Mateo-Gallego, Rocio; Perez-Calahorra, Sofia; Cenarro, Ana; Bea, Ana M; Andres, Eva; Horno, Jaime; Ros, Emilio; Civeira, Fernando
2012-05-01
The main dietary guidelines recommend restricting total and saturated fat intake in the management of high blood cholesterol levels for cardiovascular risk. These recommendations are usually oversimplified by considering that all red meats should be limited and replaced by white meats. However, lean red meat can be as low in fat as white meat. We examined the effects of red meat (lean breed lamb) and lean white meat (chicken) intake on the lipid profile of a group of women with stable life conditions (nuns living in convents). An open-label, randomised, cross-over study was carried out in thirty-six nuns who consumed either lamb or chicken three times per week for 5-week periods with their usual diet. Clinical, dietary and biochemical variables were evaluated at baseline and the end of each diet period. A validated FFQ was used to assess nutrient intake and monitor compliance. The results showed neither between-diet differences in lipid responses nor differences from baseline in total cholesterol, LDL-cholesterol or TAG for any diet period. In conclusion, consumption of lean red meat (lamb) or lean white meat (chicken) as part of the usual diet is associated with a similar lipid response. These two foods can be exchanged in a healthy diet to increase palatability.
Influence of diet, exercise and serum vitamin D on sarcopenia in post-menopausal women
Mason, Caitlin; Xiao, Liren; Imayama, Ikuyo; Duggan, Catherine R.; Foster-Schubert, Karen E.; Kong, Angela; Campbell, Kristin L.; Wang, Ching-Yun; Villasenor, Adriana; Neuhouser, Marian L.; Alfano, Catherine M.; Blackburn, George L.; McTiernan, Anne
2012-01-01
Purpose To investigate the effects of 12 months of dietary weight loss and/or aerobic exercise on lean mass and the measurements defining sarcopenia in postmenopausal women, and to examine the potential moderating effect of serum 25-hydroxyvitamin D (25(OH)D) and age. Methods 439 overweight and obese postmenopausal women were randomized to: diet modification (N=118); exercise (N=117), diet+exercise (N=117), or control (N=87). The diet intervention was a group-based program with a 10% weight loss goal. The exercise intervention was 45 mins/day, 5 days/week of moderate-to-vigorous intensity aerobic activity. Total and appendicular lean mass were quantified by dual Xray absorptiometry (DXA) at baseline and 12 months. A skeletal muscle index (SMI=appendicular lean mass (kg)/m2) and the prevalence of sarcopenia (SMI<5.67 kg/m2) were calculated. Serum 25(OH)D was assayed using a competitive chemiluminescent immunoassay. Results Dietary weight loss resulted in a significant decrease in lean mass, and a borderline significant decrease in appendicular lean mass and SMI compared to controls. In contrast, aerobic exercise significantly preserved appendicular lean mass and SMI. Diet + exercise attenuated the loss of appendicular lean mass and SMI compared to diet alone, and did not result in significant loss of total- or appendicular lean mass compared to controls. Neither serum 25(OH)D nor age were significant moderators of the intervention effects. Conclusions Aerobic exercise added to dietary weight loss can attenuate the loss of appendicular lean mass during weight loss, and may be effective for the prevention and treatment of sarcopenia among overweight and obese postmenopausal women. PMID:23190588
USDA-ARS?s Scientific Manuscript database
Consumption of lean meat is a valuable addition to a healthy diet because it provides complete protein and is a rich source of vitamin B12, iron, and zinc. The objective of this study was to examine the nutritional contribution of total beef and lean beef (LB) to the American diet using the USDA def...
Drive for leanness and health-related behavior within a social/cultural perspective.
Tod, David; Edwards, Christian; Hall, Gareth
2013-09-01
We examined relationships between drive for leanness and perceived media pressure to change appearance, internalization of an ideal physique, exercise frequency, and dieting. Men and women (N=353) completed the Drive for Leanness Scale, the Sociocultural Attitudes Toward Appearance Questionnaire-3, the Eating Attitudes Test-26, and a demographic inventory. Drive for leanness was significantly correlated with athletic internalization (.52), pressure to attain an ideal physique (.25), exercise frequency (.36), and dieting (.25). Structural equation modeling revealed a good fitting model (χ(2)=2.85, p<.241; CFI=.99; NNFI=.98; RMSEA=.04; SRMR=.02) with internalization predicting drive for leanness, which in turn predicted dieting and exercise. Results reveal social/cultural theory helps enhance the understanding of the drive for leanness and its relationship with health-related behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hoenig, M; Thomaseth, K; Waldron, M; Ferguson, D C
2007-01-01
Obesity is a major health problem in cats and a risk factor for diabetes. It has been postulated that cats are always gluconeogenic and that the rise in obesity might be related to high dietary carbohydrates. We examined the effect of a high-carbohydrate/low-protein (HC) and a high-protein/low-carbohydrate (HP) diet on glucose and fat metabolism during euglycemic hyperinsulinemic clamp, adipocytokines, and fat distribution in 12 lean and 16 obese cats before and after weight loss. Feeding diet HP led to greater heat production in lean but not in obese cats. Regardless of diet, obese cats had markedly decreased glucose effectiveness and insulin resistance, but greater suppression of nonesterified fatty acids during the euglycemic hyperinsulinemic clamp was seen in obese cats on diet HC compared with lean cats on either diet or obese cats on diet HP. In contrast to humans, obese cats had abdominal fat equally distributed subcutaneously and intra-abdominally. Weight loss normalized insulin sensitivity; however, increased nonesterified fatty acid suppression was maintained and fat loss was less in cats on diet HC. Adiponectin was negatively and leptin positively correlated with fat mass. Lean cats and cats during weight loss, but not obese cats, adapted to the varying dietary carbohydrate/protein content with changes in substrate oxidation. We conclude that diet HP is beneficial through maintenance of normal insulin sensitivity of fat metabolism in obese cats, facilitating the loss of fat during weight loss, and increasing heat production in lean cats. These data also show that insulin sensitivity of glucose and fat metabolism can be differentially regulated in cats.
Malewiak, M I; Griglio, S; Le Liepvre, X
1985-07-01
The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)
Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet
Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.
2016-01-01
Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998
USDA-ARS?s Scientific Manuscript database
The learning outcome was to understand the important contribution of lean beef to total nutrient intake in diets of American adults and to determine dietary intake differences between lean beef consumers and non-consumers. The National Health and Nutritional Examination Survey, 1999-2004, 24-hour di...
Baéza, E; Gondret, F; Chartrin, P; Le Bihan-Duval, E; Berri, C; Gabriel, I; Narcy, A; Lessire, M; Métayer-Coustard, S; Collin, A; Jégou, M; Lagarrigue, S; Duclos, M J
2015-10-01
The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and more PUFA in abdominal fat and muscles than lean chickens. Except for the fatty acid composition of liver and abdominal fat, no interaction between line and diet was observed. In conclusion, the amount of lipids stored in muscles and fatty tissues by lean or fat chickens did not depend on the dietary energy source.
Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn
2016-05-01
High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.
Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette
2013-01-01
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype. PMID:23974297
Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette
2013-01-01
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.
Diet and prey selection by Lake Superior lake trout during springs 1986-2001
Ray, B.A.; Hrabik, T.R.; Ebener, M.P.; Gorman, O.T.; Schreiner, D.R.; Schram, S.T.; Sitar, S.P.; Mattes, W.P.; Bronte, C.R.
2007-01-01
We describe the diet and prey selectivity of lean (Salvelinus namaycush namaycush) and siscowet lake trout (S. n. siscowet) collected during spring (April–June) from Lake Superior during 1986–2001. We estimated prey selectivity by comparing prey numerical abundance estimates from spring bottom trawl surveys and lake trout diet information in similar areas from spring gill net surveys conducted annually in Lake Superior. Rainbow smelt (Osmerus mordax) was the most common prey and was positively selected by both lean and siscowet lake trout throughout the study. Selection by lean lake trout for coregonine (Coregonus spp.) prey increased after 1991 and corresponded with a slight decrease in selection for rainbow smelt. Siscowet positively selected for rainbow smelt after 1998, a change that was coincident with the decrease in selection for this prey item by lean lake trout. However, diet overlap between lean and siscowet lake trout was not strong and did not change significantly over the study period. Rainbow smelt remains an important prey species for lake trout in Lake Superior despite declines in abundance.
Gerrits, Martin F; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2010-08-01
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.
Gerrits, Martin F.; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L.; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2010-01-01
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success. PMID:20332421
Tentolouris, Nicholas; Pavlatos, Spyridon; Kokkinos, Alexander; Perrea, Despoina; Pagoni, Stamata; Katsilambros, Nicholas
2008-03-01
Reduction in diet-induced thermogenesis (DIT) may promote weight gain and maintenance. Data on differences in DIT and macronutrient oxidation between lean and obese subjects are conflicting. In this study, we sought for differences in DIT and macronutrient oxidation between lean and obese women after consumption of 2 different isocaloric meals, one rich in protein and one rich in fat. Fifteen lean and 15 obese women were studied on 2 occasions, 1 week apart. In one visit, they consumed a protein-rich meal; in the other visit, a fat-rich meal. The 2 meals were isocaloric ( approximately 2026 kJ each), of equal volume, and given in random order. Resting energy expenditure and macronutrient oxidation rates were measured and calculated in the fasting state and every 1 hour for 3 hours after meal consumption. Diet-induced thermogenesis was not significantly different between lean and obese subjects after consumption of either the protein-rich (P = .59) or the fat-rich meal (P = .68). Diet-induced thermogenesis was significantly higher (by almost 3-fold) after consumption of the protein-rich meal in comparison with the fat-rich meal in both study groups. In addition, no significant differences in macronutrient oxidation rates were found between lean and obese women after the test meals. The results indicate that DIT is higher after protein intake than after fat intake in both lean and obese participants; however, DIT and macronutrient oxidation rate are not different between lean and obese subjects after consumption of either a protein-rich or a fat-rich meal. Over the long term, a low DIT after regular or frequent fat intake may contribute to the development and maintenance of obesity.
Martinez, Enid E; Bechard, Lori J; Smallwood, Craig D; Duggan, Christopher P; Graham, Robert J; Mehta, Nilesh M
2015-07-01
Diet modification may improve body composition and respiratory variables in children with respiratory insufficiency. Our objective was to examine the effect of an individualized diet intervention on changes in weight, lean body mass, minute ventilation, and volumetric CO2 production in children dependent on long-term mechanical ventilatory support. Prospective, open-labeled interventional study. Study subjects' homes. Children, 1 month to 17 years old, dependent on at least 12 hr/d of transtracheal mechanical ventilatory support. Twelve weeks of an individualized diet modified to deliver energy at 90-110% of measured energy expenditure and protein intake per age-based guidelines. During a multidisciplinary home visit, we obtained baseline values of height and weight, lean body mass percent by bioelectrical impedance analysis, actual energy and protein intake by food record, and measured energy expenditure by indirect calorimetry. An individualized diet was then prescribed to optimize energy and protein intake. After 12 weeks on this interventional diet, we evaluated changes in weight, height, lean body mass percent, minute ventilation, and volumetric CO2 production. Sixteen subjects, mean age 9.3 years (SD, 4.9), eight male, completed the study. For the diet intervention, a majority of subjects required a change in energy and protein prescription. The mean percentage of energy delivered as carbohydrate was significantly decreased, 51.7% at baseline versus 48.2% at follow-up, p = 0.009. Mean height and weight increased on the modified diet. Mean lean body mass percent increased from 58.3% to 61.8%. Minute ventilation was significantly lower (0.18 L/min/kg vs 0.15 L/min/kg; p = 0.04), and we observed a trend toward lower volumetric CO2 production (5.4 mL/min/kg vs 5.3 mL/min/kg; p = 0.06) after 12 weeks on the interventional diet. Individualized diet modification is feasible and associated with a significant decrease in minute ventilation, a trend toward significant reduction in CO2 production, and improved body composition in children on long-term mechanical ventilation. Optimization of respiratory variables and lean body mass by diet modification may benefit children with respiratory insufficiency in the ICU.
Heymsfield, Steven B.; Cristina Gonzalez, M. C.; Shen, Wei; Redman, Leanne; Thomas, Diana
2014-01-01
Maximizing fat loss while preserving lean tissue mass and function is a central goal of modern obesity treatments. A widely cited rule guiding expected loss of lean tissue as fat-free mass (FFM) states that approximately one-fourth of weight loss will be FFM (i.e., ΔFFM/ΔWeight = ~0.25) with the remaining three-fourths fat mass. This review examines the dynamic relations between FFM, fat mass, and weight changes that follow induction of negative energy balance with hypocaloric dieting and/or exercise. Historical developments in the field are traced with the “Quarter FFM Rule” used as a framework to examine evolving concepts on obesity tissue, excess weight, and what is often cited as “Forbes’ Rule”. Temporal effects in the fractional contribution of FFM to changes in body weight are examined as are lean tissue moderating effects such as aging, inactivity, and exercise that frequently accompany structured low-calorie diet weight loss protocols. Losses of lean tissue with dieting typically tend to be small, raising questions about study design, power, and applied measurement method reliability. Our review elicits important questions related to the fractional loss of lean tissues with dieting and provides a foundation for future research on this topic. PMID:24447775
Baudrand, R; Lian, CG; Lian, BQ; Ricchiuti, V; Yao, TM; Li, J; Williams, GH; Adler, GK
2015-01-01
Background/Aim Obesity is associated with changes in adiponectin and pro-inflammatory adipokines. Sodium intake can affect adipokine secretion suggesting a role in cardiovascular dysfunction. We tested if long-term dietary sodium restriction modifies the expression of adiponectin and ameliorates the pro-inflammatory profile of obese, diabetic Methods/Results Db/db mice were randomized to high sodium (HS 1.6% Na+, n=6) or low sodium (LS 0.03% Na+, n=8) diet for 16 weeks and compared with lean, db/+ mice on HS diet (n=8). Insulin levels were 50% lower in the db/db mice on LS diet when compared with HS db/db (p <0.05). LS diet increased cardiac adiponectin mRNA levels in db/db mice by 5-fold when compared with db/db mice on HS diet and by 2-fold when compared with HS lean mice (both p < 0.01). LS diet increased adiponectin in adipose tissue compared with db/db mice on HS diet, achieving levels similar to those of lean mice. MCP-1, IL-6 and TNF-α expression were reduced more than 50% in adipose tissue of db/db mice on LS diet when compared with HS db/db mice (all p < 0.05), to levels observed in the HS lean mice. Further, LS db/db mice had significantly reduced circulating MCP-1 and IL-6 levels when compared with HS db/db mice (both p < 0.01). Conclusion In obese-diabetic mice, long-term LS diet increases adiponectin in heart and adipose tissue and reduces pro-inflammatory factors in adipose tissue and plasma. These additive mechanisms may contribute to the potential cardioprotective benefits of LS diet in obesity-related metabolic disorders. PMID:24418377
How dieting makes some fatter: from a perspective of human body composition autoregulation.
Dulloo, Abdul G; Jacquet, Jean; Montani, Jean-Pierre
2012-08-01
Dieting makes you fat - the title of a book published in 1983 - embodies the notion that dieting to control body weight predisposes the individual to acquire even more body fat. While this notion is controversial, its debate underscores the large gap that exists in our understanding of basic physiological laws that govern the regulation of human body composition. A striking example is the key role attributed to adipokines as feedback signals between adipose tissue depletion and compensatory increases in food intake. Yet, the relative importance of fat depletion per se as a determinant of post-dieting hyperphagia is unknown. On the other hand, the question of whether the depletion of lean tissues can provide feedback signals on the hunger-appetite drive is rarely invoked, despite evidence that food intake during growth is dominated by the impetus for lean tissue deposition, amidst proposals for the existence of protein-static mechanisms for the regulation of growth and maintenance of lean body mass. In fact, a feedback loop between fat depletion and food intake cannot explain why human subjects recovering from starvation continue to overeat well after body fat has been restored to pre-starvation values, thereby contributing to 'fat overshooting'. In addressing the plausibility and mechanistic basis by which dieting may predispose to increased fatness, this paper integrates the results derived from re-analysis of classic longitudinal studies of human starvation and refeeding. These suggest that feedback signals from both fat and lean tissues contribute to recovering body weight through effects on energy intake and thermogenesis, and that a faster rate of fat recovery relative to lean tissue recovery is a central outcome of body composition autoregulation that drives fat overshooting. A main implication of these findings is that the risk of becoming fatter in response to dieting is greater in lean than in obese individuals.
2011-01-01
Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose) on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group) were fed diets that contained wheat bran, barley or α-cellulose (control). After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC), malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL)-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI)-1, monocyte chemotactic protein (MCP)-1). Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06). Obese rats had higher plasma malondialdehyde (p < 0.01) and lower plasma glutathione peroxidase concentration (p < 0.01) but these levels were not affected by diet type. PAI-1 was elevated in the plasma of obese rats, and the wheat bran diet in comparison to the control group reduced PAI-1 to levels seen in the lean rats (p < 0.05). These changes in circulating PAI-1 levels could not be explained by PAI-1 secretion rates from visceral or subcutaneous adipose tissue. Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of oxidative stress and inflammation. PMID:21535898
Cannabis exposure associated with weight reduction and β-cell protection in an obese rat model.
Levendal, R-A; Schumann, D; Donath, M; Frost, C L
2012-05-15
The aim of this study was to investigate the effect of an organic cannabis extract on β-cell secretory function in an in vivo diet-induced obese rat model and determine the associated molecular changes within pancreatic tissue. Diet-induced obese Wistar rats and rats fed on standard pellets were subcutaneously injected with an organic cannabis extract or the vehicle over a 28-day period. The effect of diet and treatment was evaluated using the intraperitoneal glucose tolerance tests (IPGTTs) and qPCR analysis on rat pancreata harvested upon termination of the experiment. The cafeteria diet induced an average weight difference of 32g and an overall increase in body weight in the experimental groups occurred at a significantly slower rate than the control groups, irrespective of diet. Area under the curve for glucose (AUC(g)) in the obese group was significantly lower compared to the lean group (p<0.001), with cannabis treatment significantly reducing the AUC(g) in the lean group (p<0.05), and remained unchanged in the obese group, relative to the obese control group. qPCR analysis showed that the cafeteria diet induced down-regulation of the following genes in the obese control group, relative to lean controls: UCP2, c-MYC and FLIP. Cannabis treatment in the obese group resulted in up-regulation of CB1, GLUT2, UCP2 and PKB, relative to the obese control group, while c-MYC levels were down-regulated, relative to the lean control group. Treatment did not significantly change gene expression in the lean group. These results suggest that the cannabis extract protects pancreatic islets against the negative effects of obesity. Copyright © 2012 Elsevier GmbH. All rights reserved.
Van Hecke, Thomas; Jakobsen, Louise M A; Vossen, Els; Guéraud, Françoise; De Vos, Filip; Pierre, Fabrice; Bertram, Hanne C S; De Smet, Stefaan
2016-09-14
A high consumption of red and/or processed meat is associated with a higher risk to develop several chronic diseases in which oxidative stress, trimethylamine-N-oxide (TMAO) and/or inflammation are involved. We aimed to elucidate the effect of white (chicken) vs. red (beef) meat consumption in a low vs. high dietary fat context (2 × 2 factorial design) on oxidative stress, TMAO and inflammation in Sprague-Dawley rats. Higher malondialdehyde (MDA) concentrations were found in gastrointestinal contents (up to 96% higher) and colonic tissues (+8.8%) of rats fed the beef diets (all P < 0.05). The lean beef diet resulted in lower blood glutathione, higher urinary excretion of the major 4-hydroxy-nonenal metabolite, and higher plasma C-reactive protein, compared to the other dietary treatments (all P < 0.05). Rats on the fat beef diet had higher renal MDA (+24.4% compared to all other diets) and heart MDA (+12.9% compared to lean chicken) and lower liver vitamin E (-26.2% compared to lean chicken) (all P < 0.05). Rats on the fat diets had lower plasma vitamin E (-23.8%), lower brain MDA (-6.8%) and higher plasma superoxide dismutase activity (+38.6%), higher blood glutathione (+16.9%) (all P < 0.05) and tendency to higher ventral prostate MDA (+14.5%, P = 0.078) and prostate weight (+18.9%, P = 0.073), compared to rats on the lean diets. Consumption of the beef diets resulted in higher urinary trimethylamine (4.5-fold) and TMAO (3.7-fold) concentrations (P < 0.001), compared to the chicken diets. In conclusion, consumption of a high beef diet may stimulate gastrointestinal and/or systemic oxidative stress, TMAO formation and inflammation, depending on the dietary fat content and composition.
Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.
Masanés, R M; Yubero, P; Rafecas, I; Remesar, X
2002-09-01
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.
Miller, Todd; Mull, Stephanie; Aragon, Alan Albert; Krieger, James; Schoenfeld, Brad Jon
2018-01-01
The purpose of this study was to determine the effects of resistance training only (RT; n = 10), dietary intervention only (DIET; n = 10), resistance training plus diet (RT+DIET; n = 10), and control (CON; n = 10) on body composition and resting metabolic rate (RMR) in a cohort of 40 premenopausal female volunteers. Subjects in DIET and RT+DIET were provided with daily macronutrient and calorie goals based on DXA and RMR tests, with protein maintained at 3.1 g/kg/day. Subjects in the RT and RT+DIET groups performed a supervised progressive RT program consisting of exercises for all the major muscle groups of the body. Results showed a significant month-by-group interaction for change in fat mass with no significant linear trend for control. The three treatment groups all showed significant linear decreases in fat mass, but the slope of the decrease became progressively steeper from the RT, to DIET, to RT+DIET. A significant linear increase for lean mass was seen for resistance training only. There was a nonsignificant increase in RMR in all groups from Month 0 to Month 4 but no significant month by group interaction. In conclusion, significant reductions in fat mass were achieved by all experimental groups, but results were maximized by RT+DIET. Only the RT group showed significant increases in lean mass.
Xu, J; Bourgeois, H; Vandermeulen, E; Vlaeminck, B; Meyer, E; Demeyere, K; Hesta, M
2015-05-01
Secreted phospholipase A2 inhibitor (sPLA2i) has been reported to have an anti-inflammatory function by blocking the production of inflammatory mediators. Obesity is characterized by low-grade inflammation and oxidative stress. The aim of this study was to investigate the effects of dietary supplementation of sPLA2i on inflammation, oxidative stress and serum fatty acid profile in dogs. Seven obese and seven lean Beagle dogs were used in a 28-day double blind cross-over design. Dogs were fed a control diet without supplemental sPLA2i or an sPLA2i supplemented diet. The sPLA2i diet decreased plasma fibrinogen levels and increased the protein:fibrinogen ratio in obese dogs to levels similar to those of lean dogs fed the same diet. Obese dogs had a higher plasma concentration of the lipophilic vitamin A with potential antioxidative capacity and a lower ratio of retinol binding protein 4:vitamin A compared to lean dogs, independent of the diets. A higher proportion of myristic acid (C14:0) and a lower proportion of linoleic acid (C18:2n-6) were observed in the dogs fed with the sPLA2i diet compared to dogs fed with the control diet. Furthermore, a higher ratio of n-6 to n-3, a lower proportion of n-3 polyunsaturated fatty acids and lower omega-3 index were observed in obese compared to lean dogs. The results indicate that obese dogs are characterized by a more 'proinflammatory' serum fatty acid profile and that diet inclusion of sPLA2i may reduce inflammation and alter fatty acid profile. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mukherjee, Sromona; Shukla, Charu; Britton, Steven L.; Koch, Lauren G.; Shi, Haifei; Novak, Colleen M.
2014-01-01
A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis. PMID:24398400
de Souza, Russell J; Bray, George A; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R
2012-03-01
Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ~40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT00072995.
de Souza, Russell J; Carey, Vincent J; Hall, Kevin D; LeBoff, Meryl S; Loria, Catherine M; Laranjo, Nancy M; Sacks, Frank M; Smith, Steven R
2012-01-01
Background: Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. Objective: We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. Design: In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). Results: At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ∼40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. Conclusion: Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT00072995. PMID:22258266
Effects of dietary protein on the composition of weight loss in post-menopausal women.
Gordon, M M; Bopp, M J; Easter, L; Miller, G D; Lyles, M F; Houston, D K; Nicklas, B J; Kritchevsky, S B
2008-10-01
To determine whether a hypocaloric diet higher in protein can prevent the loss of lean mass that is commonly associated with weight loss. An intervention study comparing a hypocaloric diet moderately high in protein to one lower in protein. Study measurements were taken at the Wake Forest University General Clinical Research Center (GCRC) and Geriatric Research Center (GRC). Twenty-four post-menopausal, obese women (mean age = 58 +/- 6.6 yrs; mean BMI = 33.0 +/- 3.6 kg/m2). Two 20-week hypocaloric diets (both reduced by 2800 kcal/wk) were compared: one maintaining dietary protein intake at 30% of total energy intake (1.2-1.5 g/kg/d; HI PROT), and the other maintaining dietary protein intake at 15% of total energy (0.5-0.7 g/kg/d; LO PROT). The GCRC metabolic kitchen provided lunch and dinner meals which the women picked up 3 days per week and ate outside of the clinic. Body composition, including total body mass, total lean mass, total fat mass, and appendicular lean mass, assessed by dual energy x-ray absorptiometry, was measured before and after the diet interventions. The HI PROT group lost 8.4 +/- 4.5 kg and the LO PROT group lost 11.4 +/- 3.8 kg of body weight (p = 0.11). The mean percentage of total mass lost as lean mass was 17.3% +/- 27.8% and 37.5% +/- 14.6%, respectively (p = 0.03). Maintaining adequate protein intake may reduce lean mass losses associated with voluntary weight loss in older women.
Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y
2015-01-01
Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats
NASA Astrophysics Data System (ADS)
Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza
2010-04-01
This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.
Hudgins, Lisa C; Baday, Aline; Hellerstein, Marc K; Parker, Thomas S; Levine, Daniel M; Seidman, Cynthia E; Neese, Richard A; Tremaroli, Jolanta D; Hirsch, Jules
2008-04-01
Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.
Morais, Sofia; Pratoomyot, Jarunan; Torstensen, Bente E; Taggart, John B; Guy, Derrick R; Bell, J Gordon; Tocher, Douglas R
2011-11-01
The present study investigates the effects of genotype on responses to alternative feeds in Atlantic salmon. Microarray analysis of the liver transcriptome of two family groups, lean or fat, fed a diet containing either a fish oil (FO) or a vegetable oil (VO) blend indicated that pathways of cholesterol and lipoprotein metabolism might be differentially affected by the diet depending on the genetic background of the fish, and this was further investigated by real-time quantitative PCR, plasma and lipoprotein biochemical analysis. Results indicate a reduction in VLDL and LDL levels, with no changes in HDL, when FO is replaced by VO in the lean family group, whereas in fat fish fed FO, levels of apoB-containing lipoproteins were low and comparable with those fed VO in both family groups. Significantly lower levels of plasma TAG and LDL-TAG were measured in the fat group that was independent of diet, whereas plasma cholesterol was significantly higher in fish fed the FO diet in both groups. Hepatic expression of genes involved in cholesterol homeostasis, β-oxidation and lipoprotein metabolism showed relatively subtle changes. A significantly lower expression of genes considered anti-atherogenic in mammals (ATP-binding cassette transporter A1, apoAI, scavenger receptor class B type 1, lipoprotein lipase (LPL)b (TC67836) and LPLc (TC84899)) was found in lean fish, compared with fat fish, when fed VO. Furthermore, the lean family group appeared to show a greater response to diet composition in the cholesterol biosynthesis pathway, mediated by sterol-responsive element-binding protein 2. Finally, the presence of three different transcripts for LPL, with differential patterns of nutritional regulation, was demonstrated.
Calculation of Glucose Dose for Intraperitoneal Glucose Tolerance Tests in Lean and Obese Mice.
Jørgensen, Mikkel S; Tornqvist, Kristina S; Hvid, Henning
2017-01-01
Glucose tolerance tests are used frequently in nonclinical research with laboratory animals, for example during characterization of obese phenotypes. Despite published standard operating procedures for glucose tolerance tests in rodents, how glucose doses should be calculated when obese and lean animals are compared is not well documented. Typically the glucose dose is calculated as 2 g/kg body weight, regardless of body composition. With this approach, obese mice receive larger glucose doses than do lean animals, potentially leading to overestimation of glucose intolerance in obese animals. In this study, we performed intraperitoneal glucose tolerance tests in mice with diet-induced obesity and their lean controls, with glucose doses based on either the total body weight or the lean body mass of the animals. To determine glucose tolerance, we determined the blood glucose AUC during the glucose tolerance test. We found that the blood glucose AUC was increased significantly in obese mice compared with lean mice by 75% on average when glucose was dosed according to the lean body mass and by 87% when the glucose dose was calculated according to total body weight. Therefore, mice with diet-induced obesity were approximately equally glucose intolerant between the 2 dose-calculation protocols. However, we recommend calculating the glucose dose according to the lean body mass of the mice, because doing so eliminates the concern regarding overdosing of obese animals.
Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet
Reimer, Raylene A.; Russell, James C.
2013-01-01
Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610
Diet-induced obese mice retain endogenous leptin action.
Ottaway, Nickki; Mahbod, Parinaz; Rivero, Belen; Norman, Lee Ann; Gertler, Arieh; D'Alessio, David A; Perez-Tilve, Diego
2015-06-02
Obesity is characterized by hyperleptinemia and decreased response to exogenous leptin. This has been widely attributed to the development of leptin resistance, a state of impaired leptin signaling proposed to contribute to the development and persistence of obesity. To directly determine endogenous leptin activity in obesity, we treated lean and obese mice with a leptin receptor antagonist. The antagonist increased feeding and body weight (BW) in lean mice, but not in obese models of leptin, leptin receptor, or melanocortin-4 receptor deficiency. In contrast, the antagonist increased feeding and BW comparably in lean and diet-induced obese (DIO) mice, an increase associated with decreased hypothalamic expression of Socs3, a primary target of leptin. These findings demonstrate that hyperleptinemic DIO mice retain leptin suppression of feeding comparable to lean mice and counter the view that resistance to endogenous leptin contributes to the persistence of DIO in mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Lean red meat consumption and lipid profiles in adolescent girls
Bradlee, M. Loring; Singer, Martha R.; Moore, Lynn L.
2014-01-01
Background Epidemiologic studies of red meat consumption often fail to distinguish between leaner and fattier or processed cuts of meat. Red meat has also been frequently linked with less healthy diet patterns. Data exploring health effects of lean red meat in younger individuals, particularly in the context of a healthy diet, are sparse. This study examined the effects of lean red meat in combination with higher intakes of fruit/non-starchy vegetables on lipid profiles in older adolescent girls. Methods Data from 1,461 girls followed for 10 years starting at 9-10 years of age in the NHLBI Growth and Health Study were used. Diet was assessed using multiple sets of 3-day records collected over eight exam cycles. Outcome measures included fasting levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), non-high-density lipoprotein cholesterol and triglycerides at ages 18-20 years. Results After adjusting for age, race, SES, height, activity level, hours of television/day, and intakes of whole grains and dairy foods using multivariable modeling, girls consuming ≥6 oz lean red meat/wk combined with ≥2 servings of fruit/non-starchy vegetables/day had LDL levels about 6-7 mg/dL lower (p<0.05) than girls with lower intakes of lean red meat and fruit/non-starchy vegetables. In addition, girls with higher intakes of both were 33% less likely (OR=0.67, 95% CI: 0.48-0.94) to have an LDL-C ≥110 mg/dL and 41% less likely (OR=0.59, 95% CI: 0.42, 0.83) to have an elevated LDL:HDL ratio (≥2.2) at the end of adolescence. Conclusion These analyses suggest that lean red meat may be included in a healthy adolescent diet without unfavorable effects on lipid values. PMID:23663235
Deposition of dietary fatty acids in young Zucker rats fed a cafeteria diet.
Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M
1992-10-01
The content and accretion of fatty acids in 30, 45 and 60-day-old Zucker lean Fa/? and obese fa/fa rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during each period. Diet had little overall effect on the pattern of deposition of fatty acids, but quantitatively the deposition of fat was much higher in cafeteria-fed rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into the rat lipids, whilst chow feeding activated lipogenesis and the deposition of a shorter chain and more saturated pattern of fatty acids. Genetic, obesity induced a significant expansion of net lipogenesis when compared with lean controls. Cafeteria-fed obese rats accrued a high proportion of fatty acids, which was close to that ingested, but nevertheless showed a net de novo synthesis of fatty acids. It is postulated that the combined effects of genetic obesity and a fat-rich diet result in high rates of fat accretion with limited net lipogenesis. Lean Zucker rats show a progressive impairment of their delta 5-desaturase system, a situation also observed in obese rats fed a reference diet. In Zucker obese rats, cafeteria feeding resulted in an alteration of the conversion of C18:2 into C20:3. The cafeteria diet fully compensated for these drawbacks by supplying very high amounts of polyunsaturated fatty acids.
Excess intake of fat and sugar potentiates epinephrine-induced hyperglycemia in male rats.
Ross, Amy P; Darling, Jenna N; Parent, Marise B
2015-04-01
Over the past five decades, per capita caloric intake has increased significantly, and diet- and stress-related diseases are more prevalent. The stress hormone epinephrine stimulates hepatic glucose release during a stress response. The present experiment tested the hypothesis that excess caloric intake alters this ability of epinephrine to increase blood glucose. Sprague-Dawley rats were fed a high-energy cafeteria-style diet (HED). Weight gain during the first 5 days on the diet was used to divide the rats into an HED-lean group and HED-obese group. After 9 weeks, the rats were injected with epinephrine, and blood glucose was measured. HED-obese rats gained body and fat mass, and developed insulin resistance (IR) and hepatic steatosis. HED-lean and control rats did not differ. Epinephrine produced larger increases in blood glucose in the HED-obese rats than in the HED-lean and control rats. Removing the high-energy components of the diet for 4 weeks reversed the potentiated effects of epinephrine on glucose and corrected the IR but not the steatosis or obesity. Consumption of a high-energy cafeteria diet potentiates epinephrine-induced hyperglycemia. This effect is associated with insulin resistance but not adiposity or steatosis and is reversed by 4 weeks of standard chow. Copyright © 2015 Elsevier Inc. All rights reserved.
Bahadori, B; Yazdani-Biuki, B; Krippl, P; Brath, H; Uitz, E; Wascher, T C
2005-05-01
The traditional treatment for obesity which is based on a reduced caloric diet has only been partially successful. Contributing factors are not only a poor long-term dietary adherence but also a significant loss of lean body mass and subsequent reduction in energy expenditure. Both low-fat, high-carbohydrate diets and diets using low-glycaemic index (GI) foods are capable of inducing modest weight loss without specific caloric restriction. The purpose of this study was to investigate the feasibility and medium-term effect of a low-fat diet with high (low GI) carbohydrates on weight loss, body composition changes and dietary compliance. Obese patients were recruited from two obesity outpatient clinics. Subjects were given advise by a dietician, then they attended biweekly for 1-hour group meetings. Bodyweight and body composition were measured at baseline and after 24 weeks. One hundred and nine (91%) patients completed the study; after 24 weeks the average weight loss was 8.9 kg (98.6 vs. 89.7 kg; p < or = 0.0001). There was a significant 15% decrease in fat mass (42.5 vs. 36.4 kg; p < or = 0.0001) and a decrease in lean body mass of 5% (56.1 vs. 53.3 kg; p < or = 0.0001). In this 6-month study, a low-fat, low-GI diet led to a significant reduction of fat mass; adherence to the diet was very good. Our results suggest that such a diet is feasible and should be evaluated in randomized controlled trials.
BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.
2013-01-01
The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032
Effect of High Sugar Intake on Glucose Transporter and Weight Regulating Hormones in Mice and Humans
Ritze, Yvonne; Bárdos, Gyöngyi; D’Haese, Jan G.; Ernst, Barbara; Thurnheer, Martin; Schultes, Bernd; Bischoff, Stephan C.
2014-01-01
Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals. PMID:25010715
McClain, Arianna D; Hsu, Ya-Wen; Belcher, Britni R; Nguyen-Rodriguez, Selena; Weigensberg, Marc; Spruijt-Metz, Donna
2011-01-01
Minority girls are disproportionately affected by overweight and obesity. The independent effects of physical activity (PA), sedentary behavior (SB), and diet are not well understood. This study examined the individual influences of PA, SB and diet on fat mass in Latina and African American (AA) girls, aged 8-11. Baseline data from a longitudinal cohort study in minority girls is presented. Multiple linear regression analysis assessed the effects of PA, SB, and energy intake on fat mass, adjusting for lean mass, age, Tanner stage and ethnicity. Participants were 53 Latina and AA girls (77% Latina; M age=9.8 +/- .9; M(BMI%)=80.8 +/- 23.1). Moderate-to-vigorous physical activity (MVPA) by accelerometry (beta= -.13, P<.01) and lean mass (beta=.69, P<.001) were associated with fat mass (Model R2=.63; P<.0001). MVPA by 3-day-physical-activity-recall (beta=-.04, P=.01) and lean mass (beta=.75, P<.001) were associated with fat mass (Model R2=.61; P<.0001). SB and energy intake were not associated with fat mass in any model. Using both objective and subjective measures of PA, MVPA, but not SB or diet, was associated with higher fat mass in Latina and AA girls, independent of lean mass, age, Tanner stage, and ethnicity. Prospective studies are needed to clarify the differential impact of diet and activity levels on adiposity in this population.
The gut microbiota and its relationship to diet and obesity
Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.
2012-01-01
Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830
Zou, Shiying; Tang, Min; He, Xiaoyun; Cao, Yuan; Zhao, Jie; Xu, Wentao; Liang, Zhihong; Huang, Kunlun
2015-11-01
Because cardiovascular disease incidence has rapidly increased in recent years, people are choosing relatively healthier diets with low animal fat. A transgenic pig with low fat and a high percentage of lean meat was created in 2011; this pig overexpresses the follistatin (FST) gene. To evaluate the safety of lean pork derived from genetically modified (GM) pigs, a subchronic oral toxicity study was conducted using Sprague-Dawley rats. GM pork and non-GM pork were incorporated into the diet at levels of 3.75%, 7.5%, and 15% (w/w), and the main nutrients of the various diets were subsequently balanced. The safety of GM pork was assessed by comparison of the toxicology response variables in Sprague-Dawley rats consuming diets containing GM pork with those consuming non-GM pork. No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. The results demonstrate that GM pork is as safe for consumption as conventional pork. Copyright © 2015 Elsevier Inc. All rights reserved.
Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W
2015-01-01
Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational weight gain, glucose intolerance, hyperinsulinaemia and mild hyperglycaemia. Compared to the offspring of lean dams, exposure to gestational diabetes mellitus during the prenatal period resulted in obesity, hepatic steatosis and insulin resistance in young rat offspring that consumed a postnatal diet that was low in fat. The combination of maternal gestational diabetes mellitus and the postnatal consumption of a high-fat diet by the offspring caused a more severe metabolic phenotype. Metabolomic profiling of the liver tissues of the offspring of gestational diabetic dams revealed accumulation of lipotoxic lipids and reduced phosphatidylethanolamine levels compared to the offspring of lean dams. The results establish that gestational diabetes mellitus is a driver of hepatic steatosis and insulin resistance in the offspring. PMID:25922055
Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A
2015-01-01
Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P < 0.001), but was similar in obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.
Effects of dietary interventions on liver volume in humans.
Bian, Hua; Hakkarainen, Antti; Lundbom, Nina; Yki-Järvinen, Hannele
2014-04-01
To compare effects of similar weight loss induced either by a short-term low-carbohydrate or by a long-term hypocaloric diet, and to determine effects of high carbohydrate overfeeding on liver total, lean, and fat volumes. Liver total, lean, and fat volumes were measured before and after (i) a 6-day low-carbohydrate diet (n = 17), (ii) a 7-month standard hypocaloric diet (n = 26), and (iii) a 3-week high-carbohydrate diet (n = 17), by combining magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1) H-MRS) techniques. At baseline, three groups were comparable with respect to age, body mass index, liver volumes and the liver fat content. Body weight decreased similarly by the short-term and long-term hypocaloric diets. Liver total volume decreased significantly more during the short-term low-carbohydrate (-22 ± 2%) than the long-term (-7 ± 2%) hypocaloric diet (P < 0.001). This was due to a greater decrease in liver lean volume in the short-term (-20 ± 2%) than the long-term (-4 ± 2%) weight loss group (P < 0.001). Decreases in liver fat were comparable. Liver volume increased by 9 ± 3% due to overfeeding (P< 0.02 for before vs. after). These data support the use of a short-term low-carbohydrate diet whenever a reduction in liver volume is desirable. Overeating carbohydrate is harmful because it increases liver volume. Copyright © 2013 The Obesity Society.
Merra, G; Miranda, R; Barrucco, S; Gualtieri, P; Mazza, M; Moriconi, E; Marchetti, M; Chang, T F M; De Lorenzo, A; Di Renzo, L
2016-07-01
Obesity plays a relevant pathophysiological role in the development of health problems, arising as result of complex interaction of genetic, nutritional and metabolic factors. We conducted a dietary intervention case-control randomized trial, to compare the effectiveness on body composition of two nutritional protocols: a very-low-carbohydrate ketogenic diet (VLCKD), integrated by an aminoacid supplement with whey protein, and very low restricted-calorie diet (VLCD). The clinical study was conducted with a randomized case-control in which twenty-five healthy subjects gave informed consent to participate in the interventional study and were evaluated for their health and nutritional status, by anthropometric, and body composition evaluation. The results of this pilot study show that a diet low in carbohydrates, associated with a decreased caloric intake, is effective in weight loss. After VLCKD, versus VLCD, no significant differences in body lean of the trunk, body lean distribution (android and gynoid), total body lean were observed (p > 0.05). After VLCKD, no increasing of sarcopenia frequency, according ASSMI, was observed. Many studies have shown the effectiveness of the ketogenic diet on weight loss; even if not know how to work effectively, as some researchers believe that the weight loss is due to reduced calorie intake, satiety could also be induced by the effect of the proteins, rather than the low-carbohydrates. Our pilot study showed that a VLCKD was highly effective in terms of body weight reduction without to induce lean body mass loss, preventing the risk of sarcopenia. Further clinical trials are needed on a larger population and long-term body weight maintenance and risk factors management effects of VLCKD. There is no doubt, however, that a proper dietary approach would impact significantly on the reduction of public expenditure costs, in view of prospective data on increasing the percentage of obese people in our nation.
Lean red meat consumption and lipid profiles in adolescent girls.
Bradlee, M L; Singer, M R; Moore, L L
2014-04-01
Epidemiological studies of red meat consumption often fail to distinguish between leaner and fattier or processed cuts of meat. Red meat has also been frequently linked with less healthy diet patterns. Data exploring the health effects of lean red meat in younger individuals are scarce, particularly in the context of a healthy diet. The present study examined the effects of lean red meat in combination with higher intakes of fruit/nonstarchy vegetables on lipid profiles in older adolescent girls. Data from 1461 girls who were followed for 10 years, starting at 9-10 years of age, in the National Heart Lung and Blood Institute Growth and Health Study were used. Diet was assessed using multiple sets of 3-day records collected over eight examination cycles. Outcome measures included fasting levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), non-HDL-C and triglycerides at age 18-20 years. After adjusting for age, race, socioeconomic status, height, activity level, hours of television per day, and intakes of whole grains and dairy foods using multivariable modelling, girls consuming ≥6 oz lean red meat per week combined with two or more servings of fruit/nonstarchy vegetables per day had LDL-C levels approximately 6-7 mg dL(-1) lower (P < 0.05) than girls with lower intakes of lean red meat and fruit/nonstarchy vegetables. In addition, girls with higher intakes of both were 33% less likely (odds ratio = 0.67, 95% confidence interval = 0.48-0.94) to have an LDL-C ≥110 mg dL(-1) and 41% less likely (odds ratio = 0.59, 95% confidence interval = 0.42-0.83) to have an elevated LDL : HDL ratio (≥2.2) at the end of adolescence. These analyses suggest that lean red meat may be included in a healthy adolescent diet without unfavourable effects on lipid values. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs
USDA-ARS?s Scientific Manuscript database
Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. ...
The effect of a high protein diet on leucine and alanine turnover in acid maltase deficiency.
Umpleby, A M; Trend, P S; Chubb, D; Conaglen, J V; Williams, C D; Hesp, R; Scobie, I N; Wiles, C M; Spencer, G; Sönksen, P H
1989-01-01
Leucine and alanine production rate was measured in 5 patients with acid maltase deficiency in the postabsorptive state, following 6 months on a normal diet with placebo and 6 months on an isocaloric high protein diet (16-22% protein). Whole body leucine production rate, a measure of protein degradation, expressed in terms of lean body mass was significantly greater than in five control subjects. Following the high protein diet, leucine production rate was decreased in four of the five patients but this was not statistically significant. Alanine production rate expressed in terms of lean body mass was significantly greater than in control subjects. After the high protein diet, alanine production rate and concentration were significantly decreased (p less than 0.05). There were no significant improvements in any of the clinically relevant variables measured in these patients. It is possible that a larger increase in protein intake over a longer time period may have a clinical effect. PMID:2507747
Weight Loss: Choosing a Diet That's Right for You
... Yes. Emphasis is on making permanent lifestyle changes. High protein (Dukan, Paleo) No. Emphasizes lean meats, dairy. Deficiencies are possible on very restrictive plans. Possibly. But the diet may be hard to stick to over time. ...
Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.
2015-01-01
SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211
Cluny, Nina L.; Keenan, Catherine M.; Reimer, Raylene A.; Le Foll, Bernard; Sharkey, Keith A.
2015-01-01
Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity. PMID:26633823
Cluny, Nina L; Keenan, Catherine M; Reimer, Raylene A; Le Foll, Bernard; Sharkey, Keith A
2015-01-01
Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.
Molecular exploration of fecal microbiome in quinoa-supplemented obese mice.
Garcia-Mazcorro, Jose F; Mills, David; Noratto, Giuliana
2016-07-01
Diet affects gut microorganisms and dietary interventions can help treat obesity and overweight. Our aim was to investigate the effect of quinoa supplementation on fecal microbial ecology of obese diabetic mice. Obese db/db mice were fed commercial diets with and without quinoa supplementation for eight weeks; non-obese mice consuming non-supplemented diet served as lean-control. Fecal bacterial communities were analyzed using marker gene sequencing of 16S rRNA genes. Over 300 000 good-quality sequences were studied and assigned to 5774 different bacterial species (Operational Taxonomic Units at 97% similarity). Significant differences in bacterial abundances were found among the treatment groups, including some associated specifically with quinoa consumption. Analysis of weighted UniFrac distances revealed a distinctive clustering of lean microbial communities independently from obese-control and quinoa-supplemented mice (Analysis of Similarities, P < 0.01). Predicted functional profiles showed significant differences in 38 metabolic functions but most were due to a difference between lean samples compared to both obese-control and quinoa. Quinoa supplementation was associated with lower butyrate and succinic acid concentrations in cecum that were not necessarily more similar to those concentrations in lean mice. This study provides insight into the complex interactions between nutritional supplements and the gut microbiota thus informing future molecular analysis of the health benefits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yang, Susan Q; DeGuire, Jason R; Lavery, Paula; Mak, Ivy L; Weiler, Hope A; Santosa, Sylvia
2016-05-01
We hypothesize that conjugated linoleic acid (CLA) may be effective in preventing the changes in total and regional body composition and increases in interleukin (IL) 6 that occur as a result of hypogonadism. Male guinea pigs (n = 40, 70- to 72-week retired breeders) were block randomized by weight into 4 groups: (1) sham surgery (SHAM)/control (CTRL) diet, (2) SHAM/conjugated linoleic acid (CLA) diet (1%), (3) orchidectomy (ORX)/CTRL diet, and (4) ORX/CLA diet. Dual-energy x-ray absorptiometry scans were performed at baseline and week 16 to assess body composition. Serum IL-6 was analyzed using an enzyme-linked immune sorbent assay. Fatty acids (FAs) from visceral and subcutaneous adipose tissue were analyzed using gas chromatography. In ORX/CTRL guinea pigs, percent total body fat increased by 6.1%, and percent lean mass decreased by 6.7% over the 16-week treatment period, whereas no changes were observed for either parameter in ORX/CLA guinea pigs. Guinea pigs fed the CLA diet gained less percent total, upper, and lower body fat than those fed the CTRL diet regardless of surgical treatment. Regional adipose tissue FA composition was reflective of dietary FAs. Serum IL-6 concentrations were not different among groups. In this study, we observed that, in male guinea pigs, hypogonadism resulted in increased fat mass and decreased lean mass. In addition, CLA was effective in reducing gains in body fat and maintaining lean mass in both hypogonadal and intact guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Goss, Amy M; Chandler-Laney, Paula C; Ovalle, Fernando; Goree, Laura Lee; Azziz, Ricardo; Desmond, Renee A; Wright Bates, G; Gower, Barbara A
2014-10-01
To determine if consumption of a reduced-carbohydrate (CHO) diet would result in preferential loss of adipose tissue under eucaloric conditions, and whether changes in adiposity were associated with changes in postprandial insulin concentration. In a crossover-diet intervention, 30 women with PCOS consumed a reduced-CHO diet (41:19:40% energy from CHO:protein:fat) for 8 weeks and a standard diet (55:18:27) for 8 weeks. Body composition by DXA and fat distribution by CT were assessed at baseline and following each diet phase. Insulin AUC was obtained from a solid meal test (SMT) during each diet phase. Participants lost 3.7% and 2.2% total fat following the reduced-CHO diet and STD diet, resp. (p<0.05 for difference between diets). The reduced-CHO diet induced a decrease in subcutaneous-abdominal, intra-abdominal, and thigh-intermuscular adipose tissue (-7.1%, -4.6%, and -11.5%, resp.), and the STD diet induced a decrease in total lean mass. Loss of fat mass following the reduced CHO diet arm was associated with lower insulin AUC (p<0.05) during the SMT. In women with PCOS, consumption of a diet lower in CHO resulted in preferential loss of fat mass from metabolically harmful adipose depots, whereas a diet high in CHO appeared to promote repartitioning of lean mass to fat mass. Copyright © 2014 Elsevier Inc. All rights reserved.
Jebelovszki, Eva; Kiraly, Csaba; Erdei, Nora; Feher, Attila; Pasztor, Eniko T; Rutkai, Ibolya; Forster, Tamas; Edes, Istvan; Koller, Akos; Bagi, Zsolt
2008-06-01
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.
Hu, Tian; Yao, Lu; Reynolds, Kristi; Niu, Tianhua; Li, Shengxu; Whelton, Paul K; He, Jiang; Steffen, Lyn M; Bazzano, Lydia A
2016-03-01
A low-carbohydrate diet can reduce body weight and some cardiovascular disease (CVD) risk factors more than a low-fat diet, but differential adherence may play a role in these effects. Data were used from 148 adults who participated in a 12-month clinical trial examining the effect of a low-carbohydrate diet (<40 g/day) and a low-fat diet (<30% fat, <7% saturated fat) on weight and CVD risk factors. We compared attendance at counseling sessions, deviation from nutrient goals, urinary ketone presence, and composite scores representing the overall adherence based on the distribution of these individual indicators between two interventions. Composite scores were similar between the two groups. A one-interquartile-range increase in composite score representing better adherence to a low-carbohydrate diet was associated with 2.2 kg or 2.3 % greater weight loss, 1.1 greater reduction in percent fat mass, and 1.3 greater increase in proportion of lean mass. Indicators of adherence to a low-fat diet was not associated with changes in weight, fat mass or lean mass. Despite comparable adherence between groups, a low-carbohydrate diet was associated with greater reductions in body weight and improvement in body composition, while a low-fat diet was not associated with weight loss.
Josse, Andrea R; Atkinson, Stephanie A; Tarnopolsky, Mark A; Phillips, Stuart M
2011-09-01
Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8-16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8-16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain.
Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.
Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y
2011-11-01
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.
Intermittent Hypoxia Exacerbates Metabolic Effects of Diet-Induced Obesity
Drager, Luciano F.; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C.; Polotsky, Vsevolod Y.
2015-01-01
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6–8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity. PMID:21799478
DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A
2015-04-01
Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with significant benefits to femur density and strength. Copyright © 2014 Elsevier Inc. All rights reserved.
Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet.
Willcox, Donald Craig; Scapagnini, Giovanni; Willcox, Bradley J
2014-01-01
The traditional diet in Okinawa is anchored by root vegetables (principally sweet potatoes), green and yellow vegetables, soybean-based foods, and medicinal plants. Marine foods, lean meats, fruit, medicinal garnishes and spices, tea, alcohol are also moderately consumed. Many characteristics of the traditional Okinawan diet are shared with other healthy dietary patterns, including the traditional Mediterranean diet, DASH diet, and Portfolio diet. All these dietary patterns are associated with reduced risk for cardiovascular disease, among other age-associated diseases. Overall, the important shared features of these healthy dietary patterns include: high intake of unrefined carbohydrates, moderate protein intake with emphasis on vegetables/legumes, fish, and lean meats as sources, and a healthy fat profile (higher in mono/polyunsaturated fats, lower in saturated fat; rich in omega-3). The healthy fat intake is likely one mechanism for reducing inflammation, optimizing cholesterol, and other risk factors. Additionally, the lower caloric density of plant-rich diets results in lower caloric intake with concomitant high intake of phytonutrients and antioxidants. Other shared features include low glycemic load, less inflammation and oxidative stress, and potential modulation of aging-related biological pathways. This may reduce risk for chronic age-associated diseases and promote healthy aging and longevity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Healthy aging diets other than the Mediterranean: A Focus on the Okinawan Diet
Willcox, Donald Craig; Scapagnini, Giovanni; Willcox, Bradley J.
2014-01-01
The traditional diet in Okinawa is anchored by root vegetables (principally sweet potatoes), green and yellow vegetables, soybean-based foods, and medicinal plants. Marine foods, lean meats, fruit, medicinal garnishes and spices, tea, alcohol are also moderately consumed. Many characteristics of the traditional Okinawan diet are shared with other healthy dietary patterns, including the traditional Mediterranean diet, DASH diet, and Portfolio diet. All these dietary patterns are associated with reduced risk for cardiovascular disease, among other age-associated diseases. Overall, the important shared features of these healthy dietary patterns include: high intake of unrefined carbohydrates, moderate protein intake with emphasis on vegetables/legumes, fish, and lean meats as sources, and a healthy fat profile (higher in mono/polyunsaturated fats, lower in saturated fat; rich in omega-3). The healthy fat intake is likely one mechanism for reducing inflammation, optimizing cholesterol, and other risk factors. Additionally, the lower caloric density of plant-rich diets results in lower caloric intake with concomitant high intake of phytonutrients and antioxidants. Other shared features include low glycemic load, less inflammation and oxidative stress, and potential modulation of aging-related biological pathways. This may reduce risk for chronic age-associated diseases and promote healthy aging and longevity. PMID:24462788
2011-01-01
Background Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3) of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children. Methods Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1) pork lard (LRD); 2) natural palm olein (NPO); 3) chemically inter-esterified PO (CPO) and 4) enzymatically inter-esterified PO (EnPO) as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments. Results From 8 weeks onwards, pigs on EnPO diet gained (P < 0.05) more weight than all other groups. Feed conversion efficiency (feed to gain) over the 12 week experimental period did not vary between treatment groups. Plasma LDL-C content and LDL-C/HDL-C ratio in pigs fed natural PO tended to be lower compared to all other diets. The natural PO lowered (P < 0.02) the plasma triglyceride (TG) content relative to the lard or EnPO diets, but was not different from the CPO diet. The natural PO diet was associated with lower (P < 0.05) saturated fat levels in subcutaneous adipose tissue than the CPO and EnPO diets that had lower saturated fat levels than the lard diet. Female pigs had lower lean and higher fat and fat:lean ratio in the body compared with male pigs. No difference in weight gain or blood lipid parameters was observed between sexes. Conclusions The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous) thickness suggest that natural palm oil may reduce deposition of body fat. In addition, dietary supplementation with natural palm oil containing palmitic acid at different positions in meat producing animals may lead to the production of meat and meat products with lower saturated fats. An increase in fat content and a decrease in lean content in female pigs resulted in an increased body fat:lean ratio but gender had no effect on blood lipid parameters or insulin concentrations. PMID:21586170
Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing
2016-01-01
The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576
Ng Tang Fui, Mark; Prendergast, Luke A; Dupuis, Philippe; Raval, Manjri; Strauss, Boyd J; Zajac, Jeffrey D; Grossmann, Mathis
2016-10-07
Whether testosterone treatment has benefits on body composition over and above caloric restriction in men is unknown. We hypothesised that testosterone treatment augments diet-induced loss of fat mass and prevents loss of muscle mass. We conducted a randomised double-blind, parallel, placebo controlled trial at a tertiary referral centre. A total of 100 obese men (body mass index ≥ 30 kg/m 2 ) with a total testosterone level of or below 12 nmol/L and a median age of 53 years (interquartile range 47-60) receiving 10 weeks of a very low energy diet (VLED) followed by 46 weeks of weight maintenance were randomly assigned at baseline to 56 weeks of 10-weekly intramuscular testosterone undecanoate (n = 49, cases) or matching placebo (n = 51, controls). The main outcome measures were the between-group difference in fat and lean mass by dual-energy X-ray absorptiometry, and visceral fat area (computed tomography). A total of 82 men completed the study. At study end, compared to controls, cases had greater reductions in fat mass, with a mean adjusted between-group difference (MAD) of -2.9 kg (-5.7 to -0.2; P = 0.04), and in visceral fat (MAD -2678 mm 2 ; -5180 to -176; P = 0.04). Although both groups lost the same lean mass following VLED (cases -3.9 kg (-5.3 to -2.6); controls -4.8 kg (-6.2 to -3.5), P = 0.36), cases regained lean mass (3.3 kg (1.9 to 4.7), P < 0.001) during weight maintenance, in contrast to controls (0.8 kg (-0.7 to 2.3), P = 0.29) so that, at study end, cases had an attenuated reduction in lean mass compared to controls (MAD 3.4 kg (1.3 to 5.5), P = 0.002). While dieting men receiving placebo lost both fat and lean mass, the weight loss with testosterone treatment was almost exclusively due to loss of body fat. clinicaltrials.gov, identifier NCT01616732 , registration date: June 8, 2012.
Coradini, M; Rand, J S; Morton, J M; Rawlings, J M
2011-10-01
A low-carbohydrate, high-protein (LCHP) diet is often recommended for the prevention and management of diabetes in cats; however, the effect of macronutrient composition on insulin sensitivity and energetic efficiency for weight gain is not known. The present study compared the effect in adult cats (n 32) of feeding a LCHP (23 and 47 % metabolisable energy (ME)) and a high-carbohydrate, low-protein (HCLP) diet (51 and 21 % ME) on fasting and postprandial glucose and insulin concentrations, and on insulin sensitivity. Tests were done in the 4th week of maintenance feeding and after 8 weeks of ad libitum feeding, when weight gain and energetic efficiency of each diet were also measured. When fed at maintenance energy, the HCLP diet resulted in higher postprandial glucose and insulin concentrations. When fed ad libitum, the LCHP diet resulted in greater weight gain (P < 0.01), and was associated with higher energetic efficiency. Overweight cats eating the LCHP diet had similar postprandial glucose concentrations to lean cats eating the HCLP diet. Insulin sensitivity was not different between the diets when cats were lean or overweight, but glucose effectiveness was higher after weight gain in cats fed the HCLP diet. According to the present results, LCHP diets fed at maintenance requirements might benefit cats with multiple risk factors for developing diabetes. However, ad libitum feeding of LCHP diets is not recommended as they have higher energetic efficiency and result in greater weight gain.
2012-01-01
Background Expansion of aquaculture requires alternative feeds and breeding strategies to reduce dependency on fish oil (FO) and better utilization of dietary vegetable oil (VO). Despite the central role of intestine in maintaining body homeostasis and health, its molecular response to replacement of dietary FO by VO has been little investigated. This study employed transcriptomic and proteomic analyses to study effects of dietary VO in two family groups of Atlantic salmon selected for flesh lipid content, 'Lean' or 'Fat'. Results Metabolism, particularly of lipid and energy, was the functional category most affected by diet. Important effects were also measured in ribosomal proteins and signalling. The long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis pathway, assessed by fatty acid composition and gene expression, was influenced by genotype. Intestinal tissue contents of docosahexaenoic acid were equivalent in Lean salmon fed either a FO or VO diet and expression of LC-PUFA biosynthesis genes was up-regulated in VO-fed fish in Fat salmon. Dietary VO increased lipogenesis in Lean fish, assessed by expression of FAS, while no effect was observed on β-oxidation although transcripts of the mitochondrial respiratory chain were down-regulated, suggesting less active energetic metabolism in fish fed VO. In contrast, dietary VO up-regulated genes and proteins involved in detoxification, antioxidant defence and apoptosis, which could be associated with higher levels of polycyclic aromatic hydrocarbons in this diet. Regarding genotype, the following pathways were identified as being differentially affected: proteasomal proteolysis, response to oxidative and cellular stress (xenobiotic and oxidant metabolism and heat shock proteins), apoptosis and structural proteins particularly associated with tissue contractile properties. Genotype effects were accentuated by dietary VO. Conclusions Intestinal metabolism was affected by diet and genotype. Lean fish may have higher responsiveness to low dietary n-3 LC-PUFA, up-regulating the biosynthetic pathway when fed dietary VO. As global aquaculture searches for alternative oils for feeds, this study alerts to the potential of VO introducing contaminants and demonstrates the detoxifying role of intestine. Finally, data indicate genotype-specific responses in the intestinal transcriptome and proteome to dietary VO, including possibly structural properties of the intestinal layer and defence against cellular stress, with Lean fish being more susceptible to diet-induced oxidative stress. PMID:22943471
Influence of diet, exercise, and serum vitamin d on sarcopenia in postmenopausal women.
