrus, parahippocampal, fusiform and middle temporal gyri. Post-hoc t-tests revealed decreased BOLD-signal in the right amygdala and left parahippocampal gyrus in both pharmacological conditions, compared to placebo. Escitalopram, compared to citalopram, induced a decrease of BOLD-signal in the medial frontal gyrus and an increase in the right fusiform and left parahippocampal gyri. Drug effects were concentrated in brain regions with dense serotonergic projections. Both escitalopram and citalopram attenuated BOLD-signal in the amygdala and parahippocampal cortex to emotionally significant stimuli compared to control stimuli. We believe that reduced reactivity in the medial frontal gyrus found for escitalopram compared to citalopram administration might explain the response differences between study drugs as demonstrated in previous clinical trials.

  16. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach

    PubMed Central

    Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793

  17. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    PubMed

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  18. Individual variation in behavioural plasticity: direct and indirect effects of boldness, exploration and sociability on habituation to predators in lizards.

    PubMed

    Rodríguez-Prieto, Iñaki; Martín, José; Fernández-Juricic, Esteban

    2011-01-22

    Little is known about the factors causing variation in behavioural plasticity and the interplay between personality and plasticity. Habituation to predators is a special case of behavioural plasticity. We investigated the direct and indirect effects of boldness, exploration and sociability traits on the habituation ability of Iberian wall lizards, considering exposure and sex effects. Individual boldness was consistent across several non-habituation contexts, but it did not significantly affect habituation. Exploration had a strong direct effect on habituation, with more exploratory individuals being able to habituate faster than less exploratory ones, probably because of their ability to assess risk better. Individual variation in habituation was also affected by sociability, but this was an indirect effect mediated by exposure to the predator. Less social individuals avoided refuges with conspecific cues, increasing exposure to the predator and eventually habituation. Finally, the direct effects of sex (females habituated faster than males) were opposite to its indirect effects through exposure. We conclude that risk assessment, instead of the proactivity-reactivity gradient usually considered in the literature, can affect behavioural plasticity through complex interactions between direct and indirect effects, including exploratory behaviour, degree of exposure to the predator and sex, which represent novel mechanisms generating inter-individual variation in plasticity.

  19. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2.

  20. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  1. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    PubMed

    O'Daly, Owen G; Joyce, Daniel; Tracy, Derek K; Azim, Adnan; Stephan, Klaas E; Murray, Robin M; Shergill, Sukhwinder S

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  2. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    PubMed

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  3. Increasing measurement accuracy of age-related BOLD signal change: Minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling

    PubMed Central

    Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.

    2012-01-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects, that RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intra-subject amplitude variation across regions of activated cortex, and inter-subject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and inter-subject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the un-scaled BOLD amplitude distribution, attenuated the neural activity related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group prior to and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. PMID:20665721

  4. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    PubMed Central

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  5. Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extra-temporal epileptic spikes

    PubMed Central

    Jacobs, Julia; Menzel, Antonia; Ramantani, Georgia; Körbl, Katharina; Assländer, Jakob; Schulze-Bonhage, Andreas; Hennig, Jürgen; LeVan, Pierre

    2014-01-01

    Introduction: EEG-fMRI detects BOLD changes associated with epileptic interictal discharges (IED) and can identify epileptogenic networks in epilepsy patients. Besides positive BOLD changes, negative BOLD changes have sometimes been observed in the default-mode network, particularly using group analysis. A new fast fMRI sequence called MREG (Magnetic Resonance Encephalography) shows increased sensitivity to detect IED-related BOLD changes compared to the conventional EPI sequence, including frequent occurrence of negative BOLD responses in the DMN. The present study quantifies the concordance between the DMN and negative BOLD related to IEDs of temporal and extra-temporal origin. Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap were calculated between DMN regions, defined as precuneus, posterior cingulate, bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas, and significant negative BOLD changes revealed by an event-related analysis based on the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the overlap were calculated. Results: 15 patients were analyzed, some showing IED over more than one location resulting in 30 different IED types. The average overlap between negative BOLD and DMN was significantly larger in temporal (23.7 ± 19.6 cm3) than extra-temporal IEDs (7.4 ± 5.1 cm3, p = 0.008). There was no significant correlation between the number of IEDs and the overlap between DMN structures and negative BOLD areas. Discussion: MREG results in an increased sensitivity to detect negative BOLD responses related to focal IED in single patients, with responses often occurring in DMN regions. In patients with high overlap with the DMN, this suggests that epileptic IEDs may be associated with a brief decrease in attention and cognitive ability. Interestingly this observation was not dependent on the frequency of IED but more common in IED of temporal origin. PMID:25477775

  6. Origins of intersubject variability of blood oxygenation level dependent and arterial spin labeling fMRI: implications for quantification of brain activity.

    PubMed

    Gaxiola-Valdez, Ismael; Goodyear, Bradley G

    2012-12-01

    Accurate localization of brain activity using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been challenged because of the large BOLD signal within distal veins. Arterial spin labeling (ASL) techniques offer greater sensitivity to the microvasculature but possess low temporal resolution and limited brain coverage. In this study, we show that the physiological origins of BOLD and ASL depend on whether percent change or statistical significance is being considered. For BOLD and ASL fMRI data collected during a simple unilateral hand movement task, we found that in the area of the contralateral motor cortex the centre of gravity (CoG) of the intersubject coefficient of variation (CV) of BOLD fMRI was near the brain surface for percent change in signal, whereas the CoG of the intersubject CV for Z-score was in close proximity of sites of brain activity for both BOLD and ASL. These findings suggest that intersubject variability of BOLD percent change is vascular in origin, whereas the origin of inter-subject variability of Z-score is neuronal for both BOLD and ASL. For longer duration tasks (12 s or greater), however, there was a significant correlation between BOLD and ASL percent change, which was not evident for short duration tasks (6 s). These findings suggest that analyses directly comparing percent change in BOLD signal between pre-defined regions of interest using short duration stimuli, as for example in event-related designs, may be heavily weighted by large-vessel responses rather than neuronal responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats.

    PubMed

    Tsurugizawa, T; Uematsu, A; Uneyama, H; Torii, K

    2010-12-01

    The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    PubMed

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight < 10th percentile in combination with placental pathological signs of vascular malperfusion. During maternal oxygen inhalation, we measured the relative ΔBOLD response ((hyperoxic BOLD - baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p < 0.0001). The high hyperoxic ΔBOLD response demonstrated in pregnancies complicated by placental dysfunction may simply reflect altered baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.

    PubMed

    Modolo, Julien; Thomas, Alex W; Legros, Alexandre

    2017-09-01

    We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. An in vitro study on metabolism of 17beta-boldenone and boldione using cattle liver and kidney subcellular fractions.

    PubMed

    Merlanti, R; Gallina, G; Capolongo, F; Contiero, L; Biancotto, G; Dacasto, M; Montesissa, C

    2007-03-14

    17Beta-boldenone (17beta-BOLD) and Boldione (ADD) are steroid compounds with androgenic activity, likely to be used as growth promoters in cattle. Different studies still on-going aiming to distinguish between "natural" occurrence or illegal BOLD source had already indicated that their metabolism in cattle is of relevant significance. To identify metabolites as in vivo markers to support the thesis of exogenous administration, a further approach to the in vitro biotransformation of 17beta-BOLD and ADD was performed using different subcellular fractions obtained from both liver and kidney of untreated cattle. Polar and non-polar metabolites obtained from incubated parent compounds were formerly separated by high performance liquid chromatography (HPLC) elution and successively identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. The bovine liver was the target tissue of the main metabolic reaction transforming 17beta-BOLD to ADD and vice versa. The presence of 6beta-hydroxy-17beta-BOLD, produced from both compounds when NADPH was added as cofactors to liver post mitochondrial and microsomal fractions suggests that cytochrome P450-dependent enzymes could be involved in the biotransformation, as it occurs for 6beta-hydroxylation of 17beta-testosterone. The results indicated that the urinary excretion profile in vivo of 6beta-hydroxy-17beta-BOLD and 16alpha-hydroxy-17beta-BOLD could be studied together with 17alpha- and 17beta-BOLD as putative markers of BOLD treatment in cattle.

  11. Evolutionary dynamics of fearfulness and boldness.

    PubMed

    Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi

    2009-02-21

    A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.

  12. Teacherpreneurs: a bold brand of teacher leadership for 21st-century teaching and learning.

    PubMed

    Berry, Barnett

    2013-04-19

    Challenges facing our public schools demand a bold brand of teacher leadership. Teacherpreneurs, effective teachers who teach students regularly but also incubate and execute the kinds of policies and pedagogies students deserve, represent a new culture of training and ingenuity. Teachers who lead outside the classroom but do not lose their connection to students are best positioned to develop and disseminate best policies and practices for 21st-century teaching and learning.

  13. The apéritif effect: alcohol's effects on the brain's response to food aromas in women

    PubMed Central

    Eiler, William J.A.; Džemidžić, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L.H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.

    2015-01-01

    Objective Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. Methods BOLD activation to food aromas in non-obese women (n=35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg/dL, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. Results BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. Conclusions An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon. PMID:26110891

  14. Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex.

    PubMed

    Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H

    2012-01-02

    In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?

    PubMed

    Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka

    2016-04-01

    Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota ) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness.

  16. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?

    PubMed Central

    Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka

    2016-01-01

    Abstract Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness. PMID:29491897

  17. Study protocol: The back pain outcomes using longitudinal data (BOLD) registry

    PubMed Central

    2012-01-01

    Background Back pain is one of the most important causes of functional limitation, disability, and utilization of health care resources for adults of all ages, but especially among older adults. Despite the high prevalence of back pain in this population, important questions remain unanswered regarding the comparative effectiveness of commonly used diagnostic tests and treatments in the elderly. The overall goal of the Back pain Outcomes using Longitudinal Data (BOLD) project is to establish a rich, sustainable registry to describe the natural history and evaluate prospectively the effectiveness, safety, and cost-effectiveness of interventions for patients 65 and older with back pain. Methods/design BOLD is enrolling 5,000 patients ≥ 65 years old who present to a primary care physician with a new episode of back pain. We are recruiting study participants from three integrated health systems (Kaiser-Permanente Northern California, Henry Ford Health System in Detroit and Harvard Vanguard Medical Associates/ Harvard Pilgrim Health Care in Boston). Registry patients complete validated, standardized measures of pain, back pain-related disability, and health-related quality of life at enrollment and 3, 6 and 12 months later. We also have available for analysis the clinical and administrative data in the participating health systems’ electronic medical records. Using registry data, we will conduct an observational cohort study of early imaging compared to no early imaging among patients with new episodes of back pain. The aims are to: 1) identify predictors of early imaging and; 2) compare pain, functional outcomes, diagnostic testing and treatment utilization of patients who receive early imaging versus patients who do not receive early imaging. In terms of predictors, we will examine patient factors as well as physician factors. Discussion By establishing the BOLD registry, we are creating a resource that contains patient-reported outcome measures as well as electronic medical record data for elderly patients with back pain. The richness of our data will allow better matching for comparative effectiveness studies than is currently possible with existing datasets. BOLD will enrich the existing knowledge base regarding back pain in the elderly to help clinicians and patients make informed, evidence-based decisions regarding their care. PMID:22554166

  18. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome.

    PubMed

    Norton, William H J; Stumpenhorst, Katharina; Faus-Kessler, Theresa; Folchert, Anja; Rohner, Nicolas; Harris, Matthew P; Callebert, Jacques; Bally-Cuif, Laure

    2011-09-28

    Behavioral syndromes are suites of two or more behaviors that correlate across environmental contexts. The aggression-boldness syndrome links aggression, boldness, and exploratory activity in a novel environment. Although aggression-boldness has been described in many animals, the mechanism linking its behavioral components is not known. Here we show that mutation of the gene encoding fibroblast growth factor receptor 1a (fgfr1a) simultaneously increases aggression, boldness, and exploration in adult zebrafish. We demonstrate that altered Fgf signaling also results in reduced brain histamine levels in mutants. Pharmacological increase of histamine signaling is sufficient to rescue the behavioral phenotype of fgfr1a mutants. Together, we show that a single genetic locus can underlie the aggression-boldness behavioral syndrome. We also identify one of the neurotransmitter pathways that may mediate clustering of these behaviors.

  19. Boldness predicts social status in zebrafish (Danio rerio).

    PubMed

    Dahlbom, S Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L Fredrik; Winberg, Svante

    2011-01-01

    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.

  20. Boldness Predicts Social Status in Zebrafish (Danio rerio)

    PubMed Central

    Dahlbom, S. Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L. Fredrik; Winberg, Svante

    2011-01-01

    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance. PMID:21858168

  1. Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing

    PubMed Central

    Bohmann, Kristine; Monadjem, Ara; Lehmkuhl Noer, Christina; Rasmussen, Morten; Zeale, Matt R. K.; Clare, Elizabeth; Jones, Gareth; Willerslev, Eske; Gilbert, M. Thomas P.

    2011-01-01

    Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5′ tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated. PMID:21731749

  2. Plasticity of boldness in rainbow trout, Oncorhynchus mykiss: do hunger and predation influence risk-taking behaviour?

    PubMed

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2012-05-01

    Boldness, a measure of an individual's propensity for taking risks, is an important determinant of fitness but is not necessarily a fixed trait. Dependent upon an individual's state, and given certain contexts or challenges, individuals may be able to alter their inclination to be bold or shy in response. Furthermore, the degree to which individuals can modulate their behaviour has been linked with physiological responses to stress. Here we attempted to determine whether bold and shy rainbow trout, Oncorhynchus mykiss, can exhibit behavioural plasticity in response to changes in state (nutritional availability) and context (predation threat). Individual trout were initially assessed for boldness using a standard novel object paradigm; subsequently, each day for one week fish experienced either predictable, unpredictable, or no simulated predator threat in combination with a high (2% body weight) or low (0.15%) food ration, before being reassessed for boldness. Bold trout were generally more plastic, altering levels of neophobia and activity relevant to the challenge, whereas shy trout were more fixed and remained shy. Increased predation risk generally resulted in an increase in the expression of three candidate genes linked to boldness, appetite regulation and physiological stress responses - ependymin, corticotrophin releasing factor and GABA(A) - but did not produce a significant increase in plasma cortisol. The results suggest a divergence in the ability of bold and shy trout to alter their behavioural profiles in response to internal and exogenous factors, and have important implications for our understanding of the maintenance of different behavioural phenotypes in natural populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Lee, T.M.; Kay, A.R.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less

  4. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  5. Stimulated Raman and Brillouin scattering of polarization-smoothed and temporally smoothed laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, R.L.; Lefebvre, E.; Langdon, A.B.

    1999-04-01

    Control of filamentation and stimulated Raman and Brillouin scattering is shown to be possible by use of both spatial and temporal smoothing schemes. The spatial smoothing is accomplished by the use of phase plates [Y. Kato and K. Mima, Appl. Phys. {bold 329}, 186 (1982)] and polarization smoothing [Lefebvre {ital et al.}, Phys. Plasmas {bold 5}, 2701 (1998)] in which the plasma is irradiated with two orthogonally polarized, uncorrelated speckle patterns. The temporal smoothing considered here is smoothing by spectral dispersion [Skupsky {ital et al.}, J. Appl. Phys. {bold 66}, 3456 (1989)] in which the speckle pattern changes on themore » laser coherence time scale. At the high instability gains relevant to laser fusion experiments, the effect of smoothing must include the competition among all three instabilities. {copyright} {ital 1999 American Institute of Physics.}« less

  6. Investigation of BOLD fMRI Resonance Frequency Shifts and Quantitative Susceptibility Changes at 7 T

    PubMed Central

    Bianciardi, Marta; van Gelderen, Peter; Duyn, Jeff H.

    2013-01-01

    Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also provide frequency information that can be derived from the phase of the signal. However, because of confounding effects of instrumental and physiological origin, BOLD related frequency information is difficult to extract and therefore rarely used. Here, we explored the use of high field (7 T) and dedicated signal processing methods to extract frequency information and use it to quantify and interpret blood oxygenation and blood volume changes. We found that optimized preprocessing improves detection of task-evoked and spontaneous changes in phase signals and resonance frequency shifts over large areas of the cortex with sensitivity comparable to that of magnitude signals. Moreover, our results suggest the feasibility of mapping BOLD quantitative susceptibility changes in at least part of the activated area and its largest draining veins. Comparison with magnitude data suggests that the observed susceptibility changes originate from neuronal activity through induced blood volume and oxygenation changes in pial and intracortical veins. Further, from frequency shifts and susceptibility values, we estimated that, relative to baseline, the fractional oxygen saturation in large vessels increased by 0.02–0.05 during stimulation, which is consistent to previously published estimates. Together, these findings demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency shifts and quantitative susceptibility changes. PMID:23897623

  7. Effect of hypnotherapy and educational intervention on brain response to visceral stimulusin the irritable bowel syndrome

    PubMed Central

    Lowén, Mats B.O.; Mayer, Emeran A.; Sjöberg, Martha; Tillisch, Kirsten; Naliboff, Bruce; Labus, Jennifer; Lundberg, Peter; Ström, Magnus; Engström, Maria; Walter, Susanna A.

    2013-01-01

    SUMMARY Background Gut directed hypnotherapy can reduce IBS symptoms but the mechanisms underlying this therapeutic effect remain unknown. Aim We determined the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Methods 44 women with moderate to severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high (45 mmHg) and low (15 mmHg) intensity rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). 31 patients completed treatments and post treatment fMRI. Results Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high intensity distension in the dorsal and ventral anterior insula (cluster size 142, p=0.006, and cluster size 101, p=0.005, respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, p=0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, p=0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalizing effect on the central processing abnormality of visceral signals in IBS. Conclusions The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalized by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. PMID:23617618

  8. Effect of hypnotherapy and educational intervention on brain response to visceral stimulus in the irritable bowel syndrome.

    PubMed

    Lowén, M B O; Mayer, E A; Sjöberg, M; Tillisch, K; Naliboff, B; Labus, J; Lundberg, P; Ström, M; Engström, M; Walter, S A

    2013-06-01

    Gut-directed hypnotherapy can reduce IBS symptoms, but the mechanisms underlying this therapeutic effect remain unknown. To determine the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Forty-four women with moderate-to-severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high- (45 mmHg) and low-intensity (15 mmHg) rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). Thirty-one patients completed treatments and posttreatment fMRI. Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high-intensity distension in the dorsal and ventral anterior insula (cluster size 142, P = 0.006, and cluster size 101, P = 0.005 respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, P = 0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, P = 0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalising effect on the central processing abnormality of visceral signals in IBS. The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalised by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. NCT01815164. © 2013 John Wiley & Sons Ltd.

  9. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  10. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  11. Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?

    PubMed Central

    Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.

    2016-01-01

    Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727

  12. Individual boldness is linked to protective shell shape in aquatic snails.

    PubMed

    Ahlgren, Johan; Chapman, Ben B; Nilsson, P Anders; Brönmark, Christer

    2015-04-01

    The existence of consistent individual differences in behaviour ('animal personality') has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold-shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the 'phenotypic compensation' hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the 'phenotypic compensation' hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Multisite Reliability of Cognitive BOLD Data

    PubMed Central

    Brown, Gregory G.; Mathalon, Daniel H.; Stern, Hal; Ford, Judith; Mueller, Bryon; Greve, Douglas N.; McCarthy, Gregory; Voyvodic, Jim; Glover, Gary; Diaz, Michele; Yetter, Elizabeth; Burak Ozyurt, I.; Jorgensen, Kasper W.; Wible, Cynthia G.; Turner, Jessica A.; Thompson, Wesley K.; Potkin, Steven G.

    2010-01-01

    Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level dependent (BOLD) signal across four 3T magnets in voxelwise and region of interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control. PMID:20932915

  14. Nalmefene Reduces Reward Anticipation in Alcohol Dependence: An Experimental Functional Magnetic Resonance Imaging Study.

    PubMed

    Quelch, Darren R; Mick, Inge; McGonigle, John; Ramos, Anna C; Flechais, Remy S A; Bolstridge, Mark; Rabiner, Eugenii; Wall, Matthew B; Newbould, Rexford D; Steiniger-Brach, Björn; van den Berg, Franz; Boyce, Malcolm; Østergaard Nilausen, Dorrit; Breuning Sluth, Lasse; Meulien, Didier; von der Goltz, Christoph; Nutt, David; Lingford-Hughes, Anne

    2017-06-01

    Nalmefene is a µ and δ opioid receptor antagonist, κ opioid receptor partial agonist that has recently been approved in Europe for treating alcohol dependence. It offers a treatment approach for alcohol-dependent individuals with "high-risk drinking levels" to reduce their alcohol consumption. However, the neurobiological mechanism underpinning its effects on alcohol consumption remains to be determined. Using a randomized, double-blind, placebo-controlled, within-subject crossover design we aimed to determine the effect of a single dose of nalmefene on striatal blood oxygen level-dependent (BOLD) signal change during anticipation of monetary reward using the monetary incentive delay task following alcohol challenge. Twenty-two currently heavy-drinking, non-treatment-seeking alcohol-dependent males were recruited. The effect of single dose nalmefene (18 mg) on changes in a priori defined striatal region of interest BOLD signal change during reward anticipation compared with placebo was investigated using functional magnetic resonance imaging. Both conditions were performed under intravenous alcohol administration (6% vol/vol infusion to achieve a target level of 80 mg/dL). Datasets from 18 participants were available and showed that in the presence of the alcohol infusion, nalmefene significantly reduced the BOLD response in the striatal region of interest compared with placebo. Nalmefene did not alter brain perfusion. Nalmefene blunts BOLD response in the mesolimbic system during anticipation of monetary reward and an alcohol infusion. This is consistent with nalmefene's actions on opioid receptors, which modulate the mesolimbic dopaminergic system, and provides a neurobiological basis for its efficacy. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Food intake rates of inactive fish are positively linked to boldness in three‐spined sticklebacks Gasterosteus aculeatus

    PubMed Central

    Manica, A.; Boogert, N. J.

    2016-01-01

    To investigate the link between personality and maximum food intake of inactive individuals, food‐deprived three‐spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace‐of‐life theory predicting that life‐history strategies are linked to boldness. PMID:26940195

  16. To be so bold: boldness is repeatable and related to within individual behavioural variability in North Island robins.

    PubMed

    He, Ruchuan; Pagani-Núñez, Emilio; Chevallier, Clément; Barnett, Craig R A

    2017-07-01

    Behavioural research traditionally focusses on the mean responses of a group of individuals rather than variation in behaviour around the mean or among individuals. However, examining the variation in behaviour among and within individuals may also yield important insights into the evolution and maintenance of behaviour. Repeatability is the most commonly used measure of variability among individuals in behavioural research. However, there are other forms of variation within populations that have received less attention. One such measure is intraindividual variation in behaviour (IIV), which is a short-term fluctuation of within-individual behaviour. Such variation in behaviour might be important during interactions because it could decrease the ability of conspecific and heterospecific individuals to predict the behaviour of the subject, thus increasing the cost of the interaction. In this experiment, we made repeated measures of the latency of North Island robins to attack a prey in a novel situation (a form of boldness) and examined (i) repeatability of boldness (the propensity to take a risk), (ii) IIV of boldness, and (iii) whether there was a significant relationship between these two traits (a behavioural syndrome). We found that boldness was highly repeatable, that there were high levels of IIV in boldness, and that there was a negative relationship between boldness and IIV in boldness. This suggests that despite high levels of repeatability for this behaviour, there were also still significant differences in IIV among different individuals within the population. Moreover, bolder individuals had significantly less IIV in their boldness, which suggests that they were forming routines (which reduces behavioural variability) compared to shyer individuals. Our results definitively demonstrate that IIV itself varies across individuals and is linked with key behavioural traits, and we argue for the importance of future studies aimed at understanding its causes and consequences for behavioural interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging.

    PubMed

    Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J

    2007-08-22

    Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.

  18. Instituting a Sugar-Sweetened Beverage Ban: Experience From a Children’s Hospital

    PubMed Central

    Eneli, Ihuoma U.; Grover, Kathryn; Miller, Rick; Kelleher, Kelly

    2014-01-01

    Sugar-sweetened beverage (SSB) consumption is linked to increased weight and obesity in children and remains the major source of added sugar in the typical US diet across all age groups. In an effort to improve the nutritional offerings for patients and employees within our institution, Nationwide Children’s Hospital in Columbus, Ohio, implemented an SSB ban in 2011 in all food establishments within the hospital. In this report, we describe how the ban was implemented. We found that an institutional SSB ban altered beverage sales without revenue loss at nonvending food locations. From a process perspective, we found that successful implementation requires excellent communication and bold leadership at several levels throughout the hospital environment. PMID:25121811

  19. Sensing the effects of mouth breathing by using 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  20. Investigating the physiology of brain activation with MRI

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.

    2004-04-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).

  1. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation.

    PubMed

    Mandeville, J B; Marota, J J; Ayata, C; Moskowitz, M A; Weisskoff, R M; Rosen, B R

    1999-11-01

    This study reports the first measurement of the relative cerebral metabolic rate of oxygen utilization (rCMRO(2)) during functional brain activation with sufficient temporal resolution to address the dynamics of blood oxygen level-dependent (BOLD) MRI signal. During rat forepaw stimulation, rCMRO(2) was determined in somatosensory cortex at 3-sec intervals, using a model of BOLD signal and measurements of the change in BOLD transverse relaxation rate, the resting state BOLD transverse relaxation rate, relative cerebral blood flow (rCBF), and relative cerebral blood volume (rCBV). Average percentage changes from 10 to 30 sec after onset of forepaw stimulation for rCBF, rCBV, rCMRO(2), and BOLD relaxation rate were 62 +/- 16, 17 +/- 2, 19 +/- 17, and -26 +/- 12, respectively. A poststimulus undershoot in BOLD signal was quantitatively attributed to the temporal mismatch between changes in blood flow and volume, and not to the role of oxygen metabolism. Magn Reson Med 42:944-951, 1999. Copyright 1999 Wiley-Liss, Inc.

  2. Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex.

    PubMed

    Heikkinen, Hanna; Sharifian, Fariba; Vigario, Ricardo; Vanni, Simo

    2015-07-01

    The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity. Copyright © 2015 the American Physiological Society.

  3. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    PubMed

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  4. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials

    PubMed Central

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C.

    2017-01-01

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology. PMID:28461461

  5. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Boldness and its relation to psychopathic personality: Prototypicality analyses among forensic mental health, criminal justice, and layperson raters.

    PubMed

    Sörman, Karolina; Edens, John F; Smith, Shannon Toney; Clark, John W; Kristiansson, Marianne; Svensson, Olof

    2016-06-01

    Research on psychopathic personality has been dominated by a focus on criminality and social deviance, but some theoretical models argue that certain putatively adaptive features are important components of this construct. In 3 samples (forensic mental health practitioners, probation officers and a layperson community sample), we investigated adaptive traits as conceptualized in the Triarchic model of psychopathy (Patrick et al., 2009), specifically the relevance of boldness to construals of psychopathic personality. Participants completed prototypicality ratings of psychopathic traits, including 3 items created to tap components of boldness (Socially bold, Adventurous, Emotionally stable), and they also rated a series of attitudinal statements (e.g., perceived correlates of being psychopathic, moral judgments about psychopaths). The composite Boldness scale was rated as moderately to highly prototypical among forensic mental health practitioners and probation officers and positively associated with other theoretically relevant domains of psychopathy. Across samples, higher composite Boldness ratings predicted greater endorsement of adaptive traits (e.g., social skills) as characteristic of psychopathy. For the individual items, Socially bold was rated as highly prototypical and was associated with theoretically relevant correlates. Adventurous also was seen as prototypical, though to a lesser degree. Only forensic mental health practitioners endorsed Emotionally stable as characteristic of psychopathy. Our results provide partial support for the contention that the boldness concept is viewed as an important component of psychopathy, particularly among professionals who work directly with offender populations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    PubMed

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio).

    PubMed

    Wright, Dominic; Rimmer, Lucy B; Pritchard, Victoria L; Krause, Jens; Butlin, Roger K

    2003-08-01

    Population differences in anti-predator behaviour have been demonstrated in several species, although less is known about the genetic basis of these traits. To determine the extent of genetic differences in boldness (defined as exploration of a novel object) and shoaling within and between zebrafish (Danio rerio) populations, and to examine the genetic basis of shoaling behaviour in general, we carried out a study that involved laboratory-raised fish derived from four wild-caught populations. Controlling for differences in rearing environment, significant inter-population differences were found in boldness but not shoaling. A larger shoaling experiment was also performed using one of the populations as the basis of a North Carolina type II breeding design (174 fish in total) to estimate heritability of shoaling tendency. A narrow-sense heritability estimate of 0.40 was obtained, with no apparent dominance effects.

  9. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    NASA Astrophysics Data System (ADS)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  10. Decoupling of reaction time-related default mode network activity with cognitive demand.

    PubMed

    Barber, Anita D; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2017-06-01

    Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

  11. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  12. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  13. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  14. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  15. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  16. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo

    2005-02-01

    Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m-2 h-1 for the forest ecosystem, 63 to 245 mg C m-2 h-1 for the sago and 46 to 335 mg C m-2 h-1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m-2 yr-1 followed by oil palm at 1.5 kg C m-2 yr-1 and sago at 1.1 kg C m-2 yr-1. The different dominant controlling factors in CO2 flux among the studied ecosystems suggested that land use affected the exchange of CO2 between tropical peatland and the atmosphere.

  17. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI.

    PubMed

    Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro

    2016-11-01

    Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    PubMed Central

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  19. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R2*

    PubMed Central

    Faraco, Carlos C; Strother, Megan K; Siero, Jeroen CW; Arteaga, Daniel F; Scott, Allison O; Jordan, Lori C; Donahue, Manus J

    2015-01-01

    Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm3) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic–hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic–normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic–hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R2*, and tissue–water R2*. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia. PMID:26174329

  20. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship.

    PubMed

    Mayhew, S D; Mullinger, K J; Ostwald, D; Porcaro, C; Bowtell, R; Bagshaw, A P; Francis, S T

    2016-06-01

    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Divergent predation environment between two sister species of livebearing fishes (Cyprinodontiformes: Poeciliidae) predicts boldness, activity, and exploration behavior.

    PubMed

    Money, David A; Ingley, Spencer J; Johnson, Jerald B

    2017-03-01

    Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as ‘time to emerge’ from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditions. As predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between ‘sex’ and ‘species’ as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior.

  2. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

    PubMed Central

    Nguyen, Mai; Winawer, Jonathan

    2017-01-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity. PMID:28742093

  3. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    PubMed

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  4. Locating the cortical bottleneck for slow reading in peripheral vision

    PubMed Central

    Yu, Deyue; Jiang, Yi; Legge, Gordon E.; He, Sheng

    2015-01-01

    Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex. PMID:26237299

  5. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats.

    PubMed

    Taheri, Saeid; Xun, Zhu; See, Ronald E; Joseph, Jane E; Reichel, Carmela M

    2016-07-01

    Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing target-detection performance for both modalities

    PubMed Central

    Marchant, Jennifer L; Ruff, Christian C; Driver, Jon

    2012-01-01

    The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980

  7. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats

    PubMed Central

    See, Ronald E.; Joseph, Jane E.; Reichel, Carmela M.

    2016-01-01

    Background Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Objective Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Methods Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10 min, rats received drug over the next 10 min for a total 40 min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Results Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Conclusion Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. PMID:27103569

  8. An fMRI study of behavioral response inhibition in adolescents with and without histories of heavy prenatal alcohol exposure

    PubMed Central

    Ware, Ashley L.; Infante, M. Alejandra; O’Brien, Jessica W.; Tapert, Susan F.; Jones, Kenneth Lyons; Riley, Edward P.; Mattson, Sarah N.

    2014-01-01

    Heavy prenatal alcohol exposure results in a range of deficits, including both volumetric and functional changes in brain regions involved in response inhibition such as the prefrontal cortex and striatum. The current study examined blood oxygen level-dependent (BOLD) response during a stop signal task in adolescents (ages 13–16 y) with histories of heavy prenatal alcohol exposure (AE, n = 21) and controls (CON, n = 21). Task performance was measured using percent correct inhibits during three difficulty conditions: easy, medium, and hard. Group differences in BOLD response relative to baseline motor responding were examined across all inhibition trials and for each difficulty condition separately. The contrast between hard and easy trials was analyzed to determine whether increasing task difficulty affected BOLD response. Groups had similar task performance and demographic characteristics, except for full scale IQ scores (AE < CON). The AE group demonstrated greater BOLD response in frontal, sensorimotor, striatal, and cingulate regions relative to controls, especially as task difficulty increased. When contrasting hard vs. easy inhibition trials, the AE group showed greater medial/superior frontal and cuneus BOLD response than controls. Results were unchanged after demographics and FAS diagnosis were statistically controlled. This was the first fMRI study to utilize a stop signal task, isolating fronto-striatal functioning, to assess response inhibition and the effects task difficulty in adolescents with prenatal alcohol exposure. Results suggest that heavy prenatal alcohol exposure disrupts neural function of this circuitry, resulting in immature cognitive processing and motor-association learning and neural compensation during response inhibition. PMID:25281280

  9. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    PubMed

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.

  10. Interactions between boldness, foraging performance and behavioural plasticity across social contexts.

    PubMed

    Ólafsdóttir, Guðbjörg Ásta; Magellan, Kit

    2016-01-01

    Boldness, the tendency to be explorative, risk prone and proactive, often varies consistently between individuals. An individual's position on the boldness-shyness continuum has many implications. Bold individuals may outperform shyer conspecifics during foraging as they cover more ground, accumulate information more rapidly and make more frequent food discoveries. Individual variation in boldness may also affect behavioural plasticity across environmental contexts, as the time to process new information, the ability to locate and memorise resources and the time and ability to apply prior information in a novel context all differ between individuals. The primary aim of the current study was to examine plasticity in, and covariation between, boldness, foraging speed and foraging accuracy across social foraging contexts. We showed that the stickleback that were shyest when foraging alone became relatively boldest when foraging in a social context and also delayed their entry to a known food patch the most in the presence of conspecifics. These results support the assertion that shyer foragers are more reactive to social cues and add to current knowledge of how an individual's position on the boldness-shyness continuum may correlate to foraging task performance and behavioural plasticity. We conclude that the correlation between boldness and behavioural plasticity may have broad relevance as the ability to adjust or retain behaviours in changing social environments could often have consequences for fitness. Animal personality may affect how much individuals change their behaviour to suit different environments. We studied the link between threespine stickleback personality (boldness or shyness), foraging performance and change in foraging performance when either alone or in the presence of other stickleback. We found that shyer threespine stickleback were more reactive to the presence of other fish when foraging. When observed or joined by other fish, shy stickleback started exploring earlier, but entered a known food patch later, than when alone. Bolder stickleback changed their foraging behaviour much less in the presence of other fish. Our results suggest that how bold or shy individuals are may have important consequences on how well they adjust their foraging behaviour to environmental change.

  11. Negative blood oxygen level dependent signals during speech comprehension.

    PubMed

    Rodriguez Moreno, Diana; Schiff, Nicholas D; Hirsch, Joy

    2015-05-01

    Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity.

  12. Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness.

    PubMed

    Yang, Albert C; Hong, Chen-Jee; Liou, Yin-Jay; Huang, Kai-Lin; Huang, Chu-Chung; Liu, Mu-En; Lo, Men-Tzung; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2015-06-01

    Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy (MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE patterns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD complexity toward either regular or random patterns. Reduced BOLD complexity toward regular patterns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that the two types of complexity change were associated differently with psychopathology; specifically, the regular type of BOLD complexity change was associated with positive symptoms of schizophrenia, whereas the randomness type of BOLD complexity was associated with negative symptoms of the illness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two routes of pathologic change toward regular or random patterns, which contribute to the differences in syndrome domains of psychosis in patients with schizophrenia. © 2015 Wiley Periodicals, Inc.

  13. Negative Blood Oxygen Level Dependent Signals During Speech Comprehension

    PubMed Central

    Rodriguez Moreno, Diana; Schiff, Nicholas D.

    2015-01-01

    Abstract Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity. PMID:25412406

  14. "Extreme Bold" in the Faculty Ranks

    ERIC Educational Resources Information Center

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  15. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease.

    PubMed

    Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D

    2012-10-01

    To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

  16. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  17. Radar studies of midlatitude ionospheric plasma drifts

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.

    2001-02-01

    We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional E×B drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the evolution of the disturbance drifts driven by the combined effects of prompt penetration and longer lasting perturbation electric fields. The meridional electrodynamic disturbance drifts have largest amplitudes in the midnight-noon sector. The zonal drifts are predominantly westward, with largest amplitudes in the dusk-midnight sector and, following a decrease in the high-latitude convection, they decay more slowly than the meridional drifts. The prompt penetration and steady state zonal disturbance drifts derived from radar measurements are in good agreement with results obtained from both the ion drift meter data on board the Dynamics Explorer 2 (DE 2) satellite and from the Rice Convection Model.

  18. Metabolic rate associates with, but does not generate covariation between, behaviours in western stutter-trilling crickets, Gryllus integer.

    PubMed

    Krams, Indrikis A; Niemelä, Petri T; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J; Mänd, Raivo; Kekäläinen, Jukka; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine

    2017-03-29

    The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. © 2017 The Author(s).

  19. Metabolic rate associates with, but does not generate covariation between, behaviours in western stutter-trilling crickets, Gryllus integer

    PubMed Central

    Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J.; Mänd, Raivo; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine

    2017-01-01

    The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer, selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. PMID:28330918

  20. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus).

    PubMed

    Kanda, L Leann; Abdulhay, Amir; Erickson, Caitlin

    2017-05-01

    Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The effect of consumption temperature on the homeostatic and hedonic responses to glucose ingestion in the hypothalamus and the reward system.

    PubMed

    van Opstal, Anna M; van den Berg-Huysmans, Annette A; Hoeksma, Marco; Blonk, Cor; Pijl, Hanno; Rombouts, Serge A R B; van der Grond, Jeroen

    2018-01-01

    Excessive consumption of sugar-sweetened beverages (SSBs) has been associated with obesity and related diseases. SSBs are often consumed cold, and both the energy content and temperature might influence the consumption behavior for SSBs. The main aim of this study was to elucidate whether consumption temperature and energy (i.e., glucose) content modulate homeostatic (hypothalamus) and reward [ventral tegmental area (VTA)] responses. Sixteen healthy men participated in our study [aged 18-25 y; body mass index (kg/m2): 20-23]. High-resolution functional magnetic resonance imaging data were collected after ingestion of 4 different study stimuli: plain tap water at room temperature (22°C), plain tap water at 0°C, a glucose-containing beverage (75 g glucose dissolved in 300 mL water) at 22°C, and a similar glucose drink at 0°C. Blood oxygen level-dependent (BOLD) changes from baseline (7 min preingestion) were analyzed over time in the hypothalamus and VTA for individual stimulus effects and for effects between stimuli. In the hypothalamus, water at 22°C led to a significantly increased BOLD response; all other stimuli resulted in a direct, significant decrease in BOLD response compared with baseline. In the VTA, a significantly decreased BOLD response compared with baseline was found after the ingestion of stimuli containing glucose at 0°C and 22°C. These responses were not significantly modulated by consumption temperature. The consumption of plain water did not have a significant VTA BOLD effect. Our data show that glucose at 22°C, glucose at 0°C, and water at 0°C lowered hypothalamic activity, which is associated with increased satiation. On the contrary, the consumption of water at room temperature increased activity. All stimuli led to a similar VTA response, which suggests that all drinks elicited a similar hedonic response. Our results indicate that, in addition to glucose, the low temperature at which SSBs are often consumed also leads to a response from the hypothalamus and might strengthen the response of the VTA. This trial was registered at www.clinicaltrials.gov as NCT03181217. © 2018 American Society for Nutrition. All rights reserved.

  2. Dual-echo ASL based assessment of motor networks: a feasibility study

    NASA Astrophysics Data System (ADS)

    Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria

    2018-04-01

    Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.

  3. Reduced Dynamic Coupling Between Spontaneous BOLD-CBF Fluctuations in Older Adults: A Dual-Echo pCASL Study.

    PubMed

    Chiacchiaretta, Piero; Cerritelli, Francesco; Bubbico, Giovanna; Perrucci, Mauro Gianni; Ferretti, Antonio

    2018-01-01

    Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.

  4. The role of boldness in psychopathy: A study of academic and clinical perceptions.

    PubMed

    Berg, Joanna M; Lilienfeld, Scott O; Sellbom, Martin

    2017-10-01

    The relevance of boldness to psychopathy has recently become a major flashpoint of scientific controversy. Although some authors have contended that boldness is a necessary (although insufficient) component of psychopathy, others have asserted that it is largely or entirely irrelevant to psychopathy. We addressed this issue by examining clinical perceptions of the relevance of the 3 triarchic dimensions (boldness, disinhibition, and meanness) to psychopathy among a sample of mental health professionals and graduate students (N = 228) using a vignette-based, person-centered methodology. A vignette comprising boldness descriptors afforded statistically significant and moderate to large (Cohen's ds ranged from .47 to .99) increases in perceived resemblance to overall psychopathy above and beyond the other triarchic dimensions, both singly and jointly; these findings extended largely to clinical perceptions of Factor 1 (i.e., interpersonal and affective aspects of psychopathy) but not Factor 2 (i.e., impulsive and antisocial aspects of psychopathy) resemblance. Contrary to the claims of some recent authors, boldness alone was perceived as being as relevant to psychopathy as was disinhibition, although both dimensions were perceived as less relevant to psychopathy than was meanness. These findings offer strong support for the contention that boldness is regarded as a key feature of classical psychopathy and are broadly consistent with interpersonal models of psychopathy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific.

    PubMed

    Coleman; Wilson

    1998-10-01

    Natural selection often promotes a mix of behavioural phenotypes in a population. Adaptive variation in the propensity to take risks might explain individual differences in shyness and boldness in humans and other species. It is often implicitly assumed that shyness and boldness are general personality traits expressed across many situations. From the evolutionary standpoint, however, individual differences that are adaptive in one context (e.g. predator defence) may not be adaptive in other contexts (e.g. exploration of the physical environment or intraspecific social interactions). We measured the context specificity of shyness and boldness in a natural population of juvenile pumpkinseed sunfish, Lepomis gibbosus, by exposing the fish to a potentially threatening stimulus (a red-tipped metrestick extended towards the individual) and a nonthreatening stimulus (a novel food source). We also related these measures of shyness and boldness to behaviours observed during focal observations, both before and after the introduction of a predator (largemouth bass, Micropterus salmoides). Consistent individual differences were found within both contexts, but individual differences did not correlate across contexts. Furthermore, fish that were scored as intermediate in their response to the metrestick behaved most boldly as foragers and in response to the bass predators. These results suggest that shyness and boldness are context-specific and may not exist as a one-dimensional behavioural continuum even within a single context. Copyright 1998 The Association for the Study of Animal Behaviour.

  6. 12 CFR 192.255 - What must the form of proxy include?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... include? The form of proxy must include all of the following: (a) A statement in bold face type stating.... (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  7. The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm

    PubMed Central

    Licata, Stephanie C.; Nickerson, Lisa D.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2013-01-01

    Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or “resting state networks” (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien®). Zolpidem is a positive modulator of γ-aminobutyric acidA (GABAA) receptors, and engenders sedative effects that may be explained in part by how it modulates intrinsic brain activity. Healthy participants (n= 12) underwent fMRI scanning 45 min after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured while participants gazed at a static fixation point (i.e., at rest). Data were analyzed using group independent component analysis (ICA) with dual regression and results indicated that compared to placebo, the highest dose of zolpidem increased functional connectivity within a number of sensory, motor, and limbic networks. These results are consistent with previous studies showing an increase in functional connectivity at rest following administration of the positive GABAA receptor modulators midazolam and alcohol, and suggest that investigating how zolpidem modulates intrinsic brain activity may have implications for understanding the etiology of its powerful sedative effects. PMID:23296183

  8. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    PubMed

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  9. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  10. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  11. Are Fearless Dominance Traits Superfluous in Operationalizing Psychopathy? Incremental Validity and Sex Differences

    PubMed Central

    Murphy, Brett; Lilienfeld, Scott; Skeem, Jennifer; Edens, John

    2016-01-01

    Researchers are vigorously debating whether psychopathic personality includes seemingly adaptive traits, especially social and physical boldness. In a large sample (N=1565) of adult offenders, we examined the incremental validity of two operationalizations of boldness (Fearless Dominance traits in the Psychopathy Personality Inventory, Lilienfeld & Andrews, 1996; Boldness traits in the Triarchic Model of Psychopathy, Patrick et al, 2009), above and beyond other characteristics of psychopathy, in statistically predicting scores on four psychopathy-related measures, including the Psychopathy Checklist-Revised (PCL-R). The incremental validity added by boldness traits in predicting the PCL-R’s representation of psychopathy was especially pronounced for interpersonal traits (e.g., superficial charm, deceitfulness). Our analyses, however, revealed unexpected sex differences in the relevance of these traits to psychopathy, with boldness traits exhibiting reduced importance for psychopathy in women. We discuss the implications of these findings for measurement models of psychopathy. PMID:26866795

  12. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

    PubMed Central

    Blockley, Nicholas P.; Griffeth, Valerie E. M.; Simon, Aaron B.; Buxton, Richard B.

    2013-01-01

    The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented. PMID:22945365

  13. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery.

    PubMed

    Diaz Pauli, B; Wiech, M; Heino, M; Utne-Palm, A C

    2015-03-01

    This study assessed whether fishing gear was selective on behavioural traits, such as boldness and activity, and how this was related with a productivity trait, growth. Female guppies Poecilia reticulata were screened for their behaviour on the shy-bold axis and activity, and then tested whether they were captured differently by passive and active fishing gear, here represented by a trap and a trawl. Both gears were selective on boldness; bold individuals were caught faster by the trap, but escaped the trawl more often. Boldness and gear vulnerability showed weak correlations with activity and growth. The results draw attention to the importance of the behavioural dimension of fishing: selective fishing on behavioural traits will change the trait composition of the population, and might eventually affect resilience and fishery productivity. © 2015 The Fisheries Society of the British Isles.

  14. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    PubMed Central

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  16. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    PubMed

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  18. 12 CFR 563b.255 - What must the form of proxy include?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... proxy include? The form of proxy must include all of the following: (a) A statement in bold face type... separately. (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  19. 12 CFR 563b.255 - What must the form of proxy include?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... proxy include? The form of proxy must include all of the following: (a) A statement in bold face type... separately. (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  20. Trait and state anxiety is marked by increased working memory-related parietal BOLD signal.

    PubMed

    Ford, Talitha C; Simpson, Tamara; McPhee, Grace; Stough, Con; Downey, Luke A

    2018-05-16

    Anxiety is associated with compromised cognitive control functions, such as working memory. State and trait anxiety within the non-clinical population can be utilised to investigate potential neural markers for anxiety, which may help to elucidate potential prevention and intervention methods. Thirty-two healthy adults (20 female, 12 male), aged between 30 and 65 years, performed a 2-back task whilst fMRI BOLD signal was acquired using a 3T scanner. Mean BOLD signal was obtained in cognitive control network regions of interest of: left and right dorsolateral prefrontal cortex (DLPFC) and posterior parietal lobe (PPL), and medial prefrontal cortex (MPFC). State and trait anxiety levels were recorded. Higher overall anxiety was moderately associated with more left and right PPL BOLD signal; there was a weak relationship between anxiety and left DLPFC BOLD signal. MPFC BOLD signal and trait anxiety were moderately associated with overall 2-back task performance. These findings suggest that non-clinical anxiety affects the recruitment of cortical resources during working memory, but that anxiety does not impair performance during a 2-back task. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Changing concentration, lifetime and climate forcing of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Lelieveld, Jos; Crutzen, Paul J.; Dentener, Frank J.