Mason, Caitlin; Xiao, Liren; Imayama, Ikuyo; Duggan, Catherine R; Foster-Schubert, Karen E; Kong, Angela; Campbell, Kristin L; Wang, Ching-Yun; Villasenor, Adriana; Neuhouser, Marian L; Alfano, Catherine M; Blackburn, George L; McTiernan, Anne
2013-04-01
The objective of this study is to investigate the effects of 12 months of dietary weight loss and/or aerobic exercise on lean mass and the measurements defining sarcopenia in postmenopausal women and to examine the potential moderating effect of serum 25-hydroxyvitamin D (25(OH)D) and age. Four hundred thirty-nine overweight and obese postmenopausal women were randomized to diet modification (N = 118), exercise (N = 117), diet + exercise (N = 117), or control (N = 87). The diet intervention was a group-based program with a 10% weight loss goal. The exercise intervention was 45 min·d, 5 d·wk, of moderate-to-vigorous intensity aerobic activity. Total and appendicular lean mass (ALM) were quantified by dual x-ray absorptiometry at baseline and 12 months. A skeletal muscle index (SMI = ALM (kg) / height (m)) and the prevalence of sarcopenia (SMI <5.67 kg·m) were calculated. Serum 25(OH)D was assayed using a competitive chemiluminescent immunoassay. Dietary weight loss resulted in a significant decrease in lean mass and a borderline significant decrease in ALM and SMI compared with controls. In contrast, aerobic exercise significantly preserved ALM and SMI. Diet + exercise attenuated the loss of ALM and SMI compared with diet alone and did not result in significant loss of total mass or ALM compared with controls. Neither serum 25(OH)D nor age was significant moderators of the intervention effects. Aerobic exercise added to dietary weight loss can attenuate the loss of ALM during weight loss and may be effective for the prevention and treatment of sarcopenia among overweight and obese postmenopausal women.
Marked alterations in the distal gut microbiome linked to diet-induced obesity
Turnbaugh, Peter J.; Backhed, Fredrik; Fulton, Lucinda; Gordon, Jeffrey I.
2013-01-01
SUMMARY We have investigated the inter-relationship between diet, gut microbial ecology and energy balance using a mouse model of obesity produced by consumption of a prototypic Western diet. Diet-induced obesity (DIO) produced a bloom in a single uncultured clade within the Mollicutes class of the Firmicutes, which became the dominant lineage within the distal gut microbiota. This bloom was diminished by subsequent dietary manipulations that limit weight gain and reduce adiposity. Transplantation of the microbiota from mice with DIO to lean germ-free recipients produced a significantly greater increase in adiposity than transplants from lean donors. Metagenomic sequencing of the gut microbiome, biochemical assays, plus sequencing and in silico metabolic reconstructions of a related human gut-associated Mollicute (E.dolichum), revealed features that may provide a competitive advantage for members of the bloom in the Western diet nutrient milieu, including genes involved in import and metabolism of simple sugars. Our study illustrates how combining comparative metagenomics with gnotobiotic mouse models and specific dietary manipulations can disclose the niches of previously uncharacterized members of the gut microbiota. PMID:18407065
Overton, J M; Williams, T D; Chambers, J B; Rashotte, M E
2001-04-01
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.
Alcohol produces distinct hepatic lipidome and eicosanoid signature in lean and obese[S
Puri, Puneet; Xu, Jun; Vihervaara, Terhi; Katainen, Riikka; Ekroos, Kim; Daita, Kalyani; Min, Hae-Ki; Joyce, Andrew; Mirshahi, Faridoddin; Tsukamoto, Hidekazu; Sanyal, Arun J.
2016-01-01
Alcohol- and obesity-related liver diseases often coexist. The hepatic lipidomics due to alcohol and obesity interaction is unknown. We characterized the hepatic lipidome due to 1) alcohol consumption in lean and obese mice and 2) obesity and alcohol interactions. In the French-Tsukamoto mouse model, intragastric alcohol or isocaloric dextrose were fed with either chow (lean) or high-fat, high-cholesterol diet (obese). Four groups (lean, lean alcohol, obese, and obese alcohol) were studied. MS was performed for hepatic lipidomics, and data were analyzed. Alcohol significantly increased hepatic cholesteryl esters and diacylglycerol in lean and obese but was more pronounced in obese. Alcohol produced contrasting changes in hepatic phospholipids with significant enrichment in lean mice versus significant decrease in obese mice, except phosphatidylglycerol, which was increased in both lean and obese alcohol groups. Most lysophospholipids were increased in lean alcohol and obese mice without alcohol use only. Prostaglandin E2; 5-, 8-, and 11-hydroxyeicosatetraenoic acids; and 9- and 13-hydroxyoctadecadienoic acids were considerably increased in obese mice with alcohol use. Alcohol consumption produced distinct changes in lean and obese with profound effects of obesity and alcohol interaction on proinflammatory and oxidative stress-related eicosanoids. PMID:27020313
Energy balance in adrenalectomized ob/ob mice: effects of dietary starch and glucose.
Warwick, B P; Romsos, D R
1988-07-01
Effects of different carbohydrate types on energy balance, fatty acid synthesis, and plasma insulin concentrations in adrenalectomized ob/ob mice were investigated. Obese (ob/ob) and lean mice adrenalectomized at 4 wk of age received one of four high-carbohydrate powdered diets for 3 wk: stock, glucose, starch, or starch plus wheat bran. Adrenalectomy reduced energy intake of ob/ob mice equally independent of diet type, whereas energetic efficiency, in vivo rates of fatty acid synthesis in liver and white adipose tissue, and plasma insulin concentrations were substantially reduced to approach values in lean mice in all adrenalectomized ob/ob mice except those fed glucose. The ability of adrenalectomy to normalize energy balance in ob/ob mice depends on factors other than the reduced circulating concentration of glucocorticoids alone. Diet composition is a crucial factor, and striking differences exist between semipurified diets containing a simple sugar (glucose) and those containing a complex carbohydrate (starch), with no additional effect of dietary fiber (wheat bran).
Yao, L.; Reynolds, K.; Niu, T.; Li, S.; Whelton, P. K.; He, J.; Steffen, L. M.; Bazzano, L. A.
2016-01-01
Summary Objective A low‐carbohydrate diet can reduce body weight and some cardiovascular disease risk factors more than a low‐fat diet, but differential adherence may play a role in these effects. Methods Data were used from 148 adults who participated in a 12‐month clinical trial examining the effect of a low‐carbohydrate diet (<40 g d−1) and a low‐fat diet (<30% fat and <7% saturated fat) on weight and cardiovascular disease risk factors. We compared attendance at counselling sessions, deviation from nutrient goals, urinary ketone presence and composite scores representing the overall adherence based on the distribution of these individual indicators between two interventions. Results Composite scores were similar between the two groups. A one‐interquartile‐range increase in composite score representing better adherence to a low‐carbohydrate diet was associated with 2.2 kg or 2.3% greater weight loss, 1.1 greater reduction in percent fat mass and 1.3 greater increase in proportion of lean mass. Indicators of adherence to a low‐fat diet were not associated with changes in weight, fat mass or lean mass. Conclusions Despite comparable adherence between groups, a low‐carbohydrate diet was associated with greater reductions in body weight and improvement in body composition, while a low‐fat diet was not associated with weight loss. PMID:27114827
Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O
2014-04-01
Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.
Sammarco, Rosa; Marra, Maurizio; Di Guglielmo, Maria Luisa; Naccarato, Marianna; Contaldo, Franco; Poggiogalle, Eleonora; Donini, Lorenzo Maria; Pasanisi, Fabrizio
2017-01-01
The aim of this study was to evaluate the efficacy of a nutritional program, which is characterized by a different modulation of proteins, in adult patients with sarcopenic obesity. We studied 18 obese women aged 41-74 years. Obesity was diagnosed as fat mass > 34.8% and sarcopenia was defined when lean body mass was <90% of the subject's ideal fat free mass. All subjects were randomly assigned to different nutritional interventions: Hypocaloric diet plus placebo (A) and hypocaloric high-protein diet (1.2-1.4 g / kg body weight reference / day) (B). Anthropometric measurements, body composition, resting energy expenditure, handgrip test, Short Physical Performance Battery (SPPB), and SF-36 questionnaire were evaluated at baseline and after 4 months. Weight significantly decreased in both groups. Women with high-protein diet preserved lean body mass compared to low-calorie diet and improved significantly muscle strength; SPPB score did not change in both groups. SF-36 test showed a significant change for general health after 4 months in group B. In our study, sarcopenic obese patients with high-protein diet showed an improvement in muscle strength. Furthermore, dietary protein enrichment may represent a protection from the risk of sarcopenia following a hypocaloric diet. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.
Sammarco, Rosa; Marra, Maurizio; Di Guglielmo, Maria Luisa; Naccarato, Marianna; Contaldo, Franco; Poggiogalle, Eleonora; Donini, Lorenzo Maria; Pasanisi, Fabrizio
2017-01-01
Objective The aim of this study was to evaluate the efficacy of a nutritional program, which is characterized by a different modulation of proteins, in adult patients with sarcopenic obesity. Methods We studied 18 obese women aged 41–74 years. Obesity was diagnosed as fat mass > 34.8% and sarcopenia was defined when lean body mass was <90% of the subject's ideal fat free mass. All subjects were randomly assigned to different nutritional interventions: Hypocaloric diet plus placebo (A) and hypocaloric high-protein diet (1.2–1.4 g/kg body weight reference/day) (B). Anthropometric measurements, body composition, resting energy expenditure, handgrip test, Short Physical Performance Battery (SPPB), and SF-36 questionnaire were evaluated at baseline and after 4 months. Results Weight significantly decreased in both groups. Women with high-protein diet preserved lean body mass compared to low-calorie diet and improved significantly muscle strength; SPPB score did not change in both groups. SF-36 test showed a significant change for general health after 4 months in group B. Conclusions In our study, sarcopenic obese patients with high-protein diet showed an improvement in muscle strength. Furthermore, dietary protein enrichment may represent a protection from the risk of sarcopenia following a hypocaloric diet. PMID:28528340
Shon, Jong Cheol; Shin, Hwa-Soo; Seo, Yong Ki; Yoon, Young-Ran; Shin, Heungsop; Liu, Kwang-Hyeon
2015-03-25
The serum lipid metabolites of lean and obese mice fed normal or high-fat diets were analyzed via direct infusion nanoelectrospray-ion trap mass spectrometry followed by multivariate analysis. In addition, lipidomic biomarkers responsible for the pharmacological effects of compound K-reinforced ginsenosides (CK), thus the CK fraction, were evaluated in mice fed high-fat diets. The obese and lean groups were clearly discriminated upon principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) score plot, and the major metabolites contributing to such discrimination were triglycerides (TGs), cholesteryl esters (CEs), phosphatidylcholines (PCs), and lysophosphatidylcholines (LPCs). TGs with high total carbon number (>50) and low total carbon number (<50) were negatively and positively associated with high-fat diet induced obesity in mice, respectively. When the CK fraction was fed to obese mice that consumed a high-fat diet, the levels of certain lipids including LPCs and CEs became similar to those of mice fed a normal diet. Such metabolic markers can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, changes in the levels of such metabolites can be employed to assess the risk of obesity and the therapeutic effects of obesity management.
Rapamycin impairs HPD-induced beneficial effects on glucose homeostasis
Chang, Geng-Ruei; Chiu, Yi-Shin; Wu, Ying-Ying; Lin, Yu-Chi; Hou, Po-Hsun; Mao, Frank Chiahung
2015-01-01
Background and Purpose Rapamycin, which is used clinically to treat graft rejection, has also been proposed to have an effect on metabolic syndrome; however, very little information is available on its effects in lean animals/humans. The purpose of this study was to characterize further the effects of the continuous use of rapamycin on glucose homeostasis in lean C57BL6/J mice. Experimental Approach Mice were fed a high-protein diet (HPD) for 12 weeks to develop a lean model and then were treated daily with rapamycin for 5 weeks while remaining on a HPD. Metabolic parameters, endocrine profiles, glucose tolerance tests, insulin sensitivity index, the expression of the glucose transporter GLUT4 and chromium distribution were measured in vivo. Key Results Lower body weight gain as well as a decreased caloric intake, fat pads, fatty liver scores, adipocyte size and glucose tolerance test values were observed in HPD-fed mice compared with mice fed a high-fat or standard diet. Despite these beneficial effects, rapamycin-treated lean mice showed greater glucose intolerance, reduced insulin sensitivity, lower muscle GLUT4 expression and changes in chromium levels in tissues even with high insulin levels. Conclusion and Implications Our findings demonstrate that continuous rapamycin administration may lead to the development of diabetes syndrome, as it was found to induce hyperglycaemia and glucose intolerance in a lean animal model. PMID:25884889
Goss, Amy M; Goree, Laura Lee; Ellis, Amy C; Chandler-Laney, Paula C; Casazza, Krista; Lockhart, Mark E; Gower, Barbara A
2013-06-01
Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/day deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (<45 points per 1000 kcal; n = 40) or high GL diet (>75 points per 1000 kcal, n = 29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P < 0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P = 0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P < 0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. Copyright © 2012 The Obesity Society.
Goss, Amy M.; Goree, Laura Lee; Ellis, Amy C.; Chandler-Laney, Paula C.; Casazza, Krista; Lockhart, Mark E.; Gower, Barbara A.
2012-01-01
Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/d deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (≤45 points per 1000 kcal; n=40) or high GL diet (>75 points per 1000 kcal, n=29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P<0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P=0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P<0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. PMID:23671029
Gautier, Yentl; Luneau, Isabelle; Coquery, Nicolas; Meurice, Paul; Malbert, Charles-Henri; Guerin, Sylvie; Kemp, Bas; Bolhuis, J Elizabeth; Clouard, Caroline; Le Huërou-Luron, Isabelle; Blat, Sophie; Val-Laillet, David
2018-06-13
This study explores the long-term effects of exposure to a maternal Western diet (WD) vs. standard diet (SD) in the Yucatan minipig, on the adult progeny at lean status ( n = 32), and then overweight status. We investigated eating behavior, cognitive abilities, brain basal glucose metabolism, dopamine transporter availability, microbiota activity, blood lipids, and glucose tolerance. Although both groups demonstrated similar cognitive abilities in a holeboard test, WD pigs expressed a higher stress level than did SD pigs (immobility, P < 0.05) and lower performance in an alley maze ( P = 0.06). WD pigs demonstrated lower dopamine transporter binding potential in the hippocampus and parahippocampal cortex ( P < 0.05 for both), as well as a trend in putamen ( P = 0.07), associated with lower basal brain activity in the prefrontal cortex and nucleus accumbens ( P < 0.05) compared with lean SD pigs. Lean WD pigs demonstrated a lower glucose tolerance than did SD animals (higher glucose peak, P < 0.05) and a tendency to a higher incremental area under the curve of insulin from 0 to 30 minutes after intravenous glucose injection ( P < 0.1). Both groups developed glucose intolerance with overweight, but WD animals were less impacted than SD animals. These results demonstrate that maternal diet shaped the offspring's brain functions and cognitive responses long term, even after being fed a balanced diet from weaning, but behavioral effects were only revealed in WD pigs under anxiogenic situation; however, WD animals seemed to cope better with the obesogenic diet from a metabolic standpoint.-Gautier, Y., Luneau, I., Coquery, N., Meurice, P., Malbert, C.-H., Guerin, S., Kemp, B., Bolhuis, J. E., Clouard, C., Le Huërou-Luron, I., Blat, S., Val-Laillet, D. Maternal Western diet during gestation and lactation modifies adult offspring's cognitive and hedonic brain processes, behavior, and metabolism in Yucatan minipigs.
Daly, Robin M; O'Connell, Stella L; Mundell, Niamh L; Grimes, Carley A; Dunstan, David W; Nowson, Caryl A
2014-04-01
Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability. We assessed the effects of progressive resistance training (PRT) combined with a protein-enriched diet facilitated through lean red meat on lean tissue mass (LTM), muscle size, strength and function, circulating inflammatory markers, blood pressure, and lipids in elderly women. In a 4-mo cluster randomized controlled trial, 100 women aged 60-90 y who were residing in 15 retirement villages were allocated to receive PRT with lean red meat (∼160 g cooked) to be consumed 6 d/wk [resistance training plus lean red meat (RT+Meat) group; n = 53] or control PRT [1 serving pasta or rice/d; control resistance training (CRT) group; n = 47)]. All women undertook PRT 2 times/wk and received 1000 IU vitamin D3/d. The mean (± SD) protein intake was greater in the RT+Meat group than in the CRT group throughout the study (1.3 ± 0.3 compared with 1.1 ± 0.3 g · kg⁻¹ · d⁻¹, respectively; P < 0.05). The RT+Meat group experienced greater gains in total body LTM (0.45 kg; 95% CI: 0.07, 0.84 kg), leg LTM (0.22 kg; 95% CI: 0.02, 0.42 kg), and muscle strength (18%; 95% CI: 0.03, 0.34) than did the CRT group (all P < 0.05). The RT+Meat group also experienced a 10% greater increase in serum insulin-like growth factor I (P < 0.05) and a 16% greater reduction in the proinflammatory marker interleukin-6 (IL-6) (P < 0.05) after 4 mo. There were no between-group differences for the change in blood lipids or blood pressure. A protein-enriched diet equivalent to ∼1.3 g · kg⁻¹ · d⁻¹ achieved through lean red meat is safe and effective for enhancing the effects of PRT on LTM and muscle strength and reducing circulating IL-6 concentrations in elderly women. This trial was registered at the Australian Clinical Trials Registry as ACTRN12609000223235.
Dichi, J B; Dichi, I; Maio, R; Correa, C R; Angeleli, A Y; Bicudo, M H; Rezende, T A; Burini, R C
2001-03-01
The purpose of this study was to determine the rate of whole-body protein turnover in moderately and severely alcoholic, malnourished, cirrhotic patients fed with different amounts of protein or energy. Six male patients (Child classes B and C) and four age- and sex-matched healthy control subjects were studied for 18 d in fasting and feeding states; a single oral dose of [(15)N]glycine was used as a tracer and urinary ammonia was the end product. The kinetic study showed that patients had higher protein catabolism while fasting (patients: 3.14 +/- 1.2 g of lean body mass/9 h; controls: 1.8 +/- 0.3 g of lean body mass/9 h; P < 0.02). Although not statistically significant, protein catabolism (grams of lean body mass/9 h) was lower with the hyperproteic/hyperenergetic diet when compared with fasting. Nitrogen retention was consistent with the lower protein-catabolism rate; a statistically significant increase in nitrogen balance was observed when patients were fed with the hyperproteic/hyperenergetic diet compared with fasting (4.3 +/- 3.2 g of nitrogen/d and -2.2 +/- 1.9 g of nitrogen/d, respectively; P < 0.01). These data indicate that Child class B and C cirrhotic patients are hypercatabolic and that long-term nutritional intervention with a hyperproteic/hyperenergetic diet is likely needed to improve their clinical and nutritional status.
Jakubowicz, Daniela; Barnea, Maayan; Wainstein, Julio; Froy, Oren
2013-11-01
In women with PCOS (polycystic ovary syndrome), hyperinsulinaemia stimulates ovarian cytochrome P450c17α activity that, in turn, stimulates ovarian androgen production. Our objective was to compare whether timed caloric intake differentially influences insulin resistance and hyperandrogenism in lean PCOS women. A total of 60 lean PCOS women [BMI (body mass index), 23.7±0.2 kg/m²] were randomized into two isocaloric (~1800 kcal; where 1 kcal≈4.184 J) maintenance diets with different meal timing distribution: a BF (breakfast diet) (980 kcal breakfast, 640 kcal lunch and 190 kcal dinner) or a D (dinner diet) group (190 kcal breakfast, 640 kcal lunch and 980 kcal dinner) for 90 days. In the BF group, a significant decrease was observed in both AUC(glucose) (glucose area under the curve) and AUC(insulin) (insulin area under the curve) by 7 and 54% respectively. In the BF group, free testosterone decreased by 50% and SHBG (sex hormone-binding globulin) increased by 105%. GnRH (gonadotropin-releasing hormone)-stimulated peak serum 17OHP (17α-hydroxyprogesterone) decreased by 39%. No change in these parameters was observed in the D group. In addition, women in the BF group had an increased ovulation rate. In lean PCOS women, a high caloric intake at breakfast with reduced intake at dinner results in improved insulin sensitivity indices and reduced cytochrome P450c17α activity, which ameliorates hyperandrogenism and improves ovulation rate. Meal timing and distribution should be considered as a therapeutic option for women with PCOS.
Faure, A M; Fischer, K; Dawson-Hughes, B; Egli, A; Bischoff-Ferrari, H A
2017-12-01
Diet-related mild metabolic acidosis may play a role in the development of sarcopenia. We investigated the relationship between dietary acid load and total lean body mass in male and female seniors age ≥ 60 years. We found that a more alkaline diet was associated with a higher %TLM only among senior women. The aim of this study was to determine if dietary acid load is associated with total lean body mass in male and female seniors age ≥ 60 years. We investigated 243 seniors (mean age 70.3 ± 6.3; 53% women) age ≥ 60 years who participated in the baseline assessment of a clinical trial on vitamin D treatment and rehabilitation after unilateral knee replacement due to severe knee osteoarthritis. The potential renal acid load (PRAL) was assessed based on individual nutrient intakes derived from a food frequency questionnaire. Body composition including percentage of total lean body mass (%TLM) was determined using dual-energy X-ray absorptiometry. Cross-sectional analyses were performed for men and women separately using multivariable regression models controlling for age, physical activity, smoking status, protein intake (g/kg BW per day), energy intake (kcal), and serum 25-hydroxyvitamin D concentration. We included a pre-defined subgroup analysis by protein intake (< 1 g/kg BW day, > 1 g/kg BW day) and by age group (< 70 years, ≥ 70 years). Adjusted %TLM decreased significantly across PRAL quartiles only among women (P trend = 0.004). Moreover, in subgroup analysis, the negative association between the PRAL and %TLM was most pronounced among women with low protein intake (< 1 g/kg BW per day) and age below 70 years (P = 0.002). Among men, there was no association between the PRAL and %TLM. The association between dietary acid load and %TLM seems to be gender-specific, with a negative impact on total lean mass only among senior women. Therefore, an alkaline diet may be beneficial for preserving total lean mass in senior women, especially in those with low protein intake.
2012-01-01
Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184
Zhang, Xue-Ying; Lou, Mei-Fang; Shen, Wei; Fu, Rong-Shu; Wang, De-Hua
The maternal or paternal dietary composition can have important effects on various aspects of their offspring's physiology. Studies from animal models and humans showed that a maternal high-fiber diet protected offspring against fat accumulation. However, little is known about how a maternal low-fiber diet modifies the metabolism of offspring in herbivorous rodents. We hypothesized that a maternal low-fiber diet would confer long-lasting beneficial effects on offspring metabolic phenotypes in herbivorous Brandt's vole (Lasiopodomys brandtii). Female voles were fed either a control (12.4% fiber) or a low-fiber (3.5% fiber) diet throughout pregnancy and lactation, and all offspring were fed the control diet after weaning till 14 wk old. Offspring were sampled from each litter at 18 d and 14 wk of age. Another subset of adult offspring at 15 wk of age was fed a high-fat diet for 8 wk. We found that there was no difference in litter size, litter mass, or pup mass before weaning between the two maternal diet groups. Offspring from the maternal low-fiber diet increased energy intake, body mass, and lean mass; suppressed fat accumulation; and improved glucose tolerance compared with those from the control diet. Moreover, the maternal low-fiber diet alleviated high-fat diet-induced obesity in the adult offspring. Serum leptin concentration and uncoupling protein 1 content in brown adipose tissue of offspring were not affected by a maternal low-fiber diet. We demonstrate that herbivorous females fed a low-fiber diet during pregnancy and lactation may predispose their offspring to accelerated growth of lean tissue, which may increase the opportunity for survival and reproduction in offspring.
Alcohol produces distinct hepatic lipidome and eicosanoid signature in lean and obese.
Puri, Puneet; Xu, Jun; Vihervaara, Terhi; Katainen, Riikka; Ekroos, Kim; Daita, Kalyani; Min, Hae-Ki; Joyce, Andrew; Mirshahi, Faridoddin; Tsukamoto, Hidekazu; Sanyal, Arun J
2016-06-01
Alcohol- and obesity-related liver diseases often coexist. The hepatic lipidomics due to alcohol and obesity interaction is unknown. We characterized the hepatic lipidome due to 1) alcohol consumption in lean and obese mice and 2) obesity and alcohol interactions. In the French-Tsukamoto mouse model, intragastric alcohol or isocaloric dextrose were fed with either chow (lean) or high-fat, high-cholesterol diet (obese). Four groups (lean, lean alcohol, obese, and obese alcohol) were studied. MS was performed for hepatic lipidomics, and data were analyzed. Alcohol significantly increased hepatic cholesteryl esters and diacyl-glycerol in lean and obese but was more pronounced in obese. Alcohol produced contrasting changes in hepatic phospholipids with significant enrichment in lean mice versus significant decrease in obese mice, except phosphatidylglycerol, which was increased in both lean and obese alcohol groups. Most lysophospholipids were increased in lean alcohol and obese mice without alcohol use only. Prostaglandin E2; 5-, 8-, and 11-hydroxyeicosatetraenoic acids; and 9- and 13-hydroxyoctadecadienoic acids were considerably increased in obese mice with alcohol use. Alcohol consumption produced distinct changes in lean and obese with profound effects of obesity and alcohol interaction on proinflammatory and oxidative stress-related eicosanoids. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Schriever, Sonja C.; Müller, Timo D.; Tschöp, Matthias H.
2017-01-01
Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities. PMID:28873424
Fatty acid chain length, postprandial satiety and food intake in lean men.
Poppitt, S D; Strik, C M; MacGibbon, A K H; McArdle, B H; Budgett, S C; McGill, A-T
2010-08-04
High-fat diets are associated with obesity, and the weak satiety response elicited in response to dietary lipids is likely to play a role. Preliminary evidence from studies of medium (MCT) and long chain triglycerides (LCT) supports greater appetite suppression on high-MCT diets, possibly a consequence of direct portal access, more rapid oxidation and muted lipaemia. No data is as yet available on high-SCT diets which also have direct hepatic access. In this study SCT- (dairy fats), MCT- (coconut oil) and LCT-enriched (beef tallow) test breakfasts (3.3 MJ) containing 52 g lipid (58 en% fat) were investigated in a randomized, cross-over study in 18 lean men. All participants were required to complete the 3 study days in randomised order. Participants rated appetite sensations using visual analogue scales (VAS), and energy intake (EI) was measured by covert weighing of an ad libitum lunch meal 3.5 h postprandially. Blood samples were collected by venous cannulation. There were no detectable differences between breakfasts in perceived pleasantness, visual appearance, smell, taste, aftertaste and palatability (P>0.05). There was no significant effect of fatty acid chain length on ratings of hunger, fullness, satisfaction or current thoughts of food, nor did energy (mean, sem: SCT: 4406, 366 kJ; MCT: 4422, 306 kJ; LCT: 4490, 324 kJ; P>0.05) or macronutrient intake at lunch differ between diets. The maximum difference in EI between diets was less than 2%. Postprandial lipaemia also did not differ significantly. We conclude that there was no evidence that fatty acid chain length has an effect on measures of appetite and food intake when assessed following a single high-fat test meal in lean participants. Copyright 2010 Elsevier Inc. All rights reserved.
Borton, R J; Loerch, S C; McClure, K E; Wulf, D M
2005-06-01
Targhee x Hampshire lambs (average BW 24 +/- 1 kg) were used to determine the effect of finishing on concentrate or by grazing ryegrass forage on slaughter weights of 52 kg (N) or 77 kg (H) on tissue accretion and lamb wholesale cutout. When fed to similar slaughter weights, the wholesale cuts of concentrate-fed lambs were heavier (P < 0.05) than the same cuts from forage-fed lambs; however, when expressed as a percentage of side weight, carcasses of forage-fed lambs had a higher (P < 0.001) percentage of leg than concentrate-fed lambs. Increasing slaughter weight from 52 to 77 kg resulted in a 1-kg increase in loin weight for lambs finished on concentrate and a 0.60-kg increase for lambs finished on forage (diet x slaughter weight, P < 0.03); however, the increased loin weight for lambs finished on concentrate was due largely to increased fat deposition. For lambs slaughtered at 77 kg, those finished on forage had more lean mass in the leg, loin, rack, and shoulder than those finished on concentrate, but lean mass in these cuts did not differ between diets for lambs slaughtered at 52 kg (diet x slaughter weight, P < 0.01). At the normal slaughter weight (52 kg), concentrate-fed lambs had 50% more dissectible fat than forage-fed lambs, whereas at the heavy slaughter weight, a 79% greater amount of dissectible fat was observed for concentrate- vs. forage-fed lambs (diet x slaughter weight, P < 0.001). Lean and fat accretion rates were higher (P < 0.001) for concentrate-fed lambs than for forage-fed lambs. The lean-to-fat ratio of forage-fed lambs was higher (P < 0.001) than that of concentrate-fed lambs; however, forage finishing decreased accretion rates of all tissues compared with concentrate feeding, and these differences between forage and concentrate feeding were magnified at heavier slaughter weights.
Gelli, Aulo; Aberman, Noora-Lisa; Margolies, Amy; Santacroce, Marco; Baulch, Bob; Chirwa, Ephraim
2017-05-01
Background: There is evidence that social transfers increase food consumption, improving the quantity and quality of food consumed by poor households. Questions remain on how to improve the effectiveness of social programs. Objective: The aim was to assess the impact of a lean-season food transfer on household food security, diet, and nutrition status of young children during the lean season in Malawi and to understand processes through which transfers operated. Methods: This was a longitudinal, quasi-experimental study based on 2 survey rounds in the Zomba district in Malawi. Data were collected from 60 communities randomly selected among food-insecure villages. Twenty households were randomly selected for interviews within each community. Study outcomes included household expenditures and food consumption (measured by using 7-d recall) and child-level dietary diversity (measured by using 24-h recall) and nutritional status (anthropometric measurements). We followed a mixed-methods approach involving child- and household-level assessments, as well as interviews with community stakeholders. We estimated program impact by combining propensity score matching and difference-in-difference methods. Results: The per capita effect of food transfers on food expenditure was estimated at 36 Malawian kwachas/d, corresponding to an increase of 19% from baseline. There was evidence of increased iron availability in household intake. Highly significant effects were found on children's dietary diversity score, corresponding to an increase of 15%, as well as a positive effect on weight-for-height z scores (WHZs) of >0.25 SDs. Effects on food expenditure and dietary diversity were robust to alternative matching specifications, although the effect on WHZs was not. Examination of the targeting of the transfer showed evidence of large errors of inclusion and exclusion. Conclusion: During the lean season in food-insecure settings, where important declines in food insecurity, diet quality, and nutrition status are present, food transfers may have a protective effect on household food security and diets of young children. © 2017 American Society for Nutrition.
Yanala, Ujwal R; Reidelberger, Roger D; Thompson, Jon S; Shostrom, Valerie K; Carlson, Mark A
2015-11-27
Obesity may protect against the nutritional consequences of short bowel syndrome. We hypothesized that rats preconditioned with an obesogenic diet would have better outcomes after surgical induction of short bowel syndrome compared to rats on regular chow. Rats were fed a high-fat diet or regular rat chow for six months, and then underwent 50% proximal, 50% distal, or sham enterectomy. Food intake, weight, and body composition were monitored before and for 4 weeks after surgery. The high-fat diet consistently produced obesity (>25% body fat). All procedures induced weight loss, but there was no discernable difference between resection vs. sham resection. Rats on the high-fat diet had a greater post-resection loss of body fat compared to rats on chow (36 vs. 26 g, respectively). There was a nonsignificant trend of less lean mass loss in the former compared to the latter rats (16 vs. 33 g, respectively). Enterectomy moderated serum ghrelin, GIP, PPY, insulin, and leptin. Intestinal adaptation was not different between obese vs. non-obese rats. Rats preconditioned with the high-fat diet may have had better retention of lean body mass after a surgical procedure compared to rats on chow. The effect of 50% enterectomy was less than expected.