    1998-04-01

    Previous studies on ice core analyses and recent in situ measurements have shown that CH4 has increased from about 0.75 1.73μmol/mol during the past 150years. Here, we review sources and sink estimates and we present global 3D model calculations, showing that the main features of the global CH4 distribution are well represented. The model has been used to derive the total CH4 emission source, being about 600 Tg yr-1. Based on published results of isotope measurements the total contribution of fossil fuel related CH4 emissions has been estimated to be about 110 Tg yr-1. However, the individual coal, natural gas and oil associated CH4 emissions can not be accurately quantified. In particular natural gas and oil associated emissions remain speculative. Since the total anthropogenic CH4 source is about 410 Tg yr-1 (~70% of the total source) and the mean recent atmospheric CH4 increase is ~20 Tg yr-1 an anthropogenic source reduction of 5% could stabilize the atmospheric CH4 level. We have calculated the indirect chemical effects of increasing CH4 on climate forcing on the basis of global 3D chemistry-transport and radiative transfer calculations. These indicate an enhancement of the direct radiative effect by about 30%, in agreement with previous work. The contribution of CH4 (direct and indirect effects) to climate forcing during the past 150years is 0.57W m-2 (direct 0.44W m-2, indirect 0.13 W m-2). This is about 35% of the climate forcing by CO2 (1.6W m-2) and about 22% of the forcing by all long-lived greenhouse gases (2.6 W m-2). Scenario calculations (IPCC-IS92a) indicate that the CH4 lifetime in the atmosphere increased by about 25 30%during the past 150years to a current value of 7.9years. Future lifetime changes are expected to be much smaller, about 6%, mostly due to the expected increase of tropospheric O3 (→OH) in the tropics. The global mean concentration of CH4 may increase to about 2.55μmol/mol, its lifetime is expected to increase to 8.4years in the year 2050. Further, we have calculated a CH4 global warming potential (GWP) of 21 (kgCH4/kgCO2) over a time horizon of 100years, in agreement with IPCC (1996). Scenario calculations indicate that the importance of the climate forcing by CH4 (including indirect effects) relative to that of CO2 will decrease in future; currently this is about 35%, while this is expected to decrease to about 15% in the year 2050.

  2. Numerical simulation of crevice corrosion of titanium: Effect of the bold surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evitts, R.W.; Postlethwaite, J.; Watson, M.K.

    1996-12-01

    A rigorous crevice corrosion model has been developed that accounts for the bold metal surfaces exterior to the crevice. The model predicts the time change in concentration of all specified chemical species in the crevice and bulk solution, and has the ability to predict active corrosion. It is applied to the crevice corrosion of a small titanium crevice in both oxygenated and anaerobic sodium chloride solutions. The numerical predictions confirm that oxygen is the driving force for crevice corrosion. During the simulations where oxygen is initially present in both the crevice and bulk solution an acidic chloride solution is developed;more » this is the precursor required for crevice corrosion. The anaerobic case displays no tendency to form such a solution. It is also confirmed that those areas in the crevice that are deoxygenated become anodic and the bold metal surface becomes cathodic. As expected, active corrosion is not attained as the simulations are based on electrochemical and chemical parameters at 25 C.« less

  3. The impact of egg incubation temperature on the personality of oviparous reptiles.

    PubMed

    Siviter, Harry; Charles Deeming, D; Rosenberger, Joanna; Burman, Oliver H P; Moszuti, Sophie A; Wilkinson, Anna

    2017-01-01

    Personality traits, defined as differences in the behavior of individual animals of the same species that are consistent over time and context, such as 'boldness,' have been shown to be both heritable and be influenced by external factors, such as predation pressure. Currently, we know very little about the role that early environmental factors have upon personality. Thus, we investigated the impact of incubation temperature upon the boldness on an oviparous reptile, the bearded dragon (Pogona vitticeps). Eggs, from one clutch, were incubated at two different average temperatures within the normal range. After hatching the lizards were raised under the same environmental conditions. Novel object and novel environment tests were used to assess personality. Each test was repeated in both the short term and the long term. The results revealed that incubation temperature did impact upon 'boldness' but only in the short term and suggests that, rather than influencing personality, incubation temperature may have an effect on the development of behavioral of oviparous reptiles at different stages across ontogeny.

  4. Increased BOLD Activation to Predator Stressor in Subiculum and Midbrain of Amphetamine-Sensitized Maternal Rats

    PubMed Central

    Febo, Marcelo; Pira, Ashley S.

    2011-01-01

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5 μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1 mg/kg, i.p. X 3 days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized, but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. PMID:21134359

  5. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    PubMed

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Neural correlates of value, risk, and risk aversion contributing to decision making under risk.

    PubMed

    Christopoulos, George I; Tobler, Philippe N; Bossaerts, Peter; Dolan, Raymond J; Schultz, Wolfram

    2009-10-07

    Decision making under risk is central to human behavior. Economic decision theory suggests that value, risk, and risk aversion influence choice behavior. Although previous studies identified neural correlates of decision parameters, the contribution of these correlates to actual choices is unknown. In two different experiments, participants chose between risky and safe options. We identified discrete blood oxygen level-dependent (BOLD) correlates of value and risk in the ventral striatum and anterior cingulate, respectively. Notably, increasing inferior frontal gyrus activity to low risk and safe options correlated with higher risk aversion. Importantly, the combination of these BOLD responses effectively decoded the behavioral choice. Striatal value and cingulate risk responses increased the probability of a risky choice, whereas inferior frontal gyrus responses showed the inverse relationship. These findings suggest that the BOLD correlates of decision factors are appropriate for an ideal observer to detect behavioral choices. More generally, these biological data contribute to the validity of the theoretical decision parameters for actual decisions under risk.

  7. Quantitative phenomenological model of the BOLD contrast mechanism

    NASA Astrophysics Data System (ADS)

    Dickson, John D.; Ash, Tom W. J.; Williams, Guy B.; Sukstanskii, Alexander L.; Ansorge, Richard E.; Yablonskiy, Dmitriy A.

    2011-09-01

    Different theoretical models of the BOLD contrast mechanism are used for many applications including BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies the system under consideration, making approximations about the structure of the blood vessel network and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemoglobin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using these simulations we introduce a new, phenomenological model that is far more accurate over a range of blood oxygenation levels and blood vessel radii than existing models. This model could be used to extract physiological parameters of the blood vessel network from experimental data in BOLD-based experiments. We use our model to establish ranges of validity for the existing analytical models of Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders). Although these models are shown to be accurate in the limits of diffusion under which they were derived, none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation levels. We also show the extent of systematic errors that are introduced due to the approximations of these models when used for BOLD signal quantification.

  8. Food intake rates of inactive fish are positively linked to boldness in three-spined sticklebacks Gasterosteus aculeatus.

    PubMed

    Jolles, J W; Manica, A; Boogert, N J

    2016-04-01

    To investigate the link between personality and maximum food intake of inactive individuals, food-deprived three-spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace-of-life theory predicting that life-history strategies are linked to boldness. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  9. Are narcissists sexy? Zeroing in on the effect of narcissism on short-term mate appeal.

    PubMed

    Dufner, Michael; Rauthmann, John F; Czarna, Anna Z; Denissen, Jaap J A

    2013-07-01

    This research was aimed to provide a comprehensive test of the classic notion that narcissistic individuals are appealing as short-term romantic or sexual partners. In three studies, we tested the hypotheses that narcissism exerts a positive effect on an individual's mate appeal and that this effect is mediated by high physical attractiveness and high social boldness. We implemented a multimethod approach and used ratings of opposite sex persons (Study 1), ratings of friends (Study 2), and records of courtship outcomes in naturalistic interactions (Study 3) as indicators of mate appeal. In all cases, narcissism had a positive effect on mate appeal, which was mainly due to the agentic self-enhancement aspects of narcissism (rather than narcissists' lacking communion). As predicted, physical attractiveness and social boldness mediated the positive effect of narcissism on mate appeal. Findings further indicated that narcissism was more strongly linked to mate appeal than to friend appeal.

  10. Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.

    PubMed

    Thomas, Binu P; Liu, Peiying; Aslan, Sina; King, Kevin S; van Osch, Matthias J P; Lu, Hanzhang

    2013-12-01

    With a growing need for specific biomarkers in vascular diseases, there has been a surging interest in mapping cerebrovascular reactivity (CVR) of the brain. This index can be measured by conducting a hypercapnia challenge while acquiring blood-oxygenation-level-dependent (BOLD) signals. A BOLD signal increase with hypercapnia is the expected outcome and represents the majority of literature reports; in this work we report an intriguing observation of an apparently negative BOLD CVR response at 3T, during inhalation of 5% CO2 with balance medical air. These "negative-CVR" clusters were specifically located in the ventricular regions of the brain, where CSF is abundant and results in an intense baseline signal. The amplitude of the CVR response was -0.51±0.44% (N=14, age 26±4 years). We hypothesized that this observation might not be due to a decrease in oxygenation but rather a volume effect in which bright CSF signal is replaced by a less intensive blood signal as a result of vasodilation. To test this, we performed an inversion-recovery (IR) experiment to suppress the CSF signal (N=10, age 27±5 years). This maneuver in imaging sequence reversed the sign of the signal response (to 0.66±0.25%), suggesting that the volume change was the predominant reason for the apparently negative CVR in the BOLD experiment. Further support of this hypothesis was provided by a BOLD hyperoxia experiment, in which no voxels showed a negative response, presumably because vasodilation is not usually associated with this challenge. Absolute CBF response to hypercapnia was measured in a new group of subjects (N=8, age 29±7 years) and it was found that CBF in ventricular regions increased by 48% upon CO2 inhalation, suggesting that blood oxygenation most likely increased rather than decreased. The findings from this study suggest that CO2 inhalation results in the dilation of ventricular vessels accompanied by shrinkage in CSF space, which is responsible for the apparently negative CVR in brain ventricles. © 2013.

  11. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    PubMed Central

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala-based rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients. PMID:26958462

  12. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context. © 2015. Published by The Company of Biologists Ltd.

  13. Boldness in two perch populations - long-term differences and the effect of predation pressure.

    PubMed

    Magnhagen, Carin; Hellström, Gustav; Borcherding, Jost; Heynen, Martina

    2012-11-01

    1. Populations of the same species often display different behaviours, for example, in their response to predators. The question is whether this difference is developed as part of a divergent selection caused by differences in predation pressure, or as a result of phenotypic responses to current environmental conditions. 2. Two populations of Eurasian perch were investigated over a time span of 6 years to see whether risk-taking behaviour in young-of-the-year perch were consistent across cohorts, or if behaviour varied over time with changes in predation regime. 3. Boldness was estimated in aquarium studies by looking at how the fish made trade-offs between foraging in a risky area and staying in shelter. Predation risk of each year and lake was estimated from fishing surveys, using an individual-based model calculating attack rates for cannibalistic perch. 4. The average boldness scores were consistently lower in perch from Fisksjön compared with those in Ängersjön, although the magnitude of the difference varied among years. Variance component analyses showed that differences between lakes in boldness scores only explained 12 per cent of the total variation. Differences between years were contributing at least similarly or more to the total variance, and the variation was higher in Fisksjön than in Ängersjön. 5. The observed risk-taking behaviour of young-of-the-year perch, compared across cohorts, was significantly correlated with the year-specific estimates of cannibalistic attack rates, with lower boldness scores in years with higher predation pressure. In Fisksjön, with significant changes over the years in population structure, the range of both predation risk and boldness scores was wider than in Ängersjön. 6. By following the two perch populations over several years, we have been able to show that the differences in risk-taking behaviour mainly are due to direct phenotypic responses to recent experience of predation risk. Long-term differences in behaviour among perch populations thus reflect consistent differences in predation regime rather than diverging inherent traits. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. Effects of hypoglycemia on human brain activation measured with fMRI.

    PubMed

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  15. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  16. Individual boldness traits influenced by temperature in male Siamese fighting fish.

    PubMed

    Forsatkar, Mohammad Navid; Nematollahi, Mohammad Ali; Biro, Peter A; Beckmann, Christa

    2016-10-15

    Temperature has profound effects on physiology of ectothermic animals. However, the effects on temperature variation on behavioral traits are poorly studied in contrast to physiological endpoints. This may be important as even small differences in temperatures have large effects on physiological rates including overall metabolism, and behavior is known to be linked to metabolism at least in part. The primary aim of this study was to determine the effects of ambient temperature on boldness responses of a species of fish commonly used in behavioral experiments, the Siamese fighting fish (Betta splendens). At 26°C, subjects were first examined for baseline behaviors over three days, using three different (but complementary) 'open field' type assays tested in a fixed order. Those same fish were next exposed to either the same temperature (26°C) or a higher temperature (30°C) for 10days, and then the same behavioral assays were repeated. Those individuals exposed to increased temperatures reduced their latency to leave the release area (area I), spent more time in area III (farthest from release area), and were more active overall; together we infer these behaviors to reflect an increase in general 'boldness' with increased temperature. Our results add to a limited number of studies of temperature effects on behavioral tendencies in ectotherms that are evident even after some considerable acclimation. From a methodological perspective, our results indicate careful temperature control is needed when studying behavior in this and other species of fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Modulatory Effects of Modafinil on Neural Circuits Regulating Emotion and Cognition

    PubMed Central

    Rasetti, Roberta; Mattay, Venkata S; Stankevich, Beth; Skjei, Kelsey; Blasi, Giuseppe; Sambataro, Fabio; Arrillaga-Romany, Isabel C; Goldberg, Terry E; Callicott, Joseph H; Apud, José A; Weinberger, Daniel R

    2010-01-01

    Modafinil differs from other arousal-enhancing agents in chemical structure, neurochemical profile, and behavioral effects. Most functional neuroimaging studies to date examined the effect of modafinil only on information processing underlying executive cognition, but cognitive enhancers in general have been shown to have pronounced effects on emotional behavior, too. We examined the effect of modafinil on neural circuits underlying affective processing and cognitive functions. Healthy volunteers were enrolled in this double-blinded placebo-controlled trial (100 mg/day for 7 days). They underwent BOLD fMRI while performing an emotion information-processing task that activates the amygdala and two prefrontally dependent cognitive tasks—a working memory (WM) task and a variable attentional control (VAC) task. A clinical assessment that included measurement of blood pressure, heart rate, the Hamilton anxiety scale, and the profile of mood state (POMS) questionnaire was also performed on each test day. BOLD fMRI revealed significantly decreased amygdala reactivity to fearful stimuli on modafinil compared with the placebo condition. During executive cognition tasks, a WM task and a VAC task, modafinil reduced BOLD signal in the prefrontal cortex and anterior cingulate. Although not statistically significant, there were trends for reduced anxiety, for decreased fatigue-inertia and increased vigor-activity, as well as decreased anger-hostility on modafinil. Modafinil in low doses has a unique physiologic profile compared with stimulant drugs: it enhances the efficiency of prefrontal cortical cognitive information processing, while dampening reactivity to threatening stimuli in the amygdala, a brain region implicated in anxiety. PMID:20555311

  18. Adolescent heavy drinkers' amplified brain responses to alcohol cues decrease over one month of abstinence.

    PubMed

    Brumback, Ty; Squeglia, Lindsay M; Jacobus, Joanna; Pulido, Carmen; Tapert, Susan F; Brown, Sandra A

    2015-07-01

    Heavy drinking during adolescence is associated with increased reactivity to alcohol related stimuli and to differential neural development. Alcohol cue reactivity has been widely studied among adults with alcohol use disorders, but little is known about the neural substrates of cue reactivity in adolescent drinkers. The current study aimed to identify changes in blood-oxygen level dependent (BOLD) signal during a cue reactivity task pre- and post-monitored abstinence from alcohol. Demographically matched adolescents (16.0-18.9 years, 54% female) with histories of heavy episodic drinking (HD; n=22) and light or non-drinking control teens (CON; n=16) were recruited to participate in a month-long study. All participants completed a functional Magnetic Resonance Imaging (fMRI) scan with an alcohol cue reactivity task and substance use assessments at baseline and after 28 days of monitored abstinence from alcohol and drugs (i.e., urine toxicology testing every 48-72 h). Repeated-measure analysis of variance (ANOVA) examined main effects of group, time, and group×time interactions on BOLD signal response in regions of interest defined by functional differences at baseline. The HD group exhibited greater (p<.01) BOLD activation than CON to alcohol cues relative to neutral cues in all regions of interest (ROIs; bilateral striatum/globus pallidus, left anterior cingulate, bilateral cerebellum, and parahippocampal gyrus extending to the thalamus/substantia nigra) across time points. Group×time effects showed that HD exhibited greater BOLD activation to alcohol cues than CON at baseline in left anterior cingulate cortex and in the right cerebellar region, but these decreased to non-significance after one month of monitored abstinence. In all ROIs examined, HD exhibited greater BOLD response than CON to alcohol relative to neutral beverage picture cues at baseline, indicating heightened cue reactivity to alcohol cues in heavy drinking adolescents prior to the onset of any alcohol use diagnosis. Across the majority of these brain regions, differences in BOLD response were no longer apparent following a month of abstinence, suggesting a decrease in alcohol cue reactivity among adolescent non-dependent heavy drinkers as a consequence of abstaining from alcohol. These results highlight the malleability of adolescent brain function despite no formal intervention targeting cue reactivity. Increased understanding of the neural underpinnings of cue reactivity could have implications for prevention and intervention strategies in adolescent heavy alcohol users. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Males and females differ in brain activation during cognitive tasks.

    PubMed

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not be reflected in differences in brain activation. These results suggest that in functional imaging studies in clinical populations it may be sensible to examine each sex independently until this effect is more fully understood.

  20. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

    PubMed

    Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht

    2017-09-15

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.

  1. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  2. To boldly go: individual differences in boldness influence migratory tendency.

    PubMed

    Chapman, Ben B; Hulthén, Kaj; Blomqvist, David R; Hansson, Lars-Anders; Nilsson, Jan-Åke; Brodersen, Jakob; Anders Nilsson, P; Skov, Christian; Brönmark, Christer

    2011-09-01

    Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Interactions between aggression, boldness and shoaling within a brood of convict cichlids (Amatitlania nigrofasciatus).

    PubMed

    Moss, Sarah; Tittaferrante, Stephanie; Way, Gregory P; Fuller, Ashlei; Sullivan, Nicole; Ruhl, Nathan; McRobert, Scott P

    2015-12-01

    A behavioral syndrome is considered present when individuals consistently express correlated behaviors across two or more axes of behavior. These axes of behavior are shy-bold, exploration-avoidance, activity, aggression, and sociability. In this study we examined aggression, boldness and sociability (shoaling) within a juvenile convict cichlid brood (Amatitlania nigrofasciatus). Because young convict cichlids are social, we used methodologies commonly used by ethologists studying social fishes. We did not detect an aggression-boldness behavioral syndrome, but we did find that the aggression, boldness, and possibly the exploration behavioral axes play significant roles in shaping the observed variation in individual convict cichlid behavior. While juvenile convict cichlids did express a shoaling preference, this social preference was likely convoluted by aggressive interactions, despite the small size and young age of the fish. There is a need for the development of behavioral assays that allow for more reliable measurement of behavioral axes in juvenile neo-tropical cichlids. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

    PubMed Central

    Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo

    2017-01-01

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607

  5. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  6. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  7. Triarchic Model Personality Traits and Their Impact on Mock Juror Perceptions of a White-Collar Criminal Defendant.

    PubMed

    Rulseh, Allison; Edens, John F; Cox, Jennifer

    2017-01-01

    The triarchic model of psychopathy proposes that this personality disorder is composed of 3 relatively distinct constructs: meanness, disinhibition, and boldness. Although the first 2 components are widely accepted, boldness has generated considerable theoretical debate concerning its relevance-largely due to its association with various ostensibly adaptive characteristics and socially desirable behaviors (e.g., self-reported heroism). But is being bold actually perceived by others as an intrinsically adaptive, socially desirable personality trait? We investigated this question using a novel approach-a jury simulation study that manipulated the level of triarchic traits exhibited by a white-collar criminal. More specifically, 330 community members read a vignette in which the defendant's degree of boldness and disinhibition was manipulated and then provided sentence recommendations and other evaluative ratings. As hypothesized, manipulating boldness and disinhibition resulted in more negative views of the defendant, with the boldness manipulation more consistently predicting higher global psychopathy, "meanness," and "evil" ratings. Surprisingly, neither manipulation predicted sentence recommendations, although higher global psychopathy ratings did correlate with more punitive sentence recommendations. The presence of personality traits construed in some contexts as advantageous or socially desirable can be perceived as more dysfunctional and undesirable in other contexts-particularly when they cooccur with criminal behavior.

  8. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    PubMed

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  9. Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.

    PubMed

    Hare, Hannah V; Germuska, Michael; Kelly, Michael E; Bulte, Daniel P

    2013-11-01

    Measurement of cerebrovascular reactivity (CVR) can give valuable information about existing pathology and the risk of adverse events, such as stroke. A common method of obtaining regional CVR values is by measuring the blood flow response to carbon dioxide (CO2)-enriched air using arterial spin labeling (ASL) or blood oxygen level-dependent (BOLD) imaging. Recently, several studies have used carbogen gas (containing only CO2 and oxygen) as an alternative stimulus. A direct comparison was performed between CVR values acquired by ASL and BOLD imaging using stimuli of (1) 5% CO2 in air and (2) 5% CO2 in oxygen (carbogen-5). Although BOLD and ASL CVR values are shown to be correlated for CO2 in air (mean response 0.11±0.03% BOLD, 4.46±1.80% ASL, n=16 hemispheres), this correlation disappears during a carbogen stimulus (0.36±0.06% BOLD, 4.97±1.30% ASL). It is concluded that BOLD imaging should generally not be used in conjunction with a carbogen stimulus when measuring CVR, and that care must be taken when interpreting CVR as measured by ASL, as values obtained from different stimuli (CO2 in air versus carbogen) are not directly comparable.

  10. Infraslow Electroencephalographic and Dynamic Resting State Network Activity

    PubMed Central

    Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.

    2017-01-01

    Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586

  11. Are personality differences in a small iteroparous mammal maintained by a life-history trade-off?

    PubMed Central

    Dammhahn, Melanie

    2012-01-01

    Despite increasing interest, animal personality is still a puzzling phenomenon. Several theoretical models have been proposed to explain intraindividual consistency and interindividual variation in behaviour, which have been primarily supported by qualitative data and simulations. Using an empirical approach, I tested predictions of one main life-history hypothesis, which posits that consistent individual differences in behaviour are favoured by a trade-off between current and future reproduction. Data on life-history were collected for individuals of a natural population of grey mouse lemurs (Microcebus murinus). Using open-field and novel-object tests, I quantified variation in activity, exploration and boldness for 117 individuals over 3 years. I found systematic variation in boldness between individuals of different residual reproductive value. Young males with low current but high expected future fitness were less bold than older males with high current fecundity, and males might increase in boldness with age. Females have low variation in assets and in boldness with age. Body condition was not related to boldness and only explained marginal variation in exploration. Overall, these data indicate that a trade-off between current and future reproduction might maintain personality variation in mouse lemurs, and thus provide empirical support of this life-history trade-off hypothesis. PMID:22398164

  12. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  13. Paced respiration with end-expiration technique offers superior BOLD signal repeatability for breath-hold studies.

    PubMed

    Scouten, A; Schwarzbauer, C

    2008-11-01

    As a simple, non-invasive method of blood oxygenation level-dependent (BOLD) signal calibration, the breath-hold task offers considerable potential for the quantification of neuronal activity from functional magnetic resonance imaging (fMRI) measurements. With an aim to improve the precision of this calibration method, the impact of respiratory rate control on the BOLD signal achieved with the breath-hold task was investigated. In addition to self-paced breathing, three different computer-paced breathing rates were imposed during the periods between end-expiration breath-hold blocks. The resulting BOLD signal timecourses and statistical activation maps were compared in eleven healthy human subjects. Results indicate that computer-paced respiration produces a larger peak BOLD signal increase with breath-hold than self-paced breathing, in addition to lower variability between trials. This is due to the more significant post-breath-hold signal undershoot present in self-paced runs, a characteristic which confounds the definition of baseline and is difficult to accurately model. Interestingly, the specific respiratory rate imposed between breath-hold periods generally does not have a statistically significant impact on the BOLD signal change. This result can be explained by previous reports of humans adjusting their inhalation depth to compensate for changes in rate, with the end-goal of maintaining homeostatic ventilation. The advantage of using end-expiration relative to end-inspiration breath-hold is apparent in view of the high repeatability of the BOLD signal in the present study, which does not suffer from the previously reported high variability associated with uncontrolled inspiration depth when using the end-inspiration technique.

  14. Cerebral Blood Flow and BOLD Responses to a Memory Encoding Task: A Comparison Between Healthy Young and Elderly Adults

    PubMed Central

    Restom, Khaled; Bangen, Katherine J.; Bondi, Mark W.; Perthen, Joanna E.; Liu, Thomas T.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) studies of the medial temporal lobe have primarily made use of the blood oxygenation level dependent (BOLD) response to neural activity. The interpretation of the BOLD signal as a measure of medial temporal lobe function can be complicated, however, by changes in the cerebrovascular system that can occur with both normal aging and age-related diseases, such as Alzheimer's disease. Quantitative measures of the functional cerebral blood flow (CBF) response offer a useful complement to BOLD measures, and have been shown to aid in the interpretation of fMRI studies. Despite these potential advantages, the application of ASL to fMRI studies of cognitive tasks and at-risk populations has been limited. In this study, we demonstrate the application of ASL fMRI to obtain measures of the CBF and BOLD responses to the encoding of natural scenes in healthy young (mean 25 years) and elderly (mean 74 years) adults. The percent CBF increase in the medial temporal lobe was significantly higher in the older adults, whereas the CBF levels during baseline and task conditions and during a separate resting-state scan were significantly lower in the older group. The older adults also showed slightly higher values for the BOLD response amplitude and the absolute change in CBF, but the age group differences were not significant. The percent CBF and BOLD responses are consistent with an age-related increase in the cerebral metabolic rate of oxygen metabolism (CMRO2) response to memory encoding. PMID:17590353

  15. Physiological and genetic correlates of boldness: characterising the mechanisms of behavioural variation in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2011-01-01

    Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Larviculture of a carnivorous freshwater catfish, Lophiosilurus alexandri, screened by personality type.

    PubMed

    Torres, Isabela F Araújo; Júlio, Gustavo S da C; Figueiredo, Luis Gustavo; de Lima, Natália L C; Soares, Ana Paula N; Luz, Ronald K

    2017-12-01

    Considering that each personality type in animals presents distinct physiological and behavioural responses, this study evaluated the efficiency of the Novel Environment test to classify larvae of Lophiosilurus alexandri into bold and shy individuals, which were then investigated for growth, cannibalism and mortality in larviculture of pure and mixed groups. Larvae with an average weight of 24.0±1.7mg and length of 14.1±0.4mm, were subjected to a Novel Environment test to classify their personality type (bold and shy larvae). After the larvae were classified according to personality type, they were subjected to larviculture for 15days. Three treatments were tested: only bold larvae, only shy larvae, and a mixed treatment (bold larvae+shy larvae) at a density for 16 larvae/L, which were fed 3 times a day with Artemia nauplii. After larviculture, there were no differences in the final lengths of larvae of the bold, shy, and mixed treatments (26.9±0.76mm, 26.7±1.00mm, and 26.8±1.24mm, respectively); however, shy larvae possessed weighed less (0.22±0.01g) than the bold and mixed treatments, which did not differ significantly (0.25±0.02g and 0.27±0.02g, respectively). The bold and mixed treatments had the highest cannibalism rate (11.2±5.1% and 23.1±12.3%, respectively). Overall survival was lowest in the mixed treatment (62.5±13.0%), while that of the bold and shy treatments were similar (82.5±9.2% and 86.2±9.2%, respectively). The separation of L. alexandri larvae by traits can ensure a decrease in cannibalism and hence, more productive larviculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neural and vascular variability and the fMRI-BOLD response in normal aging

    PubMed Central

    Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.

    2010-01-01

    Neural, vascular and structural variables contributing to the BOLD signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (6M and 6F; mean age: 24 years; range: 19–27 years) and twelve older healthy subjects (5M and 7F; mean age: 58 years; range: 55–71 years) with no history of head trauma and neurological disease were scanned. FMRI measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45, 40 and 38% in the elderly group during the motor, cognitive and breath hold tasks respectively compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the inter-subject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response. PMID:20117893

  18. Neural and vascular variability and the fMRI-BOLD response in normal aging.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2010-05-01

    Neural, vascular and structural variables contributing to the blood oxygen level-dependent (BOLD) signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (six male and six female; mean age: 24 years; range: 19-27 years) and 12 older healthy subjects (five male and seven female; mean age: 58 years; range: 55-71 years) with no history of head trauma and neurological disease were scanned. Functional magnetic resonance imaging measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold (BH) task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45%, 40% and 38% in the elderly group during the motor, cognitive and BH tasks, respectively, compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the intersubject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response. 2010 Elsevier Inc. All rights reserved.

  19. Unemployment in chronic airflow obstruction around the world: results from the BOLD study.

    PubMed

    Grønseth, Rune; Erdal, Marta; Tan, Wan C; Obaseki, Daniel O; Amaral, Andre F S; Gislason, Thorarinn; Juvekar, Sanjay K; Koul, Parvaiz A; Studnicka, Michael; Salvi, Sundeep; Burney, Peter; Buist, A Sonia; Vollmer, William M; Johannessen, Ane

    2017-09-01

    We aimed to examine associations between chronic airflow obstruction (CAO) and unemployment across the world.Cross-sectional data from 26 sites in the Burden of Obstructive Lung Disease (BOLD) study were used to analyse effects of CAO on unemployment. Odds ratios for unemployment in subjects aged 40-65 years were estimated using a multilevel mixed-effects generalised linear model with study site as random effect. Site-by-site heterogeneity was assessed using individual participant data meta-analyses.Out of 18 710 participants, 11.3% had CAO. The ratio of unemployed subjects with CAO divided by subjects without CAO showed large site discrepancies, although these were no longer significant after adjusting for age, sex, smoking and education. The site-adjusted odds ratio (95% CI) for unemployment was 1.79 (1.41-2.27) for CAO cases, decreasing to 1.43 (1.14-1.79) after adjusting for sociodemographic factors, comorbidities and forced vital capacity. Of other covariates that were associated with unemployment, age and education were important risk factors in high-income sites (4.02 (3.53-4.57) and 3.86 (2.80-5.30), respectively), while female sex was important in low- to middle-income sites (3.23 (2.66-3.91)).In the global BOLD study, CAO was associated with increased levels of unemployment, even after adjusting for sociodemographic factors, comorbidities and lung function. Copyright ©ERS 2017.

  20. bold: The Barcode of Life Data System (http://www.barcodinglife.org)

    PubMed Central

    RATNASINGHAM, SUJEEVAN; HEBERT, PAUL D N

    2007-01-01

    The Barcode of Life Data System (bold) is an informatics workbench aiding the acquisition, storage, analysis and publication of DNA barcode records. By assembling molecular, morphological and distributional data, it bridges a traditional bioinformatics chasm. bold is freely available to any researcher with interests in DNA barcoding. By providing specialized services, it aids the assembly of records that meet the standards needed to gain BARCODE designation in the global sequence databases. Because of its web-based delivery and flexible data security model, it is also well positioned to support projects that involve broad research alliances. This paper provides a brief introduction to the key elements of bold, discusses their functional capabilities, and concludes by examining computational resources and future prospects. PMID:18784790

  1. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  2. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  3. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  4. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.

    PubMed

    Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E

    2016-05-15

    The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modulating the focus of attention for spoken words at encoding affects frontoparietal activation for incidental verbal memory.

    PubMed

    Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  6. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    PubMed Central

    Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall. PMID:22144982

  7. Effects of testosterone on visuospatial function and verbal fluency in postmenopausal women: results from a functional magnetic resonance imaging pilot study.

    PubMed

    Davis, Susan R; Davison, Sonia L; Gavrilescu, Maria; Searle, Karissa; Gogos, Andrea; Rossell, Susan L; Egan, Gary F; Bell, Robin J

    2014-04-01

    This study aims to investigate the effects of testosterone on cognitive performance during functional magnetic resonance imaging (fMRI) in healthy estrogen-treated postmenopausal women. This was an open-label study in which postmenopausal women on nonoral estrogen therapy were treated with transdermal testosterone for 26 weeks. Women performed tests of verbal fluency (number of words) and mental rotation (reaction time and accuracy) during pretreatment and posttreatment fMRI. Blood oxygen level-dependent (BOLD) signal intensity was measured during fMRI tasks. Nine women with a mean (SD) age of 55.4 (3.8) years completed the study. Twenty-six weeks of testosterone therapy was associated with significant decreases in BOLD intensity during the mental rotation task in the right superior parietal, left inferior parietal, and left precuneus regions, and during the verbal fluency task in the left inferior frontal gyrus, left lingual gyrus, and medial frontal gyrus (all P < 0.05), with no change in task performance, accuracy, or speed. Testosterone therapy is associated with reduced BOLD signal activation in key anatomical areas during fMRI verbal fluency and visuospatial tasks in healthy estrogen-treated postmenopausal women. Our interpretation is that testosterone therapy facilitates preservation of cognitive function with less neuronal recruitment.

  8. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Generate the scale-free brain music from BOLD signals

    PubMed Central

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Abstract Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen–Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon–Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. PMID:29480872

  10. High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.

    2012-01-01

    Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395

  11. Generate the scale-free brain music from BOLD signals.

    PubMed

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    PubMed

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  13. Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Leech, Robert; Murphy, Kevin

    2015-05-01

    Blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath-hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task-related BOLD signal changes. Three methods of analyzing the breath-hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri-infarct tissue, both sub-acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri-infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group-level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath-hold-based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.

    PubMed

    Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E

    2016-01-01

    Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.

  16. Is boldness relevant to psychopathic personality? Meta-analytic relations with non-Psychopathy Checklist-based measures of psychopathy.

    PubMed

    Lilienfeld, Scott O; Smith, Sarah Francis; Sauvigné, Katheryn C; Patrick, Christopher J; Drislane, Laura E; Latzman, Robert D; Krueger, Robert F

    2016-10-01

    Two recent meta-analyses have suggested that boldness, as assessed by the Psychopathic Personality Inventory (PPI) Fearless Dominance dimension, is largely unrelated to total or factor scores on the Psychopathy Checklist-Revised (PCL-R), raising questions concerning the relevance of largely adaptive features to psychopathy. Nevertheless, given that the PCL was developed and validated among prisoners, it may place less emphasis than do other psychopathy measures on adaptive traits, such as fearlessness, social poise, and emotional resilience. We conducted a meta-analysis (N = 10,693) of the relations between (a) boldness, as assessed by the PPI and its derivatives or measures of the triarchic model of psychopathy, and (b) non-PCL-based psychopathy measures across 32 samples. The average weighted correlation between boldness and psychopathy was medium to large (r = .39) and considerably higher than reported in prior meta-analyses; when analyses were restricted to well-validated psychopathy measures, the correlation rose to r = .44. We did not find support for the position that boldness is significantly less related to psychopathy than are the other 2 dimensions of the triarchic model. Our findings strongly suggest that boldness is relevant to at least some well-validated measures of psychopathy, and raise further questions regarding the boundaries of this condition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Neural substrate of the late positive potential in emotional processing

    PubMed Central

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  18. Association between glutamate/glutamine and blood oxygen level dependent signal in the left dorsolateral prefrontal region during verbal working memory.

    PubMed

    Vijayakumari, Anupa A; Thomas, Bejoy; Menon, Ramshekhar N; Kesavadas, Chandrasekharan

    2018-04-11

    Functional MRI (fMRI) has provided much insight into the changes in the neuronal activity on the basis of blood oxygen level dependent (BOLD) phenomenon. The dynamic changes in the metabolites can be detected using functional proton magnetic resonance spectroscopy (H-fMRS). The strategy of combining fMRI and H-fMRS would facilitate the understanding of the neurochemical interpretation of the BOLD signal. The dorsolateral prefrontal region is critically involved in the processing of working memory (WM), as demonstrated by the studies involving the neuroimaging, neuropsychological, and electrophysiological experiments. In this study, we tested the association between BOLD signal and changes in brain metabolites in the left dorsolateral prefrontal region using N-back verbal WM task. We used single-voxel task-based H-MRS acquired in the left dorsolateral prefrontal region and fMRI during the performance of N-back verbal WM task to investigate the association between changes in metabolites and BOLD response in 10 healthy participants. The correlation between changes in metabolites and percent signal change was examined by the Pearson correlation. The Pearson correlation analysis revealed a significant positive correlation between the BOLD signal and glutamate/glutamine in the left dorsolateral prefrontal region during the verbal WM. Our finding suggests that glutamate/glutamine cycle plays a critical role in the neuronal activation as reflected by the changes in the BOLD response.

  19. Insulin sensitivity affects corticolimbic brain responses to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Alsaadi, Hanin M; Van Vugt, Dean A

    2015-11-01

    This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.

  20. Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toru; Kato, Toshinori

    2002-04-01

    Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.

  1. Renal BOLD-MRI relates to kidney function and activity of the renin-angiotensin-aldosterone system in hypertensive patients.

    PubMed

    Vink, Eva E; de Boer, Anneloes; Hoogduin, Hans J M; Voskuil, Michiel; Leiner, Tim; Bots, Michiel L; Joles, Jaap A; Blankestijn, Peter J

    2015-03-01

    The renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system are key factors in the pathophysiology of hypertension. Renal hypoxia is the putative mechanism stimulating both systems. Blood oxygen level-dependent MRI (BOLD-MRI) provides a noninvasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the relation between blood pressure (BP) and kidney function with renal BOLD-MRI. Moreover, the relation between direct and indirect variables of the RAAS and sympathetic nervous system and renal BOLD-MRI was studied. Seventy-five hypertensive patients (38 men) were included. Antihypertensive medication was temporarily stopped. Patients collected urine during 24 h (sodium, catecholamines), blood samples were taken (creatinine, renin, aldosterone), a captopril challenge test was performed, and ambulatory BP was measured. Mean age was 58 (±11) years, day-time BP was 167 (±19)/102 (±16) mmHg, and estimated glomerular filtration rate was 75 (±18) ml/min per 1.73 m). In multivariable regression analysis, renal medullary R2*-values inversely related to estimated glomerular filtration rate (P = 0.02). Moreover, the BP-lowering effect of captopril positively related to cortical (P = 0.02) and medullary (P = 0.008) R2*-values, as well as to P90 (P = 0.02). In patients with hypertension, kidney function relates to medullary R2*-values. Activation of the RAAS is also positively related to the renal R2*-values.

  2. Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni.

    PubMed

    Byrnes, E E; Brown, C

    2016-08-01

    This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems. © 2016 The Fisheries Society of the British Isles.

  3. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    PubMed

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  4. The cerebral control of speech tempo: opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures.

    PubMed

    Riecker, Axel; Kassubek, Jan; Gröschel, Klaus; Grodd, Wolfgang; Ackermann, Hermann

    2006-01-01

    So far, only sparse data on the cerebral organization of speech motor control are available. In order to further delineate the neural basis of articulatory functions, fMRI measurements were performed during self-paced syllable repetitions at six different frequencies (2-6 Hz). Bilateral hemodynamic main effects, calculated across all syllable rates considered, emerged within sensorimotor cortex, putamen, thalamus and cerebellum. At the level of the caudatum and the anterior insula, activation was found restricted to the left side. The computation of rate-to-response functions of the BOLD signal revealed a negative linear relationship between syllable frequency and response magnitude within the striatum whereas cortical areas and cerebellar hemispheres exhibited an opposite activation pattern. Dysarthric patients with basal ganglia disorders show unimpaired or even accelerated speaking rate whereas, in contrast, cerebellar dysfunctions give rise to slowed speech tempo which does not fall below a rate of about 3 Hz. The observed rate-to-response profiles of the BOLD signal thus might help to elucidate the pathophysiological mechanisms of dysarthric deficits in central motor disorders.

  5. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  6. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  7. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.

    PubMed

    Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon

    2014-11-01

    Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.

  8. --No Title--

    Science.gov Websites

    @font-face { font-family: 'DroidSansRegular'; src: url('../fonts/droidsans-webfont.eot'); src: url -family: 'DroidSansBold'; src: url('../fonts/droidsans-bold-webfont.eot'); src: url('../fonts/droidsans

  9. Forward Air Controllers in the Vietnam War: Exemplars of Audacity, Innovation, and Irreverence

    DTIC Science & Technology

    2016-06-10

    Controllers (FACs). They were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. They faced their...were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. They faced their enemy at low altitudes, in...They were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. FACs were the cutting edge of the

  10. Fast fMRI provides high statistical power in the analysis of epileptic networks.

    PubMed

    Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre

    2014-03-01

    EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as modeling of physiological noise, temporal analysis of the BOLD signal and defining appropriate thresholds is required to fully profit from its high temporal resolution. © 2013.

  11. Development of visual cortical function in infant macaques: A BOLD fMRI study

    PubMed Central

    Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne

    2017-01-01

    Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469

  12. Corticostriatal and Dopaminergic Response to Beer Flavor with Both fMRI and [(11) C]raclopride Positron Emission Tomography.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Harezlak, Jaroslaw; Kudela, Maria A; Tran, Stella M; Soeurt, Christina M; Yoder, Karmen K; Kareken, David A

    2016-09-01

    Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting. Copyright © 2016 by the Research Society on Alcoholism.

  13. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    PubMed

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These results extend our understanding of the electrophysiological signature of BOLD RSNs and demonstrate the intrinsic connection between the fast neuronal activity and slow hemodynamic fluctuations. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    PubMed Central

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19% reduction over grey matter). We were able to identify vascular effects and hence altered neurovascular coupling through the alteration of low-level task FMRI responses in the face of a preserved visual evoked potential. However, our data also suggest a cognitive effect of caffeine through its positive effect on the frontal BOLD signal consistent with the shortening of oddball EEG response latency. The combined use of EEG–FMRI is a promising methodology for investigating alterations in brain function in drug and disease studies where neurovascular coupling may be altered on a regional basis. PMID:22561357

  15. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.

  16. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2013-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  17. Common neural correlates of intertemporal choices and intelligence in adolescents.

    PubMed

    Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N

    2015-02-01

    Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.

  18. Neurobiological evidence for attention bias to food, emotional dysregulation, disinhibition and deficient somatosensory awareness in obesity with binge eating disorder.

    PubMed

    Aviram-Friedman, Roni; Astbury, Nerys; Ochner, Christopher N; Contento, Isobel; Geliebter, Allan

    2018-02-01

    To refine the biobehavioral markers of binge eating disorder (BED). We conducted fMRI brain scans using images of high energy processed food (HEPF), low energy unprocessed food (LEUF), or non-foods (NF) in 42 adults (obese with BED [obese -BED; n=13] and obese with no BED [obese non-BED; n=29]) selected via ads. Two blood oxygenated level dependent (BOLD) signal contrast maps were examined: food versus nonfood, and HEPF versus LEUF. In addition, score differences on the disinhibition scale were correlated with BOLD signals. food versus nonfood showed greater BOLD activity for BED in emotional, motivational and somatosensory brain areas: insula, anterior cingulate cortex (ACC), Brodmann areas (BA) 19 & 32, inferior parietal lobule (IPL), posterior cingulate cortex (PCC), and lingual, postcentral, middle temporal and cuneate gyri (p≤0.005; k≥88). HEPF versus LEUF showed greater BOLD activity for BED in inhibitory brain regions: BA 6, middle and superior frontal gyri (p<0.01; k≥119). The groups also differed in the relationships between disinhibition and BOLD activity in the postcentral gyrus (PCG; p=0.04) and ACC-BA 32 (p=0.02). For all participants jointly, PCG BOLD amplitude predicted greater disinhibition (p=0.04). Food images elicited neural activity indicating attention bias (cuneate & PCG), emotion dysregulation (BA 19 & 32), and disinhibition (MFG, BA6 & SFG) in obese with BED. These may help tailor a treatment for the obesity with BED phenotype. Copyright © 2017. Published by Elsevier Inc.

  19. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  20. Reduced CMRO₂ and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study.

    PubMed

    Bouvier, Julien; Detante, Olivier; Tahon, Florence; Attye, Arnaud; Perret, Thomas; Chechin, David; Barbieux, Marianne; Boubagra, Kamel; Garambois, Katia; Tropres, Irène; Grand, Sylvie; Barbier, Emmanuel L; Krainik, Alexandre

    2015-02-01

    Multiparametric quantitative blood oxygenation level dependent (mqBOLD) magnetic resonance Imaging (MRI) approach allows mapping tissular oxygen saturation (StO2 ) and cerebral metabolic rate of oxygen (CMRO2 ). To identify hemodynamic alteration related to severe intracranial arterial stenosis (SIAS), functional MRI of cerebrovascular reserve (CVR BOLD fMRI) to hypercapnia has been proposed. Diffusion imaging suggests chronic low grade ischemia in patients with impaired CVR. The aim of the present study was to evaluate how oxygen parameters (StO2 and CMRO2 ), assessed with mqBOLD approach, correlate with CVR in patients (n = 12) with SIAS and without arterial occlusion. The perfusion (dynamic susceptibility contrast), oxygenation, and CVR were compared. The MRI protocol conducted at 3T lasted approximately 1 h. Regions of interest measures on maps were delineated on segmented gray matter (GM) of middle cerebral artery territories. We have shown that decreased CVR is spatially associated with decreased CMRO2 in GM of patients with SIAS. Further, the degree of ipsilateral CVR reduction was well-correlated with the amplitude of the CMRO2 deficit. The altered CMRO2 suggests the presence of a moderate ischemia explained by both a decrease in perfusion and in CVR. CVR and mqBOLD method may be helpful in the selection of patients with SIAS to advocate for medical therapy or percutaneous transluminal angioplasty-stenting. © 2014 Wiley Periodicals, Inc.

  1. The Not-So-Global Blood Oxygen Level-Dependent Signal.

    PubMed

    Billings, Jacob; Keilholz, Shella

    2018-04-01

    Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

  2. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  3. Differences in boldness are repeatable and heritable in a long-lived marine predator

    PubMed Central

    Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri

    2013-01-01

    Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy–bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies. PMID:24340172

  4. Differences in boldness are repeatable and heritable in a long-lived marine predator.

    PubMed

    Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri

    2013-11-01

    Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy-bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies.

  5. Test-retest reliability of evoked heat stimulation BOLD fMRI.

    PubMed

    Upadhyay, Jaymin; Lemme, Jordan; Anderson, Julie; Bleakman, David; Large, Thomas; Evelhoch, Jeffrey L; Hargreaves, Richard; Borsook, David; Becerra, Lino

    2015-09-30

    To date, the blood oxygenated-level dependent (BOLD) functional magnetic resonance imaging (fMRI) technique has enabled an objective and deeper understanding of pain processing mechanisms embedded within the human central nervous system (CNS). In order to further comprehend the benefits and limitations of BOLD fMRI in the context of pain as well as the corresponding subjective pain ratings, we evaluated the univariate response, test-retest reliability and confidence intervals (CIs) at the 95% level of both data types collected during evoked stimulation of 40°C (non-noxious), 44°C (mildly noxious) and a subject-specific temperature eliciting a 7/10 pain rating. The test-retest reliability between two scanning sessions was determined by calculating group-level interclass correlation coefficients (ICCs) and at the single-subject level. Across the three stimuli, we initially observed a graded response of increasing magnitude for both VAS (visual analog score) pain ratings and fMRI data. Test-retest reliability was observed to be highest for VAS pain ratings obtained during the 7/10 pain stimulation (ICC=0.938), while ICC values of pain fMRI data for a distribution of CNS structures ranged from 0.5 to 0.859 (p<0.05). Importantly, the upper and lower confidence interval CI bounds reported herein could be utilized in subsequent trials involving healthy volunteers to hypothesize the magnitude of effect required to overcome inherent variability of either VAS pain ratings or BOLD responses evoked during innocuous or noxious thermal stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Trial-Level Regressor Modulation for Functional Magnetic Resonance Imaging Designs Requiring Strict Periodicity of Stimulus Presentations: Illustrated Using a Go/No-Go Task

    PubMed Central

    Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John

    2017-01-01

    Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go/no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time–based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time–based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations. PMID:29276390

  7. Trial-Level Regressor Modulation for Functional Magnetic Resonance Imaging Designs Requiring Strict Periodicity of Stimulus Presentations: Illustrated Using a Go/No-Go Task.