Beneficial effects of exercise training in heart failure are lost in male diabetic rats.
Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise
2017-12-01
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Increased protein intake reduces lean body mass loss during weight loss in athletes.
Mettler, Samuel; Mitchell, Nigel; Tipton, Kevin D
2010-02-01
To examine the influence of dietary protein on lean body mass loss and performance during short-term hypoenergetic weight loss in athletes. In a parallel design, 20 young healthy resistance-trained athletes were examined for energy expenditure for 1 wk and fed a mixed diet (15% protein, 100% energy) in the second week followed by a hypoenergetic diet (60% of the habitual energy intake), containing either 15% (approximately 1.0 g x kg(-1)) protein (control group, n = 10; CP) or 35% (approximately 2.3 g x kg(-1)) protein (high-protein group, n = 10; HP) for 2 wk. Subjects continued their habitual training throughout the study. Total, lean body, and fat mass, performance (squat jump, maximal isometric leg extension, one-repetition maximum (1RM) bench press, muscle endurance bench press, and 30-s Wingate test) and fasting blood samples (glucose, nonesterified fatty acids (NEFA), glycerol, urea, cortisol, free testosterone, free Insulin-like growth factor-1 (IGF-1), and growth hormone), and psychologic measures were examined at the end of each of the 4 wk. Total (-3.0 +/- 0.4 and -1.5 +/- 0.3 kg for the CP and HP, respectively, P = 0.036) and lean body mass loss (-1.6 +/- 0.3 and -0.3 +/- 0.3 kg, P = 0.006) were significantly larger in the CP compared with those in the HP. Fat loss, performance, and most blood parameters were not influenced by the diet. Urea was higher in HP, and NEFA and urea showed a group x time interaction. Fatigue ratings and "worse than normal" scores on the Daily Analysis of Life Demands for Athletes were higher in HP. These results indicate that approximately 2.3 g x kg(-1) or approximately 35% protein was significantly superior to approximately 1.0 g x kg(-1) or approximately 15% energy protein for maintenance of lean body mass in young healthy athletes during short-term hypoenergetic weight loss.
Attig, Linda; Vigé, Alexandre; Gabory, Anne; Karimi, Moshen; Beauger, Aurore; Gross, Marie-Sylvie; Athias, Anne; Gallou-Kabani, Catherine; Gambert, Philippe; Ekstrom, Tomas J; Jais, Jean-Philippe; Junien, Claudine
2013-01-01
According to the developmental origins of health and diseases (DOHaD), and in line with the findings of many studies, obesity during pregnancy is clearly a threat to the health and well-being of the offspring, later in adulthood. We previously showed that 20% of male and female inbred mice can cope with the obesogenic effects of a high-fat diet (HFD) for 20 weeks after weaning, remaining lean. However the feeding of a control diet (CD) to DIO mice during the periconceptional/gestation/lactation period led to a pronounced sex-specific shift (17% to 43%) from susceptibility to resistance to HFD, in the female offspring only. Our aim in this study was to determine how, in the context of maternal obesity and T2D, a CD could increase resistance on female fetuses. Transcriptional analyses were carried out with a custom-built mouse liver microarray and by quantitative RT-PCR for muscle and adipose tissue. Both global DNA methylation and levels of pertinent histone marks were assessed by LUMA and western blotting, and the expression of 15 relevant genes encoding chromatin-modifying enzymes was analyzed in tissues presenting global epigenetic changes. Resistance was associated with an enhancement of hepatic pathways protecting against steatosis, the unexpected upregulation of neurotransmission-related genes and the modulation of a vast imprinted gene network. Adipose tissue displayed a pronounced dysregulation of gene expression, with an upregulation of genes involved in lipid storage and adipocyte hypertrophy or hyperplasia in obese mice born to lean and obese mothers, respectively. Global DNA methylation, several histone marks and key epigenetic regulators were also altered. Whether they were themselves lean (resistant) or obese (sensitive), the offspring of lean and obese mice clearly differed in terms of several metabolic features and epigenetic marks suggesting that the effects of a HFD depend on the leanness or obesity of the mother.
Increased adipose tissue lipolysis after a two-week high-fat diet in sedentary overweight/obese men
Howe, Harold R; Heidal, Kimberly; Choi, Myung Dong; Kraus, Ray M.; Boyle, Kristen; Hickner, Robert C.
2013-01-01
Background/Objectives The purpose of this study was to determine if a high fat diet would result in a higher lipolytic rate in subcutaneous adipose tissue than a lower fat diet in sedentary non-lean men. Subjects/Methods Six participants (healthy males: 18-40 yrs old: body mass index 25-37 kg/m2) underwent two weeks on a high-fat or well-balanced diet of similar caloric content (approx. 1600 kcal) in randomized order with a ten-day washout period between diets. Subcutaneous abdominal adipose tissue lipolysis was determined over the course of a day using microdialysis after both two-week diet sessions. Results Average interstitial glycerol concentrations (index of lipolysis) as determined using microdialysis were higher following the high-fat diet (210.8 ±27.9 μM) than following a well-balanced diet (175.6 ± 23.3 μM; P = 0.026). There was no difference in adipose tissue microvascular blood flow as determined using the microdialysis ethanol technique. Conclusions These results demonstrate that healthy non-lean men who diet on the high-fat plan have a higher lipolytic rate in subcutaneous abdominal adipose tissue than when they diet on a well-balanced diet plan. This higher rate of lipolysis may result in a higher rate of fat mass loss on the high-fat diet; however, it remains to be determined if this higher lipolytic rate in men on the high-fat diet results in a more rapid net loss of triglyceride from the abdominal adipose depots, or if the higher lipolytic rate is counteracted by an increased rate of lipid storage. PMID:21040937
Non-alcoholic Fatty Liver Disease in Lean Subjects: Characteristics and Implications.
Kumar, Ramesh; Mohan, Shantam
2017-09-28
Non-alcoholic fatty liver disease (NAFLD) is commonly diagnosed in obese subjects; however, it is not rare among lean individuals. Given the absence of traditional risk factors, it tends to remain under-recognised. The metabolic profiles of lean NAFLD patients are frequently comparable to those of obese NAFLD patients. Though results from several studies have been mixed, it has been generally revealed that lean subjects with NAFLD have minor insulin resistance compared to that in obese NAFLD. Several genetic variants are associated with NAFLD without insulin resistance. Some data suggest that the prevalence of steatohepatitis and advanced fibrosis do not differ significantly between lean and obese NAFLD; however, the former tend to have less severe disease at presentation. The underlying pathophysiology of lean NAFLD may be quite different. Genetic predispositions, fructose- and cholesterol-rich diet, visceral adiposity and dyslipidaemia have potential roles in the pathogenic underpinnings. Lean NAFLD may pose a risk for metabolic disturbances, cardiovascular morbidity or overall mortality. Secondary causes of hepatic steatosis are also needed to be ruled out in lean subjects with NAFLD. The effectiveness of various treatment modalities, such as exercise and pharmacotherapy, on lean NAFLD is not known. Weight loss is expected to help lean NAFLD patients who have visceral obesity. Further investigation is needed for many aspects of lean NAFLD, including mechanistic pathogenesis, risk assessment, natural history and therapeutic approach.
Non-alcoholic Fatty Liver Disease in Lean Subjects: Characteristics and Implications
Kumar, Ramesh; Mohan, Shantam
2017-01-01
Abstract Non-alcoholic fatty liver disease (NAFLD) is commonly diagnosed in obese subjects; however, it is not rare among lean individuals. Given the absence of traditional risk factors, it tends to remain under-recognised. The metabolic profiles of lean NAFLD patients are frequently comparable to those of obese NAFLD patients. Though results from several studies have been mixed, it has been generally revealed that lean subjects with NAFLD have minor insulin resistance compared to that in obese NAFLD. Several genetic variants are associated with NAFLD without insulin resistance. Some data suggest that the prevalence of steatohepatitis and advanced fibrosis do not differ significantly between lean and obese NAFLD; however, the former tend to have less severe disease at presentation. The underlying pathophysiology of lean NAFLD may be quite different. Genetic predispositions, fructose- and cholesterol-rich diet, visceral adiposity and dyslipidaemia have potential roles in the pathogenic underpinnings. Lean NAFLD may pose a risk for metabolic disturbances, cardiovascular morbidity or overall mortality. Secondary causes of hepatic steatosis are also needed to be ruled out in lean subjects with NAFLD. The effectiveness of various treatment modalities, such as exercise and pharmacotherapy, on lean NAFLD is not known. Weight loss is expected to help lean NAFLD patients who have visceral obesity. Further investigation is needed for many aspects of lean NAFLD, including mechanistic pathogenesis, risk assessment, natural history and therapeutic approach. PMID:28936403
Ornellas, Fernanda; Souza-Mello, Vanessa; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa
2016-01-01
We aimed to evaluate the effects of maternal and/or paternal obesity on offspring body mass, leptin signaling, appetite-regulating neurotransmitters and local inflammatory markers. C57BL/6 mice received standard chow (SC, lean groups) or high-fat diet (HF, obese groups) starting from one month of age. At three months, HF mice became obese relative to SC mice. They were then mated as follows: lean mother and lean father, lean mother and obese father, obese mother and lean father, and obese mother and obese father. The offspring received the SC diet from weaning until three months of age, when they were sacrificed. In the offspring, paternal obesity did not lead to changes in the Janus kinase (JAK)/signal transducer and activation of the transcription (STAT) pathway or feeding behavior but did induce hypothalamic inflammation. On the other hand, maternal obesity resulted in increased weight gain, hyperleptinemia, decreased leptin OBRb receptor expression, JAK/STAT pathway impairment, and increased SOCS3 signaling in the offspring. In addition, maternal obesity elevated inflammatory markers and altered NPY and POMC expression in the hypothalamus. Interestingly, combined parental obesity exacerbated the deleterious outcomes compared to single-parent obesity. In conclusion, while maternal obesity is known to program metabolic changes and obesity in offspring, the current study demonstrated that obese fathers induce hypothalamus inflammation in offspring, which may contribute to the development of metabolic syndromes in adulthood.
USDA-ARS?s Scientific Manuscript database
Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...
Trophic connections in Lake Superior Part II: the nearshore fish community
Gamble, A.E.; Hrabik, T.R.; Yule, D.L.; Stockwell, J.D.
2011-01-01
We use detailed diet analyses of the predominant planktivorous, benthivorous and piscivorous fish species from Lake Superior to create a nearshore (bathymetric depths Mysis diluviana and Diporeia spp). Although the piscivorous fishes like lean lake trout (Salvelinus namaycush) fed to a lesser extent on Diporeia and Mysis, they were still strongly connected to these macroinvertebrates, which were consumed by their primary prey species (sculpin spp., rainbow smelt Osmerus mordax, and coregonines). The addition of Bythotrephes to summer/fall cisco and lake whitefish diets, and the decrease in rainbow smelt in lean lake trout diets (replaced by coregonines) were the largest observed differences relative to historic Lake Superior diet studies. Although the offshore food web of Lake Superior was simpler than nearshore in terms of number of fish species present, the two areas had remarkably similar food web structures, and both fish communities were primarily supported by Mysis and Diporeia. We conclude that declines in Mysis or Diporeia populations would have a significant impact on energy flow in Lake Superior. The food web information we generated can be used to better identify management strategies for Lake Superior.
Hiramatsu, Layla; Garland, Theodore
2018-04-20
Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Sauber, T E; Stahly, T S; Williams, N H; Ewan, R C
1998-04-01
The effect of dietary amino acid regimen and genetic capacity for lean tissue growth on the lactational performance of sows was determined in primiparous sows with a high (350 to 390 g/d) or low (240 to 280 g/d) genetic capacity for lean tissue growth from 18 to 110 kg of body weight. During lactation, sows were offered daily 6.5 kg of one of four fortified corn-soybean meal diets containing .58, .77, .96, and 1.15% lysine (L). Litters were standardized to 14 pigs within 8 h after birth. On d 2 of lactation, the high lean growth (LG) sows possessed more proteinaceous tissues and protein and less fat tissue and lipid. During lactation (d 2 to 28 postpartum), high LG sows consumed more feed, mobilized more body protein, and lost less body lipid. Milk, milk energy, and milk lysine yields (pooled across dietary regimens) were similar between genotypes. As daily dietary lysine intakes increased from 27 to 62 g and total digestible lysine supplies (from diet and mobilized tissues) increased from 39 to 68 g, daily yields of milk, milk energy, and milk lysine increased, but the magnitude of the response differed (P < .05) between genotypes, evidently because of differences in the ability of the high and low LG sows to mobilize energy from body tissue. Based on these data, the lactational capacities of high and low LG sows nursing 12 to 14 pigs are similar when similar supplies of lysine and energy are available from dietary intake and mobilized body tissue stores. When supplies of ME do not limit milk synthesis, daily digestible lysine intakes of at least 54 g (> or = 66 g from a corn-soy diet) are needed by these sows nursing litters of 12 to 14 pigs to support milk synthesis and minimize maternal protein losses. This is equivalent to a total digestible lysine need of 4.3 to 4.6 g/kg of milk produced. When ME provided by the diet is less than that needed to fuel maximum milk synthesis, however, the dietary amino acid needs of genetically lean sows may be reduced because of their inability to mobilize sufficient body fat stores.
A Nation under Joint Custody: How Conflicting Family Models Divide US Politics
ERIC Educational Resources Information Center
Wehling, Eva Elisabeth
2013-01-01
Across the globe and throughout history, politics are regularly divided into "left-leaning" and "right-leaning" camps. Explaining the sources of this conservative-liberal divide has become a major quest in the cognitive and social sciences. Early attempts have focused on self-interest as a possible explanation. However, as the…
2013-01-01
Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456
Sayer, R. D.; Speaker, K. J.; Pan, Z.; Peters, J. C.; Wyatt, H. R.
2017-01-01
Summary Objective The objective of this randomized equivalence trial was to determine the impact of consuming lean beef as part of a high protein (HP) weight‐reducing diet on changes in body weight, body composition and cardiometabolic health. Methods A total of 120 adults (99 female) with overweight or obesity (BMI: 35.7 ± 7.0 kg m−2) were randomly assigned to consume either a HP diet with ≥4 weekly servings of lean beef (B; n = 60) or a HP diet restricted in all red meats (NB; n = 60) during a 16‐week weight loss intervention. Results Body weight was reduced by 7.8 ± 5.9% in B and 7.7 ± 5.5% in NB (p < 0.01 for both). Changes in percent body weight were equivalent between B and NB (mean difference: 0.06%, 90% confidence interval: (−1.7, 1.8)). Fat mass was reduced in both groups (p < 0.01; B: 8.0 ± 0.6 kg, NB: 8.6 ± 0.6 kg), while lean mass was not reduced in either group. Improvements in markers of cardiometabolic health (total cholesterol, low‐density lipoprotein cholesterol, triglycerides and blood pressure) were not different between B and NB. Conclusion Results of this study demonstrate that HP diets – either rich or restricted in red meat intakes – are effective for decreasing body weight and improving body composition and cardiometabolic health. PMID:29071106
Sayer, R D; Speaker, K J; Pan, Z; Peters, J C; Wyatt, H R; Hill, J O
2017-09-01
The objective of this randomized equivalence trial was to determine the impact of consuming lean beef as part of a high protein (HP) weight-reducing diet on changes in body weight, body composition and cardiometabolic health. A total of 120 adults (99 female) with overweight or obesity (BMI: 35.7 ± 7.0 kg m -2 ) were randomly assigned to consume either a HP diet with ≥4 weekly servings of lean beef (B; n = 60) or a HP diet restricted in all red meats (NB; n = 60) during a 16-week weight loss intervention. Body weight was reduced by 7.8 ± 5.9% in B and 7.7 ± 5.5% in NB ( p < 0.01 for both). Changes in percent body weight were equivalent between B and NB (mean difference: 0.06%, 90% confidence interval: (-1.7, 1.8)). Fat mass was reduced in both groups ( p < 0.01; B: 8.0 ± 0.6 kg, NB: 8.6 ± 0.6 kg), while lean mass was not reduced in either group. Improvements in markers of cardiometabolic health (total cholesterol, low-density lipoprotein cholesterol, triglycerides and blood pressure) were not different between B and NB. Results of this study demonstrate that HP diets - either rich or restricted in red meat intakes - are effective for decreasing body weight and improving body composition and cardiometabolic health.
Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.
Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert
2011-11-01
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Nikolov, Jivko; Spira, Dominik; Aleksandrova, Krasimira; Otten, Lindsey; Meyer, Antje; Demuth, Ilja; Steinhagen-Thiessen, Elisabeth; Eckardt, Rahel; Norman, Kristina
2016-10-01
Selected nutrients or food groups have often been studied with regard to long-term mortality and cardiovascular disease, whereas the relation between diet quality and appendicular lean mass (ALM) has rarely been researched. The aim of this study was to explore the association between a Mediterranean-style diet and ALM in community-dwelling older people. Cross-sectional data from the Berlin Aging Study II were available for 1,509 participants (51% women, 68.2±3.7 years). Nutrient intake was assessed using the European Prospective Investigation into Cancer and Nutrition Food Frequency Questionnaire. Adherence to a Mediterranean-style diet was evaluated with the modified Mediterranean-type diet score (mMedTypeDiet). ALM was determined by dual-energy X-ray absorptiometry and related to body mass index (ALM/BMI). A general linear regression model was carried out to assess the association between mMedTypeDiet score groups and ALM/BMI. ALM/BMI was higher in women with a higher adherence to the mMedTypeDiet (0.64±0.1 vs 0.62±0.1 and 0.61±0.1 in low and medium adherence, retrospectively, p = .004). In the risk factor-adjusted general linear regression analysis, a higher adherence to the mMedTypeDiet was associated with higher ALM/BMI in women and better ALM/fat mass ratio when compared to a medium and a low diet quality. No significant associations were seen in men. Higher adherence to a Mediterranean-style diet was associated with a positive effect on ALM/BMI in women. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The best sources of iron include: Dried beans Dried fruits Eggs (especially egg yolks) Iron-fortified cereals Liver Lean red meat (especially beef) Oysters Poultry, dark red meat Salmon Tuna Whole ...
USDA-ARS?s Scientific Manuscript database
Context: The benefits of high protein diets for sparing lean body mass and sustaining skeletal muscle protein metabolism during short-term weight loss in normal-weight adults are not well described. Objective: Determine the effects of varying levels of dietary protein intake on body compos...
Phoemchalard, Chirasak; Uriyapongson, Suthipong
2015-12-01
This experiment was conducted to determine the effects of cassava bioethanol by-product (CEP) and crude palm oil (CPO) on the carcass characteristics and meat quality of yearling heifer cattle. Eighteen crossbred Brahman × Thai heifers were randomly allotted to 2 × 3 factorial arrangement consisting of two levels of CEP (15 or 30 %, LCEP or HCEP) and 3 levels of CPO (0, 2, and 4 %). The results obtained showed that lean meat was greater (P < 0.05) in HCEP-fed cattle, but bone percentage and lean/bone ratio were less (P < 0.05) than LCEP-fed cattle. Carcass fat (P < 0.05) and fat content (P < 0.01) were significantly increased with levels of dietary CPO. Diets with 4 % CPO supplementation had better effects on redness (a*, P < 0.01) and chroma (C*, P < 0.001) values. In conclusion, up to 30 % CEP can be used to improve lean carcass and 4 % CPO can improve the redness of the meat.
A brief review of higher dietary protein diets in weight loss: a focus on athletes.
Phillips, Stuart M
2014-11-01
Thermodynamics dictates that for body weight (i.e. stored substrate) loss to occur a person must ingest less energy than they expend. Athletes, who owing to their oftentimes large daily energy expenditures, may have greater flexibility than non-athletes in this regard; however, they may also have different goals for weight loss. In particular, weight lost may be less important to an athlete than from which compartment the weight is lost: fat or lean. A critical question is thus, what balance of macronutrients might promote a greater fat loss, a relative retention of lean mass, and still allow athletic performance to remain uncompromised? It is the central thesis of this review that dietary protein should be a nutrient around which changes in macronutrient composition should be framed. The requirement for protein to sustain lean mass increases while in negative energy balance and protein, as macronutrient, may have advantages with respect to satiety during energy balance, and it may allow greater fat loss during a negative energy balance. However, athletes should be mindful of the fact that increasing dietary protein intake while in negative energy balance would come at the 'expense' of another macronutrient. Most recently there has been interest in lower carbohydrate diets, which may not allow performance to be sustained given the importance of dietary carbohydrate in high-intensity exercise. The relative merits of higher protein diets for athletes are discussed.
Shuttle-food consumption, body composition and body weight in women
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Frye, Sherrie; Kloeris, Vickie; Rice, Barbara; Siconolfi, Steven F.; Spector, Elisabeth; Gretebeck, Randall J.
1992-01-01
An experiment is conducted to determine whether the NASA Space Shuttle food system can provide the food and fluid required to mitigate weight loss and physical decomposition in 12 female subjects for 28 days. Subjects receive only foods from the Space Shuttle system for four weeks within an 11-wk monitoring period. Dual-energy X-ray absorptiometry is employed throughout the trial period to study lean body mass, percent body fat, and energy-intake levels with attention given to differences the experimental diet and the subjects' typical diet. Percent body fat is found to change significantly with losses of less than 0.05 percent, whereas energy intake based on autonomous diet choices by the participants does not vary significantly. Lean body mass remains unchanged throughout the study in which the subjects receive a relatively low-fat and low-protein menu. The 100 items on the space shuttle list of approved food items are shown to provide a palatable dietary framework for maintaining the health of female astronauts.
French, William W.; Dridi, Sami; Shouse, Stephanie A.; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I.
2017-01-01
A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05) compared to O20. O40 rats had lower liver weight (p < 0.05) compared to O20. However, O40 rats had higher orexin (p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 (p < 0.05), with no difference in 5′ AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle. PMID:28594375
French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I
2017-06-08
A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p < 0.05) compared to O20. O40 rats had lower liver weight ( p < 0.05) compared to O20. However, O40 rats had higher orexin ( p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p < 0.05), with no difference in 5' AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.
Li, Qinghong; Lauber, Christian L; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S
2017-01-24
Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). More than 50% of dogs are either overweight or obese in the United States. A dysbiotic gut microbiota is associated with obesity and other metabolic problems in humans. HPLC diets have been promoted as an effective weight loss strategy for many years, and potential effects were reported for both humans and dogs. In this study, we explored the influence of the protein and carbohydrate ratio on the gut microbiome in dogs with different body conditions. We demonstrated significant dietary effects on the gut microbiome, with greater changes in obese dogs than in lean dogs. The HPLC diet-fed dogs showed greater abundances of Firmicutes but fewer numbers of Bacteroidetes than other dogs. This knowledge will enable us to use prebiotics, probiotics, and other nutritional interventions to modulate the gut microbiota and to provide an alternative therapy for canine obesity. Copyright © 2017 Li et al.
Mechanisms of lower maintenance dose of tacrolimus in obese patients.
Sawamoto, Kazuki; Huong, Tran T; Sugimoto, Natsumi; Mizutani, Yuka; Sai, Yoshimichi; Miyamoto, Ken-ichi
2014-01-01
A retrospective analysis suggested that blood tacrolimus concentrations were consistent among patients with a body mass index (BMI) that was lean (<18.5), normal (≥ 18.5 and <25) or overweight/obese (≥ 25). The average maintenance dose of tacrolimus in patients with BMI ≥ 25 was significantly lower compared with that in patients with a BMI of less than 25. Lean and obese Zucker rats fed a normal diet were given tacrolimus intravenously or orally. The blood concentrations of tacrolimus in obese rats were significantly higher than those in lean rats after administration via both routes. The moment analysis has suggested that CLtot and Vdss of tacrolimus were not significantly different between lean and obese rats. The bioavailability was higher in obese rats, compared with that in lean rats. The protein expression of Cyp3a2 in the liver was significantly decreased in obese rats, compared with lean rats, while P-gp in the small intestine was also significantly decreased in obese rats. These results suggested that the steady-state trough concentration of tacrolimus in obese patients was well maintained by a relatively low dose compared with that in normal and lean patients, presumably due to increased bioavailability.
Acedo, Simone Coghetto; Caria, Cintia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra
2015-10-28
To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice.
Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice
Acedo, Simone Coghetto; Caria, Cintia Rabelo e Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra
2015-01-01
AIM: To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). METHODS: Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. RESULTS: Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. CONCLUSION: Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice. PMID:26523207
Morais, Sofia; Pratoomyot, Jarunan; Taggart, John B; Bron, James E; Guy, Derrick R; Bell, J Gordon; Tocher, Douglas R
2011-05-20
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
2011-01-01
Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes. PMID:21599965
Post-weaning high-fat diet results in growth cartilage lesions in young male rats
Haysom, Samuel S.; Vickers, Mark H.; Yu, Lennex H.; Reynolds, Clare M.; Firth, Elwyn C.
2017-01-01
To determine if a high-fat diet (HF) from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX) or cage only activity (SED) after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC) was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression. PMID:29166409
Effects of Eating Fresh Lean Pork on Cardiometabolic Health Parameters
Murphy, Karen J.; Thomson, Rebecca L.; Coates, Alison M.; Buckley, Jonathan D.; Howe, Peter R. C.
2012-01-01
High protein meat-based diets are commonly promoted for weight loss, supposedly by increasing satiety and energy expenditure. Pork is a good source of protein however little information on the metabolic effects of pork consumption exists. This pilot study aimed to examine whether regular consumption of fresh lean pork could improve body composition and cardiovascular risk factors in a 6 month parallel intervention trial. 164 overweight adults (mean BMI 32) were randomly assigned to incorporate up to 1 kg pork/week by substituting for other foods or maintain their habitual diet (control). Plasma levels of lipids, glucose and insulin, BMI, waist/hip circumference, blood pressure, heart rate and arterial compliance were measured at baseline and 3 and 6 months. Body composition was determined using dual energy X-ray absorptiometry. A total of 144 volunteers completed and volunteers in the pork group increased their intake 10 fold by substituting pork for mainly beef and chicken. After 3 months, there were significant (p ≤ 0.01) reductions in weight, BMI, waist circumference, % body fat, fat mass and abdominal fat in the pork group relative to controls, which persisted for 6 months. There was no change in lean mass, indicating that the reduction in weight was due to loss of fat mass. There were no significant effects on other metabolic parameters. Regular consumption of lean fresh pork may improve body composition. PMID:22852059
Energy metabolism in human obesity.
Jéquier, E
1989-01-01
Obesity results from a chronic imbalance between energy intake and expenditure. Accurate measurements of total energy expenditure of lean and obese individuals with a respiration chamber have clearly shown that obese individuals expand more energy than lean sedentary subjects. Studies on the body composition of obese individuals reveal that not only the fat mass is enlarged, but the fat-free mass is also increased as compared with that of lean subjects. Since basal metabolic rate is proportional to the fat-free mass, obese subjects have a greater basal metabolic rate than lean controls. The energy cost of weight bearing activities such as walking and standing is related to body weight, and is therefore increased in obese individuals. The thermogenic response to food ingestion, the diet-induced thermogenesis, has been found to be reduced in some groups of obese people, but not in all obese individuals. The thermic effect of glucose or to meal ingestion is blunted in obese subjects with insulin resistance. Any alteration in thermogenic responses to a caloric excess can be important to store or to oxidize part of the excessive energy intake. After weight reduction in obese subjects due to a hypocaloric diet, the total 24-hour energy expenditure decreases by 20 to 25 kcal/day for each kilogram of weight loss. Failure to adapt the every day energy intake accordingly will result in body weight gain and relapse of obesity.
Burns, T A; Watts, M R; Weber, P S; McCutcheon, L J; Geor, R J; Belknap, J K
2015-07-01
Acute, massive enteral carbohydrate overload is associated with laminar inflammation in equids; it is unclear if the same is true for a more prolonged period of moderate dietary carbohydrate intake. To characterise laminar inflammation in ponies exposed to a dietary carbohydrate challenge meant to mimic acute pasture exposure. In vivo experiment. Mixed-breed ponies (n = 22) received a diet of hay chop (nonstructural carbohydrate [NSC] ∼7% on a dry matter [DM] basis) for 4 weeks prior to initiation of the experimental feeding protocol. Following dietary acclimation, ponies were stratified into either Lean (n = 11, body condition score [BCS] ≤4) or Obese (n = 11, BCS ≥7) groups and each group further stratified to either remain on the control, low NSC diet (n = 5 each for Obese and Lean) or receive a high NSC diet (hay chop supplemented with sweet feed and oligofructose, total diet ∼42% NSC; n = 6 each for Obese and Lean) for a period of 7 days. Laminar samples were collected following euthanasia and sections stained immunohistochemically for CD163, MAC387/calprotectin and cyclo-oxygenase-2 (COX-2) using commercially available antibodies. The number of CD163 (+) and MAC387(+) cells was quantified for each section; the distribution of COX-2 expression was qualitatively assessed. Laminar mRNA concentrations of several proinflammatory molecules (interleukin-1β [IL-1β], IL-6, tumour necrosis factor-α [TNFα], IL-8, IL-10, monocyte chemoattractant protein-1 [MCP-1], MCP-2), inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, plasminogen activator inhibitor-1 (PAI-1) and COX-2 were evaluated using real-time quantitative polymerase chain reaction (qPCR). High carbohydrate feeding resulted in no increase in laminar proinflammatory cytokine expression; laminar COX-2 expression was increased by high carbohydrate feeding. No laminar leucocyte infiltration was observed in response to high carbohydrate feeding. These results suggest that the marked laminar inflammation observed in models of sepsis-associated laminitis may not play a central role in the pathophysiology of pasture-associated laminitis. © 2014 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Hardy, Bruce L.
2010-03-01
Contrary to their cold-adapted image, Neanderthals inhabited Pleistocene Europe during a time of great climatic fluctuation with temperatures ranging from as warm as present-day during the last interglacial to as cold as those of the last glacial maximum. Cold-adapted Neanderthals are similarly most often associated with the exploitation of large mammals who are themselves cold-adapted (mammoth, bison, reindeer, etc.). Cold, high-latitude environments are typically seen as lacking in plants generally and in plant foods in particular. Plant foods are therefore usually ignored and Neanderthals are increasingly being viewed as top carnivores who derived the vast majority of their diet from meat. Support for this hypothesis comes largely from stable isotope analysis which tracks only the protein portion of the diet. Diets high in lean meat largely fulfill micronutrient needs but can pose a problem at the macronutrient level. Lean meat can compose no more than 35% of dietary energy before a protein ceiling is reached. Exceeding the protein ceiling can have detrimental physiological effects on the individual. Neanderthals would have needed energy from alternative sources, particularly when animals are fat-depleted and lean meat intake is high. Underground storage organs (USOs) of plants offer one such source, concentrating carbohydrates and energy. USOs could also provide an important seasonal energy source since they are at their maximum energy storage in late fall/winter. Although Paleolithic sites are increasingly yielding plant remains, their presence is rare and they are often given only passing mention in Neanderthal dietary reconstructions. The complexity and number of potential wild plant foods, however, defies easy discussion. Native European wild edible plants with starchy USOs would have been potentially available throughout the Neanderthal range, even during the coldest periods of the Late Pleistocene.