    PubMed

    Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John

    2017-01-01

    Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go / no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time-based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time-based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations.

  8. Posteromedial hyperactivation during episodic recognition among people with memory decline: findings from the WRAP study

    PubMed Central

    Nicholas, Christopher R.; Okonkwo, Ozioma C.; Bendlin, Barbara B.; Oh, Jennifer M.; Asthana, Sanjay; Rowley, Howard A.; Hermann, Bruce; Sager, Mark A.

    2014-01-01

    Episodic memory decline is one of the earliest preclinical symptoms of AD, and has been associated with an upregulation in the BOLD response in the prodromal stage (e.g. MCI) of AD. In a previous study, we observed upregulation in cognitively normal (CN) subjects with subclinical episodic memory decline compared to non-decliners. In light of this finding, we sought to determine if a separate cohort of Decliners will show increased brain activation compared to Stable subjects during episodic memory processing, and determine whether the BOLD effect was influenced by cerebral blood flow (CBF) or gray matter volume (GMV). Individuals were classified as a “Decliner” if scores on the Rey Auditory Verbal Learning Test (RAVLT) consistently fell≥1.5 SD below expected intra- or inter-individual levels. FMRI was used to compare activation during a facial recognition memory task in 90 Stable (age=59.1) and 34 Decliner (age=62.1, SD=5.9) CN middle-aged adults and 10 MCI patients (age=72.1, SD= 9.4). Arterial spin labeling and anatomical T1 MRI were used to measure resting CBF and GMV, respectively. Stables and Decliners performed similarly on the episodic recognition memory task and significantly better than MCI patients. Compared to Stables, Decliners showed increased BOLD signal in the left precuneus on the episodic memory task that was not explained by CBF or GMV, familial AD risk factors, or neuropsychological measures. These findings suggest that subtle changes in the BOLD signal reflecting altered neural function may be a relatively early phenomenon associated with memory decline. PMID:25332108

  9. A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain.

    PubMed

    Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D

    2014-08-01

    To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.

  10. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling

    PubMed Central

    Morrell, Glen; Rusinek, Henry; Warner, Lizette; Vivier, Pierre-Hugues; Cheung, Alfred K.; Lerman, Lilach O.; Lee, Vivian S.

    2014-01-01

    Blood oxygen level-dependent (BOLD) MRI data of kidney, while indicative of tissue oxygenation level (Po2), is in fact influenced by multiple confounding factors, such as R2, perfusion, oxygen permeability, and hematocrit. We aim to explore the feasibility of extracting tissue Po2 from renal BOLD data. A method of two steps was proposed: first, a Monte Carlo simulation to estimate blood oxygen saturation (SHb) from BOLD signals, and second, an oxygen transit model to convert SHb to tissue Po2. The proposed method was calibrated and validated with 20 pigs (12 before and after furosemide injection) in which BOLD-derived tissue Po2 was compared with microprobe-measured values. The method was then applied to nine healthy human subjects (age: 25.7 ± 3.0 yr) in whom BOLD was performed before and after furosemide. For the 12 pigs before furosemide injection, the proposed model estimated renal tissue Po2 with errors of 2.3 ± 5.2 mmHg (5.8 ± 13.4%) in cortex and −0.1 ± 4.5 mmHg (1.7 ± 18.1%) in medulla, compared with microprobe measurements. After injection of furosemide, the estimation errors were 6.9 ± 3.9 mmHg (14.2 ± 8.4%) for cortex and 2.6 ± 4.0 mmHg (7.7 ± 11.5%) for medulla. In the human subjects, BOLD-derived medullary Po2 increased from 16.0 ± 4.9 mmHg (SHb: 31 ± 11%) at baseline to 26.2 ± 3.1 mmHg (SHb: 53 ± 6%) at 5 min after furosemide injection, while cortical Po2 did not change significantly at ∼58 mmHg (SHb: 92 ± 1%). Our proposed method, validated with a porcine model, appears promising for estimating tissue Po2 from renal BOLD MRI data in human subjects. PMID:24452640

  11. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.

  12. Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy

    PubMed Central

    Song, Yinchen; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Lin, Wei-Chiang; Riera, Jorge J.

    2015-01-01

    Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity. PMID:26226628

  13. Test-retest reliability of effective connectivity in the face perception network.

    PubMed

    Frässle, Stefan; Paulus, Frieder Michel; Krach, Sören; Jansen, Andreas

    2016-02-01

    Computational approaches have great potential for moving neuroscience toward mechanistic models of the functional integration among brain regions. Dynamic causal modeling (DCM) offers a promising framework for inferring the effective connectivity among brain regions and thus unraveling the neural mechanisms of both normal cognitive function and psychiatric disorders. While the benefit of such approaches depends heavily on their reliability, systematic analyses of the within-subject stability are rare. Here, we present a thorough investigation of the test-retest reliability of an fMRI paradigm for DCM analysis dedicated to unraveling intra- and interhemispheric integration among the core regions of the face perception network. First, we examined the reliability of face-specific BOLD activity in 25 healthy volunteers, who performed a face perception paradigm in two separate sessions. We found good to excellent reliability of BOLD activity within the DCM-relevant regions. Second, we assessed the stability of effective connectivity among these regions by analyzing the reliability of Bayesian model selection and model parameter estimation in DCM. Reliability was excellent for the negative free energy and good for model parameter estimation, when restricting the analysis to parameters with substantial effect sizes. Third, even when the experiment was shortened, reliability of BOLD activity and DCM results dropped only slightly as a function of the length of the experiment. This suggests that the face perception paradigm presented here provides reliable estimates for both conventional activation and effective connectivity measures. We conclude this paper with an outlook on potential clinical applications of the paradigm for studying psychiatric disorders. Hum Brain Mapp 37:730-744, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Ludwig, H.-G.; Bonifacio, P.; Steffen, M.; Behara, N. T.

    2008-05-01

    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a CO5BOLD 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Methods: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf) = 0.87 ± 0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th II 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of a Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th) = 0.08 ± 0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has a non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.

  15. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  16. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    PubMed

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback

    PubMed Central

    Phillips, Raquel; Alvarez, Ruben P.; Simmons, W. Kyle; Bellgowan, Patrick; Drevets, Wayne C.; Bodurka, Jerzy

    2011-01-01

    Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders. PMID:21931738

  19. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  20. 21 CFR 166.40 - Labeling of margarine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... each letter as measured by a closely fitting rectangle drawn around it, and the boldness of letters or... letters in the word “oleomargarine” or “margarine” should be equal to or exceed in prominence and boldness...

  1. 21 CFR 166.40 - Labeling of margarine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... each letter as measured by a closely fitting rectangle drawn around it, and the boldness of letters or... letters in the word “oleomargarine” or “margarine” should be equal to or exceed in prominence and boldness...

  2. 21 CFR 166.40 - Labeling of margarine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... each letter as measured by a closely fitting rectangle drawn around it, and the boldness of letters or... letters in the word “oleomargarine” or “margarine” should be equal to or exceed in prominence and boldness...

  3. Express yourself: bold individuals induce enhanced morphological defences

    PubMed Central

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Hollander, Johan; Brönmark, Christer

    2014-01-01

    Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey's lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences. PMID:24335987

  4. A Big Five facet analysis of sub-clinical narcissism: understanding boldness in terms of well-known personality traits.

    PubMed

    Furnham, Adrian; Crump, John

    2014-08-01

    This study aimed to examine a Big Five 'bright-side' analysis of a sub-clinical personality disorder, i.e. narcissism. A total of 6957 British adults completed the NEO-PI-R, which measures the Big Five Personality factors at the domain and the facet level, as well as the Hogan Development Survey (HDS), which has a measure of Narcissism called Bold as one of its dysfunctional interpersonal tendencies. Correlation and regression results confirmed many of the associations between the Big Five domains and facets (NEO-PI-R) and sub-clinical narcissism. The Bold (Narcissism) scale from the HDS was the criterion variable in all analyses. Bold individuals are disagreeable extraverts with very low scores on facet Modesty but moderately high scores on Assertiveness, Competence and Achievement Striving. The study confirmed work using different population groups and different measures. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Effects of Career Duration, Concussion History, and Playing Position on White Matter Microstructure and Functional Neural Recruitment in Former College and Professional Football Athletes.

    PubMed

    Clark, Michael D; Varangis, Eleanna M L; Champagne, Allen A; Giovanello, Kelly S; Shi, Feng; Kerr, Zachary Y; Smith, J Keith; Guskiewicz, Kevin M

    2018-03-01

    Purpose To better understand the relationship between exposure to concussive and subconcussive head impacts, white matter integrity, and functional task-related neural activity in former U.S. football athletes. Materials and Methods Between 2011 and 2013, 61 cognitively unimpaired former collegiate and professional football players (age range, 52-65 years) provided informed consent to participate in this cross-sectional study. Participants were stratified across three crossed factors: career duration, concussion history, and primary playing position. Fractional anisotropy (FA) and blood oxygen level-dependent (BOLD) percent signal change (PSC) were measured with diffusion-weighted and task-related functional magnetic resonance imaging, respectively. Analyses of variance of FA and BOLD PSC were used to determine main or interaction effects of the three factors. Results A significant interaction between career duration and concussion history was observed; former college players with more than three concussions had lower FA in a broadly distributed area of white matter compared with those with zero to one concussion (t29 = 2.774; adjusted P = .037), and the opposite was observed for former professional players (t29 = 3.883; adjusted P = .001). A separate interaction between concussion history and position was observed: Nonspeed players with more than three concussions had lower FA in frontal white matter compared with those with zero to one concussion (t25 = 3.861; adjusted P = .002). Analysis of working memory-task BOLD PSC revealed a similar interaction between concussion history and position (all adjusted P < .004). Overall, former players with lower FA tended to have lower BOLD PSC across three levels of a working memory task. Conclusion Career duration and primary playing position seem to modify the effects of concussion history on white matter structure and neural recruitment. The differences in brain structure and function were observed in the absence of clinical impairment, which suggested that multimodal imaging may provide early markers of onset of traumatic neurodegenerative disease. © RSNA, 2017 Online supplemental material is available for this article.

  6. A Comprehensive Assessment of Regional Variation in the Impact of Head Micromovements on Functional Connectomics

    PubMed Central

    Yan, Chao-Gan; Cheung, Brian; Kelly, Clare; Colcombe, Stan; Craddock, R. Cameron; Di Martino, Adriana; Li, Qingyang; Zuo, Xi-Nian; Castellanos, F. Xavier; Milham, Michael P.

    2014-01-01

    Functional connectomics is one of the most rapidly expanding areas of neuroimaging research. Yet, concerns remain regarding the use of resting-state fMRI (R-fMRI) to characterize inter-individual variation in the functional connectome. In particular, recent findings that “micro” head movements can introduce artifactual inter-individual and group-related differences in R-fMRI metrics have raised concerns. Here, we first build on prior demonstrations of regional variation in the magnitude of framewise displacements associated with a given head movement, by providing a comprehensive voxel-based examination of the impact of motion on the BOLD signal (i.e., motion-BOLD relationships). Positive motion-BOLD relationships were detected in primary and supplementary motor areas, particularly in low motion datasets. Negative motion-BOLD relationships were most prominent in prefrontal regions, and expanded throughout the brain in high motion datasets (e.g., children). Scrubbing of volumes with FD > 0.2 effectively removed negative but not positive correlations; these findings suggest that positive relationships may reflect neural origins of motion while negative relationships are likely to originate from motion artifact. We also examined the ability of motion correction strategies to eliminate artifactual differences related to motion among individuals and between groups for a broad array of voxel-wise R-fMRI metrics. Residual relationships between motion and the examined R-fMRI metrics remained for all correction approaches, underscoring the need to covary motion effects at the group-level. Notably, global signal regression reduced relationships between motion and inter-individual differences in correlation-based R-fMRI metrics; Z-standardization (mean-centering and variance normalization) of subject-level maps for R-fMRI metrics prior to group-level analyses demonstrated similar advantages. Finally, our test-retest (TRT) analyses revealed significant motion effects on TRT reliability for R-fMRI metrics. Generally, motion compromised reliability of R-fMRI metrics, with the exception of those based on frequency characteristics – particularly, amplitude of low frequency fluctuations (ALFF). The implications of our findings for decision-making regarding the assessment and correction of motion are discussed, as are insights into potential differences among volume-based metrics of motion. PMID:23499792

  7. Streamlining the use of BOLD specimen data to record species distributions: a case study with ten Nearctic species of Microgastrinae (Hymenoptera: Braconidae)

    PubMed Central

    Penev, Lyubomir; Ratnasingham, Sujeevan; Smith, M. Alex; Sones, Jayme; Telfer, Angela; deWaard, Jeremy R.; Hebert, Paul D. N.

    2014-01-01

    Abstract The Barcode of Life Data Systems (BOLD) is designed to support the generation and application of DNA barcode data, but it also provides a unique source of data with potential for many research uses. This paper explores the streamlining of BOLD specimen data to record species distributions – and its fast publication using the Biodiversity Data Journal (BDJ), and its authoring platform, the Pensoft Writing Tool (PWT). We selected a sample of 630 specimens and 10 species of a highly diverse group of parasitoid wasps (Hymenoptera: Braconidae, Microgastrinae) from the Nearctic region and used the information in BOLD to uncover a significant number of new records (of locality, provinces, territories and states). By converting specimen information (such as locality, collection date, collector, voucher depository) from the BOLD platform to the Excel template provided by the PWT, it is possible to quickly upload and generate long lists of "Material Examined" for papers discussing taxonomy, ecology and/or new distribution records of species. For the vast majority of publications including DNA barcodes, the generation and publication of ancillary data associated with the barcoded material is seldom highlighted and often disregarded, and the analysis of those data sets to uncover new distribution patterns of species has rarely been explored, even though many BOLD records represent new and/or significant discoveries. The introduction of journals specializing in – and streamlining – the release of these datasets, such as the BDJ, should facilitate thorough analysis of these records, as shown in this paper. PMID:25473326

  8. A Novel Method of Combining Blood Oxygenation and Blood Flow Sensitive Magnetic Resonance Imaging Techniques to Measure the Cerebral Blood Flow and Oxygen Metabolism Responses to an Unknown Neural Stimulus

    PubMed Central

    Simon, Aaron B.; Griffeth, Valerie E. M.; Wong, Eric C.; Buxton, Richard B.

    2013-01-01

    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO2) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged. PMID:23382977

  9. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Simultaneous GCaMP6-based fiber photometry and fMRI in rats.

    PubMed

    Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin

    2017-09-01

    Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing.

    PubMed

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.

  12. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    PubMed

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  13. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions.

    PubMed

    Jahnke, Cosima; Gebker, Rolf; Manka, Robert; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-04-01

    This study determined the value of navigator-gated 3-dimensional blood oxygen level-dependent (BOLD) cardiac magnetic resonance (CMR) at 3.0-T for the detection of stress-induced myocardial ischemic reactions. Although BOLD CMR has been introduced for characterization of myocardial oxygenation status, previously reported CMR approaches suffered from a low signal-to-noise ratio and motion-related artifacts with impaired image quality and a limited diagnostic value in initial patient studies. Fifty patients with suspected or known coronary artery disease underwent CMR at 3.0-T followed by invasive X-ray angiography within 48 h. Three-dimensional BOLD images were acquired during free breathing with full coverage of the left ventricle in a short-axis orientation. The BOLD imaging was performed at rest and under adenosine stress, followed by stress and rest first-pass perfusion and delayed enhancement imaging. Quantitative coronary X-ray angiography (QCA) was used for coronary stenosis definition (diameter reduction > or =50%). The BOLD and first-pass perfusion images were semiquantitatively evaluated (for BOLD imaging, signal intensity differences between stress and rest [DeltaSI]; for perfusion imaging, myocardial perfusion reserve index [MPRI]). The image quality of BOLD CMR at rest and during adenosine stress was considered good to excellent in 90% and 84% of the patients, respectively. The DeltaSI measurements differed significantly between normal myocardium, myocardium supplied by a stenotic coronary artery, and infarcted myocardium (p < 0.001). The receiver-operator characteristic analysis identified a cutoff value of DeltaSI = 2.7% for the detection of coronary stenosis, resulting in a sensitivity and specificity of 85.0% and 80.5%, respectively. An MPRI cutoff value of 1.35 yielded a sensitivity and specificity of 89.5% and 85.8%, respectively. The DeltaSI significantly correlated with the degree of coronary stenosis (r = -0.65, p < 0.001). Additionally, DeltaSI and MPRI showed substantial agreement (kappa value 0.66). Navigator-gated 3-dimensional BOLD imaging at 3.0-T reliably detected stress-induced myocardial ischemic reactions and may be considered a valid alternative to first-pass exogenous contrast-enhancement studies. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  15. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response

    PubMed Central

    Dorton, Hilary M.; Luo, Shan; Monterosso, John R.; Page, Kathleen A.

    2018-01-01

    Sugar consumption in the United States exceeds recommendations from the American Heart Association. Overconsumption of sugar is linked to risk for obesity and metabolic disease. Animal studies suggest that high-sugar diets alter functions in brain regions associated with reward processing, including the dorsal and ventral striatum. Human neuroimaging studies have shown that these regions are responsive to food cues, and that the gut-derived satiety hormones, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY), suppress striatal food-cue responsivity. We aimed to determine the associations between dietary added sugar intake, striatal responsivity to food cues, and postprandial GLP-1 and PYY levels. Twenty-two lean volunteers underwent a functional magnetic resonance imaging (fMRI) scan during which they viewed pictures of food and non-food items after a 12-h fast. Before scanning, participants consumed a glucose drink. A subset of 19 participants underwent an additional fMRI session in which they consumed water as a control condition. Blood was sampled for GLP-1, and PYY levels and hunger ratings were assessed before and ~75 min after drink consumption. In-person 24-h dietary recalls were collected from each participant on three to six separate occasions over a 2-month period. Average percent calories from added sugar were calculated using information from 24-h dietary recalls. A region-of-interest analysis was performed to compare the blood oxygen level-dependent (BOLD) response to food vs. non-food cues in the bilateral dorsal striatum (caudate/putamen) and ventral striatum (nucleus accumbens). The relationships between added sugar, striatal responses, and hormone changes after drink consumption were assessed using Spearman’s correlations. We observed a positive correlation between added sugar intake and BOLD response to food cues in the dorsal striatum and a similar trend in the nucleus accumbens after glucose, but not water, consumption. Added sugar intake was negatively associated with GLP-1 response to glucose. Post hoc analysis revealed a negative correlation between GLP-1 response to glucose and BOLD response to food cues in the dorsal striatum. Our findings suggest that habitual added sugar intake is related to increased striatal response to food cues and decreased GLP-1 release following glucose intake, which could contribute to susceptibility to overeating. PMID:29403396

  16. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response.

    PubMed

    Dorton, Hilary M; Luo, Shan; Monterosso, John R; Page, Kathleen A

    2017-01-01

    Sugar consumption in the United States exceeds recommendations from the American Heart Association. Overconsumption of sugar is linked to risk for obesity and metabolic disease. Animal studies suggest that high-sugar diets alter functions in brain regions associated with reward processing, including the dorsal and ventral striatum. Human neuroimaging studies have shown that these regions are responsive to food cues, and that the gut-derived satiety hormones, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY), suppress striatal food-cue responsivity. We aimed to determine the associations between dietary added sugar intake, striatal responsivity to food cues, and postprandial GLP-1 and PYY levels. Twenty-two lean volunteers underwent a functional magnetic resonance imaging (fMRI) scan during which they viewed pictures of food and non-food items after a 12-h fast. Before scanning, participants consumed a glucose drink. A subset of 19 participants underwent an additional fMRI session in which they consumed water as a control condition. Blood was sampled for GLP-1, and PYY levels and hunger ratings were assessed before and ~75 min after drink consumption. In-person 24-h dietary recalls were collected from each participant on three to six separate occasions over a 2-month period. Average percent calories from added sugar were calculated using information from 24-h dietary recalls. A region-of-interest analysis was performed to compare the blood oxygen level-dependent (BOLD) response to food vs. non-food cues in the bilateral dorsal striatum (caudate/putamen) and ventral striatum (nucleus accumbens). The relationships between added sugar, striatal responses, and hormone changes after drink consumption were assessed using Spearman's correlations. We observed a positive correlation between added sugar intake and BOLD response to food cues in the dorsal striatum and a similar trend in the nucleus accumbens after glucose, but not water, consumption. Added sugar intake was negatively associated with GLP-1 response to glucose. Post hoc analysis revealed a negative correlation between GLP-1 response to glucose and BOLD response to food cues in the dorsal striatum. Our findings suggest that habitual added sugar intake is related to increased striatal response to food cues and decreased GLP-1 release following glucose intake, which could contribute to susceptibility to overeating.

  17. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild

    PubMed Central

    Cole, Ella F.; Quinn, John L.

    2014-01-01

    Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy–bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether ‘exploration behaviour’, a captive assay of the shy–bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness. PMID:24829251

  18. Novel fMRI working memory paradigm accurately detects cognitive impairment in Multiple Sclerosis

    PubMed Central

    Nelson, Flavia; Akhtar, Mohammad A.; Zúñiga, Edward; Perez, Carlos A.; Hasan, Khader M.; Wilken, Jeffrey; Wolinsky, Jerry S.; Narayana, Ponnada A.; Steinberg, Joel L.

    2016-01-01

    Background Cognitive impairment (CI) cannot be diagnosed by MRI. Functional MRI (fMRI) paradigms such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory. Preliminary findings using I/DMT, showed differences in Blood Oxygenation Level Dependent (BOLD) activation between impaired (MSCI, n=12) and non-impaired (MSNI, n=9) MS patients. Objectives To confirm CI detection based on I/DMT’ BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and EDSS in magnitude of BOLD signal were also sought. Methods Fifty patients [EDSS mean (m) = 3.2, DD m =12 yr., age m =40yr.] underwent the Minimal Assessment of Cognitive Function in MS (MACFIMS) and the I/DMT. Working-memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. Results 10 MSNI, 30 MSCI and 4 borderline patients were included in analyses. ANOVA showed MSNI had significantly greater WMa than MSCI, in the left (L) prefrontal cortex and L supplementary motor area (p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas (p = 0.005, 0.004 respectively). Conclusion I/DMT-based BOLD activation detects CI in MS, larger studies are needed to confirm these findings. PMID:27613119

  19. Long-Latency Reductions in Gamma Power Predict Hemodynamic Changes That Underlie the Negative BOLD Signal

    PubMed Central

    Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-01-01

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30–80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. PMID:25788681

  20. Individually assessed boldness predicts Perca fluviatilis behaviour in shoals, but is not associated with the capture order or angling method.

    PubMed

    Kekäläinen, J; Podgorniak, T; Puolakka, T; Hyvärinen, P; Vainikka, A

    2014-11-01

    Selectivity of recreational angling on fish behaviour was studied by examining whether capture order or lure type (natural v. artificial bait) in ice-fishing could explain behavioural variation among perch Perca fluviatilis individuals. It was also tested if individually assessed personality predicts fish behaviour in groups, in the presence of natural predators. Perca fluviatilis showed individually repeatable behaviour both in individual and in group tests. Capture order, capture method, condition factor or past growth rate did not explain variation in individual behaviour. Individually determined boldness as well as fish size, however, were positively associated with first entrance to the predator zone (i.e. initial risk taking) in group behaviour tests. Individually determined boldness also explained long-term activity and total time spent in the vicinity of predators in the group. These findings suggest that individual and laboratory-based boldness tests predict boldness of P. fluviatilis in also ecologically relevant conditions, i.e. in shoals and in the presence of natural predators. The present results, however, also indicate that the above-mentioned two angling methods may not be selective for certain behavioural types in comparison to each other. © 2014 The Fisheries Society of the British Isles.

  1. Sex and boldness explain individual differences in spatial learning in a lizard.

    PubMed

    Carazo, Pau; Noble, Daniel W A; Chandrasoma, Dani; Whiting, Martin J

    2014-05-07

    Understanding individual differences in cognitive performance is a major challenge to animal behaviour and cognition studies. We used the Eastern water skink (Eulamprus quoyii) to examine associations between exploration, boldness and individual variability in spatial learning, a dimension of lizard cognition with important bearing on fitness. We show that males perform better than females in a biologically relevant spatial learning task. This is the first evidence for sex differences in learning in a reptile, and we argue that it is probably owing to sex-specific selective pressures that may be widespread in lizards. Across the sexes, we found a clear association between boldness after a simulated predatory attack and the probability of learning the spatial task. In contrast to previous studies, we found a nonlinear association between boldness and learning: both 'bold' and 'shy' behavioural types were more successful learners than intermediate males. Our results do not fit with recent predictions suggesting that individual differences in learning may be linked with behavioural types via high-low-risk/reward trade-offs. We suggest the possibility that differences in spatial cognitive performance may arise in lizards as a consequence of the distinct environmental variability and complexity experienced by individuals as a result of their sex and social tactics.

  2. Cortical functional anatomy of voluntary saccades in Parkinson disease.

    PubMed

    Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan

    2008-10-01

    In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.

  3. Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal.

    PubMed

    Boorman, Luke; Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-03-18

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. Copyright © 2015 Boorman et al.

  4. Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex

    PubMed Central

    Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A

    2011-01-01

    The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989

  5. Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex.

    PubMed

    Muthukumaraswamy, Suresh D; Singh, Krish D

    2008-05-01

    In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-dimensional images of MEG source power were generated with synthetic aperture magnetometry (SAM) and showed a high degree of spatial correspondence with BOLD responses in primary visual cortex with a mean spatial separation of 6.5 mm, but the two modalities showed different tuning characteristics. The gamma rhythm showed a clear increase in induced power for the high spatial frequency stimulus while BOLD showed no difference in activity for the two spatial frequencies used. Both imaging modalities showed a general increase of activity with temporal frequency, however, BOLD plateaued around 6-10 Hz while the MEG generally increased with a dip exhibited at 6 Hz. These results demonstrate that the two modalities may show activation in similar spatial locations but that the functional pattern of these activations may differ in a complex manner, suggesting that they may be tuned to different aspects of neuronal activity.

  6. Quantification of Load Dependent Brain Activity in Parametric N-Back Working Memory Tasks using Pseudo-continuous Arterial Spin Labeling (pCASL) Perfusion Imaging.

    PubMed

    Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong

    2011-04-01

    Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.

  7. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    PubMed

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  8. Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies.

    PubMed

    Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P

    2016-07-01

    Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. Teacher and Leader Effectiveness in High-Performing Education Systems

    ERIC Educational Resources Information Center

    Darling-Hammond, Linda, Ed.; Rothman, Robert, Ed.

    2011-01-01

    The issue of teacher effectiveness has risen rapidly to the top of the education policy agenda, and the federal government and states are considering bold steps to improve teacher and leader effectiveness. One place to look for ideas is the experiences of high-performing education systems around the world. Finland, Ontario, and Singapore all have…

  10. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T.

    PubMed

    Perthen, Joanna E; Bydder, Mark; Restom, Khaled; Liu, Thomas T

    2008-05-01

    Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a radicalR loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.

  11. The time-course of cortico-limbic neural responses to air hunger.

    PubMed

    Binks, Andrew P; Evans, Karleyton C; Reed, Jeffrey D; Moosavi, Shakeeb H; Banzett, Robert B

    2014-12-01

    Several studies have mapped brain regions associated with acute dyspnea perception. However, the time-course of brain activity during sustained dyspnea is unknown. Our objective was to determine the time-course of neural activity when dyspnea is sustained. Eight healthy subjects underwent brain blood oxygen level dependent functional magnetic imaging (BOLD-fMRI) during mechanical ventilation with constant mild hypercapnia (∼ 45 mm Hg). Subjects rated dyspnea (air hunger) via visual analog scale (VAS). Tidal volume (V(T)) was alternated every 90 s between high VT (0.96 ± 0.23 L) that provided respiratory comfort (12 ± 6% full scale) and low V(T) (0.48 ± 0.08 L) which evoked air hunger (56 ± 11% full scale). BOLD signal was extracted from a priori brain regions and combined with VAS data to determine air hunger related neural time-course. Air hunger onset was associated with BOLD signal increases that followed two distinct temporal profiles within sub-regions of the anterior insula, anterior cingulate and prefrontal cortices (cortico-limbic circuitry): (1) fast, BOLD signal peak <30s and (2) slow, BOLD signal peak >40s. BOLD signal during air hunger offset followed fast and slow temporal profiles symmetrical, but inverse (signal decreases) to the time-courses of air hunger onset. We conclude that differential cortico-limbic circuit elements have unique contributions to dyspnea sensation over time. We suggest that previously unidentified sub-regions are responsible for either the acute awareness or maintenance of dyspnea. These data enhance interpretation of previous studies and inform hypotheses for future dyspnea research. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    PubMed

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (p<0.05, corrected) to sad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation.

    PubMed

    Sahlholm, Kristoffer; Ielacqua, Giovanna D; Xu, Jinbin; Jones, Lynne A; Schlegel, Felix; Mach, Robert H; Rudin, Markus; Schroeter, Aileen

    2017-07-01

    The dopamine D 2 receptor (D 2 R) couples to inhibitory G i/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D 2 R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D 2 R-dependent responses. fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D 2 R antagonist, eticlopride. Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. The prolonged striatal response decay rates in KO animals might reflect impaired D 2 R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D 2 R.

  14. A Comparison of Measures of Boldness and Their Relationships to Survival in Young Fish

    PubMed Central

    White, James R.; Meekan, Mark G.; McCormick, Mark I.; Ferrari, Maud C. O.

    2013-01-01

    Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior): latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust), which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival. PMID:23874804

  15. Boldness by habituation and social interactions: a model.

    PubMed

    Oosten, Johanneke E; Magnhagen, Carin; Hemelrijk, Charlotte K

    2010-04-01

    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically.

  16. A comparison of measures of boldness and their relationships to survival in young fish.

    PubMed

    White, James R; Meekan, Mark G; McCormick, Mark I; Ferrari, Maud C O

    2013-01-01

    Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior): latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust), which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival.

  17. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing

    PubMed Central

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950

  18. Investigating the neural bases for intra-subject cognitive efficiency changes using functional magnetic resonance imaging

    PubMed Central

    Rao, Neena K.; Motes, Michael A.; Rypma, Bart

    2014-01-01

    Several fMRI studies have examined brain regions mediating inter-subject variability in cognitive efficiency, but none have examined regions mediating intra-subject variability in efficiency. Thus, the present study was designed to identify brain regions involved in intra-subject variability in cognitive efficiency via participant-level correlations between trial-level reaction time (RT) and trial-level fMRI BOLD percent signal change on a processing speed task. On each trial, participants indicated whether a digit-symbol probe-pair was present or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected. Deconvolution analyses, using RT time-series models (derived from the proportional scaling of an event-related hemodynamic response function model by trial-level RT), were used to evaluate relationships between trial-level RTs and BOLD percent signal change. Although task-related patterns of activation and deactivation were observed in regions including bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus, default mode network regions including anterior cingulate, posterior cingulate, bilateral temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a more circumscribed set of regions. Positive RT-BOLD correlations, where fast RTs were associated with lower BOLD percent signal change, were observed in regions including bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not observed in the default mode network indicating a smaller set of regions associated with intra-subject variability in cognitive efficiency. The results are discussed in terms of a distributed area of regions that mediate variability in the cognitive efficiency that might underlie processing speed differences between individuals. PMID:25374527

  19. Investigating the neural bases for intra-subject cognitive efficiency changes using functional magnetic resonance imaging.

    PubMed

    Rao, Neena K; Motes, Michael A; Rypma, Bart

    2014-01-01

    Several fMRI studies have examined brain regions mediating inter-subject variability in cognitive efficiency, but none have examined regions mediating intra-subject variability in efficiency. Thus, the present study was designed to identify brain regions involved in intra-subject variability in cognitive efficiency via participant-level correlations between trial-level reaction time (RT) and trial-level fMRI BOLD percent signal change on a processing speed task. On each trial, participants indicated whether a digit-symbol probe-pair was present or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected. Deconvolution analyses, using RT time-series models (derived from the proportional scaling of an event-related hemodynamic response function model by trial-level RT), were used to evaluate relationships between trial-level RTs and BOLD percent signal change. Although task-related patterns of activation and deactivation were observed in regions including bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus, default mode network regions including anterior cingulate, posterior cingulate, bilateral temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a more circumscribed set of regions. Positive RT-BOLD correlations, where fast RTs were associated with lower BOLD percent signal change, were observed in regions including bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not observed in the default mode network indicating a smaller set of regions associated with intra-subject variability in cognitive efficiency. The results are discussed in terms of a distributed area of regions that mediate variability in the cognitive efficiency that might underlie processing speed differences between individuals.

  20. Posteromedial hyperactivation during episodic recognition among people with memory decline: findings from the WRAP study.

    PubMed

    Nicholas, Christopher R; Okonkwo, Ozioma C; Bendlin, Barbara B; Oh, Jennifer M; Asthana, Sanjay; Rowley, Howard A; Hermann, Bruce; Sager, Mark A; Johnson, Sterling C

    2015-12-01

    Episodic memory decline is one of the earliest preclinical symptoms of AD, and has been associated with an upregulation in the BOLD response in the prodromal stage (e.g. MCI) of AD. In a previous study, we observed upregulation in cognitively normal (CN) subjects with subclinical episodic memory decline compared to non-decliners. In light of this finding, we sought to determine if a separate cohort of Decliners will show increased brain activation compared to Stable subjects during episodic memory processing, and determine whether the BOLD effect was influenced by cerebral blood flow (CBF) or gray matter volume (GMV). Individuals were classified as a "Decliner" if scores on the Rey Auditory Verbal Learning Test (RAVLT) consistently fell ≥ 1.5 SD below expected intra- or inter-individual levels. FMRI was used to compare activation during a facial recognition memory task in 90 Stable (age = 59.1) and 34 Decliner (age = 62.1, SD = 5.9) CN middle-aged adults and 10 MCI patients (age = 72.1, SD = 9.4). Arterial spin labeling and anatomical T1 MRI were used to measure resting CBF and GMV, respectively. Stables and Decliners performed similarly on the episodic recognition memory task and significantly better than MCI patients. Compared to Stables, Decliners showed increased BOLD signal in the left precuneus on the episodic memory task that was not explained by CBF or GMV, familial AD risk factors, or neuropsychological measures. These findings suggest that subtle changes in the BOLD signal reflecting altered neural function may be a relatively early phenomenon associated with memory decline.

  1. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    PubMed Central

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  2. Neural correlates of working memory in first episode and recurrent depression: An fMRI study.

    PubMed

    Yüksel, Dilara; Dietsche, Bruno; Konrad, Carsten; Dannlowski, Udo; Kircher, Tilo; Krug, Axel

    2018-06-08

    Patients suffering from major depressive disorder (MDD) show deficits in working memory (WM) performance accompanied by bilateral fronto-parietal BOLD signal changes. It is unclear whether patients with a first depressive episode (FDE) exhibit the same signal changes as patients with recurrent depressive episodes (RDE). We investigated seventy-four MDD inpatients (48 RDE, 26 FDE) and 74 healthy control (HC) subjects performing an n-back WM task (0-back, 2-back, 3-back condition) in a 3T-fMRI. FMRI analyses revealed deviating BOLD signal in MDD in the thalamus (0-back vs. 2-back), the angular gyrus (0-back vs. 3-back), and the superior frontal gyrus (2-back vs. 3-back). Further effects were observed between RDE vs. FDE. Thus, RDE displayed differing neural activation in the middle frontal gyrus (2-back vs. 3-back), the inferior frontal gyrus, and the precentral gyrus (0-back vs. 2-back). In addition, both HC and FDE indicated a linear activation trend depending on task complexity. Although we failed to find behavioral differences between the groups, results suggest differing BOLD signal in fronto-parietal brain regions in MDD vs. HC, and in RDE vs. FDE. Moreover, both HC and FDE show similar trends in activation shapes. This indicates a link between levels of complexity-dependent activation in fronto-parietal brain regions and the stage of MDD. We therefore assume that load-dependent BOLD signal during WM is impaired in MDD, and that it is particularly affected in RDE. We also suspect neurobiological compensatory mechanisms of the reported brain regions in (working) memory functioning. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance.

    PubMed

    Alavash, Mohsen; Lim, Sung-Joo; Thiel, Christiane; Sehm, Bernhard; Deserno, Lorenz; Obleser, Jonas

    2018-05-15

    Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance. However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated the effect of levodopa (l-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopaminergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during cognitive performance, and the degree of these modulations is able to explain inter-individual differences in l-dopa-induced behavioral benefits. Relative to placebo, l-dopa increased BOLD signal variability in task-relevant temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, l-dopa diminished functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a reduction in network efficiency and modularity in more than two thirds of the participants and to different degrees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well as posterior putamen. Both, l-dopa-induced BOLD signal variability modulation and functional connectome modulations proved predictive of an individual's l-dopa-induced benefits in behavioral performance, namely response speed and perceptual sensitivity. Lastly, l-dopa-induced modulations of BOLD signal variability were correlated with l-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Context Matters: Multiple Novelty Tests Reveal Different Aspects of Shyness-Boldness in Farmed American Mink (Neovison vison).

    PubMed

    Noer, Christina Lehmkuhl; Needham, Esther Kjær; Wiese, Ann-Sophie; Balsby, Thorsten Johannes Skovbjerg; Dabelsteen, Torben

    2015-01-01

    Animal personality research is receiving increasing interest from related fields, such as evolutionary personality psychology. By merging the conceptual understanding of personality, the contributions to both fields of research may be enhanced. In this study, we investigate animal personality based on the definition of personality traits as underlying dispositional factors, which are not directly measurable, but which predispose individuals to react through different behavioural patterns. We investigated the shyness-boldness continuum reflected in the consistency of inter-individual variation in behavioural responses towards novelty in 47 farmed American mink (Neovison vison), which were raised in identical housing conditions. Different stages of approach behaviour towards novelty, and how these related within and across contexts, were explored. Our experimental design contained four tests: two novel object tests (non-social contexts) and two novel animated stimuli tests (social contexts). Our results showed consistency in shyness measures across multiple tests, indicating the existence of personality in farmed American mink. It was found that consistency in shyness measures differs across non-social and social contexts, as well as across the various stages in the approach towards novel objects, revealing that different aspects of shyness exist in the farmed American mink. To our knowledge this is the first study to reveal aspects of the shyness-boldness continuum in the American mink. Since the mink were raised in identical housing conditions, inherited factors may have been important in shaping the consistent inter-individual variation. Body weight and sex had no effect on the personality of the mink. Altogether, our results suggest that the shyness-boldness continuum cannot be explained by a simple underlying dispositional factor, but instead encompasses a broader term of hesitating behaviour that might comprise several different personality traits.

  5. Clinical utility of BOLD fMRI in preoperative work-up of epilepsy

    PubMed Central

    Ganesan, Karthik; Ursekar, Meher

    2014-01-01

    Surgical techniques have emerged as a viable therapeutic option in patients with drug refractory epilepsy. Pre-surgical evaluation of epilepsy requires a comprehensive, multiparametric, and multimodal approach for precise localization of the epileptogenic focus. Various non-invasive techniques are available at the disposal of the treating physician to detect the epileptogenic focus, which include electroencephalography (EEG), video-EEG, magnetic resonance imaging (MRI), functional MRI including blood oxygen level dependent (BOLD) techniques, single photon emission tomography (SPECT), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Currently, non-invasive high-resolution MR imaging techniques play pivotal roles in the preoperative detection of the seizure focus, and represent the foundation for successful epilepsy surgery. BOLD functional magnetic resonance imaging (fMRI) maps allow for precise localization of the eloquent cortex in relation to the seizure focus. This review article focuses on the clinical utility of BOLD (fMRI) in the pre-surgical work-up of epilepsy patients. PMID:24851002

  6. BOLD magnetic resonance imaging in nephrology

    PubMed Central

    Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E

    2018-01-01

    Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807

  7. Asymptotic properties of a bold random walk

    NASA Astrophysics Data System (ADS)

    Serva, Maurizio

    2014-08-01

    In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is different from the simple symmetric random walk only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher than the probability of a backward step, the walker is bold and her behavior turns out to be superdiffusive; otherwise she is timorous and her behavior turns out to be subdiffusive. The scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold) according to a single parameter γ ∈R. We investigate here the asymptotic properties of the bold case in the nonballistic region γ ∈[0,1/2], a problem which was left partially unsolved previously. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.

  8. Deficient aversive-potentiated startle and the triarchic model of psychopathy: The role of boldness.

    PubMed

    Esteller, Àngels; Poy, Rosario; Moltó, Javier

    2016-05-01

    This study examined the contribution of the phenotypic domains of boldness, meanness, and disinhibition of the triarchic conceptualization of psychopathy (Patrick, Fowles, & Krueger, 2009) to deficient aversive-potentiated startle in a mixed-gender sample of 180 undergraduates. Eyeblink responses to noise probes were recorded during a passive picture-viewing task (erotica, neutral, threat, and mutilation). Deficient threat vs. neutral potentiation was uniquely related to increased boldness scores, thus suggesting that the diminished defensive reaction to aversive stimulation is specifically linked to the charm, social potency and venturesomeness features of psychopathy (boldness), but not to features such as callousness, coldheartedness and cruelty traits (meanness), even though both phenotypes theoretically share the same underlying low-fear disposition. Our findings provide further evidence of the differential association between distinct psychopathy components and deficits in defensive reactivity and strongly support the validity of the triarchic model of psychopathy in disentangling the etiology of this personality disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Identifying Childhood Characteristics that Underlie Pre-Morbid Risk for Substance Use Disorders: Socialization and Boldness

    PubMed Central

    Hicks, Brian M.; Iacono, William G.; McGue, Matt

    2013-01-01

    Utilizing a longitudinal twin study (N = 2510), we identified the child characteristics present prior to initiation of substance use that best predicted later substance use disorders. Two independent traits accounted for the majority of pre-morbid risk: socialization (conformity to rules and conventional values) and boldness (sociability and social assurance, stress resilience, and thrill seeking). Low socialization was associated with disruptive behavior disorders, parental externalizing disorders, and environmental adversity, and exhibited moderate genetic (.45) and shared environmental influences (.30). Boldness was highly heritable (.71) and associated with less internalizing distress and environmental adversity. Together, these traits exhibited robust associations with adolescent and young adult substance use disorders (R = .48 and .50, respectively), and incremental prediction over disruptive behavior disorders, parental externalizing disorders, and environmental adversity. Results were replicated in an independent sample. Socialization and boldness offer a novel conceptualization of underlying risk for substance use disorders that has the potential to improve prediction and theory with implications for basic research, prevention, and intervention. PMID:24280373

  10. Identifying childhood characteristics that underlie premorbid risk for substance use disorders: socialization and boldness.

    PubMed

    Hicks, Brian M; Iacono, William G; McGue, Matt

    2014-02-01

    We utilized a longitudinal twin study (N = 2,510) to identify the child characteristics present prior to initiation of substance use that best predicted later substance use disorders. Two independent traits accounted for the majority of premorbid risk: socialization (conformity to rules and conventional values) and boldness (sociability and social assurance, stress resilience, and thrill seeking). Low socialization was associated with disruptive behavior disorders, parental externalizing disorders, and environmental adversity and exhibited moderate genetic (0.45) and shared environmental influences (0.30). Boldness was highly heritable (0.71) and associated with less internalizing distress and environmental adversity. In combination, these traits exhibited robust associations with adolescent and young adult substance use disorders (R = .48 and .50, respectively) and incremental prediction over disruptive behavior disorders, parental externalizing disorders, and environmental adversity. The results were replicated in an independent sample. Socialization and boldness offer a novel conceptualization of underlying risk for substance use disorders that has the potential to improve prediction and theory with implications for basic research, prevention, and intervention.

  11. Extreme brain events: Higher-order statistics of brain resting activity and its relation with structural connectivity

    NASA Astrophysics Data System (ADS)

    Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.

    2015-09-01

    The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.

  12. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Chang, Z; Cai, J

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized pronemore » on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.« less

  13. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.

    PubMed

    Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J

    2012-02-07

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.

  14. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  15. Collaboration and Leadership: Are They in Conflict?

    ERIC Educational Resources Information Center

    Keohane, Nannerl O.

    1985-01-01

    Good college leadership requires a kind of collaboration, it is argued, and creative collaborative work is the best route towards bold and effective leadership. Defining leadership, leadership models, leadership as problem solving, and leadership as taking a stand are discussed. (MLW)

  16. Neuroanatomically Separable Effects of Imageability and Grammatical Class during Single-Word Comprehension

    ERIC Educational Resources Information Center

    Bedny, Marina; Thompson-Schill, Sharon L.

    2006-01-01

    The present study characterizes the neural correlates of noun and verb imageability and addresses the question of whether components of the neural network supporting word recognition can be separately modified by variations in grammatical class and imageability. We examined the effect of imageability on BOLD signal during single-word comprehension…

  17. Gene-environment correlation in the development of adolescent substance abuse: selection effects of child personality and mediation via contextual risk factors.

    PubMed

    Hicks, Brian M; Johnson, Wendy; Durbin, C Emily; Blonigen, Daniel M; Iacono, William G; McGue, Matt

    2013-02-01

    We used a longitudinal twin design to examine selection effects of personality traits at age 11 on high-risk environmental contexts at age 14 and the extent to which these contexts mediated risk for substance abuse at age 17. Socialization at age 11 (willingness to follow rules and endorse conventional values) predicted exposure to contextual risk at age 14. Contextual risk partially mediated the effect of socialization on substance abuse, though socialization also had a direct effect. In contrast, boldness at age 11 (social engagement and assurance, thrill seeking, and stress resilience) also predicted substance abuse directly but was unrelated to contextual risk. There was substantial overlap in the genetic and shared environmental influences on socialization and contextual risk, and genetic risk in socialization contributed to substance abuse indirectly via increased exposure to contextual risk. This suggests that active gene-environment correlations related to individual differences in socialization contributed to an early, high-risk developmental trajectory for adolescent substance abuse. In contrast, boldness appeared to index an independent and direct genetic risk factor for adolescent substance abuse.

  18. 21 CFR Appendix A to Part 201 - Examples of Graphic Enhancements Used by FDA

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (e.g., “Ask a doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left... doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left justified. 4. The...

  19. 21 CFR Appendix A to Part 201 - Examples of Graphic Enhancements Used by FDA

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (e.g., “Ask a doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left... doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left justified. 4. The...

  20. 21 CFR Appendix A to Part 201 - Examples of Graphic Enhancements Used by FDA

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (e.g., “Ask a doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left... doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left justified. 4. The...

  1. 21 CFR Appendix A to Part 201 - Examples of Graphic Enhancements Used by FDA

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (e.g., “Ask a doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left... doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left justified. 4. The...

  2. 21 CFR Appendix A to Part 201 - Examples of Graphic Enhancements Used by FDA

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (e.g., “Ask a doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left... doctor or pharmacist before use if you are”) are set in 6 point Helvetica Bold, left justified. 4. The...

  3. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  4. Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.

    PubMed

    Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian

    2014-03-01

    Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.