Balabanski, L
1985-01-01
No single diet exists for the treatment of obesity. On the contrary, a variety of diet regimes should be taken in consideration in this disease. Even a normoenergic diet can produce the desired reduction of overweight if it is combined with physical exercise. A moderately reducing diet has a number of advantages over the very low-energic ones, as it leads to the preservation of the lean body mass, especially when the diet is accompanied by a regime of high physical activity. In obesity and other metabolic disorders, it is convenient to include in the diet low-energy foods rich in fiber with a possibly specific hypolipidemic effect, such as soy dishes, pectin-enriched dishes, fruit purees and juices, skimmed milk yogurt, wheat bran bisquits, and others.
Lauber, Christian L.; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S.
2017-01-01
ABSTRACT Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). PMID:28119466
Al-Sabah, Suleiman; Alasfar, Fahad; Al-Khaledi, Ghanim; Dinesh, Reshma; Al-Saleh, Mervat; Abul, Habib
2014-01-01
Currently, the most effective treatment for obesity is bariatric surgery. Gastroduodenal bypass surgery produces sustained weight loss and improves glycemic control and insulin sensitivity. Previous studies have shown that sleeve gastrectomy (SG) produces similar results and implicate changes in incretin hormone release in these effects. Male Sprague-Dawley rats were divided into four groups; lean control (lean), diet-induced obesity (DIO), DIO animals that had undergone SG (SG), and DIO animals that had undergone a sham operation (sham). After a 2-week recovery period, the incretin response to a standard test meal was measured. Blood sampling was performed in free-moving rats at various time points using chronic vascular access to the right jugular vein. There was a significant increase in the bodyweight of DIO animals fed a high-fat/high-sugar diet compared with the lean animals, which was reversed by SG. DIO caused an impairment of the GLP-1 response to a standard test meal, but not the GIP response. SG resulted in a dramatic increase in the GLP-1 response to a standard test meal but had no effect on the GIP response. A rapid rise in blood sugar was observed in the SG group following a standard test meal that was followed by reactive hypoglycemia. SG dramatically increases the GLP-1 response to a standard test meal but has no effect on GIP in a rat model of DIO.
Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L
2018-02-13
Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (P<0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese, compared with lean (P<0.05), and these levels related negatively to plasma AEA (P<0.05). The iAUC for AEA was positively related to iAUC GIP (r=0.384, P=0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP, in comparison to lean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.
Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M
2017-02-01
Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.
Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice
Wing-Lun, Edwina; Eaton, Sally A.; Hur, Suzy S. J.; Aiken, Alastair; Young, Paul E.; Buckland, Michael E.; Li, Cheryl C. Y.; Cropley, Jennifer E.; Suter, Catherine M.
2016-01-01
ABSTRACT The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be ‘programmed’ by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health. PMID:27216962
Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice.
Wing-Lun, Edwina; Eaton, Sally A; Hur, Suzy S J; Aiken, Alastair; Young, Paul E; Buckland, Michael E; Li, Cheryl C Y; Cropley, Jennifer E; Suter, Catherine M
2016-07-02
The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be 'programmed' by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health.
Correlation between diet and gut bacteria in a population of young adults.
Mayorga Reyes, Lino; González Vázquez, Raquel; Cruz Arroyo, Schahrasad M; Melendez Avalos, Araceli; Reyes Castillo, Pedro A; Chavaro Pérez, David A; Ramos Terrones, Idalia; Ramos Ibáñez, Norma; Rodríguez Magallanes, Magdalena M; Langella, Philippe; Bermúdez Humarán, Luis; Azaola Espinosa, Alejandro
2016-06-01
Dietary habits strongly influence gut microbiota. The aim of this study was to compare and correlated the abundance of Firmicutes and Bacteroidetes phyla, some representative bacteria of these phyla such as Bacteroides thetaiotaomicron, Prevotella, Faecalibacterium prausnitzii, Clostridium leptum and Bifidobacterium longum as a member of Actinobacteria phylum in young adults with their food intake. Faecal samples used came from lean subjects (BMI = 19.83 ± 0.94 kg/m(2)), overweight (BMI = 27.17 ± 0.51 kg/m(2)) and obese (BMI = 41.33 ± 5.25 kg/m(2)). There were significant differences in total studied gut microbiota between the overweight and lean groups. Members of the Firmicutes phylum, and Bifidobacterium longum, were more abundant in the lean group. The results suggest that diet rich in unsaturated fatty acids and fibre promote an abundant population of beneficial bacteria such as B. longum and Bacteroidetes. However, it has been considered that the results may be biased due to the size of the individuals studied; therefore the results could be only valid for the studied population.
Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P
2009-01-01
Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713
Red meat, dairy, and insulin sensitivity: a randomized crossover intervention study.
Turner, Kirsty M; Keogh, Jennifer B; Clifton, Peter M
2015-06-01
Epidemiologic studies have linked high consumption of red and processed meat with risk of developing type 2 diabetes, whereas high dairy consumption has been associated with decreased risk, but interventions have been limited. We compared the effects on insulin sensitivity of consuming a diet high in lean red meat with minimal dairy, a diet high in primarily low-fat dairy (from milk, yogurt, or custard) with no red meat, and a control diet that contained neither red meat nor dairy. A randomized crossover study was undertaken with 47 overweight and obese men and women divided into 2 groups as follows: those with normal glucose tolerance and those with impaired fasting glucose or impaired glucose tolerance. Participants followed the 3 weight-stable dietary interventions for 4 wk with glucose, insulin, and C-peptide measured by using oral-glucose-tolerance tests at the end of each diet. Fasting insulin was significantly higher after the dairy diet than after the red meat diet (P < 0.01) with no change in fasting glucose resulting in a decrease in insulin sensitivity after the high-dairy diet (P < 0.05) as assessed by homeostasis model assessment of insulin resistance (HOMA-IR). A significant interaction between diet and sex was observed such that, in women alone, HOMA-IR was significantly lower after the red meat diet than after the dairy diet (1.33 ± 0.8 compared with 1.71 ± 0.8, respectively; P < 0.01). Insulin sensitivity calculated by using the Matsuda method was 14.7% lower in women after the dairy diet than after the red meat diet (P < 0.01) with no difference between diets in men. C-peptide was not different between diets. In contrast to some epidemiologic findings, these results suggest that high consumption of dairy reduces insulin sensitivity compared with a diet high in lean red meat in overweight and obese subjects, some of whom had glucose intolerance. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN12613000441718. © 2015 American Society for Nutrition.
Dannenberger, Dirk; Nuernberg, Gerd; Renne, Ulla; Nuernberg, Karin; Langhammer, Martina; Huber, Korinna; Breier, Bernhard
2013-05-01
The aim of the study is to determine the response of muscle lipid peroxidation and the fatty-acid profile of three groups of mice-high body weight (DU6) obesity-prone mice, high treadmill performance (DUhTP) lean mice, and unselected control mice (DUK) fed high-fat diets (HFDs) rich in ω-3 or ω-6 polyunsaturated fatty acids (PUFA). The isocaloric HFDs were enriched with either ω-3 PUFA (27% fish oil, ω-3 HFD) or ω-6 PUFA (27% sunflower oil, ω-6 HFD), and the control group was fed standard chow (7.2% fat). Statistical calculations were done with procedure GLM of SAS. As expected, the ω-3 and ω-6 PUFA-rich HFDs showed significant effects on fatty-acid concentrations of skeletal muscle in all three lines of mice compared with the standard chow. The investigations of muscle lipid peroxidation revealed that the ω-3 PUFA-rich HFD caused the highest lipid peroxidation values in muscle of lean DUhTP mice and unselected control DUK mice. However, lower lipid peroxidation levels were observed in the obesity-prone DU6 mice. In contrast, the ω-6 PUFA-rich HFD did not influence lipid peroxidation in muscle of any of the different lines of mice. The present study suggests that a higher overall antioxidant capacity in the muscle tissue of obesity-prone DU6 mice may lead to lower levels of reactive oxygen species formation by ω-3 PUFA-rich HFDs in comparison with lean DUhTP mice. These studies raise the possibility that obesity per se may be protective against oxidative damage when high ω-3 PUFA diets are used. Copyright © 2013 Elsevier Inc. All rights reserved.
Weight Management for Athletes and Active Individuals: A Brief Review.
Manore, Melinda M
2015-11-01
Weight management for athletes and active individuals is unique because of their high daily energy expenditure; thus, the emphasis is usually placed on changing the diet side of the energy balance equation. When dieting for weight loss, active individuals also want to preserve lean tissue, which means that energy restriction cannot be too severe or lean tissue is lost. First, this brief review addresses the issues of weight management in athletes and active individuals and factors to consider when determining a weight-loss goal. Second, the concept of dynamic energy balance is reviewed, including two mathematical models developed to improve weight-loss predictions based on changes in diet and exercise. These models are now available on the Internet. Finally, dietary strategies for weight loss/maintenance that can be successfully used with active individuals are given. Emphasis is placed on teaching the benefits of consuming a low-ED diet (e.g., high-fiber, high-water, low-fat foods), which allows for the consumption of a greater volume of food to increase satiety while reducing energy intake. Health professionals and sport dietitians need to understand dynamic energy balance and be prepared with effective and evidence-based dietary approaches to help athletes and active individuals achieve their body-weight goals.
Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness.
Baxter, Lewis R
2003-08-01
Complex, situation-specific territorial maintenance routines are similar across living terrestrial vertebrates (=amniotes). Decades ago, Paul MacLean et al., at the Laboratory of Brain Evolution and Behavior of the National Institute of Mental Health, postulated that these are evolutionarily conserved behaviors whose expression is mediated by the similarly conserved amniote basal ganglia and related brain systems (BG systems). Therefore, they undertook studies in nonhuman primates and in small social lizards (the common green anole, Anolis carolinensis) to examine this idea. MacLean et al. also postulated that when BG systems misfunction in humans, behavioral abnormalities result, some of them under the rubric of psychiatric illnesses. Obsessive-compulsive disorder (OCD) was singled out as one likely candidate. In the last dozen years, functional brain imaging studies of OCD patients have validated the contention that this is, in fact, a condition involving dysfunctioning BG systems. Inspired by the MacLean group's original investigations, my colleagues and I have now applied related functional imaging techniques in naturalistic experiments using Anolis to better understand BG systems' roles in the mediation of complex behavioral routines in healthy amniotes. Here, I will review this functional imaging work in primates (man, and a little in monkey) and in lizards. I believe the literature not only supports MacLean et al.'s contentions about BG systems and behavior in general, but also validates Paul MacLean's life-long contention that human behavioral medicine can profit from a broad comparative approach.
Effect of weight loss plans on body composition and diet duration.
Landers, Patti; Wolfe, Megan M; Glore, Stephen; Guild, Ralph; Phillips, Lindsay
2002-05-01
Are low carbohydrate high protein (LCHP) diets more effective in promoting loss of weight and body fat and can individuals stay on an Atkins-like diet more easily than on a conventional weight loss diet? A pre-test/post-test randomized group design composed of three cohorts was utilized to test 1) a LCHP ketogenic diet; 2) the Zone diet; and 3) a conventional hypocaloric diabetic exchange diet that supplied < 10%, 40%, and 50% of calories from carbohydrate, respectively. Body composition was measured before and after the intervention treatment period with dual energy X-ray absorptiometry. Mean weight loss was 5.1 kg for those who completed the 12-week program. There were no significant differences in total weight, fat, or lean body mass loss when compared by diet group. Attrition was substantial for all plans at 43%, 60%, and 36% for LCHP, Zone and conventional diets, respectively.
Olivola, Christopher Y; Sussman, Abigail B
2014-06-01
Recent research has identified several judgment and decision making tendencies associated with right-leaning political ideologies that are difficult (if not impossible) to explain in terms of stable, negative affective appraisals because they (1) are uncorrelated with the negativity of the stimuli being considered, (2) do not reflect divergent affective evaluations, and (3) can be eliminated by superficial manipulations and interventions.
Agreement and Predictive Validity Using Less Conservative FNIH Sarcopenia Project Weakness Cutpoints
Shaffer, Nancy Chiles; Ferrucci, Luigi; Shardell, Michelle; Simonsick, Eleanor M.; Studenski, Stephanie
2016-01-01
OBJECTIVES The FNIH Sarcopenia Project derived conservative definitions for weakness and low lean mass, resulting in low prevalence and low agreement with prior definitions. The FNIH Project also estimated a less conservative cutpoint for low grip strength, potentially yielding a cutpoint for low lean mass more consistent with the European Working Group on Sarcopenia in Older People (EWGSOP). We derived lean mass cutpoints based on the less conservative cutpoint for grip strength (WeakI), and assessed agreement with EWGSOP and prediction of incident slow walking and mortality. DESIGN, SETTING, PARTICIPANTS, MEASUREMENTS Longitudinal analysis of 287 men and 258 women from the Baltimore Longitudinal Study of Aging aged >65 years, with 2–10 years followup. Weakness was determined via hand dynamometer, appendicular lean mass (ALM) via DEXA, and slow walking by 6m usual pace walk <0.8m/s. Analyses used classification and regression tree analysis, Cohen’s Kappa, and Cox models. RESULTS Cutpoints derived from WeakI for ALM (ALMI) and ALM adjusted for body mass index (ALM/BMII) were (ALMI) <21.4kg (men) and <14.1kg (women); and (ALM/BMII) <0.725 (men) and <0.591 (women). Kappas with EWGSOP were (ALMI); 0.65 (men) and 0.75 (women) and ALM/BMII; 0.34 (men) and 0.47 (women). In men, the hazard ratio for incident slow walking by WeakI + ALMI was 2.44 (95% CI:1.02–5.82) versus 2.91 (95% CI:1.11–7.62) by EWGSOP. Neither approach predicted incident slow walking in women. CONCLUSION The ALMI cutpoints agree with EWGSOP and predict slow walking in men. Future studies should explore sex differences in the relationship between body composition and physical function and the impact of change in muscle mass on muscle strength and physical function. PMID:28024092
Kulkarni, Supriya R.; Xu, Jialin; Donepudi, Ajay C.; Wei, Wei
2014-01-01
Purpose Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. Methods mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. Results CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. Conclusions CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters. PMID:23949303
[Nutritional implications of bariatric surgery on the gastrointestinal tract].
Rubio, M A; Moreno, C
2007-05-01
Anatomical change in the anatomy of the gastrointestinal tract after bariatric surgery leads to modification of dietary patterns that have to be adapted to new physiological conditions, either related with the volume of intakes or the characteristics of the macro- and micronutrients to be administered. Restrictive diet after bariatric surgery (basically gastric bypass and restrictive procedures) is done at several steps. The first phase after surgery consists in the administration of clear liquids for 2-3 days, followed by completely low-fat and high-protein content (> 50-60 g/day) liquid diet for 2-4 weeks, normally by means of formula-diets. Soft or grinded diet including very soft protein-rich foods, such as egg, low-calories cheese, and lean meats such as chicken, cow, pork, or fish (red meats are not so well tolerated) is recommended 2-4 weeks after hospital discharge. Normal diet may be started within 8 weeks from surgery or even later. It is important to incorporate hyperproteic foods with each meal, such egg whites, lean meats, cheese or milk. All these indications should be done under the supervision of an expert nutrition professional to always advise the patients and adapting the diet to some special situations (nausea/vomiting, constipation, diarrhea, dumping syndrome, dehydration, food intolerances, overfeeding, etc.). The most frequent vitamin and mineral deficiencies in the different types of surgeries are reviewed, with a special focus on iron, vitamin B12, calcium, and vitamin D metabolism. It should not be forgotten that the aim of obesity surgery is making the patient loose weight and thus post-surgery diet is designed to achieve that goal although without forgetting the essential role that nutritional education has on the learning of new dietary habits contributing to maintain that weight loss over time.
Steinbeck, K; Caterson, I D; Astbury, L; Turtle, J R
1987-01-01
Pyruvate dehydrogenase complex activity is the major determinant of glucose oxidation in animal cells. Tissue glucose oxidation is reduced in obesity and states of insulin resistance and alternate fuels are utilized for energy and pyruvate dehydrogenase activity is reduced in cardiac muscle in obesity. The effect of four different diets (standard laboratory chow, high-carbohydrate, high-protein and high-fat) on weight gain, cardiac pyruvate dehydrogenase activity (PDHa) and serum insulin, glucose and free fatty acids was studied in the gold thioglucose obese mouse. All four diets produced significant weight gain in the gold thioglucose injected animal. Cardiac PDHa was influenced by both obesity and diet composition. The obese chow-fed animals had significantly reduced PDHa. On high-carbohydrate and high-protein feeding lean controls had a significant decrease in cardiac PDHa compared to chow-fed controls, but only in high-carbohydrate-fed animals was this further reduced by obesity. High-fat feeding produced a rapid and almost complete suppression of PDHa in both lean and obese animals. Serum insulin, glucose and free fatty acids were also affected by diet as well as obesity. The highest serum insulins were found in chow-fed obese animals whereas the highest serum glucoses were in high-carbohydrate-fed obese animals. Hyperinsulinaemia did not develop in the high-fat-fed obese animal, but the highest serum free fatty acids were found in high-fat feeding. It is concluded that both diet composition and obesity affect cardiac PDHa and therefore glucose utilization in this tissue. Insulin resistance in the acute stages of obesity development is also affected by diet composition.
Parr, Evelyn B; Coffey, Vernon G; Cato, Louise E; Phillips, Stuart M; Burke, Louise M; Hawley, John A
2016-05-01
This study determined the effects of 16-week high-dairy-protein, variable-carbohydrate (CHO) diets and exercise training (EXT) on body composition in men and women with overweight/obesity. One hundred and eleven participants (age 47 ± 6 years, body mass 90.9 ± 11.7 kg, BMI 33 ± 4 kg/m(2) , values mean ± SD) were randomly stratified to diets with either: high dairy protein, moderate CHO (40% CHO: 30% protein: 30% fat; ∼4 dairy servings); high dairy protein, high CHO (55%: 30%: 15%; ∼4 dairy servings); or control (55%: 15%: 30%; ∼1 dairy serving). Energy restriction (500 kcal/day) was achieved through diet (∼250 kcal/day) and EXT (∼250 kcal/day). Body composition was measured using dual-energy X-ray absorptiometry before, midway, and upon completion of the intervention. Eighty-nine (25 M/64 F) of 115 participants completed the 16-week intervention, losing 7.7 ± 3.2 kg fat mass (P < 0.001) and gaining 0.50 ± 1.75 kg lean mass (P < 0.01). There was no difference in the changes in body composition (fat mass or lean mass) between groups. Compared to a healthy control diet, energy-restricted high-protein diets containing different proportions of fat and CHO confer no advantage to weight loss or change in body composition in the presence of an appropriate exercise stimulus. © 2016 The Obesity Society.
Integration of a physical training program in a weight loss plan for overweight pet dogs.
Vitger, Anne D; Stallknecht, Bente M; Nielsen, Dorte H; Bjornvad, Charlotte R
2016-01-15
To investigate whether a controlled physical training plan for overweight dogs during a weight loss program would improve cardiorespiratory fitness and better preserve lean body mass, compared with results for dogs undergoing a weight loss program based on caloric restriction alone. Prospective, nonrandomized clinical study. 19 client-owned overweight or obese dogs. All dogs were fed the same calorie-restricted diet rationed to achieve a weight loss rate of 1% to 2%/wk for 12 weeks. The fitness-and-diet (FD) group participated in a training program that included underwater and land-based treadmill exercise 3 times/wk. The diet-only (DO) group had no change in exercise routines. Daily activity before and during the intervention was recorded by accelerometry. Before and after intervention, heart rate during exercise was recorded to assess cardiovascular fitness, and body composition was analyzed by dual-energy x-ray absorptiometry. Differences between groups were evaluated with t tests and multiple regression analysis. Mean weight loss was 13.9% and 12.9% for the FD and DO groups, respectively (n = 8 dogs/group that completed the study). Mean accelerometer counts during intervention were 13% higher than baseline counts for the FD group. Heart rate during exercise declined after intervention in both groups. Lean body mass was preserved in the FD group and lost in the DO group during intervention. The controlled exercise plan used with a dietary weight loss program prevented loss of lean body mass in dogs. This finding supports inclusion of controlled physical training for obesity management in dogs.
Body mass index predicts aldosterone production in normotensive adults on a high-salt diet.
Bentley-Lewis, Rhonda; Adler, Gail K; Perlstein, Todd; Seely, Ellen W; Hopkins, Paul N; Williams, Gordon H; Garg, Rajesh
2007-11-01
The mechanisms underlying obesity-mediated cardiovascular disease are not fully understood. Aldosterone and insulin resistance both are associated with obesity and cardiovascular disease. The objectives of this study were to test the hypotheses that aldosterone production is elevated and associated with insulin resistance in overweight adults on a high-sodium diet. Healthy normotensive adults were categorized as lean body mass index (BMI) less than 25 kg/m(2) (n = 63) or overweight BMI 25 kg/m(2) or greater (n = 57). After 7 d of a high-sodium diet, participants fasted overnight and remained supine throughout hemodynamic and laboratory assessments and angiotensin II (AngII) stimulation. The overweight group, compared with the lean group, had higher 24-h urinary aldosterone (9.0 +/- 0.8 vs. 6.6 +/- 0.5 microg per 24 h; P = 0.003) and higher AngII-stimulated serum aldosterone (11.4 +/- 1.0 vs. 9.0 +/- 0.6 ng/dl; P = 0.04). There were no differences in 24-h urinary cortisol or sodium or supine measurements of plasma renin activity, serum aldosterone, or serum potassium. The homeostasis model assessment of insulin resistance was predicted by urinary aldosterone excretion (r = 0.32, P = 0.03) and serum aldosterone response to AngII stimulation (r = 0.28, P = 0.02) independent of age and BMI. Urinary aldosterone excretion and AngII-stimulated aldosterone are increased in overweight, compared with lean, normotensive adults. The correlation of these measures of aldosterone production with insulin resistance suggests a potential role for aldosterone in the pathophysiology of obesity-mediated insulin resistance.
... provide complex carbohydrates. Avoid foods and beverages with high-fructose corn syrup, and limit consumption of naturally sweet fruit juices. Water. Stay well-hydrated by drinking water. Fats. Cut back on saturated ... fatty poultry and high-fat dairy products. Proteins. Focus on lean meat ...
Clifton, P M; Condo, D; Keogh, J B
2014-03-01
Meta analysis of short term trials indicates that a higher protein, lower carbohydrate weight loss diet enhances fat mass loss and limits lean mass loss compared with a normal protein weight loss diet. Whether this benefit persists long term is not clear. We selected weight loss studies in adults with at least a 12 month follow up in which a higher percentage protein/lower carbohydrate diet was either planned or would be expected for either weight loss or weight maintenance. Studies were selected regardless of the success of the advice but difference in absolute and percentage protein intake at 12 months was used as a moderator in the analysis. Data was analysed using Comprehensive Meta analysis V2 using a random effects analysis. As many as 32 studies with 3492 individuals were analysed with data on fat and lean mass, glucose and insulin from 18 to 22 studies and lipids from 28 studies. A recommendation to consume a lower carbohydrate, higher protein diet in mostly short term intensive interventions with long term follow up was associated with better weight and fat loss but the effect size was small-standardised means of 0.14 and 0.22, p = 0.008 and p < 0.001 respectively (equivalent to 0.4 kg for both). A difference of 5% or greater in percentage protein between diets at 12 mo was associated with a 3 fold greater effect size compared with <5% (p = 0.038) in fat mass (0.9 vs. 0.3 kg). Fasting triglyceride and insulin were also lower with high protein diets with effect sizes of 0.17 and 0.22, p = 0.003 and p = 0.042 respectively. Other lipids and glucose were not different. The short term benefit of higher protein diets appears to persist to a small degree long term. Benefits are greater with better compliance to the diet. Copyright © 2013 Elsevier B.V. All rights reserved.
Interspecific resource partitioning in sympatric ursids
Belant, Jerrold L.; Kielland, Knut; Follmann, Erich H.; Adams, Layne G.
2006-01-01
The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in south‐central Alaska, 1998–2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (>53% annually) whereas black bears assimilated 0–25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass : mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black bears was constrained by brown bears through partitioning of food resources, which varied among years. Reduced exploitation of salmon caused black bears to rely more extensively on less reliable or nutritious food sources (e.g., moose [Alces alces], berries) resulting in lowered body condition and subsequent reproduction.
Health Behaviours during Pregnancy in Women with Very Severe Obesity.
Mohd-Shukri, Nor A; Duncan, Andrew; Denison, Fiona C; Forbes, Shareen; Walker, Brian R; Norman, Jane E; Reynolds, Rebecca M
2015-10-07
The health behaviours of pregnant women with very severe obesity are not known, though these women are at high risk of pregnancy complications. We carried out a prospective case-control study including 148 very severely obese (BMI >40 kg/m²) and 93 lean (BMI <25 kg/m²) pregnant women. Diet, physical activity, smoking, alcohol and folic acid consumption were assessed by questionnaire in early and late (16 and 28 weeks gestation) pregnancy. Circulating levels of iron, vitamin B12 and folate and other essential trace elements and minerals were measured in a subset at each time point. The findings biochemically confirmed that very severely obese women consumed diets that were energy-rich but poor in essential micronutrients. A third of all women met physical activity recommendations for pregnancy. A third of very severely obese women and two thirds of lean women took folic acid supplements prior to pregnancy. Very severely obese women were more likely to smoke but less likely to drink alcohol than lean women (all p < 0.05). Women with very severe obesity have low self-reported intakes and circulating levels of essential micronutrients in pregnancy and few follow current recommendations for pregnancy nutrition and lifestyle. These high-risk women represent a group to target for education about health behaviours prior to and during pregnancy.
Irwin, Mitchell T.; Raharison, Jean-Luc; Raubenheimer, David R.; Chapman, Colin A.; Rothman, Jessica M.
2015-01-01
Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons. PMID:26061401
Serum concentration of adipocytokines in prepubertal vegetarian and omnivorous children.
Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Rowicka, Grażyna; Ołtarzewski, Mariusz; Laskowska-Klita, Teresa
2011-01-01
THE AIM of our study was to investigate associations between serum adipocytokines status and anthropometric parameters as well as total energy and macronutrient intake in vegetarian, normal-weight omnivorous and obese omnivorous children. We examined 90 healthy prepubertal children aged 4-10 years who had been referred to the Department of Nutrition at the Institute of Mother and Child in Warsaw for dietary consultation. Patients with endocrine disorders or genetic syndromes, as well as those who were taking medications that could affect growth, pubertal development or nutritional status were excluded. Children were divided into groups: vegetarians (n=30), normal-weight omnivores (n=30) and obese omnivores (n=30). Anthropometric measurement (weight, height) was performed in all children and body mass index (BMI) was calculated. A whole body dual-energy X-ray absorptiometry (DXA) scan was performed to determine fat mass, the percentage of body fat and lean body mass using a Lunar Prodigy (GE, USA). Dietary constituents were assessed by questionnaire (nutrient intake from a 3-day period: 2 weekdays and 1 weekend day) and calculated using the nutritional computer program Dietetyk2®. Serum total cholesterol, high-density and low-density lipoproteins, and triglycerides concentrations were assessed by standard enzymatic methods. Serum levels of leptin, soluble leptin receptor and adiponectin were determined by immunoenzymatic assays. There were no significant differences in body weight, height, BMI and lean mass values between vegetarians and normal-weight children on traditional mixed diet. Children on vegetarian diet had lower fat mass (p<0.05) and fat mass/lean mass ratio (p<0.05) than normal-weight omnivores. However, omnivorous children with simple obesity had significantly higher body weight, height, BMI, fat and lean mass in comparison to vegetarian as well to normal-weight omnivorous children. The fat mass/lean mass ratio in obese children was about 2.5-fold higher than in normal-weight subjects on traditional diet. Total energy and percentage of energy from macronutrients in diets of all children were within the recommended daily intake. Children on vegetarian diet was related with lower fat and higher carbohydrates intake in comparison to their omnivorous peers. Vegetarian children had significantly lower mean total cholesterol (151.5±18.0 mg/dL), low-density lipoprotein (81.0±13.6 mg/dL) and triglycerides (61.6±20.5 mg/dL) than omnivores, especially the obese ones (165.0±22.3 mg/dL, 94.7±19.2 mg/dL, 82.4±32.3 mg/dL, respectively). These differences were statistically significant (p<0.05). Serum concentration of leptin was significantly lower in vegetarian children (3.0±2.1 ng/ml) compared with omnivores (6.8±3.4 ng/ml in normal weight versus 37.8±12.7 ng/ml in obese) (p<0.0001). However, serum soluble leptin receptor as well as adiponectin were at higher levels in vegetarians than in omnivores (p<0.001 and p<0.05, respectively). We observed that serum leptin levels positively and soluble leptin receptor negatively correlated with body mass index and fat mass in prepubertal children. Moreover, leptin levels negatively correlated with its soluble receptor and with adiponectin. In children different kinds of diet might modify not only body mass and lipid profile but also serum concentration of adipocytokines. Determination of leptin and its soluble receptor, as well as adiponectin levels may be clinically useful in the medical and nutritional care of obese as well as vegetarian prepubertal children.
Complex Relationships Between Food, Diet, and the Microbiome.
Pace, Laura A; Crowe, Sheila E
2016-06-01
Diet is a risk factor in several medically important disease states, including obesity, celiac disease, and functional gastrointestinal disorders. Modification of diet can prevent, treat, or alleviate some of the symptoms associated with these diseases and improve general health. It is important to provide patients with simple dietary recommendations to increase the probability of successful implementation. These recommendations include increasing vegetable, fruit, and fiber intake, consuming lean protein sources to enhance satiety, avoiding or severely limiting highly processed foods, and reducing portion sizes for overweight and obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Jang, Y D; Wilcock, P; Boyd, R D; Lindemann, M D
2017-09-01
Phytate has been shown to be an antinutrient, and the feeding of high levels of phytase can break down phytate to improve nutrient utilization and pig performance. Dietary xylanase targets arabinoxylan breakdown, thereby improving energy utilization in pigs. However, the effects of simultaneous supplementation have not been clearly determined. Crossbred pigs ( = 45; mean initial weight, 26.4 ± 0.2 kg) were allotted to 1 of 9 treatments to evaluate the effects of both xylanase (endo-1,4-β xylanase [EC 3.2.1.8]) and phytase (6-phytase [EC 3.1.3.26]) supplementation as follows: 1) positive control (PC), a corn-soybean meal-based diet with 15% corn distillers dried grains with solubles, 15% wheat middlings, and 13% corn germ meal; 2) negative control (NC), ME was reduced by 103 kcal/kg from the PC diet by replacement of fat with corn starch; 3) NC + phytase (500 phytase units (FTU)/kg diet); 4) NC + phytase (1,000 FTU/kg diet); 5) NC + phytase (2,000 FTU/kg diet); 6) NC + xylanase (24,000 xylanase units [BXU]/kg diet); 7) NC + phytase (500 FTU/kg diet) + xylanase (24,000 BXU/kg diet); 8) NC + phytase (1,000 FTU/kg diet) + xylanase (24,000 BXU/kg diet); and 9) NC + phytase (2,000 FTU/kg diet) + xylanase (24,000 BXU/kg diet). All diets were formulated to meet nutrient requirements before phytase and xylanase addition to the diets. There were no significant interactions between xylanase and phytase supplementation on growth performance, carcass characteristics, and apparent total tract digestibility (ATTD). The ADG ( < 0.01, quadratic) and G:F ( < 0.05, linear) for the overall period increased as phytase level increased. The ATTD of P increased as phytase supplementation level increased ( < 0.05, linear and quadratic). The ATTD of DM, NDF, ether extract ( < 0.05), and hemicellulose ( = 0.05) increased quadratically as phytase level increased. Estimated carcass lean percentage and lean gain increased ( < 0.05, linear) as phytase level increased. Xylanase supplementation had no effect on growth performance, ATTD, and carcass characteristics. The results demonstrated an improved nutrient digestibility, performance, and carcass response to phytase supplementation beyond P provision because all diets exceeded current P requirement estimates based on standardized total tract digestible P.
Mydlo, J H; Gerstein, M I; Harris, C F; Braverman, A S
2003-01-01
Some studies suggest that several tumors have a greater incidence in those patients with a high fat diet, such as colon, breast, and prostate. However, we wanted to determine the effects of obesity alone, independent of diet, on the progression of prostate tumor growth. Using a genetic model of obese and lean Zucker rats, we wanted to demonstrate any sera differences in the concentration of basic fibroblast growth factor (FGF-2) and vascular endothelial cell growth factor (VEGF), two important factors involved in the growth and progression of prostate cancer. We also wanted to investigate if there were any differences in immune function between the two sera, which could also account for uninhibited tumor growth, as well as differences in mitogenic stimulation. Female Zucker rat obese and lean sera were analyzed using ELISA assays for FGF-2, VEGF, and macrophage inflammatory protein-1 alpha (MIP-1a), as a measure of macrophage function. In addition, the sera of lean and obese sera were plated on wells growing LNCaP prostate cancer cells to determine differences in mitogenicity. We found a greater concentration of FGF-2 in the sera from obese Zucker rats compared to lean Zucker rats: 6.32+/-0.56 vs 3.48+/-0.34 pg/ml, respectively, P<0.05). We also demonstrated a greater concentration of VEGF in obese rat sera compared to lean sera: 54.4+/-4.1 vs 38.0+/-2.9 pg/mL, respectively, P<0.05). We detected a trend in mitogenic stimulation among LNCaP cells along the higher concentrations of the dose-response curve (0.72+/-0.06 vs 0.51+/-0.5). However, this was not statistically significant. In addition, we did not find a significant difference in MIP-1a macrophage activity levels between sera. To conclude, we speculate that the greater concentrations of VEGF and FGF-2 in the sera of obese rodents vs lean rodents may account for some of the differences seen in obesity-related tumor growth seen in the human condition. However, the lack of any sera differences of immune function, as measured by macrophage activity, as well as no significant differences on mitogenic proliferation on LNCaP prostate cancer cells, suggests that other mechanisms may exist to explain differences seen in obesity-related prostate tumor biology.
Treyzon, Leo; Chen, Steve; Hong, Kurt; Yan, Eric; Carpenter, Catherine L; Thames, Gail; Bowerman, Susan; Wang, He-Jing; Elashoff, Robert; Li, Zhaoping
2008-01-01
Background While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Methods Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Results Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Conclusion Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and protein-enriched MR strategy for weight loss may have obscured any effect of increased protein on weight loss demonstrated in prior weight loss studies using whole food diets. PMID:18752682
Treyzon, Leo; Chen, Steve; Hong, Kurt; Yan, Eric; Carpenter, Catherine L; Thames, Gail; Bowerman, Susan; Wang, He-Jing; Elashoff, Robert; Li, Zhaoping
2008-08-27
While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 +/- 0.5 kg for HP group and -3.72 +/- 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 +/- 0.63 kg; SP = -0.64 +/- 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and protein-enriched MR strategy for weight loss may have obscured any effect of increased protein on weight loss demonstrated in prior weight loss studies using whole food diets.
Ng Tang Fui, Mark; Hoermann, Rudolf; Zajac, Jeffrey D; Grossmann, Mathis
2017-10-01
Testosterone treatment in obese dieting men augments the diet-associated loss of fat mass, but protects against loss of lean mass. We assessed whether body composition changes are maintained following withdrawal of testosterone treatment. We conducted a prespecified double-blind randomized placebo-controlled observational follow-up study of a randomized controlled trial (RCT). Participants were men with baseline obesity (body mass index >30 kg/m 2 ) and a repeated total testosterone level <12 nmol/L, previously enrolled in a 56-week testosterone treatment trial combined with a weight loss programme. Main outcome measures were mean adjusted differences (MAD) (95% confidence interval), in body composition between testosterone- and placebo-treated men at the end of the observation period. Of the 100 randomized men, 82 completed the RCT and 64 the subsequent observational study. Median [IQR] observation time after completion of the RCT was 82 weeks [74; 90] in men previously receiving testosterone (cases) and 81 weeks [67;91] in men previously receiving placebo (controls), P=.51. At the end of the RCT, while losing similar amounts of weight, cases had, compared to controls, lost more fat mass, MAD -2.9 kg (-5.7, -0.2), P=.04, but had lost less lean mass MAD 3.4 kg (1.3, 5.5), P=.002. At the end of the observation period, the former between-group differences in fat mass, MAD -0.8 kg (-3.6, 2.0), P=1.0, in lean mass, MAD -1.3 kg (-3.0, 0.5), P=.39, and in appendicular lean mass, MAD -0.1 kg/m 2 (-0.3, 0.1), P=.45, were no longer apparent. During observation, cases lost more lean mass, MAD -3.7 kg (-5.5, -1.9), P=.0005, and appendicular lean mass, MAD -0.5 kg/m 2 (-0.8, -0.3), P<.0001 compared to controls. The favourable effects of testosterone on body composition in men subjected to a concomitant weight loss programme were not maintained at 82 weeks after testosterone treatment cessation. © 2017 John Wiley & Sons Ltd.
Tansey, J T; Sztalryd, C; Gruia-Gray, J; Roush, D L; Zee, J V; Gavrilova, O; Reitman, M L; Deng, C X; Li, C; Kimmel, A R; Londos, C
2001-05-22
Perilipin coats the lipid droplets of adipocytes and is thought to have a role in regulating triacylglycerol hydrolysis. To study the role of perilipin in vivo, we have created a perilipin knockout mouse. Perilipin null (peri(-/-)) and wild-type (peri(+/+)) mice consume equal amounts of food, but the adipose tissue mass in the null animals is reduced to approximately 30% of that in wild-type animals. Isolated adipocytes of perilipin null mice exhibit elevated basal lipolysis because of the loss of the protective function of perilipin. They also exhibit dramatically attenuated stimulated lipolytic activity, indicating that perilipin is required for maximal lipolytic activity. Plasma leptin concentrations in null animals were greater than expected for the reduced adipose mass. The peri(-/-) animals have a greater lean body mass and increased metabolic rate but they also show an increased tendency to develop glucose intolerance and peripheral insulin resistance. When fed a high-fat diet, the perilipin null animals are resistant to diet-induced obesity but not to glucose intolerance. The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipin as a potential target for attacking problems associated with obesity.
Smith, Gordon I; Yoshino, Jun; Kelly, Shannon C; Reeds, Dominic N; Okunade, Adewole; Patterson, Bruce W; Klein, Samuel; Mittendorfer, Bettina
2016-10-11
High-protein (HP) intake during weight loss (WL) therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training
NASA Technical Reports Server (NTRS)
Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori
2016-01-01
Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low responders). Change in VO2pk was not related to exercise intensity. CONCLUSION. Change in VO2pk in response to disuse and exercise was highly variable among individuals, even in this tightly controlled study. Loss in lean mass accounts for a significant degree of variability in the CON; however, training induced gains in VO2pk appear unrelated to lean mass or exercise intensity.
Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M
2013-08-01
Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.
Hosny, Iman Abbas; Elghawabi, Hamed Samir; Younan, Wael Bahat Fahmy; Sabbour, Adly Aly; Gobrial, Mona Abdel Messih
2012-04-01
The aim of this study was to assess the impact of caloric restriction diet versus caloric restriction diet combined with aerobic exercises on bone mineral density (BMD) in obese premenopausal women. Forty premenopausal obese women were classified randomly into two groups equal in number. The first group (group A) received caloric restriction diet, while the second (group B) received caloric restriction diet combined with a program of aerobic exercises, over 3 months. The variables measured in this study included age, weight, height, body mass index, fat weight, lean mass, fat percent, basal metabolic rate, and BMD. The comparison between group A and group B showed significantly higher post-treatment lean mass, basal metabolic rate, and BMD in weight-bearing bones (L2-L4 lumbar spine and total hip) in group B compared to group A. In contrast to the BMD of the weight-bearing bones, the BMD of the radius showed significant decrease between the pre- and post-treatment results in groups A and B with no significant differences between the two groups. A greater improvement in the BMD of weight-bearing bones was observed in obese premenopausal women undergoing caloric restriction combined with exercise than in those not undergoing exercise. Anaerobic exercises incorporated into weight loss programs help offset the adverse effects of dietary restriction on bone.
Hasek, Like Y; Phillips, Robert J; Zhang, Genyi; Kinzig, Kimberly P; Kim, Choon Young; Powley, Terry L; Hamaker, Bruce R
2018-03-01
Slowly digestible starch (SDS), as a functional carbohydrate providing a slow and sustained glucose release, may be able to modulate food intake through activation of the gut-brain axis. Diet-induced obese rats were used to test the effect on feeding behavior of high-fat (HF) diets containing an SDS, fabricated to digest into the ileum, as compared to rapidly digestible starch (RDS). Ingestion of the HF-SDS diet over an 11-week period reduced daily food intake, through smaller meal size, to the same level as a lean body control group, while the group consuming the HF-RDS diet remained at a high food intake. Expression levels (mRNA) of the hypothalamic orexigenic neuropeptide Y (NPY) and Agouti-related peptide (AgRP) were significantly reduced, and the anorexigenic corticotropin-releasing hormone (CRH) was increased, in the HF-SDS fed group compared to the HF-RDS group, and to the level of the lean control group. SDS with digestion into the ileum reduced daily food intake and paralleled suppressed expression of appetite-stimulating neuropeptide genes associated with the gut-brain axis. This novel finding suggests further exploration involving a clinical study and potential development of SDS-based functional foods as an approach to obesity control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diversification in indigenous and ethnic food culture.
Wahlqvist, Mark L
2005-01-01
A diversified food supply is contingent on underlying biodiversity in the locality where one lives or at a distance from it, if trade routes are established. Indigenous people generally settled at the water's edge so that aquatic foods made up part of their diversified diet, with the rest of the diversity dependent on how much they hunted and gathered, on herded animals, engagement in subsistence agriculture, the ability to process and preserve food and/or food commodities traded. The rapid urbanization of much of the world's population distances people from the origin of their food, the understanding of the required commodities in the human diet (e.g., aquatic food, plant foods, lean animal foods, what animals are fed, basics of freshness). At the same time, adequacy of food intake may be more reliably achieved when the food supply can continue irrespective of season, climate or distant conflict. Urban gardens partly rectify this discord between urbanization and a genuinely varied diet, replaced by purported variety where the same basic commodity is presented in many different forms (e.g., wheat grains such as bread, breakfast cereal of various kinds, pasta and baked goods). However, diversified processing may 'dilute out' health adverse techniques. The health benefits of a diversified diet relate in part to the environmental integrity, which the required biodiversity provides, in part to minimizing adverse factors, which may exceed acceptable thresholds in a narrow diet, and to the need for the wide spectrum of food components, macronutrients, micronutrients and phytochemicals, which Homo sapiens' physiology requires. Whilst most food diversity is attributable to plant sources, animal sources often provide significant nutritional security (e.g., fish and eggs for vitamin D, fish for n-3 fatty acids, lean meat for iron and zinc and in readily assimilable forms). Food diversity assumes greater importance with aging populations as their physical activity usually (if not necessarily) declines and the required food component diversity of the diet increases correspondingly. There are ways in which the required food diversity (probably 20-30 biologically different distinct foods over the course of a week) can be reduced. This is by the inclusion of more food component dense foods--like fish, lean meat, eggs, seeds and nuts. Not only does food diversity have relevance in a public health and food policy sense, but also in individual counseling in clinical practice. Assessment of a patient's food variety can be rapid and semi-quantitative, encouraging small and consequential changes in diet. When ethnicity is taken into account, in the clinical setting, this process can be even more rewarding for the practitioner and patient.
Hulmi, Juha J; Isola, Ville; Suonpää, Marianna; Järvinen, Neea J; Kokkonen, Marja; Wennerström, Annika; Nyman, Kai; Perola, Markus; Ahtiainen, Juha P; Häkkinen, Keijo
2016-01-01
Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight ( P < 0.001) and a ~35-50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet ( P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone ( P < 0.001), and estradiol ( P < 0.01) coinciding with an increased incidence of menstrual irregularities ( P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3-4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35-50% decrease in body fat in previously normal-weight females can recover within 3-4 months of increased energy intake.
Hulmi, Juha J.; Isola, Ville; Suonpää, Marianna; Järvinen, Neea J.; Kokkonen, Marja; Wennerström, Annika; Nyman, Kai; Perola, Markus; Ahtiainen, Juha P.; Häkkinen, Keijo
2017-01-01
Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight (P < 0.001) and a ~35–50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet (P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone (P < 0.001), and estradiol (P < 0.01) coinciding with an increased incidence of menstrual irregularities (P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3–4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35–50% decrease in body fat in previously normal-weight females can recover within 3–4 months of increased energy intake. PMID:28119632
High-intensity exercise and carbohydrate-reduced energy-restricted diet in obese individuals.
Sartor, Francesco; de Morree, Helma M; Matschke, Verena; Marcora, Samuele M; Milousis, Athanasios; Thom, Jeanette M; Kubis, Hans-Peter
2010-11-01
Continuous high glycemic load and inactivity challenge glucose homeostasis and fat oxidation. Hyperglycemia and high intramuscular glucose levels mediate insulin resistance, a precursor state of type 2 diabetes. The aim was to investigate whether a carbohydrate (CHO)-reduced diet combined with high-intensity interval training (HIIT) enhances the beneficial effects of the diet alone on insulin sensitivity and fat oxidation in obese individuals. Nineteen obese subjects underwent 14 days of CHO-reduced and energy-restricted diet. Ten of them combined the diet with HIIT (4 min bouts at 90% VO(2peak) up to 10 times, 3 times a week). Oral glucose insulin sensitivity (OGIS) increased significantly in both groups; [diet-exercise (DE) group: pre 377 ± 70, post 396 ± 68 mL min(-1) m(-2); diet (D) group: pre 365 ± 91, post 404 ± 87 mL min(-1) m(-2); P < 0.001]. Fasting respiratory exchange ratio (RER) decreased significantly in both groups (DE group: pre 0.91 ± 0.06, post 0.88 ± 0.06; D group: pre 0.92 ± 0.07, post 0.86 ± 0.07; P = 0.002). VO(2peak) increased significantly in the DE group (pre 27 ± 5, post 32 ± 6 mL kg(-1) min(-1); P < 0.001), but not in the D group (pre 26 ± 9, post 26 ± 8 mL kg(-1) min(-1)). Lean mass and resistin were preserved only in the DE group (P < 0.05). Fourteen days of CHO-reduced diet improved OGIS and fat oxidation (RER) in obese subjects. The energy-balanced HIIT did not further enhance these parameters, but increased aerobic capacity (VO(2peak)) and preserved lean mass and resistin.
Anderson, Chelsea; Harrigan, Maura; George, Stephanie M; Ferrucci, Leah M; Sanft, Tara; Irwin, Melinda L; Cartmel, Brenda
2016-01-01
Obesity is associated with increased breast cancer recurrence and mortality. Though some post-diagnosis weight loss interventions have achieved weight loss outcomes, it is unclear whether they also improve diet quality. In the Lifestyle, Exercise, and Nutrition (LEAN) study, overweight or obese breast cancer survivors were randomized to either usual care group ( n =33) or the 6-month lifestyle intervention ( n =67). Dietary intake was assessed at baseline and 6 months using a validated food frequency questionnaire, and overall diet quality was calculated using the Healthy Eating Index (HEI)-2010 (range 0-100). Intervention effects on diet were evaluated with generalized linear models. Among the 81 participants (51 intervention, 30 usual care) with dietary data, the mean baseline HEI score was 70.5 (s.d.=8.8) and was improved at 6 months (intervention group=6.8 point increase vs usual care=3.1, P =0.09). Intervention group participants achieved greater reductions in percent of energy from total fat (-4.2% vs -1.2%; P =0.013) and saturated fat (-2.2% vs -1.1%; P =0.003), and greater increases in fiber (4.8 g per 1000 kcal vs 1.3 g per 1000 kcal; P =0.007) and fruit (0.5 servings vs 0.0 servings; P =0.006) intake. Intervention group participants who lost ⩾5% body weight ( n =27) demonstrated significantly greater improvements in HEI score (10.4 vs 2.8) than those who lost <5% ( n =23). The intervention increased fruit and fiber intake and decreased percent energy from fat, and those with greater weight loss achieved greater increases in overall diet quality. These findings support the ability of a weight loss intervention to improve diet among breast cancer survivors.
Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves
2003-04-01
The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI < 25 kg/m(2)) were included as a control group. The breath test was performed by the oral administration of the tracer measuring (13)CO(2) enrichment in breath before and after ingestion using isotope ratio mass spectrometry. Body composition, resting energy expenditure, and plasma levels of insulin and leptin were measured. There were no relationships observed between the 2-keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.
Yang, Minglan; Chen, Maopei; Wang, Jiqiu; Xu, Min; Sun, Jichao; Ding, Lin; Lv, Xiaofei; Ma, Qinyun; Bi, Yufang; Liu, Ruixin; Hong, Jie; Ning, Guang
2016-06-01
A growing body of epidemiological research show that Bisphenol A (BPA) is positively correlated with obesity and metabolic disorders. However, the mechanisms of BPA on adiposity remain largely unknown. In this study, we found that 5-week-old male and female C57BL/6J mice exposed to four dosages of BPA (5, 50, 500, and 5000 μg/kg/d) by oral intake for 30 days showed significantly increased body weight and fat mass in a nonmonotonic dose-dependent manner when fed a chow diet. The effect occurred even at the lowest concentration (5μg/kg/d), lower than the tolerable daily intake of 50 μg/kg/day for BPA. However, no significant difference in body weight and fat mass was observed in either male or female mice fed a high-fat diet, suggesting that BPA may interact with diet in promoting obesity risk. In vitro study showed that BPA treatment drives the differentiation of white adipocyte progenitors from the stromal vascular fraction, partially through glucocorticoid receptor. BPA exposure increased circulating inflammatory factors and the local inflammation in white adipose tissues in both genders fed a chow diet, but not under high-fat diet. We further found that BPA concentration was associated with increased circulating inflammatory factors, including leptin and TNFα, in lean female subjects (body mass index < 23.0 kg/m(2)) but not in lean male subjects or in both sexes of overweight/obese subjects (body mass index > 25.0 kg/m(2)). In conclusion, we demonstrated the nonmonotonic dose effects of BPA on adiposity and chronic inflammation in 5-week-old mice, which is related to caloric uptake.
Song, Mun-Gyu; Lee, Hye-Jin; Jin, Bo-Yeong; Gutierrez-Aguilar, Ruth; Shin, Kyung-Ho; Choi, Sang-Hyun; Um, Sung Hee; Kim, Dong-Hoon
2016-11-01
Adipose tissue (AT) expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC) of subcutaneous and visceral fats in lean and obese mice. We compared the AC of epididymal fat (EF) and inguinal fat (IF) using an angiogenesis assay in diet-induced obese (DIO) mice and diet-resistant (DR) mice fed a high-fat diet (HFD). Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD), DIO mice, and DR mice fed a HFD. DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a , Vegfa , Fgf1 , Kdr , and Pecam1 ), macrophage recruitment, and inflammation (including Emr1 , Ccr2 , Itgax , Ccl2 , Tnf , and Il1b ) correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity.
Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D
2009-01-01
Background: Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. Objective: We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. Design: This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Results: Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Conclusions: Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both. PMID:19535429
Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D; Belury, Martha A
2009-09-01
Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both.
Quantification of adipose tissue in a rodent model of obesity
NASA Astrophysics Data System (ADS)
Johnson, David H.; Flask, Chris; Wan, Dinah; Ernsberger, Paul; Wilson, David L.
2006-03-01
Obesity is a global epidemic and a comorbidity for many diseases. We are using MRI to characterize obesity in rodents, especially with regard to visceral fat. Rats were scanned on a 1.5T clinical scanner, and a T1W, water-spoiled image (fat only) was divided by a matched T1W image (fat + water) to yield a ratio image related to the lipid content in each voxel. The ratio eliminated coil sensitivity inhomogeneity and gave flat values across a fat pad, except for outlier voxels (> 1.0) due to motion. Following sacrifice, fat pad volumes were dissected and measured by displacement in canola oil. In our study of 6 lean (SHR), 6 dietary obese (SHR-DO), and 9 genetically obese rats (SHROB), significant differences in visceral fat volume was observed with an average of 29+/-16 ml increase due to diet and 84+/-44 ml increase due to genetics relative to lean control with a volume of 11+/-4 ml. Subcutaneous fat increased 14+/-8 ml due to diet and 198+/-105 ml due to genetics relative to the lean control with 7+/-3 ml. Visceral fat strongly correlated between MRI and dissection (R2 = 0.94), but MRI detected over five times the subcutaneous fat found with error-prone dissection. Using a semi-automated images segmentation method on the ratio images, intra-subject variation was very low. Fat pad composition as estimated from ratio images consistently differentiated the strains with SHROB having a greater lipid concentration in adipose tissues. Future work will include in vivo studies of diet versus genetics, identification of new phenotypes, and corrective measures for obesity; technical efforts will focus on correction for motion and automation in quantification.
Hill, Alison M; Harris Jackson, Kristina A; Roussell, Michael A; West, Sheila G; Kris-Etherton, Penny M
2015-01-01
Background: Food-based dietary patterns emphasizing plant protein that were evaluated in the Dietary Approaches to Stop Hypertension (DASH) and OmniHeart trials are recommended for the treatment of metabolic syndrome (MetS). However, the contribution of plant protein to total protein in these diets is proportionally less than that of animal protein. Objective: This study compared 3 diets varying in type (animal compared with plant) and amount of protein on MetS criteria. Design: Sixty-two overweight adults with MetS consumed a healthy American diet for 2 wk before being randomly allocated to either a modified DASH diet rich in plant protein (18% protein, two-thirds plant sources, n = 9 males, 12 females), a modified DASH diet rich in animal protein (Beef in an Optimal Lean Diet: 18.4% protein, two-thirds animal sources, n = 9 males, 11 females), or a moderate-protein diet (Beef in an Optimal Lean Diet Plus Protein: 27% protein, two-thirds animal sources, n = 10 males, 11 females). Diets were compared across 3 phases of energy balance: 5 wk of controlled (all foods provided) weight maintenance (WM), 6 wk of controlled weight loss (minimum 500-kcal/d deficit) including exercise (WL), and 12 wk of prescribed, free-living weight loss (FL). The primary endpoint was change in MetS criteria. Results: All groups achieved ∼5% weight loss at the end of the WL phase and maintained it through FL, with no between-diet differences (WM compared with WL, FL, P < 0.0001; between diets, P = NS). All MetS criteria decreased independent of diet composition (main effect of phase, P < 0.01; between diets, P = NS). After WM, all groups had a MetS prevalence of 80–90% [healthy American diet (HAD) compared with WM, P = NS], which decreased to 50–60% after WL and was maintained through FL (HAD, WM vs WL, FL, P < 0.01). Conclusions: Weight loss was the primary modifier of MetS resolution in our study population regardless of protein source or amount. Our findings demonstrate that heart-healthy weight-loss dietary patterns that emphasize either animal or plant protein improve MetS criteria similarly. This study was registered at clinicaltrials.gov as NCT00937638. PMID:26354540
ERIC Educational Resources Information Center
Journell, Wayne
2017-01-01
A common perception within politically conservative circles is that American colleges and universities are bastions of liberal thought led by left-leaning faculty who seek to indoctrinate their students into adopting progressive views of the world. The purpose of this study is not to debate or justify a progressive vision of teacher education.…
Lowe, B K; Gerlemann, G D; Carr, S N; Rincker, P J; Schroeder, A L; Petry, D B; McKeith, F K; Allee, G L; Dilger, A C
2014-08-01
Effects of feeding ractopamine (RAC; 5 mg/kg) to physically castrated (PC) and immunologically castrated (IC) pigs on carcass characteristics, cutting yields, and loin quality were evaluated using 285 carcasses. Male pigs were randomly assigned to sex treatments (PC and IC) at birth and fed the same nursery diets before allotment into 32 pens with 22 pigs per pen in a grow-finish barn. Pigs in the PC group were physically castrated at approximately 5 d of age, and pigs in the IC group were administered Improvest at 11 and 18 wk of age. Diet treatments (control or RAC) were initiated on study d 87. Pigs were marketed at 12 d (4.5 wk post-second Improvest dose), 19 d (5.5 wk post-second Improvest dose), and 33 d (7.5 wk post-second Improvest dose) following the start of final diet treatments. Three carcasses per pen were selected for evaluation of cutting yields and loin quality. Data were analyzed using PROC MIXED in SAS with fixed effects of sex, diet, market group, and their interaction; carcass (N = 285) was the experimental unit. Carcasses from RAC-fed pigs were heavier (P < 0.01) and had deeper (P = 0.02) loins than control-fed carcasses. Carcasses from IC pigs were similar (P = 0.22) in weight but had less (P < 0.01) fat and shallower (P = 0.02) loins when compared to PC carcasses. There were differences (P < 0.05) among market groups for carcass weights, fat depths, loin depths, and estimated carcass leanness. For cutting yields, RAC-fed carcasses had greater (P ≤ 0.03) bone-in lean and total carcass cutting yields than control-fed carcasses while there were no differences (P > 0.05) between RAC-fed and control-fed carcasses when evaluating LM color, marbling, firmness, pH, drip loss, and tenderness. Carcasses from IC pigs had greater (P < 0.05) boneless lean yields, bone-in lean yields, and total carcass cutting yields than PC carcasses. There were minimal differences (P < 0.05) in LM marbling, firmness, composition, and tenderness between PC and IC pigs. There was an interaction (P = 0.03) between sex and diet for LM composition. Control-fed PC loins had more (P < 0.01) lipid than all other treatment combinations. Market group had effects (P < 0.05) on carcass cutting yields, LM color, marbling and firmness scores, pH, purge loss, composition, and tenderness. The results from this study indicated RAC and immunological castration were additive in terms of improving carcass cutting yields while having minimal effects on pork quality.
Novel Lean Type 2 Diabetic Rat Model Using Gestational Low Protein Programming
BLESSON, Chellakkan S.; SCHUTT, Amy K.; BALAKRISHNAN, Meena P.; PAUTLER, Robia G.; PEDERSEN, Steen E.; SARKAR, Poonam; GONZALES, Daniel; ZHU, Gang; MARINI, Juan C.; CHACKO, Shaji K.; YALLAMPALLI, Uma; YALLAMPALLI, Chandra
2016-01-01
Background Type 2 diabetes in lean individuals is not well studied and up to 26% of diabetes occurs in these individuals. Although the cause is not well understood, it has been primarily attributed to nutritional issues during early development. Objective Our objective was to develop a lean type 2 diabetes model using gestational low protein programming. Study Design Pregnant rats were fed control (20% protein) or isocaloric low protein (6%) diet from gestational day 4 until delivery. Standard diet was given to dams after delivery and to pups after weaning. Glucose tolerance test was done at 2, 4 and 6 months of age. Magnetic resonance imaging of body fat for the females was done at 4 months. Rats were sacrificed at 4 months and 8 months of age and their peri-gonadal, peri-renal, inguinal and brown fat were weighed and expressed relative to their body weight. Euglycemic-hyperinsulinemic clamp was done around 6 months of age. Results Male and female offspring exposed to a low protein diet during gestation developed glucose intolerance and insulin resistance. Further, glucose intolerance progressed with increasing age and occurred earlier and was more severe in females when compared to males. Euglycemic hyperinsulinemic clamp showed whole body insulin resistance in both sexes, with females demonstrating increased insulin resistance compared to males. Low protein females showed a 4.5-fold increase in insulin resistance while males showed a 2.5-fold increase when compared to their respective controls. Data from magnetic resonance imaging on female offspring showed no difference in the subcutaneous, inguinal and visceral fat content. We were able to validate this observation by sacrificing the rats at 4 and 8 months and measuring total body fat content. This showed no differences in body fat content between control and LP offspring in both males and females. Additionally, diabetic rats had a similar body mass index to that of the controls. Conclusion LP gestational programming produces a progressively worsening type 2 diabetes model in rats with a lean phenotype without obesity. PMID:26874300
Methodological evaluation of indirect calorimetry data in lean and obese rats.
Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M
1993-11-01
1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits. Lean Zucker rats showed a similar, but less marked pattern. 7. The results obtained indicate that lean and obese rats can be studied using the same indirect calorimetry formulae provided that there is an adequate measure of protein oxidation and the composition of diet does not differ.
Ather, Jennifer L.; Chung, Michael; Hoyt, Laura R.; Randall, Matthew J.; Georgsdottir, Anna; Daphtary, Nirav A.; Aliyeva, Minara I.; Suratt, Benjamin T.; Bates, Jason H. T.; Irvin, Charles G.; Russell, Sheila R.; Forgione, Patrick M.; Dixon, Anne E.
2016-01-01
Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery–induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658
Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B
2017-04-19
Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.
Reliability of BOD POD Measurements Remains High After a Short-Duration Low-Carbohydrate Diet.
Greer, Beau Kjerulf; Edsall, Kathleen M; Greer, Anna E
2016-04-01
The purpose of the current study was to determine whether expected changes in body weight via a 3-day low-carbohydrate (LC) diet will disrupt the reliability of air displacement plethysmography measurements via BOD POD. Twenty-four subjects recorded their typical diets for 3 days before BOD POD and 7-site skinfold analyses. Subjects were matched for lean body mass and divided into low-CHO (LC) and control (CON) groups. The LC group was given instruction intended to prevent more than 50 grams/day of carbohydrate consumption for 3 consecutive days, and the CON group replicated their previously recorded diet. Body composition measurements were repeated after dietary intervention. Test-retest reliability measures were significant (p < .01) and high for body fat percentage in both the LC and the CON groups (rs = .993 and .965, respectively). Likewise, skinfold analysis for body fat percentage reliability was high in both groups (rs = .996 and .997, respectively). There were significant differences between 1st and 2nd BOD POD measurements for body mass (72.9 ± 13.3 vs. 72.1 ± 13.0 kg [M ± SD]) and body volume (69.0 ± 12.7-68.1 ± 12.2 L) in the LC group (p < .05). However, there were no differences (p > .05) in BOD POD-determined body fat percentage, lean body mass, or fat mass between the 1st and 2nd trial in either group. Body composition measures via BOD POD and 7-site skinfolds remain reliable after 3 days of an LC diet despite significant decreases in body mass.
Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J
2010-07-01
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56-75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.
Blevins, James E; Moralejo, Daniel H; Wolden-Hanson, Tami H; Thatcher, Brendan S; Ho, Jacqueline M; Kaiyala, Karl J; Matsumoto, Kozo
2012-12-15
CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.
Blevins, James E.; Wolden-Hanson, Tami H.; Thatcher, Brendan S.; Ho, Jacqueline M.; Kaiyala, Karl J.; Matsumoto, Kozo
2012-01-01
CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r−/−) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r−/− rats. Both Cck1r+/+ and Cck1r−/− rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r−/− rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r−/− rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure. PMID:23115121
Calzo, Jerel P; Masyn, Katherine E; Corliss, Heather L; Scherer, Emily A; Field, Alison E; Austin, S Bryn
2015-09-01
This study investigates body image concerns and disordered weight- and shape-related behaviors across adolescence and young adulthood in males and how patterns vary by sexual orientation. Participants were 5,388 males from the U.S. national Growing Up Today Study. In 2001, 2003, and 2005 (spanning ages 15-20 years), participants reported sexual orientation, past-year desire for toned/defined muscles and concerns with weight and shape, and past-year binge eating, restrictive dieting, purging (vomiting or laxative use), and use of products to increase muscularity (e.g., creatine, steroids). Latent class analyses identified 2 patterns at ages 15-16 years and 3 patterns at 17-18 and 19-20 years: healthy (all ages; low body image concerns and weight- and shape-related behaviors; 54-74% of observations), muscle-concerned (ages 17-18 and 19-20; relatively high muscularity concern and product use; 18-21% of observations), and lean-concerned (all ages; relatively high weight and shape concern, dieting, and binge eating; 19-28% of observations). Latent transition analyses revealed that sexual minority males (i.e., mostly heterosexual, gay, and bisexual) were more likely than completely heterosexual males to be lean-concerned at ages 17-18 and 19-20 years and to transition to the lean-concerned class from the healthy class. There were no sexual orientation differences in odds of being muscle-concerned. Both heterosexual and sexual minority males are at risk for presenting body image concerns and weight- and shape-related behaviors that may have deleterious health consequences. Results suggest the need for screening for concerns and behaviors related to leanness and muscularity in early adolescence among all males, regardless of sexual orientation. (c) 2015 APA, all rights reserved).
Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A
2015-10-01
We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.
Calzo, Jerel P.; Masyn, Katherine E.; Corliss, Heather L.; Scherer, Emily A.; Field, Alison E.; Austin, S. Bryn
2015-01-01
This study investigates body image concerns and disordered weight- and shape-related behaviors across adolescence and young adulthood in males and how patterns vary by sexual orientation. Participants were 5,388 males from the US national Growing Up Today Study. In 2001, 2003, and 2005 (spanning ages 15–20 years) participants reported sexual orientation, past-year desire for toned/defined muscles and concerns with weight and shape, and past-year binge eating, restrictive dieting, purging (vomiting or laxative use) and use of products to increase muscularity (e.g., creatine, steroids). Latent class analyses identified two patterns at ages 15–16 years and three patterns at 17–18 and 19–20 years: Healthy (all ages; low body image concerns and weight-and shape-related behaviors; 54%–74% of observations), Muscle-Concerned (ages 17–18 and 19– 20; relatively high muscularity concern and product use; 18%–21% of observations), and Lean-Concerned (all ages; relatively high weight and shape concern, dieting, and binge eating; 19%– 28% of observations). Latent transition analyses revealed that sexual minority males (i.e., mostly heterosexual, gay, and bisexual) were more likely than completely heterosexual males to be Lean-Concerned at ages 17–18 and 19–20 years and to transition to the Lean-Concerned class from the Healthy class. There were no sexual orientation differences in odds of being Muscle-Concerned. Both heterosexual and sexual minority males are at risk for presenting body image concerns and weight- and shape-related behaviors that may have deleterious health consequences. Results suggest the need for screening for concerns and behaviors related to leanness and muscularity in early adolescence among all males, regardless of sexual orientation. PMID:26098578
Paradoxical leanness in the imprinting-centre deletion mouse model for Prader–Willi syndrome
Golding, David M; Rees, Daniel J; Davies, Jennifer R; Relkovic, Dinko; Furby, Hannah V; Guschina, Irina A; Hopkins, Anna L; Davies, Jeffrey S; Resnick, James L; Isles, Anthony R
2016-01-01
Prader–Willi syndrome (PWS), a neurodevelopmental disorder caused by loss of paternal gene expression from 15q11–q13, is characterised by growth retardation, hyperphagia and obesity. However, as single gene mutation mouse models for this condition display an incomplete spectrum of the PWS phenotype, we have characterised the metabolic impairment in a mouse model for ‘full’ PWS, in which deletion of the imprinting centre (IC) abolishes paternal gene expression from the entire PWS cluster. We show that PWS-ICdel mice displayed postnatal growth retardation, with reduced body weight, hyperghrelinaemia and marked abdominal leanness; proportionate retroperitoneal, epididymal/omental and inguinal white adipose tissue (WAT) weights being reduced by 82%, 84% and 67%, respectively. PWS-ICdel mice also displayed a 48% reduction in proportionate interscapular brown adipose tissue (isBAT) weight with significant ‘beiging’ of abdominal WAT, and a 2°C increase in interscapular surface body temperature. Maintenance of PWS-ICdel mice under thermoneutral conditions (30°C) suppressed the thermogenic activity in PWS-ICdel males, but failed to elevate the abdominal WAT weight, possibly due to a normalisation of caloric intake. Interestingly, PWS-ICdel mice also showed exaggerated food hoarding behaviour with standard and high-fat diets, but despite becoming hyperphagic when switched to a high-fat diet, PWS-ICdel mice failed to gain weight. This evidence indicates that, unlike humans with PWS, loss of paternal gene expression from the PWS cluster in mice results in abdominal leanness. Although reduced subcutaneous insulation may lead to exaggerated heat loss and thermogenesis, abdominal leanness is likely to arise from a reduced lipid storage capacity rather than increased energy utilisation in BAT. PMID:27799465
Paradoxical leanness in the imprinting-centre deletion mouse model for Prader-Willi syndrome.
Golding, David M; Rees, Daniel J; Davies, Jennifer R; Relkovic, Dinko; Furby, Hannah V; Guschina, Irina A; Hopkins, Anna L; Davies, Jeffrey S; Resnick, James L; Isles, Anthony R; Wells, Timothy
2017-01-01
Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by loss of paternal gene expression from 15q11-q13, is characterised by growth retardation, hyperphagia and obesity. However, as single gene mutation mouse models for this condition display an incomplete spectrum of the PWS phenotype, we have characterised the metabolic impairment in a mouse model for 'full' PWS, in which deletion of the imprinting centre (IC) abolishes paternal gene expression from the entire PWS cluster. We show that PWS-IC del mice displayed postnatal growth retardation, with reduced body weight, hyperghrelinaemia and marked abdominal leanness; proportionate retroperitoneal, epididymal/omental and inguinal white adipose tissue (WAT) weights being reduced by 82%, 84% and 67%, respectively. PWS-IC del mice also displayed a 48% reduction in proportionate interscapular brown adipose tissue (isBAT) weight with significant 'beiging' of abdominal WAT, and a 2°C increase in interscapular surface body temperature. Maintenance of PWS-IC del mice under thermoneutral conditions (30°C) suppressed the thermogenic activity in PWS-IC del males, but failed to elevate the abdominal WAT weight, possibly due to a normalisation of caloric intake. Interestingly, PWS-IC del mice also showed exaggerated food hoarding behaviour with standard and high-fat diets, but despite becoming hyperphagic when switched to a high-fat diet, PWS-IC del mice failed to gain weight. This evidence indicates that, unlike humans with PWS, loss of paternal gene expression from the PWS cluster in mice results in abdominal leanness. Although reduced subcutaneous insulation may lead to exaggerated heat loss and thermogenesis, abdominal leanness is likely to arise from a reduced lipid storage capacity rather than increased energy utilisation in BAT. © 2017 The authors.
The role of red meat in the diet: nutrition and health benefits.
Wyness, Laura
2016-08-01
Red meat has been an important part of the human diet throughout human evolution. When included as part of a healthy, varied diet, red meat provides a rich source of high biological value protein and essential nutrients, some of which are more bioavailable than in alternative food sources. Particular nutrients in red meat have been identified as being in short supply in the diets of some groups of the population. The present paper discusses the role of red meat in the diets of young infants, adolescents, women of childbearing age and older adults and highlights key nutrients red meat can provide for these groups. The role of red meat in relation to satiety and weight control is discussed as the inclusion of lean red meat in a healthy, varied diet may help weight loss as part of an energy-reduced diet. A summary of the UK advice on the amount of red meat that can be consumed as part of a healthy, varied diet is also provided.
Impact of red meat consumption on the metabolome of rats.
Jakobsen, Louise M A; Yde, Christian C; Van Hecke, Thomas; Jessen, Randi; Young, Jette F; De Smet, Stefaan; Bertram, Hanne Christine
2017-03-01
The scope of the present study was to investigate the effects of red versus white meat intake on the metabolome of rats. Twenty-four male Sprague-Dawley rats were randomly assigned to 15 days of ad libitum feeding of one of four experimental diets: (i) lean chicken, (ii) chicken with lard, (iii) lean beef, and (iv) beef with lard. Urine, feces, plasma, and colon tissue samples were analyzed using 1 H NMR-based metabolomics and real-time PCR was performed on colon tissue to examine the expression of specific genes. Urinary excretion of acetate and anserine was higher after chicken intake, while carnosine, fumarate, and trimethylamine N-oxide excretion were higher after beef intake. In colon tissue, higher choline levels and lower lipid levels were found after intake of chicken compared to beef. Expression of the apc gene was higher in response to the lean chicken and beef with lard diets. Correlation analysis revealed that intestinal apc gene expression was correlated with fecal lactate content (R 2 = 0.65). This study is the first to identify specific differences in the metabolome related to the intake of red and white meat. These differences may reflect perturbations in endogenous metabolism that can be linked to the proposed harmful effects associated with intake of red meat. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shackelford, S D; Koohmaraie, M; Wheeler, T L; Cundiff, L V; Dikeman, M E
1994-02-01
The objectives of this experiment were to characterize longissimus muscle color, texture, and firmness for beef carcasses of diverse biological types and to determine the genetic parameters of lean color, texture, and firmness. The carcasses (n = 3,641) used in this experiment were from steers produced by mating Angus, Brahman, Braunvieh, Charolais, Chianina, Galloway, Gelbvieh, Hereford, Jersey, Limousin, Longhorn, Maine Anjou, Nellore, Piedmontese, Pinzgauer, Red Poll, Sahiwal, Salers, Shorthorn, Simmental, South Devon, and Tarentaise sires to Hereford and Angus dams. Steers were fed a corn-corn silage diet from weaning until slaughter at 356 to 575 d of age. Steers were slaughtered at commercial packing plants and longissimus muscle color, texture, and firmness were scored by trained carcass evaluators. Sire line least squares means for lean color, texture, and firmness ranged approximately one unit on a 7-point scale. Chianina crosses had darker-colored lean than all breed groups except Tarentaise and Simmental crosses (P < .05). Moreover, a higher percentage (P < .05) of Chianina crosses than of all other breed groups had unacceptably dark-colored ("dark red" or darker) lean. Bos indicus sire lines were not different from Bos taurus sire lines in frequency of carcasses with unacceptably dark-colored lean. However, Bos indicus crosses were more likely to be scored "very light cherry-red." Lean color and texture were lowly heritable, whereas lean firmness was moderately heritable. Thus, this experiment demonstrated that there is genetic variation in the incidence of the DFD condition; however, genetic variation was small relative to environmental variation.
Salles, Jérôme; Chanet, Audrey; Berry, Alexandre; Giraudet, Christophe; Patrac, Véronique; Domingues-Faria, Carla; Rocher, Christophe; Guillet, Christelle; Denis, Philippe; Pouyet, Corinne; Bonhomme, Cécile; Le Ruyet, Pascale; Rolland, Yves; Boirie, Yves; Walrand, Stéphane
2017-11-01
One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss?
Varady, K A
2011-07-01
Dietary restriction is an effective strategy for weight loss in obese individuals. The most common form of dietary restriction implemented is daily calorie restriction (CR), which involves reducing energy by 15-60% of usual caloric intake every day. Another form of dietary restriction employed is intermittent CR, which involves 24 h of ad libitum food consumption alternated with 24 h of complete or partial food restriction. Although both diets are effective for weight loss, it remains unknown whether one of these interventions produces superior changes in body weight and body composition when compared to the other. Accordingly, this review examines the effects of daily CR versus intermittent CR on weight loss, fat mass loss and lean mass retention in overweight and obese adults. Results reveal similar weight loss and fat mass loss with 3 to 12 weeks' intermittent CR (4-8%, 11-16%, respectively) and daily CR (5-8%, 10-20%, respectively). In contrast, less fat free mass was lost in response to intermittent CR versus daily CR. These findings suggest that these diets are equally as effective in decreasing body weight and fat mass, although intermittent CR may be more effective for the retention of lean mass. © 2011 The Author. obesity reviews © 2011 International Association for the Study of Obesity.
Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria; Füchtbauer, Ernst-Martin; Jørgensen, Signe Marie; Kissow, Hanne-Louise; Nytofte, Nikolaj; Poulsen, Steen Seier; Rosenkilde, Mette Marie; Seino, Yutaka; Thams, Peter; Holst, Peter Johannes; Holst, Jens Juul
2011-12-30
The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.
Feeding soywaste or pellet on performance and carcass characteristics of post-weaning kids.
Rahman, Mohammad Mijanur; Khadijah, Wan Embong Wan; Abdullah, Ramli Bin
2016-08-01
Twelve Jermasia kids were individually housed in pens to study the effects of soywaste on growth performance and carcass characteristics and to compare such effects with commercial pellet. Kids were divided into a pellet group and a soywaste group, including six kids (3 males and 3 females) in each group. Pellet or soywaste was offered to kids at a rate of 2.0 % dry matter (DM) of body weight/day in addition to Napier grass ad libitum. In last 10 days of experiment, kids were housed in metabolism crates for faeces collection. At the end of the experiment, three males from each group were slaughtered. Kids fed soywaste diet consumed more grass and neutral detergent fibre (NDF) than those fed pellet. The same trend was found for the digestibilities of DM, organic matter (OM) and NDF. Conversely, kids fed soywaste diet consumed less soywaste supplement than kids fed pellet. No treatment effects were observed on total intakes of DM, OM and crude protein (CP) including CP digestibility. Similarly, no effects were found on carcass and non-carcass components, except for lean, lean to fat ratio and kidney weight which were higher for kids fed soywaste diet. Results indicate that soywaste is effective as a feed for growing kids.
Minimization of Food Cost on 2000-Calorie Diabetic Diet
NASA Astrophysics Data System (ADS)
Urrutia, J. D.; Mercado, J.; Tampis, R. L.
2017-03-01
This study focuses on minimization of food cost that satisfies the daily nutrients required based on 2000-calorie diet for a diabetic person. This paper attempts to provide a food combination that satisfies the daily nutrient requirements of a diabetic person and its lowest possible dietary food cost. A linear programming diet model is used to determine the cheapest combination of food items that satisfy the recommended daily nutritional requirements of the diabetic persons. According to the findings, a 50 year old and above diabetic male need to spend a minimum of 72.22 pesos for foods that satisfy the daily nutrients they need. In order to attain the minimum spending, the foods must consist of 60.49 grams of anchovy, 91.24 grams of carrot, 121.92 grams of durian, 121.41 grams of chicken egg, 70.82 grams of pork (lean), and 369.70 grams of rice (well-milled). For a 50 year old and above diabetic female, the minimum spending is 64.65 pesos per day and the food must consist of 75.87 grams of anchovy, 43.38 grams of carrot, 160.46 grams of durian, 69.66 grams of chicken egg, 23.16 grams of pork (lean) and 416.19 grams of rice (well-milled).
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.
Campbell, Sara C; Wisniewski, Paul J; Noji, Michael; McGuinness, Lora R; Häggblom, Max M; Lightfoot, Stanley A; Joseph, Laurie B; Kerkhof, Lee J
2016-01-01
The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.
Overweight adult cats have significantly lower voluntary physical activity than adult lean cats.
de Godoy, Maria Rc; Shoveller, Anna K
2017-12-01
Objectives The objectives of the current pilot study were to evaluate whether body condition score (BCS) and body weight are significantly related to physical activity counts, and to evaluate potential interaction between BCS and voluntary physical activity measured over a 14 day period. Methods Ten (five lean, five overweight), neutered, adult American Shorthair cats were selected for this study (median age 4 ± 0.5 years). Cats with a BCS of ⩽3.0 were considered lean, whereas cats with a BCS >3.0 were considered overweight, using a 5-point scale. Cats were housed in a free-living environment with indoor/outdoor access and were individually fed once daily a commercially available dry extruded diet and allowed 1 h to eat. Voluntary physical activity was measured consecutively for 14 days using the Actical Activity Monitors that were worn parallel to the ribs and attached via a harness. Results Lean cats had a greater mean total daily voluntary physical activity ( P = 0.0059), and a greater voluntary physical activity during light ( P = 0.0023) and dark ( P = 0.0446) periods, with overweight cats having 60% of the physical activity of lean cats. Lean cats were more active before feeding and during animal care procedures. These data suggest that lean cats have a greater anticipatory physical activity prior to feeding and are more eager to have social interaction with humans than overweight cats. A significant interaction was observed between day of physical activity measurement and BCS for total daily voluntary physical activity ( P = 0.0133) and activity during the light period ( P = 0.0016) where lean cats were consistently more active than overweight cats. In general, cats were more active during weekdays vs weekends. Conclusions and relevance The results of this study suggest that overweight cats are less active than lean cats and that voluntary physical activity level appears to be influenced by social interaction with humans.
Heil, Luciana Boavista Barros; Santos, Cíntia L; Santos, Raquel S; Samary, Cynthia S; Cavalcanti, Vinicius C M; Araújo, Mariana M P N; Poggio, Hananda; Maia, Lígia de A; Trevenzoli, Isis Hara; Pelosi, Paolo; Fernandes, Fatima C; Villela, Nivaldo R; Silva, Pedro L; Rocco, Patricia R M
2016-04-01
Administering anesthetics to the obese population requires caution because of a variety of reasons including possible interactions with the inflammatory process observed in obese patients. Propofol and dexmedetomidine have protective effects on pulmonary function and are widely used in short- and long-term sedation, particularly in intensive care unit settings in lean and obese subjects. However, the functional and biological effects of these drugs in obesity require further elucidation. In a model of diet-induced obesity, we compared the short-term effects of dexmedetomidine versus propofol on lung mechanics and histology, as well as biological markers of inflammation and oxidative stress modulation in obesity. Wistar rats (n = 56) were randomly fed a standard diet (lean) or experimental diet (obese) for 12 weeks. After this period, obese animals received sodium thiopental intraperitoneally and were randomly allocated into 4 subgroups: (1) nonventilated (n = 4) for molecular biology analysis only (control); (2) sodium thiopental (n = 8); (3) propofol (n = 8); and (4) dexmedetomidine (n = 8), which received continuous IV administration of the corresponding agents and were mechanically ventilated (tidal volume = 6 mL/kg body weight, fraction of inspired oxygen = 0.4, positive end-expiratory pressure = 3 cm H2O) for 1 hour. Compared with lean animals, obese rats did not present increased body weight but had higher total body and trunk fat percentages, airway resistance, and interleukin-6 levels in the lung tissue (P = 0.02, P = 0.0027, and P = 0.01, respectively). In obese rats, propofol, but not dexmedetomidine, yielded increased airway resistance, bronchoconstriction index (P = 0.016, P = 0.02, respectively), tumor necrosis factor-α, and interleukin-6 levels, as well as lower levels of nuclear factor-erythroid 2-related factor-2 and glutathione peroxidase (P = 0.001, Bonferroni-corrected t test). In this model of diet-induced obesity, a 1-hour propofol infusion yielded increased airway resistance, atelectasis, and lung inflammation, with depletion of antioxidative enzymes. However, unlike sodium thiopental and propofol, short-term infusion of dexmedetomidine had no impact on lung morphofunctional and biological variables.
Li, Zhuyun; Tuder, Rubin M.; Feinstein, Elena; Kimball, Scot R.; Dungan, Cory M.
2014-01-01
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states. PMID:24876363
Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T
2016-02-01
Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.
ERIC Educational Resources Information Center
Brow, Mark V.
2017-01-01
In the past decade, issues of intellectual diversity at elite universities in the United States have resurfaced after years of dormancy. Leading the charge as been the American Council of Trustees and Alumni (ACTA), which argues that ideologically left-leaning elite universities in the United States inhibit conservative thought. Using data from…
Stiegler, Petra; Cunliffe, Adam
2006-01-01
The incidence of obesity is increasing rapidly. Research efforts for effective treatment strategies still focus on diet and exercise programmes, the individual components of which have been investigated in intervention trials in order to determine the most effective recommendations for sustained changes in bodyweight. The foremost objective of a weight-loss trial has to be the reduction in body fat leading to a decrease in risk factors for metabolic syndrome. However, a concomitant decline in lean tissue can frequently be observed. Given that fat-free mass (FFM) represents a key determinant of the magnitude of resting metabolic rate (RMR), it follows that a decrease in lean tissue could hinder the progress of weight loss. Therefore, with respect to long-term effectiveness of weight-loss programmes, the loss of fat mass while maintaining FFM and RMR seems desirable. Diet intervention studies suggest spontaneous losses in bodyweight following low-fat diets, and current data on a reduction of the carbohydrate-to-protein ratio of the diet show promising outcomes. Exercise training is associated with an increase in energy expenditure, thus promoting changes in body composition and bodyweight while keeping dietary intake constant. The advantages of strength training may have greater implications than initially proposed with respect to decreasing percentage body fat and sustaining FFM. Research to date suggests that the addition of exercise programmes to dietary restriction can promote more favourable changes in body composition than diet or physical activity on its own. Moreover, recent research indicates that the macronutrient content of the energy-restricted diet may influence body compositional alterations following exercise regimens. Protein emerges as an important factor for the maintenance of or increase in FFM induced by exercise training. Changes in RMR can only partly be accounted for by alterations in respiring tissues, and other yet-undefined mechanisms have to be explored. These outcomes provide the scientific rationale to justify further randomised intervention trials on the synergies between diet and exercise approaches to yield favourable modifications in body composition.
Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency.
Davies, Jeffrey S; Gevers, Evelien F; Stevenson, Amy E; Coschigano, Karen T; El-Kasti, Muna M; Bull, Melanie J; Elford, Carole; Evans, Bronwen A J; Kopchick, John J; Wells, Timothy
2007-05-01
This study describes the previously uncharacterized ontogeny and regulation of truncal adipose reserves in the profoundly GH-deficient dwarf (dw/dw) rat. We show that, despite normal proportionate food intake, dw/dw rats develop abdominal leanness and hypoleptinemia (circulating leptin halved in dw/dw males, P < 0.05) during puberty. This contrasts with the hyperleptinemia seen in moderately GH-deficient Tgr rats (circulating leptin doubled at 6 wk of age, P < 0.05) and in GH receptor-binding protein (GHR/BP)-null mice (circulating leptin doubled; P < 0.05). This lean/hypoleptinemic phenotype was not completely normalized by GH treatment, but dw/dw rats developed abdominal obesity in response to neonatal MSG treatment or maintenance on a high-fat diet. Unlike Tgr rats, dw/dw rats did not become obese with age; plasma leptin levels and fat pad weights became similar to those in wild-type rats. In contrast with truncal leanness, tibial marrow adiposity was normal in male and doubled in female dwarves (P < 0.01), this increase being attributable to increased adipocyte number (P < 0.01). Neonatal MSG treatment and high-fat feeding elevated marrow adiposity in dw/dw rats by inducing adipocyte enlargement (P < 0.05). These results demonstrate that, despite lipolytic influence of GH, severe GH deficiency in dw/dw rats is accompanied by a paradoxical leanness. This lean/hypoleptinemic phenotype is not solely attributable to reduced GH signaling and does not appear to result from a reduction in nutrient intake or the ability of dw/dw adipocytes to accumulate lipid. Disruption of preadipocyte differentiation or adipocyte proliferation in the dw/dw rat may lead to the development of this unusually lean/hypoleptinemic phenotype.
Elevated anti-Mullerian hormone in lean women may not indicate polycystic ovarian syndrome.
Bradbury, Rachel A; Lee, Paul; Smith, Howard C
2017-10-01
Polycystic ovarian syndrome (PCOS) is a heterogeneous disorder with clinical features shared with functional hypogonadotrophic hypogonadism (FHH). To investigate the usefulness of an elevated (>40 pmol/L) anti-Mullerian hormone (AMH) in identifying PCOS and distinguishing PCOS from FHH. 141 patients with an elevated AMH and body mass index either <20 kg/m 2 (lean) or >30 kg/m 2 (obese) were selected and three subgroups analysed - obese, lean, lean with suspected FHH. FHH was diagnosed clinically, incorporating diet, weight and exercise history; confirmatory tests included pituitary MRIs, progestin challenges and endometrial thickness measurements. PCOS features of oligo/anovulation, polycystic ovarian morphology (PCOm) and hyperandrogenism were determined by clinical history, pelvic ultrasound, free androgen index and physical examination, respectively. Features of PCOS and blood levels of AMH, follicle-stimulating hormone, luteinising hormone, sex hormone binding globulin (SHBG) and testosterone were compared between subgroups. Of 141 patients with elevated AMH, 76 were obese and 65 lean. Greater than one-third of lean women had the clinical picture of FHH. Elevated AMH predicted PCOm and menstrual irregularity across all subgroups but uniquely associated with hyperandrogenism in the obese. Median AMH levels were similar among FHH and non-FHH women. Median SHBG levels were significantly higher (111 ± 73 vs 56 ± 31, P < 0.001) in lean women with FHH compared to those without FHH. PCOS and FHH share common features of elevated AMH levels, oligo-anovulation and polycystic ovarian morphology. AMH did not assist in differentiating FHH from PCOS. A higher SHBG level shows promise as a discriminatory finding in FHH. © 2017 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
USDA-ARS?s Scientific Manuscript database
Agouti (Avy/a) mice fed an AIN-93G diet containing the soy isoflavone genistein (GEN) prior to and during pregnancy were reported to shift coat color and body composition phenotypes from obese-yellow towards lean pseudoagouti, suggesting epigenetic programming. Human consumption of purified GEN is r...
Immunochemical Investigations of Cell Surface Antigens of Anaerobic Bacteria
1984-10-15
portion is linked to a carbohydrate core, which contains two unusual sugars (2- keto -3-deoxyoctonate and a heptose), as well as glucose, galactose, and...present in human intestinal contents. However, placing rats on a diet of lean ground beef for a two-week period resulted in alteration of the cecal
Yusuf, A L; Goh, Y M; Samsudin, A A; Alimon, A R; Sazili, A Q
2014-04-01
The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).
Yusuf, A. L.; Goh, Y. M.; Samsudin, A. A.; Alimon, A. R.; Sazili, A. Q.
2014-01-01
The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05). PMID:25049980
Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis
Zeisel, Steven H.
2013-01-01
There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856
Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J
2016-09-01
Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ Ltd.
Metabolic energy required for flight
NASA Astrophysics Data System (ADS)
Lane, H. W.; Gretebeck, R. J.
1994-11-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.
Metabolic energy required for flight
NASA Technical Reports Server (NTRS)
Lane, H. W.; Gretebeck, R. J.
1994-01-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.
Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?
Davis, H C
2018-05-01
Recent research suggests that the human gastrointestinal microbiota is greatly involved in yielding, storing and expending energy from the diet; therefore, it may be a further factor in linking diet to obesity. The gut microbial composition is affected by diet throughout the human lifespan, and is highly dynamic and efficient in response to dietary alterations in particular to dietary fibre intake. Short-chained fatty acids (SCFA) are the bi-product of fibre fermentation and have both obesogenic and anti-obesogenic properties. The production of specific forms of SCFAs depends on the microbes available in the gut and the type of fibre ingested. The gut microbiome associated with healthy lean individuals has a higher microbial biodiversity and a greater Bacteroidete to Firmicute ratio compared to the obese individuals associated with microbiome. These gut microbial associations are similar to those seen in individuals with high and low dietary fibre intakes, respectively. Metabolites generated by Bacteroidetes and Firmicutes include the three main SCFA related to obesity, namely butyrate, acetate and propionate. However, neither Bacteroidetes nor Firmicutes is purely causative or purely preventative of obesity. More research is crucial in linking the various types of fibre with particular SCFA production and the microbiome it promotes before suggesting that dietary fibre modulation of the gut microbiome can treat obesity. However, the long-term dietary trend plays the principal role in assembling the diversity and abundance of gut microbes; thus, a sustained diet high in fibre may help prevent obesity by promoting a microbiome associated with a lean phenotype.
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice
Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.
2016-01-01
Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359
Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats
Thatcher, Brendan S.; Reidelberger, Roger D.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Baskin, Denis G.; Schwartz, Michael W.; Blevins, James E.
2012-01-01
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fak/fak) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs. PMID:22008455
Mosinski, J D; Pagadala, M R; Mulya, A; Huang, H; Dan, O; Shimizu, H; Batayyah, E; Pai, R K; Schauer, P R; Brethauer, S A; Kirwan, J P
2016-06-01
High-fat diets are known to contribute to the development of obesity and related co-morbidities including non-alcoholic fatty liver disease (NAFLD). The accumulation of hepatic lipid may increase endoplasmic reticulum (ER) stress and contribute to non-alcoholic steatohepatitis and metabolic disease. We hypothesized that bariatric surgery would counter the effects of a high-fat diet (HFD) on obesity-associated NAFLD. Sixteen of 24 male Sprague Dawley rats were randomized to Sham (N = 8) or Roux-en-Y gastric bypass (RYGB) surgery (N = 8) and compared to Lean controls (N = 8). Obese rats were maintained on a HFD throughout the study. Insulin resistance (HOMA-IR), and hepatic steatosis, triglyceride accumulation, ER stress and apoptosis were assessed at 90 days post-surgery. Despite eating a HFD for 90 days post-surgery, the RYGB group lost weight (-20.7 ± 6%, P < 0.01) and improved insulin sensitivity (P < 0.05) compared to Sham. These results occurred with no change in food intake between groups. Hepatic steatosis and ER stress, specifically glucose-regulated protein-78 (Grp78, P < 0.001), X-box binding protein-1 (XBP-1) and spliced XBP-1 (P < 0.01), and fibroblast growth factor 21 (FGF21) gene expression, were normalized in the RYGB group compared to both Sham and Lean controls. Significant TUNEL staining in liver sections from the Obese Sham group, indicative of accelerated cell death, was absent in the RYGB and Lean control groups. Additionally, fasting plasma glucagon like peptide-1 was increased in RYGB compared to Sham (P < 0.02). These data suggest that in obese rats, RYGB surgery protects the liver against HFD-induced fatty liver disease by attenuating ER stress and excess apoptosis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Testing Protein Leverage in Lean Humans: A Randomised Controlled Experimental Study
Gosby, Alison K.; Conigrave, Arthur D.; Lau, Namson S.; Iglesias, Miguel A.; Hall, Rosemary M.; Jebb, Susan A.; Brand-Miller, Jennie; Caterson, Ian D.; Raubenheimer, David; Simpson, Stephen J.