  5. Differentiating psychopathy from antisocial personality disorder: a triarchic model perspective.

    PubMed

    Venables, N C; Hall, J R; Patrick, C J

    2014-04-01

    The triarchic model of psychopathy characterizes the disorder in terms of three distinguishable phenotypic facets: disinhibition, meanness and boldness. The present study sought to (1) inform current debates regarding the role of boldness in the definition of psychopathy and (2) clarify boundaries between psychopathy and antisocial personality disorder (ASPD). This study evaluated the degree to which facets of the triarchic model are represented in the most widely used clinical inventory for psychopathy, the Psychopathy Checklist - Revised (PCL-R), in comparison with ASPD as defined by DSM-IV criteria. Adult male offenders from two distinct correctional settings (n = 157 and 169) were investigated to ensure replicability of findings across samples exhibiting high base rates of psychopathy and antisocial behavior. We found evidence for convergent and discriminant validity of the three triarchic facets in predicting symptomatic components of psychopathy as assessed by the PCL-R. Additionally, and crucially vis-à-vis current debates in the field, we found that boldness contributed incrementally (over and above disinhibition and meanness) to prediction of PCL-R psychopathy, in particular its interpersonal style component, but not ASPD. The three distinct facets of the triarchic model of psychopathy are represented clearly and distinctly in the PCL-R, with boldness through its interpersonal facet, but not in DSM-defined ASPD. Our findings suggest that boldness is central to diagnostic conceptions of psychopathy and distinguishes psychopathy from the more prevalent diagnosis of ASPD.

  6. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    PubMed

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  7. Brain-state dependent astrocytic Ca2+ signals are coupled to both positive and negative BOLD-fMRI signals.

    PubMed

    Wang, Maosen; He, Yi; Sejnowski, Terrence J; Yu, Xin

    2018-02-13

    Astrocytic Ca 2+ -mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca 2+ optical fiber recordings revealed distinct evoked astrocytic Ca 2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca 2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca 2+ waves in spreading depolarization/depression, the intrinsic Ca 2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca 2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca 2+ and BOLD fMRI signals.

  8. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    PubMed Central

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  9. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    USGS Publications Warehouse

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  10. A behavioral view on chimpanzee personality: exploration tendency, persistence, boldness, and tool-orientation measured with group experiments.

    PubMed

    Massen, Jorg J M; Antonides, Alexandra; Arnold, Anne-Marie K; Bionda, Thomas; Koski, Sonja E

    2013-09-01

    Human and nonhuman animals show personality: temporal and contextual consistency in behavior patterns that vary among individuals. In contrast to most other species, personality of chimpanzees, Pan troglodytes, has mainly been studied with non-behavioral methods. We examined boldness, exploration tendency, persistence and tool-orientation in 29 captive chimpanzees using repeated experiments conducted in an ecologically valid social setting. High temporal repeatability and contextual consistency in all these traits indicated they reflected personality. In addition, Principal Component Analysis revealed two independent syndromes, labeled exploration-persistence and boldness. We found no sex or rank differences in the trait scores, but the scores declined with age. Nonetheless, there was considerable inter-individual variation within age-classes, suggesting that behavior was not merely determined by age but also by dispositional effects. In conclusion, our study complements earlier rating studies and adds new traits to the chimpanzee personality, thereby supporting the existence of multiple personality traits among chimpanzees. We stress the importance of ecologically valid behavioral research to assess multiple personality traits and their association, as it allows inclusion of ape studies in the comparison of personality structures across species studied behaviorally, and furthers our attempts to unravel the causes and consequences of animal personality. © 2013 Wiley Periodicals, Inc.

  11. Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration.

    PubMed

    Fraser, D F; Gilliam, J F; Daley, M J; Le, A N; Skalski, G T

    2001-08-01

    Leptokurtic distributions of movement distances observed in field-release studies, in which some individuals move long distances while most remain at or near their release point, are a common feature of mobile animals. However, because leptokurtosis is predicted to be transient in homogeneous populations, persistent leptokurtosis suggests a population heterogeneity. We found evidence for a heterogeneity that may generate persistent leptokurtosis. We tested individuals of the Trinidad killifish Rivulus hartii for boldness in a tank test and released them back into their native stream. Boldness in the tank test predicted distance moved in the field releases, even after effects of size and sex were removed. Further, data from a 19-mo mark-recapture study showed that individual growth correlated positively with movement in a predator-threatened river zone where the Rivulus population is spatially fragmented and dispersal is likely to be a hazardous activity. In contrast, no such correlation existed in a predator-absent zone where the population is unfragmented. These results show that a behavioral trait, not discernible from body size or sex, contributes to dispersal and that a component of fitness of surviving "dispersers" is elevated above that of "stayers," a fundamental assumption or prediction of many models of the evolution of dispersal through hazardous habitat.

  12. Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina.

    PubMed

    Rudin, Fabian S; Briffa, Mark

    2012-05-22

    Contest theory predicts the evolution of a stable mixture of different strategies for fighting. Here, we investigate the possibility that stable between-individual differences in startle-response durations influence fighting ability or 'resource-holding potential' (RHP) in the beadlet sea anemone, Actinia equina. Both winners and losers showed significant repeatability of pre-fight startle-response durations but mean pre-fight startle-response durations were greater for eventual losers than for eventual winners, indicating that RHP varies with boldness. In particular, individuals with short startle responses inflicted more attacks on their opponent. Both repeatability and mean-level responses were changed by the experience of fighting, and these changes varied with outcome. In losers, repeatability was disrupted to a greater extent and the mean startle-response durations were subject to a greater increase than in winners. Thus, following a fight, this behavioural correlate of RHP behaves in a way similar to post-fight changes in physiological status, which can also vary between winners and losers. Understanding the links between aggression and boldness therefore has the potential to enhance our understanding of both the evolution of animal personality and the 'winner and loser effects' of post-fight changes in RHP.

  13. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  14. Food portion size and energy density evoke different patterns of brain activation in children12

    PubMed Central

    Fearnbach, S Nicole; Wilson, Stephen J; Fisher, Jennifer O; Savage, Jennifer S; Rolls, Barbara J; Keller, Kathleen L

    2017-01-01

    Background: Large portions of food promote intake, but the mechanisms that drive this effect are unclear. Previous neuroimaging studies have identified the brain-reward and decision-making systems that are involved in the response to the energy density (ED) (kilocalories per gram) of foods, but few studies have examined the brain response to the food portion size (PS). Objective: We used functional MRI (fMRI) to determine the brain response to food images that differed in PSs (large and small) and ED (high and low). Design: Block-design fMRI was used to assess the blood oxygen level–dependent (BOLD) response to images in 36 children (7–10 y old; girls: 50%), which was tested after a 2-h fast. Pre-fMRI fullness and liking were rated on visual analog scales. A whole-brain cluster-corrected analysis was used to compare BOLD activation for main effects of the PS, ED, and their interaction. Secondary analyses were used to associate BOLD contrast values with appetitive traits and laboratory intake from meals for which the portions of all foods were increased. Results: Compared with small-PS cues, large-PS cues were associated with decreased activation in the inferior frontal gyrus (P < 0.01). Compared with low-ED cues, high-ED cues were associated with increased activation in multiple regions (e.g., in the caudate, cingulate, and precentral gyrus) and decreased activation in the insula and superior temporal gyrus (P < 0.01 for all). A PS × ED interaction was shown in the superior temporal gyrus (P < 0.01). BOLD contrast values for high-ED cues compared with low-ED cues in the insula, declive, and precentral gyrus were negatively related to appetitive traits (P < 0.05). There were no associations between the brain response to the PS and either appetitive traits or intake. Conclusions: Cues regarding food PS may be processed in the lateral prefrontal cortex, which is a region that is implicated in cognitive control, whereas ED activates multiple areas involved in sensory and reward processing. Possible implications include the development of interventions that target decision-making and reward systems differently to moderate overeating. PMID:27881393

  15. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T.

    PubMed

    Siedek, Florian; Persigehl, Thorsten; Mueller, Roman-Ulrich; Burst, Volker; Benzing, Thomas; Maintz, David; Haneder, Stefan

    2018-06-01

    Acute kidney injury (AKI) is an important risk factor for a number of adverse outcomes including end-stage renal disease and cardiovascular morbidity and mortality. Whilst many clinical situations that can induce AKI are known-e.g. drug toxicity, contrast agent exposure or ischemia during surgery-targeted preventive or therapeutic measures are still lacking. As to renoprotective strategies, remote ischemic preconditioning (RIPC) is one of the most promising novel approaches and has been examined by a number of clinical trials. The aim of this study was to use blood oxygenation level-dependent (BOLD) MRI as a surrogate parameter to assess the effect of RIPC in healthy volunteers. In this IRB-approved, prospective study, 40 healthy volunteers were stratified with 20 undergoing an RIPC procedure (i.e. RIPC group) with a transient ischemia of the right arm, and 20 undergoing a sham procedure. Before and after the procedure, both kidneys of all participants were scanned using a 12-echo mGRE sequence for functional BOLD imaging at 3T. For each volunteer, 180 ROIs were placed in the cortex and the medulla of the kidneys. Ultimately, R2* values, which have an inverse correlation with the oxygenation level of tissue, were averaged for the RIPC and control groups. Following intervention, mean R2* values significantly decreased in the RIPC group in both the cortex (18.6 ± 2.3 vs. 17.5 ± 1.7 Hz; p = 0.0047) and medulla (34 ± 5.2 vs. 32.2 ± 4.2 Hz; p = 0.0001). However, no significant differences were observed in the control group. RIPC can be non-invasively assessed in healthy volunteers using BOLD MRI at 3T, demonstrating a higher oxygen content in kidney tissue. This study presents a first-in-man trial establishing a quantifiable readout of RIPC and its effects on kidney physiology. BOLD measurements may advance clinical trials in further evaluating RIPC for future clinical care.

  16. BOLD Response to Semantic and Syntactic Processing during Hypoglycemia Is Load-Dependent

    ERIC Educational Resources Information Center

    Schafer, Robin J.; Page, Kathleen A.; Arora, Jagriti; Sherwin, Robert; Constable, R. Todd

    2012-01-01

    This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at [image…

  17. FACT SHEET: EPA ISSUES UPDATED CANCER GUIDELINES AND SUPPLEMENTAL GUIDANCE ON RISKS FROM EARLY-LIFE EXPOSURE

    EPA Science Inventory

    March 29, 2005

    FACT SHEET: An Introduction to Normalization and Calibration Methods in Functional MRI

    ERIC Educational Resources Information Center

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  18. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  19. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science

    PubMed Central

    2016-01-01

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574303

  1. Implicit Race Bias Decreases the Similarity of Neural Representations of Black and White Faces

    PubMed Central

    Brosch, Tobias; Bar-David, Eyal; Phelps, Elizabeth A.

    2013-01-01

    Implicit race bias has been shown to affect decisions and behaviors. It may also change perceptual experience by increasing perceived differences between social groups. We investigated how this phenomenon may be expressed at the neural level by testing whether the distributed blood-oxygenation-level-dependent (BOLD) patterns representing Black and White faces are more dissimilar in participants with higher implicit race bias. We used multivoxel pattern analysis to predict the race of faces participants were viewing. We successfully predicted the race of the faces on the basis of BOLD activation patterns in early occipital visual cortex, occipital face area, and fusiform face area (FFA). Whereas BOLD activation patterns in early visual regions, likely reflecting different perceptual features, allowed successful prediction for all participants, successful prediction on the basis of BOLD activation patterns in FFA, a high-level face-processing region, was restricted to participants with high pro-White bias. These findings suggest that stronger implicit pro-White bias decreases the similarity of neural representations of Black and White faces. PMID:23300228

  2. Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions

    PubMed Central

    Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona

    2018-01-01

    Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. However, neural correlates of the phenomenon are as yet not well established. We investigated this issue using simultaneously recorded EMG and BOLD signals during perception of dynamic and static emotional facial expressions of happiness and anger. During display presentations, BOLD signals and zygomaticus major (ZM), corrugator supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions with increased EMG activity in ZM and OO muscles and decreased CS activity, which was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions associated with emotional processing (i.e., insula, part of the extended MNS). It is concluded that FM involves both motor and emotional brain structures, especially during perception of natural emotional expressions. PMID:29467691

  3. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science.

    PubMed

    Turner, Robert

    2016-10-05

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  4. Agroforestry, climate change, and food security

    USDA-ARS?s Scientific Manuscript database

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  5. Neural correlates of training and transfer effects in working memory in older adults.

    PubMed

    Heinzel, Stephan; Lorenz, Robert C; Pelz, Patricia; Heinz, Andreas; Walter, Henrik; Kathmann, Norbert; Rapp, Michael A; Stelzel, Christine

    2016-07-01

    As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12sessions (45min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  7. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  8. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    PubMed

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  9. Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates

    PubMed Central

    Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.

    2006-01-01

    Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749

  10. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan

    PubMed Central

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.

    2015-01-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342

  11. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study.

    PubMed

    Hanlon, Colleen A; Canterberry, Melanie; Taylor, Joseph J; DeVries, William; Li, Xingbao; Brown, Truman R; George, Mark S

    2013-01-01

    The prefrontal cortex (PFC) is an anatomically and functionally heterogeneous area which influences cognitive and limbic processing through connectivity to subcortical targets. As proposed by Alexander et al. (1986) the lateral and medial aspects of the PFC project to distinct areas of the striatum in parallel but functionally distinct circuits. The purpose of this preliminary study was to determine if we could differentially and consistently activate these lateral and medial cortical-subcortical circuits involved in executive and limbic processing though interleaved transcranial magnetic stimulation (TMS) in the MR environment. Seventeen healthy individuals received interleaved TMS-BOLD imaging with the coil positioned over the dorsolateral (EEG: F3) and ventromedial PFC (EEG: FP1). BOLD signal change was calculated in the areas directly stimulated by the coil and in subcortical regions with afferent and efferent connectivity to the TMS target areas. Additionally, five individuals were tested on two occasions to determine test-retest reliability. Region of interest analysis revealed that TMS at both prefrontal sites led to significant BOLD signal increases in the cortex under the coil, in the striatum, and the thalamus, but not in the visual cortex (negative control region). There was a significantly larger BOLD signal change in the caudate following medial PFC TMS, relative to lateral TMS. The hippocampus in contrast was significantly more activated by lateral TMS. Post-hoc voxel-based analysis revealed that within the caudate the location of peak activity was in the ventral caudate following medial TMS and the dorsal caudate following lateral TMS. Test-retest reliability data revealed consistent BOLD responses to TMS within each individual but a large variation between individuals. These data demonstrate that, through an optimized TMS/BOLD sequence over two unique prefrontal targets, it is possible to selectively interrogate the patency of these established cortical-subcortical networks in healthy individuals, and potentially patient populations.

  12. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  13. GDGT and alkenone flux in the northern Gulf of Mexico: Implications for the TEX86 and UK'37 paleothermometers

    NASA Astrophysics Data System (ADS)

    Richey, Julie N.; Tierney, Jessica E.

    2016-12-01

    The TEX86 and U37K' molecular biomarker proxies have been broadly applied in downcore marine sediments to reconstruct past sea surface temperature (SST). Although both TEX86 and U37K' have been interpreted as proxies for mean annual SST throughout the global ocean, regional studies of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and alkenones in sinking particles are required to understand the influence of seasonality, depth distribution, and diagenesis on downcore variability. We measure GDGT and alkenone flux, as well as the TEX86 and U37K' indices in a 4 year sediment trap time series (2010-2014) in the northern Gulf of Mexico (nGoM), and compare these data with core-top sediments at the same location. GDGT and alkenone fluxes do not show a consistent seasonal cycle; however, the largest flux peaks for both occurs in winter. U37K' covaries with SST over the 4 year sampling interval, but the U37K'-SST relationship in this data set implies a smaller slope or nonlinearity at high temperatures when compared with existing calibrations. Furthermore, the flux-weighted U37K' value from sinking particles is significantly lower than that of underlying core-top sediments, suggesting preferential diagenetic loss of the tri-unsaturated alkenone in sediments. TEX86 does not covary with SST, suggesting production in the subsurface upper water column. The flux-weighted mean TEX86 matches that of core-top sediments, confirming that TEX86 in the nGoM reflects local planktonic production rather than allochthonous or in situ sedimentary production. We explore potential sources of uncertainty in both proxies in the nGoM but demonstrate that they show nearly identical trends in twentieth century SST, despite these factors.

  14. Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex

    PubMed Central

    Zumer, Johanna M.; Scheeringa, René; Schoffelen, Jan-Mathijs; Norris, David G.; Jensen, Ole

    2014-01-01

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity. PMID:25333286

  15. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.

    PubMed

    Kenkel, W M; Yee, J R; Moore, K; Madularu, D; Kulkarni, P; Gamber, K; Nedelman, M; Ferris, C F

    2016-03-22

    Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.

  16. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    PubMed Central

    Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897

  17. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

    PubMed

    Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.

  18. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

    PubMed Central

    Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.

    2012-01-01

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440

  19. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B {bold 29}, 186 (1982); Y. Kato {ital et al.}, Phys. Rev. Lett. {bold 53}, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasmamore » atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities. {copyright} {ital 1997 American Institute of Physics.}« less

  20. Sex differences in neural activation following different routes of oxytocin administration in awake adult rats.

    PubMed

    Dumais, Kelly M; Kulkarni, Praveen P; Ferris, Craig F; Veenema, Alexa H

    2017-07-01

    The neuropeptide oxytocin (OT) regulates social behavior in sex-specific ways across species. OT has promising effects on alleviating social deficits in sex-biased neuropsychiatric disorders. However little is known about potential sexually dimorphic effects of OT on brain function. Using the rat as a model organism, we determined whether OT administered centrally or peripherally induces sex differences in brain activation. Functional magnetic resonance imaging was used to examine blood oxygen level-dependent (BOLD) signal intensity changes in the brains of awake rats during the 20min following intracerebroventricular (ICV; 1μg/5μl) or intraperitoneal (IP; 0.1mg/kg) OT administration as compared to baseline. ICV OT induced sex differences in BOLD activation in 26 out of 172 brain regions analyzed, with 20 regions showing a greater volume of activation in males (most notably the nucleus accumbens and insular cortex), and 6 regions showing a greater volume of activation in females (including the lateral and central amygdala). IP OT also elicited sex differences in BOLD activation with a greater volume of activation in males, but this activation was found in different and fewer (10) brain regions compared to ICV OT. In conclusion, exogenous OT modulates neural activation differently in male versus female rats with the pattern and magnitude, but not the direction, of sex differences depending on the route of administration. These findings highlight the need to include both sexes in basic and clinical studies to fully understand the role of OT on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The study of pain with blood oxygen level dependent functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ibinson, James W.

    Using blood oxygen level dependent functional magnetic resonance imaging (BOLD FMRI), the brain areas activated by pain were studied. These initial studies led to interesting new findings about the body's response to pain and to the refinement of one method used in FMRI analysis for correction of physiologic noise (signal fluctuations caused by the cyclic and non-cyclic changes in the cardiovascular and respiratory status of the body). In the first study, evidence was provided suggesting that the multiple painful stimulations used in typical pain FMRI block designs may cause attenuation over time of the BOLD signal within activated areas. The effect this may have on pain investigations using multiple tasks has not been previously investigated. The demonstrated BOLD attenuation seems unique to pain studies. Several possible explanations exist, but two of the most likely are neural activity modulation by descending pain inhibitory mechanisms and changing hemodynamics caused by a physiologic response to pain. The second study began the investigation of hemodynamics by monitoring the physiologic response to pain for eight subjects in two phases. Phase one used a combination of standard operating suite monitors and research equipment to characterizing the physiologic response to pain. Phase two collected magnetic resonance quantitative flow images during painful nerve stimulation to test for changes in global cerebral blood flow. It is well established that changes in respiration and global blood flow can affect the BOLD response, leading to the final investigation of this dissertation. The brain activation induced by pain for the same eight subjects used in the physiologic response experiments described above was then studied by BOLD FMRI. By including the respiration signal and end-tidal carbon dioxide levels in the analysis of the images, the quantification and removal of image intensity variations correlated to breathing and end-tidal carbon dioxide changes could be performed. The technique generally accepted for this analysis, however, uses respiration signals averaged over a 3 second period. Because normal respiratory rate is approximately one breath every 3 to 5 seconds, it was hypothesized that performing the correction using the average breathing data set would miss much of the actual respiration induced variation in each image. Therefore, a new technique for removing signal that covaries with the actual breathing values present during the collection of each image was introduced. (Abstract shortened by UMI.)

  2. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, J; Lopez, C; Tschudi, Y

    Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3Tmore » magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in identifying prostate lesions that would benefit from more aggressive radiotherapy.« less

  3. Building Organizational Capacity: Strategic Management in Higher Education

    ERIC Educational Resources Information Center

    Toma, J. Douglas

    2010-01-01

    Every university or college president envisions bold initiatives--big projects intended to change the nature of an institution with significant implications across all sectors. How can leaders and senior managers charged with implementing reforms effectively frame their work and anticipate potential pitfalls? No organization can maximize its…

  4. 76 FR 51954 - Procurement List Additions And Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ...Phone NSN: 7045-00-NIB-0327--Glare Shield for Blackberry Bold NSN: 7045-00-NIB-0328--Glare Shield for Blackberry Storm2 NSN: 7045-00-NIB-0329--Universal PDA Glare Shield NSN: 7045-00-NIB-0330--Privacy Shield for iPhone NSN: 7045-00-NIB-0331--Privacy Shield for Blackberry Bold NSN: 7045-00-NIB-0332--Privacy...

  5. 21 CFR 358.650 - Labeling of pediculicide drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hair at a time [bullet] unlike dandruff which moves when touched, nits stick to the hair [bullet] if... products “Treat [in bold type] [bullet] apply thoroughly to (optional, may add “dry”) hair or other... [bullet] for head lice, towel dry hair and comb out tangles”. (ii) For nonshampoo products “Treat [in bold...

  6. 21 CFR 358.650 - Labeling of pediculicide drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hair at a time [bullet] unlike dandruff which moves when touched, nits stick to the hair [bullet] if... products “Treat [in bold type] [bullet] apply thoroughly to (optional, may add “dry”) hair or other... [bullet] for head lice, towel dry hair and comb out tangles”. (ii) For nonshampoo products “Treat [in bold...

  7. 21 CFR 358.650 - Labeling of pediculicide drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hair at a time [bullet] unlike dandruff which moves when touched, nits stick to the hair [bullet] if... products “Treat [in bold type] [bullet] apply thoroughly to (optional, may add “dry”) hair or other... [bullet] for head lice, towel dry hair and comb out tangles”. (ii) For nonshampoo products “Treat [in bold...

  8. 21 CFR 358.650 - Labeling of pediculicide drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hair at a time [bullet] unlike dandruff which moves when touched, nits stick to the hair [bullet] if... products “Treat [in bold type] [bullet] apply thoroughly to (optional, may add “dry”) hair or other... [bullet] for head lice, towel dry hair and comb out tangles”. (ii) For nonshampoo products “Treat [in bold...

  9. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    ERIC Educational Resources Information Center

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  10. Bold Ideas for Improving Teacher Education and Teaching: What We See, Hear, and Think

    ERIC Educational Resources Information Center

    Wang, Jian; Spalding, Elizabeth; Odell, Sandra J.; Klecka, Cari L.; Lin, Emily

    2010-01-01

    The editors of this issue of the "Journal for Teacher Education" invited experienced scholars working in different teacher education fields and research traditions to share their bold ideas drawn from personal understandings of their fields and research. The new editorial team for the "Journal of Teacher Education" has published these scholars'…

  11. FY 2011 Federal Budget Process Begins with Bold Proposal

    ERIC Educational Resources Information Center

    Karolak, Eric

    2010-01-01

    The federal government's annual budget process was kick-started this year with a bold proposal that has implications for anyone who provides child care. But keeping child care front and center in Washington will take a lot of effort in 2010. On February 1, the Administration released the Budget Proposal for Federal Fiscal Year 2011. It calls for…

  12. 78 FR 40549 - Companies Holding Certificates of Authority as Acceptable Sureties on Federal Bonds and as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... column, ``Pennsylvania General Insurance Company (NAIC 21962)6'' should be set in bold-face print as... (NAIC 41181)'' should appear in bold-face print and should read as follows: ``UNIVERSAL UNDERWRITERS INSURANCE COMPANY (NAIC 41181)7.'' 4. On 39458, in the table, in the first column, the entry reading...

  13. Boldness and aggressiveness in early and late hatched three-spined sticklebacks Gasterosteus aculeatus.

    PubMed

    Ruiz-Gomez, M L; Huntingford, F A

    2012-08-01

    Levels of boldness and the degree of aggressiveness were compared in juvenile three-spined sticklebacks Gasterosteus aculeatus that had hatched early and late in the breeding season. The most striking result found in this study was that early hatched individuals were bolder when exploring a novel environment than were late-hatched individuals. No differences in levels of aggression between early and late hatchlings were found, but a relationship between boldness and aggressiveness was present regardless of hatching date. The implications of these findings are discussed in the light of research on individual variation in behaviour and the development of behavioural syndromes. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  15. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    PubMed

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  16. The BOLD Response during Stroop Task-Like Inhibition Paradigms: Effects of Task Difficulty and Task-Relevant Modality

    ERIC Educational Resources Information Center

    Mitchell, Rachel L. C.

    2005-01-01

    Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD…

  17. Effective conductivity of suspensions of overlapping spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.C.; Torquato, S.

    1992-03-15

    An accurate first-passage simulation technique formulated by the authors (J. Appl. Phys. {bold 68}, 3892 (1990)) is employed to compute the effective conductivity {sigma}{sub {ital e}} of distributions of penetrable (or overlapping) spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1}. Clustering of particles in this model results in a generally intricate topology for virtually the entire range of sphere volume fractions {phi}{sub 2} (i.e., 0{le}{phi}{sub 2}{le}1). Results for the effective conductivity {sigma}{sub {ital e}} are presented for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0), andmore » for a wide range of volume fractions. The data are shown to lie between rigorous three-point bounds on {sigma}{sub {ital e}} for the same model. Consistent with the general observations of Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) regarding the utility of rigorous bounds, one of the bounds provides a good estimate of the effective conductivity, even in the extreme contrast cases ({alpha}{much gt}1 or {alpha}{congruent}0), depending upon whether the system is below or above the percolation threshold.« less

  18. Gene-Environment Correlation in the Development of Adolescent Substance Abuse: Selection Effects of Child Personality and Mediation via Contextual Risk Factors

    PubMed Central

    Hicks, Brian M.; Johnson, Wendy; Durbin, C. Emily; Blonigen, Daniel M.; Iacono, William G.; McGue, Matt

    2012-01-01

    We used a longitudinal twin design to examine selection effects of personality traits at age 11 on high-risk environmental contexts at age 14, and the extent to which these contexts mediated risk for substance abuse at age 17. Socialization at age 11—willingness to follow rules and endorse conventional values—predicted exposure to contextual risk at age 14. Contextual risk partially mediated the effect of socialization on substance abuse, though socialization also had a direct effect. In contrast, boldness at age 11—social engagement and assurance, thrill-seeking, and stress resilience— also predicted substance abuse directly, but was unrelated to contextual risk. There was substantial overlap in the genetic and shared environmental influences on socialization and contextual risk, and genetic risk in socialization contributed to substance abuse indirectly via increased exposure to contextual risk. This suggests that active gene-environment correlations related to individual differences in socialization contributed to an early, high-risk developmental trajectory for adolescent substance abuse. In contrast, boldness appeared to index an independent and direct genetic risk factor for adolescent substance abuse. PMID:23398757

  19. Simultaneous Multi-Slice fMRI using Spiral Trajectories

    PubMed Central

    Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew

    2014-01-01

    Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259

  20. Phenotypic regional fMRI activation patterns during memory encoding in MCI and AD

    PubMed Central

    Browndyke, Jeffrey N.; Giovanello, Kelly; Petrella, Jeffrey; Hayden, Kathleen; Chiba-Falek, Ornit; Tucker, Karen A.; Burke, James R.; Welsh-Bohmer, Kathleen A.

    2014-01-01

    Background Reliable blood-oxygen-level-dependent (BOLD) fMRI phenotypic biomarkers of Alzheimer's disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature. Methods A series of random-effects, activation likelihood estimation (ALE) meta-analyses were conducted on studies of episodic memory encoding operations in AD and MCI samples relative to normal controls. ALE analyses were based upon a thorough literature search for all task-based functional neuroimaging studies in AD and MCI published up to January 2010. Analyses covered 16 fMRI studies, which yielded 144 distinct foci for ALE meta-analysis. Results ALE results indicated several regional task-based BOLD consistencies in MCI and AD patients relative to normal controls across the aggregate BOLD functional neuroimaging research literature. Patients with AD and those at significant risk (MCI) showed statistically significant consistent activation differences during episodic memory encoding in the medial temporal lobe (MTL), specifically parahippocampal gyrus, as well superior frontal gyrus, precuneus, and cuneus, relative to normal controls. Conclusions ALE consistencies broadly support the presence of frontal compensatory activity, MTL activity alteration, and posterior midline “default mode” hyperactivation during episodic memory encoding attempts in the diseased or prospective pre-disease condition. Taken together these robust commonalities may form the foundation for a task-based fMRI phenotype of memory encoding in AD. PMID:22841497

  1. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  2. Strategic Staffing

    ERIC Educational Resources Information Center

    Clark, Ann B.

    2012-01-01

    Business and industry leaders do not flinch at the idea of placing top talent in struggling departments and divisions. This is not always the case in public education. The Charlotte-Mecklenburg Schools made a bold statement to its community in its strategic plan by identifying two key reform levers--(1) an effective principal leading each school;…

  3. Effects of Tasks on BOLD Signal Responses to Sentence Contrasts: Review and Commentary

    ERIC Educational Resources Information Center

    Caplan, David; Gow, David

    2012-01-01

    Functional neuroimaging studies of syntactic processing have been interpreted as identifying the neural locations of parsing and interpretive operations. However, current behavioral studies of sentence processing indicate that many operations occur simultaneously with parsing and interpretation. In this review, we point to issues that arise in…

  4. Intellectual Capital

    ERIC Educational Resources Information Center

    Violino, Bob

    2007-01-01

    In an era of increased need and steadily dwindling public dollars, community college leaders are adopting a new way of thinking when it comes to fundraising. The author discusses how community college leaders are turning bold ideas into money-making propositions for their schools. One of the most effective ways colleges can bring in resources is…

  5. The Right Equation for Math Teaching

    ERIC Educational Resources Information Center

    Schifter, Deborah; Granofsky, Burt

    2012-01-01

    Full implementation of the Common Core State Standards for mathematics is still a few years away for many states. But district and school leaders are faced with many decisions now--from curriculum adoption to teacher professional development--that will influence the long-term effectiveness of this bold initiative. School leaders have a significant…

  6. No Time to Lose: Turnaround Leader Performance Assessment

    ERIC Educational Resources Information Center

    Rhim, Lauren Morando

    2012-01-01

    Effective leadership is critical to successful school turnaround efforts. Yet, district leaders have historically been hesitant to hold leaders accountable for bold change efforts. As federal and state dollars flow to districts and individual schools charged with embarking upon transformative change efforts, districts must adopt a laser-sharp…

  7. Effects of covert and overt paradigms in clinical language fMRI.

    PubMed

    Partovi, Sasan; Konrad, Florian; Karimi, Sasan; Rengier, Fabian; Lyo, John K; Zipp, Lisa; Nennig, Ernst; Stippich, Christoph

    2012-05-01

    The aim of this study was to assess the intrasubject and intersubject reproducibility of functional magnetic resonance imaging (fMRI) language paradigms on language localization and lateralization. Fourteen healthy volunteers were enrolled prospectively and underwent language fMRI using visually triggered covert and overt sentence generation (SG) and word generation (WG) paradigms. Semiautomated analysis of all functional data was performed using Brain Voyager on an individual basis. Regions of interest for Broca's area, Wernicke's area, and their contralateral homologues were drawn. The Euclidean coordinates of the center of gravidity (x, y, and z) of the respective blood oxygenation level-dependent (BOLD) activation cluster, and the correlation of the measured hemodynamic response to the applied reference function (r), relative BOLD signal change as BOLD signal characteristics were measured in each region of interest. Regional lateralization indexes were calculated for Broca's area, Wernicke's area, and their contralateral homologues separately. Wilcoxon's signed-rank test was applied for statistical comparisons (P values < .05 were considered significant). Ten of the 14 volunteers had three repeated measurements to test intrasession reproducibility and intersession reproducibility. Overall activation rates for the four paradigms were 89% for covert SG, 82% for overt SG, 89% for covert WG, and 100% for overt WG. When comparing covert and overt paradigms, language localization was significantly different in 17% (Euclidean coordinates) and 19% (BOLD signal characteristics), respectively. Language lateralization was significantly different in 75%. Intrasubject and intersubject reproducibility was excellent, with 3.3% significant differences among all five parameters for language localization and 0% significant differences for language lateralization using covert paradigms. Covert language paradigms (SG and WG) provided highly robust and reproducible localization and lateralization of essential language centers for scans performed on the same and different days. Their overt counterparts achieved confirmatory localization but lower lateralization capabilities. Reference data for presurgical application are provided. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  8. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  10. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  12. Synthetic Generation of Myocardial Blood-Oxygen-Level-Dependent MRI Time Series via Structural Sparse Decomposition Modeling

    PubMed Central

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2014-01-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI. CP–BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by (a) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and (b) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease. PMID:24691119

  13. Lower Working Memory Performance in Overweight and Obese Adolescents Is Mediated by White Matter Microstructure

    PubMed Central

    Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.

    2017-01-01

    Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324

  14. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    PubMed

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  15. Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling.

    PubMed

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2014-07-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by 1) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and 2) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease.

  16. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.

    PubMed

    Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie

    2013-06-03

    The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.

  17. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis.

    PubMed

    Nelson, Flavia; Akhtar, Mohammad A; Zúñiga, Edward; Perez, Carlos A; Hasan, Khader M; Wilken, Jeffrey; Wolinsky, Jerry S; Narayana, Ponnada A; Steinberg, Joel L

    2017-05-01

    Cognitive impairment (CI) cannot be diagnosed by magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) paradigms, such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory (WM). Preliminary findings using I/DMT showed differences in blood oxygenation level dependent (BOLD) activation between impaired (MSCI, n = 12) and non-impaired (MSNI, n = 9) multiple sclerosis (MS) patients. The aim of the study was to confirm CI detection based on I/DMT BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and Expanded Disability Status Scale (EDSS) in magnitude of BOLD signal was also sought. A total of 50 patients (EDSS mean ( m) = 3.2, disease duration (DD) m = 12 years, and age m = 40 years) underwent the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and I/DMT. Working memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. A total of 10 MSNI, 30 MSCI, and 4 borderline patients were included in the analyses. Analysis of variance (ANOVA) showed MSNI had significantly greater WMa than MSCI, in the left prefrontal cortex and left supplementary motor area ( p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas ( p = 0.005, 0.004, respectively). I/DMT-based BOLD activation detects CI in MS. Larger studies are needed to confirm these findings.

  18. Means and the Mean Value Theorem

    ERIC Educational Resources Information Center

    Merikoski, Jorma K.; Halmetoja, Markku; Tossavainen, Timo

    2009-01-01

    Let I be a real interval. We call a continuous function [mu] : I x I [right arrow] [Bold R] a proper mean if it is symmetric, reflexive, homogeneous, monotonic and internal. Let f : I [right arrow] [Bold R} be a differentiable and strictly convex or strictly concave function. If a, b [image omitted] I with a [not equal to] b, then there exists a…

  19. 12 CFR 563b.255 - What must the form of proxy include?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proxy include? The form of proxy must include all of the following: (a) A statement in bold face type... separately. (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... the member received a proxy statement before he or she signed the form of proxy. (g) The date, time...

  20. --No Title--

    Science.gov Websites

    :#ccc;text-align:center;padding:5px}.upper_button{text-align:right;padding-bottom:5px}.side_button[type ;width:175px;text-align:left;font-weight:bold;overflow:hidden}.left_head_title_alt{float:left;width:175px ;text-align:left;font-weight:bold;line-height:16px;margin-top:3px;padding-top:0}.left_head_add

  1. A Comparison of Product Realization Frameworks

    DTIC Science & Technology

    1993-10-01

    software (integrated FrameMaker ). Also included are BOLD for on-line documentation delivery, printer/plotter support, and 18 network licensing support. AMPLE...are built with DSS. Documentation tools include an on-line information system (BOLD), text editing (Notepad), word processing (integrated FrameMaker ...within an application. FrameMaker is fully integrated with the Falcon Framework to provide consistent documentation capabilities within engineering

  2. Association Between Brain Activation and Functional Connectivity.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  3. Quantification of the power changes in BOLD signals using Welch spectrum method during different single-hand motor imageries.

    PubMed

    Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu

    2014-12-01

    Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatakeyama, R.; Hershkowitz, N.; Majeski, R.

    A comparison of phenomenological features of plasmas is made with a special emphasis on radio-frequency induced transport, which are maintained when a set of two closely spaced dual half-turn antennas in a central cell of the Phaedrus-B axisymmetric tandem mirror [J. J. Browning {ital et al.}, Phys. Fluids B {bold 1}, 1692 (1989)] is phased to excite electromagnetic fields in the ion cyclotron range of frequencies (ICRF) with m={minus}1 (rotating with ions) and m=+1 (rotating with electrons) azimuthal modes. Positive and negative electric currents are measured to flow axially to the end walls in the cases of m={minus}1 and m=+1more » excitations, respectively. These parallel nonambipolar ion and electron fluxes are observed to be accompanied by azimuthal ion flows in the same directions as the antenna-excitation modes m. The phenomena are argued in terms of radial particle fluxes due to a nonambipolar transport mechanism [Hojo and Hatori, J. Phys. Soc. Jpn. {bold 60}, 2510 (1991); Hatakeyama {ital et al.}, J. Phys. Soc. Jpn. {bold 60}, 2815 (1991), and Phys. Rev. E {bold 52}, 6664 (1995)], which are induced when azimuthally traveling ICRF waves are absorbed in the magnetized plasma column. {copyright} {ital 1997 American Institute of Physics.}« less

  5. An experimental test of density-dependent selection on temperament traits of activity, boldness and sociability.

    PubMed

    Le Galliard, J-F; Paquet, M; Mugabo, M

    2015-05-01

    Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density-dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life-history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density-dependent selection plays an important role in the maintenance of individual differences in exploration-activity and sociability. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  6. Blood oxygenation level-dependent MRI for assessment of renal oxygenation

    PubMed Central

    Neugarten, Joel; Golestaneh, Ladan

    2014-01-01

    Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique. PMID:25473304

  7. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency

    PubMed Central

    Motes, Michael A.; Biswal, Bharat B.; Rypma, Bart

    2012-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants’ performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency. PMID:22792129

  8. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency.

    PubMed

    Motes, Michael A; Biswal, Bharat B; Rypma, Bart

    2011-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants' performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency.

  9. The Dark Side of Resilience and Burnout: A Moderation-Mediation Model

    PubMed Central

    Treglown, Luke; Palaiou, Kat; Zarola, Anthony; Furnham, Adrian

    2016-01-01

    This study tested whether specific dark-side traits may be beneficial in manifesting and maintaining Resilience, whilst others are vulnerability factors for Burnout. Four hundred and fifty-one (50 female) ambulance personnel completed three questionnaires as a part of a selection and development assessment. The study utilised the Hogan Development survey as a measure of dark side personality, the Copenhagen Burnout Inventory to assess work-related burnout, and the Resilience Scale– 14 to measure resilience levels. Those high on Excitable and Cautious but low on Bold and Reserved were linked to an increased vulnerability to Burnout. Also those high on Bold and Diligent yet low on the Excitable, Cautious, and Imaginative scales were more resilient. Structural Equation Modelling revealed that resilience plays both a mediating and moderating role on personality and burnout. Theoretical implications suggest future research assessing the predictive capacity of psychological variables on burnout should account the indirect effect of resilience. PMID:27336304

  10. The Dark Side of Resilience and Burnout: A Moderation-Mediation Model.

    PubMed

    Treglown, Luke; Palaiou, Kat; Zarola, Anthony; Furnham, Adrian

    2016-01-01

    This study tested whether specific dark-side traits may be beneficial in manifesting and maintaining Resilience, whilst others are vulnerability factors for Burnout. Four hundred and fifty-one (50 female) ambulance personnel completed three questionnaires as a part of a selection and development assessment. The study utilised the Hogan Development survey as a measure of dark side personality, the Copenhagen Burnout Inventory to assess work-related burnout, and the Resilience Scale- 14 to measure resilience levels. Those high on Excitable and Cautious but low on Bold and Reserved were linked to an increased vulnerability to Burnout. Also those high on Bold and Diligent yet low on the Excitable, Cautious, and Imaginative scales were more resilient. Structural Equation Modelling revealed that resilience plays both a mediating and moderating role on personality and burnout. Theoretical implications suggest future research assessing the predictive capacity of psychological variables on burnout should account the indirect effect of resilience.

  11. X-ray resonant magnetic scattering ellipsometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Randall, K.J.; Gluskin, E.

    1996-09-01

    It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less

  12. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  13. The effect of parasitism on personality in a social insect.

    PubMed

    Turner, Joe; Hughes, William O H

    2018-06-10

    Individuals are known to differ consistently in various aspects of their behaviour in many animal species, a phenomenon that has come to be referred to as animal personalities. These individual differences are likely to have evolutionary and ecological significance, and it is therefore important to understand the precise nature of how environmental and physiological factors affect animal personalities. One factor which may affect personality is disease, but while the effects of disease on many aspects of host behaviour are well known, the effects on animal personalities have been little studied. Here we show that wood ants, Formica rufa, exhibit consistent individual differences in three personality traits: boldness, sociability and aggressiveness. However, experimental exposure to a virulent fungal parasite, Metarhizium pingshaense, had surprisingly little effect on the personality traits. Parasite-challenged ants showed marginal changes in sociability at high doses of parasite but no change in boldness or aggressiveness even when close to death. There was similarly little effect of other physiological stresses on ant personalities. The results suggest that individual personality in ants can be remarkably resilient to physiological stress, such as that caused by parasite infection. Future studies are needed to determine whether there is a similar resilience in solitary animals, as well as in other social species. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.

    PubMed

    Tanji, Kazuyo; Leopold, David A; Ye, Frank Q; Zhu, Charles; Malloy, Megan; Saunders, Richard C; Mishkin, Mortimer

    2010-01-01

    The monkey's auditory cortex includes a core region on the supratemporal plane (STP) made up of the tonotopically organized areas A1, R, and RT, together with a surrounding belt and a lateral parabelt region. The functional studies that yielded the tonotopic maps and corroborated the anatomical division into core, belt, and parabelt typically used low-amplitude pure tones that were often restricted to threshold-level intensities. Here we used functional magnetic resonance imaging in awake rhesus monkeys to determine whether, and if so how, the tonotopic maps and the pattern of activation in core, belt, and parabelt are affected by systematic changes in sound intensity. Blood oxygenation level-dependent (BOLD) responses to groups of low- and high-frequency pure tones 3-4 octaves apart were measured at multiple sound intensity levels. The results revealed tonotopic maps in the auditory core that reversed at the putative areal boundaries between A1 and R and between R and RT. Although these reversals of the tonotopic representations were present at all intensity levels, the lateral spread of activation depended on sound amplitude, with increasing recruitment of the adjacent belt areas as the intensities increased. Tonotopic organization along the STP was also evident in frequency-specific deactivation (i.e. "negative BOLD"), an effect that was intensity-specific as well. Regions of positive and negative BOLD were spatially interleaved, possibly reflecting lateral inhibition of high-frequency areas during activation of adjacent low-frequency areas, and vice versa. These results, which demonstrate the strong influence of tonal amplitude on activation levels, identify sound intensity as an important adjunct parameter for mapping the functional architecture of auditory cortex.

  15. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI.

    PubMed

    Sepulveda, Pradyumna; Sitaram, Ranganatha; Rana, Mohit; Montalba, Cristian; Tejos, Cristian; Ruiz, Sergio

    2016-09-01

    The learning process involved in achieving brain self-regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real-time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up-regulate the blood-oxygen-level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self-regulation from day-1 to day-2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153-3171, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Effect of dark chocolate on renal tissue oxygenation as measured by BOLD-MRI in healthy volunteers.

    PubMed

    Pruijm, Menno; Hofmann, Lucie; Charollais-Thoenig, Julie; Forni, Valentina; Maillard, Marc; Coristine, Andrew; Stuber, Matthias; Burnier, Michel; Vogt, Bruno

    2013-09-01

    Cocoa is rich in flavonoids, has anti-oxidative properties and increases the bioavailability of nitric oxide (NO). Adequate renal tissue oxygenation is crucial for the maintenance of renal function. The goal of this study was to investigate the effect of cocoa-rich dark chocolate (DC) on renal tissue oxygenation in humans, as compared to flavonoid-poor white chocolate (WC). Ten healthy volunteers with preserved kidney function (mean age ± SD 35 ± 12 years, 70% women, BMI 21 ± 3 kg/m2) underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) before and 2 hours after the ingestion of 1 g/kg of DC (70% cocoa). Renal tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* (= 1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. Eight participants also underwent BOLD-MRI at least 1 week later, before and 2 hours after the intake of 1 g/kg WC. The mean medullary R2* was lower after DC intake compared to baseline (28.2 ± 1.3 s-1 vs. 29.6 ± 1.3 s-1, p = 0.04), whereas cortical and medullary R2* values did not change after WC intake. The change in medullary R2* correlated with the level of circulating (epi)catechines, metabolites of flavonoids (r = 0.74, p = 0.037), and was independent of plasma renin activity. This study suggests for the first time an increase of renal medullary oxygenation after intake of dark chocolate. Whether this is linked to flavonoid-induced changes in renal perfusion or oxygen consumption, and whether cocoa has potentially renoprotective properties, merits further study.

  18. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  19. Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    PubMed

    Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P

    2016-10-03

    To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.

  20. Effects of Sildenafil on Cerebrovascular Reactivity in Patients with Becker Muscular Dystrophy.

    PubMed

    Lindberg, Ulrich; Witting, Nanna; Jørgensen, Stine Lundgaard; Vissing, John; Rostrup, Egill; Larsson, Henrik Bo Wiberg; Kruuse, Christina

    2017-01-01

    Patients suffering from Becker muscular dystrophy (BMD) have dysfunctional dystrophin proteins and are deficient in neuronal nitric oxide synthase (nNOS) in muscles. This causes functional ischemia and contributes to muscle wasting. Similar functional ischemia may be present in brains of patients with BMD, who often have mild cognitive impairment, and nNOS may be important for the regulation of the microvascular circulation in the brain. We hypothesized that treatment with sildenafil, a phosphodiesterase type 5 inhibitor that potentiates nitric oxide responses, would augment both the blood oxygen level-dependent (BOLD) response and cerebral blood flow (CBF) in patients with BMD. Seventeen patients (mean ± SD age 38.5 ± 10.8 years) with BMD were included in this randomized, double-blind, placebo-controlled, crossover trial. Twelve patients completed the entire study. Effects of sildenafil were assessed by 3 T magnetic resonance (MR) scanning, evoked potentials, somatosensory task-induced BOLD functional MR imaging, regional and global perfusion, and angiography before and after 4 weeks of sildenafil, 20 mg (Revatio in gelatine capsules, oral, 3 times daily), or placebo treatment. Sildenafil increased the event-related sensory and visual BOLD response compared with placebo (p < 0.01). However, sildenafil did not alter CBF, measured by MR phase contrast mapping, or the arterial diameter of the middle cerebral artery, measured by MR angiography. We conclude that nNOS may play a role in event-related neurovascular responses. Further studies in patients with BMD may help clarify the roles of dystrophin and nNOS in neurovascular coupling in general, and in patients with BMD in particular.

Top