2011-01-01
A significant contributor to the rising rates of human obesity is an increase in energy intake. The ‘protein leverage hypothesis’ proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity. Our aim was to test the ‘protein leverage hypothesis’ in lean humans by disguising the macronutrient composition of foods offered to subjects under ad libitum feeding conditions. Energy intakes and hunger ratings were measured for 22 lean subjects studied over three 4-day periods of in-house dietary manipulation. Subjects were restricted to fixed menus in random order comprising 28 foods designed to be similar in palatability, availability, variety and sensory quality and providing 10%, 15% or 25% energy as protein. Nutrient and energy intake was calculated as the product of the amount of each food eaten and its composition. Lowering the percent protein of the diet from 15% to 10% resulted in higher (+12±4.5%, p = 0.02) total energy intake, predominantly from savoury-flavoured foods available between meals. This increased energy intake was not sufficient to maintain protein intake constant, indicating that protein leverage is incomplete. Urinary urea on the 10% and 15% protein diets did not differ statistically, nor did they differ from habitual values prior to the study. In contrast, increasing protein from 15% to 25% did not alter energy intake. On the fourth day of the trial, however, there was a greater increase in the hunger score between 1–2 h after the 10% protein breakfast versus the 25% protein breakfast (1.6±0.4 vs 25%: 0.5±0.3, p = 0.005). In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain. PMID:22022472
Stonehouse, Welma; Wycherley, Thomas; Luscombe-Marsh, Natalie; Taylor, Pennie; Brinkworth, Grant; Riley, Malcolm
2016-07-01
A meta-analysis of randomized controlled trials (RCTs) was performed to investigate the effects of dairy food or supplements during energy restriction on body weight and composition in 18-50-year-old. RCTs ≥ 4 weeks comparing the effect of dairy consumption (whole food or supplements) with control diets lower in dairy during energy restriction on body weight, fat and lean mass were identified by searching MEDLINE, EMBASE, Pubmed, Cochrane Central and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) until March 2016. Reports were identified and critically appraised in duplicate. Data were pooled using random-effects meta-analysis. Chi²- and I²-statistics indicated heterogeneity. Dose effect was assessed using meta-regression analysis. GRADE guidelines were used to rate the quality (QR) of the evidence considering risk of bias, inconsistency, indirectness, imprecision, publication bias and effect estimates. 27 RCTs were reviewed. Participants consumed between 2 and 4 standard servings/day of dairy food or 20-84 g/day of whey protein compared to low dairy control diets, over a median of 16 weeks. A greater reduction in body weight (-1.16 kg [-1.66, -0.66 kg], p < 0.001, I² = 11%, QR = high, n = 644) and body fat mass (-1.49 kg [-2.06, -0.92 kg], p < 0.001, I² = 21%, n = 521, QR = high) were found in studies largely including women (90% women). These effects were absent in studies that imposed resistance training (QR = low-moderate). Dairy intake resulted in smaller loss of lean mass (all trials pooled: 0.36 kg [0.01, 0.71 kg], p = 0.04, I² = 64%, n = 651, QR = moderate). No between study dose-response effects were seen. Increased dairy intake as part of energy restricted diets resulted in greater loss in bodyweight and fat mass while attenuating lean mass loss in 18-50-year-old adults. Further research in males is needed to investigate sex effects.
Should We Build “Obese” or “Lean” Anaerobic Digesters?
Briones, Aurelio; Coats, Erik; Brinkman, Cynthia
2014-01-01
Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a ‘diet’ that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice. PMID:24831948
Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo
2014-12-02
Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Abilleira, E; Virto, M; Nájera, A I; Salmerón, J; Albisu, M; Pérez-Elortondo, F J; Ruiz de Gordoa, J C; de Renobales, M; Barron, L J R
2010-09-01
Ewe raw milk composition, rennet coagulation parameters, and curd texture were monitored throughout the milk production season in 11 commercial flocks reared under a part-time grazing system. Milking season lasted from February to July. During that period, the diet of the animals shifted from indoor feeding, consisting of concentrate and forage, to an outdoor grazing diet. Lean dry matter, fat, protein, calcium, and magnesium contents increased throughout the milking season, as did rennet coagulation time, curd firmness, and curd resistance to compression. However, lean dry matter, protein content, and curd resistance to compression stabilized when sheep started to graze. Principal component analysis correlated curd resistance to compression and proteins, whereas curd firmness was highly correlated with fat content and minerals. Discriminant analysis distributed milk samples according to the feeding management. Curd firmness, fat, and magnesium turned out to be discriminant variables. Those variables reflected the evolution of the composition and coagulation parameters when fresh pasture prevailed over other feeds in the diet of the flocks. The present study shows that seasonal changes associated with feeding management influence milk technological quality and that milk of good processing quality can be obtained under part-time grazing. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Uchida, Aki; Whitsitt, Mary C.; Eustaquio, Trisha; Slipchenko, Mikhail N.; Leary, James F.; Cheng, Ji-Xin; Buhman, Kimberly K.
2012-01-01
Obesity results in abnormally high levels of triglyceride (TG) storage in tissues such as liver, heart, and muscle, which disrupts their normal functions. Recently, we found that lean mice challenged with high levels of dietary fat store TGs in cytoplasmic lipid droplets in the absorptive cells of the intestine, enterocytes, and that this storage increases and then decreases over time after an acute dietary fat challenge. The goal of this study was to investigate the effects of obesity on intestinal TG metabolism. More specifically we asked whether TG storage in and secretion from the intestine are altered in obesity. We investigated these questions in diet-induced obese (DIO) and leptin-deficient (ob/ob) mice. We found greater levels of TG storage in the intestine of DIO mice compared to lean mice in the fed state, but similar levels of TG storage after a 6-h fast. In addition, we found similar TG storage in the intestine of lean and DIO mice at multiple time points after an acute dietary fat challenge. Surprisingly, we found remarkably lower TG secretion from both DIO and ob/ob mice compared to lean controls in response to an acute dietary fat challenge. Furthermore, we found altered mRNA levels for genes involved in regulation of intestinal TG metabolism in lean and DIO mice at 6 h fasting and in response to an acute dietary fat challenge. More specifically, we found that many of the genes related to TG synthesis, chylomicron synthesis, TG storage, and lipolysis were induced in response to an acute dietary fat challenge in lean mice, but this induction was not observed in DIO mice. In fact, we found a significant decrease in intestinal mRNA levels of genes related to lipolysis and fatty acid oxidation in DIO mice in response to an acute dietary fat challenge. Our findings demonstrate altered TG handling by the small intestine of obese compared to lean mice. PMID:22375122
Edlow, Andrea G; Guedj, Faycal; Pennings, Jeroen L A; Sverdlov, Deanna; Neri, Caterina; Bianchi, Diana W
2016-05-01
Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P < .001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared with females. Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy has a significant impact on the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of lateral hypothalamic lesion on brown adipose tissue of Zucker lean and obese rats.
Holt, S J; York, D A
1988-01-01
Acute (10-day) lateral hypothalamic (LH) lesion induced a reduction of food intake in both lean and obese Zucker rats which averaged about 50% over the course of the first 10 days. The aphagia associated with a fall in body weight in both genotypes which was greater than their respective pair-fed controls, indicating a change in energetic efficiency. The reduced level of BAT protein, mitochondria and GDP binding observed in the obese rat was restored after LH lesion, suggesting the reestablishment of a normal sympathetic drive to the tissue. The markedly lower plasma insulin concentration in the LH lesioned obese rat is consistent with a reduction in parasympathetic activity in these animals. Food restriction in the sham lean rat reduced BAT protein content and mitochondrial GDP binding, whereas no such changes were observed in the food restricted obese rat. This demonstrates the insensitivity of the obese rat to dietary signals and may imply that LH lesion restores diet-induced BAT thermogenesis in the obese rat.
Collateral fattening: When a deficit in lean body mass drives overeating.
Dulloo, Abdul G
2017-02-01
In his last review entitled "Some Adventures in Body Composition," Gilbert Forbes reminded us that "lean body mass and body fat are in a sense companions." To what extent the lean body mass (or fat-free mass) component in this companionship impacts on energy intake is rarely a topic for discussion, amid a dominant adipocentric view of appetite control. Yet an analysis of the few human studies that have investigated the relationships between objectively measured food intake and body composition reveals a potentially important role for both an increase and a decrease in fat-free mass in the drive to eat. These studies are highlighted here, together with the implications of their findings for research directed as much toward the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, as toward understanding the mechanisms by which dieting and sedentariness predispose to fatness. © 2017 The Authors. Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).
Quality of life in type 2 diabetes mellitus after a very low calorie diet and exercise.
Snel, Marieke; Sleddering, Maria A; Vd Peijl, Inge D; Romijn, Johannes A; Pijl, Hanno; Meinders, A Edo; Jazet, Ingrid M
2012-03-01
To evaluate whether the addition of exercise to a very low calorie diet (VLCD) has beneficial short- and long-term effects on health-related quality of life (QoL) in obese patients with type 2 diabetes mellitus (T2DM). We included 27 obese, insulin-dependent T2DM patients in a 16-week VLCD study, of whom 13 participated simultaneously in an exercise program (VLCD+E). Before, immediately after and 18 months after the intervention anthropometric measurements, glucoregulation and QoL (SF-36, HADS, NHP and MFI-20) were assessed. Patients were compared to healthy lean and obese (matched for body mass index) controls matched for gender and age. At baseline, T2DM patients had significantly worse QoL scores in 18 and 14 of the 22 subscales of the QoL questionnaires, compared to lean and obese controls, resp. The 16-week VLCD (n=27) decreased bodyweight (-25.4±1.3 kg, p<0.0001, p=0.179 between groups), and improved glucoregulation (HbA1c -1.3±0.3%, p<0.0001, p=0.488 between groups) and 9 (VLCD-only) and 11 (VLCD+E) of the 22 subscales of QoL. After 18 months, in the VLCD+E group the QoL subscales did not differ from those in obese controls and only 4 of the 22 subscales were significantly worse compared to lean controls. However, in the VLCD-only group 17 and 13 of the 22 QoL subscales were significantly worse compared to the lean and obese controls, resp. A 16-week VLCD induces considerable weight loss, metabolic amelioration, and major improvements in QoL in obese T2DM patients. The addition of exercise is of paramount importance for the maintenance of better QoL. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans.
Burghardt, Paul R; Rothberg, Amy E; Dykhuis, Kate E; Burant, Charles F; Zubieta, Jon-Kar
2015-08-01
Successful long-term weight loss is challenging. Brain endogenous opioid systems regulate associated processes; however, their role in the maintenance of weight loss has not been adequately explored in humans. In a preliminary study, the objective was to assess central μ-opioid receptor (MOR) system involvement in eating behaviors and their relationship to long-term maintenance of weight loss. This was a case-control study with follow-up of the treatment group at 1 year after intervention. The study was conducted at a tertiary care university medical center. Lean healthy (n = 7) and chronically obese (n = 7) men matched for age and ethnicity participated in the study. MOR availability measures were acquired with positron emission tomography and [(11)C]carfentanil. Lean healthy men were scanned twice under both fasted and fed conditions. Obese men were placed on a very low-calorie diet to achieve 15% weight loss from baseline weight and underwent two positron emission tomography scans before and two after weight loss, incorporating both fasted and fed states. Brain MOR availability and activation were measured by reductions in MOR availability (nondisplaceable binding potential) from the fed compared with the fasted-state scans. Baseline MOR nondisplaceable binding potential was reduced in obese compared with the lean and partially recovered obese after weight loss in regions that regulate homeostatic, hedonic, and emotional responses to feeding. Reductions in negative affect and feeding-induced MOR system activation in the right temporal pole were highly correlated in leans but not in obese men. A trend for an association between MOR activation in the right temporal pole before weight loss and weight regain 1 year was found. Although these preliminary studies have a small sample size, these results suggest that obesity and diet-induced weight loss impact central MOR binding and endogenous opioid system function. MOR system activation in response to an acute meal may be related to the risk of weight regain.
Mitchell, Cameron J; Milan, Amber M; Mitchell, Sarah M; Zeng, Nina; Ramzan, Farha; Sharma, Pankaja; Knowles, Scott O; Roy, Nicole C; Sjödin, Anders; Wagner, Karl-Heinz; Cameron-Smith, David
2017-12-01
Background: The Recommended Daily Allowance (RDA) for protein intake in the adult population is widely promoted as 0.8 g · kg -1 · d -1 Aging may increase protein requirements, particularly to maintain muscle mass. Objective: We investigated whether controlled protein consumption at the current RDA or twice the RDA (2RDA) affects skeletal muscle mass and physical function in elderly men. Design: In this parallel-group randomized trial, 29 men aged >70 y [mean ± SD body mass index (in kg/m 2 ): 28.3 ± 4.2] were provided with a complete diet containing either 0.8 (RDA) or 1.6 (2RDA) g protein · kg -1 · d -1 , aimed to balance energy needs. Before treatment and after 10 wk of intervention, whole-body and appendicular lean mass were measured by using dual-energy X-ray absorptiometry. Knee-extension peak power was measured with dynamometry. Results: Both groups were found to have been in a moderate negative energy balance (mean ± SD RDA: 209 ± 213 kcal/d; 2RDA 145 ± 214 kcal/d; P = 0.427 for difference between the groups). In comparison with RDA, whole-body lean mass increased in 2RDA ( P = 0.001; 1.49 ± 1.30 kg, P < 0.001 compared with -0.55 ± 1.49 kg, P = 0.149). This difference was mostly accounted for by an increase in trunk lean mass found in 2RDA (+1.39 ± 1.09 kg, P < 0.001). Appendicular lean mass also decreased in RDA compared with 2RDA ( P = 0.022), driven by a reduction in RDA (-0.64 ± 0.91 kg, P = 0.005 compared with 0.11 ± 0.57 kg, P = 0.592). Adjusting for energy imbalances did not alter these findings. Knee-extension peak power was also differently affected ( P = 0.012; 26.6 ± 47.7 W, P = 0.015 in 2RDA compared with -11.7 ± 31.0 W, P = 0.180 in RDA). Conclusions: Consumption of a diet providing 2RDA for protein compared with the current guidelines was found to have beneficial effects on lean body mass and leg power in elderly men. These effects were not explained by differences in energy balance. This trial was registered at the Australia New Zealand Clinical Trial Registry (www.anzctr.org.au) as ACTRN12616000310460. © 2017 American Society for Nutrition.
Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.
2003-01-01
Abstract: We assessed changes in proximate body composition, wet mass, and the occurrence of mortality among sedentary and actively swimming (15 cm/s) juvenile rainbow trout (Oncorhynchus mykiss) (120-142 mm total length) that were held at 4.0, 7.5, or 15.0 ??C and fasted for 140 days. Warmer water temperatures and swimming activity accentuated declines in lipid mass, but they did not similarly affect lean mass and wet mass. Swimming fish conserved lean mass independent of water temperature. Because lean mass exceeded lipid mass, wet mass was not affected substantially by decreases in lipid mass. Consequently, wet mass did not accurately reflect the effects that water temperature and swimming activity had on mortality of fasted rainbow trout. Rather, lipid mass was more accurate in predicting death from starvation. Juvenile rainbow trout survived long periods without food, and fish that died of starvation appeared to have similar body composition. It appears that the ability of fish to endure periods without food depends on the degree to which lipid mass and lean mass can be utilized as energy sources.
Gut microbiota from twins discordant for obesity modulate metabolism in mice.
Ridaura, Vanessa K; Faith, Jeremiah J; Rey, Federico E; Cheng, Jiye; Duncan, Alexis E; Kau, Andrew L; Griffin, Nicholas W; Lombard, Vincent; Henrissat, Bernard; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Semenkovich, Clay F; Funai, Katsuhiko; Hayashi, David K; Lyle, Barbara J; Martini, Margaret C; Ursell, Luke K; Clemente, Jose C; Van Treuren, William; Walters, William A; Knight, Rob; Newgard, Christopher B; Heath, Andrew C; Gordon, Jeffrey I
2013-09-06
The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin's microbiota (Ob) with mice containing the lean co-twin's microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.
Energy requirements for space flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.
1992-01-01
Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.
Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats.
Sánchez, David; Moulay, Leila; Muguerza, Begoña; Quiñones, Mar; Miguel, Marta; Aleixandre, Amaya
2010-06-01
The effects of a soluble cocoa fiber (SCF) were studied in Zucker fatty rats. Two groups of Zucker fatty rats were fed the following diets: standard diet and 5% SCF-enriched diet. A group of Zucker lean rats fed the standard diet was used for results comparison with obese Zucker animals. Solid and liquid intakes, body weight, plasma glucose, lipid profile, and systolic (SBP) and diastolic (DBP) blood pressure were recorded weekly. At the end of the experimental period insulin was determined, and fat apparent digestibility (FAD) and insulin resistance were calculated. The Zucker fatty rats fed 5% SCF-enriched diet showed less weight gain and food intake than those fed the standard diet. The group fed the fiber-enriched diet showed lower values of the total cholesterol/high-density lipoprotein cholesterol ratio and triglyceride levels than the standard group. FAD was also lower in the fiber group. Both SBP and DBP were decreased. In addition, SCF reduced plasma glucose and insulin, and as a consequence the insulin resistance was also decreased. Our data demonstrate that SCF resulted in an improvement of the studied risk factors associated with cardiometabolic disorders.
Liaw, Jacqueline J T; Peplow, Philip V
2016-04-01
The effects of electroacupuncture (EA) on pro-/anti-inflammatory cytokines and blood glucose (BG) in lean and obese Long Evans rats were investigated. Group 1 and Group 3 had five lean and seven obese rats, respectively, and received EA at the Zhongwan/Guanyuan acupoints on Day 1, Day 3, Day 5, Day 8, Day 10, and Day 12. Group 2 and Group 4, with five lean and seven obese rats, respectively, did not undergo EA. After induction of anesthesia, BG was measured at 10 minutes and 20 minutes. EA was applied for 30 minutes, and BG was measured again. At the end of the study, blood and white adipose tissue were collected. Analyses showed that for all groups, the mean BG at 20 minutes (baseline) and 50 minutes were significantly greater on Day 1 than on any other day. Compared with Group 2, the baseline BG in Week 1 for Group 1 was significantly lower, but Groups 3 and 4 showed no difference. Group 1 had significantly higher serum interleukin-10 and tumor necrosis factor-α than Group 2, while Group 3's serum leptin was greater than Group 4's. White adipose tissue interleukin-10 and adiponectin:leptin ratio were higher for Group 1 than Group 2. EA affected no significant differences in any other components measured for lean and obese animals. Copyright © 2015. Published by Elsevier B.V.
Lean methodology in i.v. medication processes in a children's hospital.
L'Hommedieu, Timothy; Kappeler, Karl
2010-12-15
The impact of lean methodology in i.v. medication processes in a children's hospital was studied. Medication orders at a children's hospital were analyzed for 30 days to identify the specific times when most medications were changed or discontinued. Value-stream mapping was used to define the current state of preparation and identify non-value-added tasks in the i.v. medication preparation and dispensing processes. An optimization model was created using specific measurements to establish the optimal number of batches and batch preparation times of batches. Returned i.v. medications were collected for 7 days before and after implementation of the lean process to determine the impact of the lean process changes. Patient-days increased from 1,836 during the first collection period to 2,017 during the second, and the total number of i.v. doses dispensed increased from 8,054 to 9,907. Wasted i.v. doses decreased from 1,339 (16.6% of the total doses dispensed) to 853 (8.6%). With the new process, Nationwide Children's Hospital was projected to realize a weekly savings of $8,197 ($426,244 annually), resulting in a 2.6% reduction in annual drug expenditure. The annual savings is a conservative estimate, due to the 10% increase in patient-days after the lean collection period compared with baseline. The differences in wasted doses and their costs were significant (p < 0.05). Implementing lean concepts in the i.v. medication preparation process had a positive effect on efficiency and drug cost.
Guo, Wen; Wong, Siu; Bhasin, Shalender
2013-01-01
Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482
Fisher, Kimberly D; Scheffler, Tracy L; Kasten, Steven C; Reinholt, Brad M; van Eyk, Gregory R; Escobar, Jeffery; Scheffler, Jason M; Gerrard, David E
2013-01-01
Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11) with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001) energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P<0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (P<0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7) was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.
Fisher, Kimberly D.; Scheffler, Tracy L.; Kasten, Steven C.; Reinholt, Brad M.; van Eyk, Gregory R.; Escobar, Jeffery; Scheffler, Jason M.; Gerrard, David E.
2013-01-01
Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1–12.9% crude protein, or a control corn-based diet (n = 11) with 12.2–19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001) energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P<0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (P<0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7) was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs. PMID:23991090
Shetty, Greeshma K; Matarese, Giuseppe; Magkos, Faidon; Moon, Hyun-Seuk; Liu, Xiaowen; Brennan, Aoife M; Mylvaganam, Geetha; Sykoutri, Despina; Depaoli, Alex M; Mantzoros, Christos S
2011-08-01
Short-term energy deprivation reduces leptin concentrations and alters the levels of circulating hormones of the hypothalamic-pituitary-peripheral axis in lean subjects. Whether the reduction in leptin concentration during long-term weight loss in obese individuals is linked to the same neuroendocrine changes seen in lean, leptin-sensitive subjects remains to be fully clarified. In this study, 24 overweight and obese adults (16 women and eight men; body mass index (BMI): 27.5-38.0 kg/m(2)) were prescribed a hypocaloric diet (-500 kcal/day) and were randomized to receive recombinant methionyl leptin (n=18, metreleptin, 10 mg/day self-injected s.c.) or placebo (n=6, same volume and time as metreleptin) for 6 months. Metreleptin administration did not affect weight loss beyond that induced by hypocaloric diet alone (P for interaction=0.341) but increased the serum concentrations of total leptin by six- to eight-fold (P<0.001) and led to the generation of anti-leptin antibodies. Despite free leptin concentration (P for interaction=0.041) increasing from 9±1 ng/ml at baseline to 43±15 and 36±12 ng/ml at 3 and 6 months, respectively, changes in circulating hormones of the thyroid and IGF axes at 3 and 6 months were not significantly different in the placebo- and metreleptin-treated groups. Leptin does not likely mediate changes in neuroendocrine function in response to weight loss induced by a mild hypocaloric diet in overweight and obese subjects.
Overweight and the feline gut microbiome - a pilot study.
Kieler, I N; Mølbak, L; Hansen, L L; Hermann-Bank, M L; Bjornvad, C R
2016-06-01
Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy-seven rescue-shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when available, by a paired litter box sample. Body condition was assessed using a 9-point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high-throughput quantitative real-time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p < 0.05), but this finding could not be linked to differences in specific bacterial groups. The rectal samples obtained higher DNA concentration than litter box samples (p < 0.0001). In conclusion, overweight and obese cats seem to have an altered gut microbiome as compared to lean cats. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Salmon, D. Michael W.; Hems, Douglas A.
1973-01-01
1. Lipoproteins in the plasma of mice were characterized by agarose-gel chromatography and polyacrylamide-gel electrophoresis: genetically obese (ob/ob) mice exhibited hyperlipoproteinaemia (compared with lean mice), largely owing to an increase in the concentration of cholesterol in high-density lipoprotein. Plasma concentrations of triglyceride and phospholipid were not markedly increased in genetically obese mice. 2. The formation of glycerolipids in liver and plasma was investigated with 14C-labelled precursors. The synthesis of hepatic triglyceride and phospholipid from glucose or palmitate was enhanced in ob/ob mice, compared with lean mice. The rate of entry of triglyceride into plasma, calculated from the time-course of incorporation of 14C from [14C]palmitate into plasma triglyceride, was increased in ob/ob mice (0.5μmol of fatty acid/min, compared with 0.2 in lean mice). 3. The removal from plasma of murine lipoprotein triglyceride-[14C]fatty acid was increased in ob/ob mice (half-time 2.2min, compared with 7.2min in lean mice). Similar results were obtained with an injected lipid emulsion (Intralipid). 4. From these measurements, estimates of the rates of turnover of plasma triglyceride in mice (fed on a mixed diet, female, 3 months old) are about 1.0μmol of fatty acid/min in ob/ob mice, and 0.25 in lean mice. 5. The major precursor of hepatic and plasma triglyceride in lean and ob/ob mice was calculated to be plasma free fatty acid. 6. These results are discussed, in connexion with the role of the liver in triglyceride metabolism in mice, especially in relation to genetic obesity. PMID:4360712
Verkest, K R; Rand, J S; Fleeman, L M; Morton, J M
2012-02-01
Dogs do not appear to progress from obesity-induced insulin resistance to type 2 diabetes mellitus. Both postprandial hyperglycemia and postprandial hypertriglyceridemia have been proposed to cause or maintain beta cell failure and progression to type 2 diabetes mellitus in other species. Postprandial glucose, triglyceride, and insulin concentrations have not been compared in lean and obese dogs. We measured serum glucose, triglyceride, and insulin concentrations in nine naturally occurring obese and nine age- and gender-matched lean dogs. After a 24-h fast, dogs were fed half their calculated daily energy requirement of a standardized diet that provided 37% and 40% of metabolizable energy as carbohydrate and fat, respectively. Fasting and postprandial glucose and triglyceride concentrations were greater in the obese dogs (P < 0.001), although the mean insulin concentration for this group was five times greater than that of the lean group (P < 0.001). Most of the 0.6 mM (11 mg/dL) difference in mean postprandial glucose concentrations between lean and obese dogs was attributable to a subset of persistently hyperglycemic obese dogs with mean postprandial glucose concentrations 1.0 mM (18 mg/dL) greater than that in lean dogs. Persistently hyperglycemic obese dogs had lower triglyceride (P = 0.02 to 0.04) and insulin (P < 0.02) concentrations than other obese dogs. None of the dogs developed clinical signs of diabetes mellitus during follow-up for a median of 2.6 yr. We conclude that pancreatic beta cells in dogs are either not sensitive to toxicity because of mild hyperglycemia or lack another component of the pathophysiology of beta cell failure in type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.
Paleolithic diets as a model for prevention and treatment of Western disease.
Lindeberg, Staffan
2012-01-01
To explore the possibility that a paleolithic-like diet can be used in the prevention of age-related degenerative Western disease. Literature review of African Paleolithic foods in relation to recent evidence of healthy nutrition. Available evidence lends weak support in favor and little against the notion that lean meat, fish, vegetables, tubers, and fruit can be effective in the prevention and treatment of common Western diseases. There are no obvious risks with avoiding dairy products, margarine, oils, refined sugar, and cereal grains, which provide 70% or more of the dietary intake in northern European populations. If stroke, coronary heart disease, type 2 diabetes, and cancer are preventable by dietary changes, an ancestral-like diet may provide an appropriate template. Copyright © 2012 Wiley Periodicals, Inc.
Lymphotoxin Regulates Commensal Responses to Enable Diet-Induced Obesity
Upadhyay, Vaibhav; Poroyko, Valeriy; Kim, Tae-jin; Devkota, Suzanne; Fu, Sherry; Liu, Donald; Tumanov, Alexei V.; Koroleva, Ekaterina P.; Deng, Liufu; Nagler, Cathryn; Chang, Eugene; Tang, Hong; Fu, Yang-Xin
2013-01-01
The microbiota plays a critical, weight-promoting role in diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin (LT), a key molecule in gut immunity, were resistant to DIO. Ltbr−/− mice differed in microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr−/− mice with their obese siblings rescued weight gain, demonstrating the communicability of the obese phenotype. Ltbr−/− animals lacked interleukin 23 (IL-23) and IL-22 that can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity. PMID:22922363
Complex Relationships Between Food, Diet and the Microbiome
Pace, Laura A.; Crowe, Sheila E.
2018-01-01
Diet is a risk factor in a number of medically important disease states including obesity, celiac disease and functional gastrointestinal disorders. Modification of diet can prevent, treat or alleviate some of the symptoms associated with these diseases and improve general health. It is important to provide patients with simple dietary recommendations in order to increase the probability of successful implementation. These include increasing vegetable, fruit and fiber intake, consuming lean protein sources to enhance satiety, avoiding or severely limiting highly processed foods, and reducing portion sizes for overweight and obese patients. Women can play an important role in maintaining family health by making more informed dietary decisions. The gut microbiome may play a role in some gastrointestinal disorders. However better designed studies are required to differentiate correlation from causation in this emerging area. PMID:27261897
Gotthardt, Juliet D.; Verpeut, Jessica L.; Yeomans, Bryn L.; Yang, Jennifer A.; Yasrebi, Ali; Bello, Nicholas T.
2016-01-01
Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%–52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%–13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%–42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%–60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%–32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%–75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy. PMID:26653760
Dietary and Urinary Sulfur can Predict Changes in Bone Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.
2015-01-01
Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program.
Piehowski, Kathryn E; Preston, Amy G; Miller, Debra L; Nickols-Richardson, Sharon M
2011-08-01
Reduced-calorie diets are difficult to follow because they often require elimination of certain foods, leading to poor compliance and limited success. However, a low-calorie, nutrient-dense diet has the potential to accommodate a daily snack without exceeding energy requirements, even during weight loss. This pilot study evaluated the effects of a reduced-calorie diet including either a daily dark chocolate snack or a non-chocolate snack on anthropometric and body composition measurements. In a randomized clinical trial, 26 overweight and obese (body mass index ≥25 to ≤43) premenopausal women were assigned to a reduced-calorie diet that included either a daily dark chocolate snack or non-chocolate snack (n=13 per group) for 18 weeks. At baseline and end of study, body weight and waist and hip circumferences were measured along with fat mass, lean mass, and body fat percentage by dual-energy x-ray absorptiometry. Energy and macronutrient intakes were estimated from 4-day food records. Within- and between-group changes from baseline were analyzed using paired t tests and independent t tests, respectively. Women in both snack groups reduced estimated daily energy intake (P<0.001). Women in both the dark chocolate snack and non-chocolate snack groups, respectively, experienced decreases (P<0.001) in body weight (-5.1 vs -5.1 kg), hip circumference (-5.8 vs -5.4 cm), waist circumference (-5.7 vs -3.5 cm), fat mass (-3.9 vs -3.6 kg), and body fat percentage (-3.4% vs -3.1%), with no change in lean mass. Improvements in anthropometric and body composition measurements among overweight and obese premenopausal women can be achieved with a reduced-calorie diet including either a daily dark chocolate snack or non-chocolate snack. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Connor, K L; Vickers, M H; Beltrand, J; Meaney, M J; Sloboda, D M
2012-01-01
We have previously reported that offspring of mothers fed a high fat (HF) diet during pregnancy and lactation enter puberty early and are hyperleptinaemic, hyperinsulinaemic and obese as adults. Poor maternal care and bonding can also impact offspring development and disease risk. We therefore hypothesized that prenatal nutrition would affect maternal care and that an interaction may exist between a maternal HF diet and maternal care, subsequently impacting on offspring phenotype. Wistar rats were mated and randomized to control dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Maternal care was assessed by observing maternal licking and grooming of pups between postnatal day (P)3 and P8. Postweaning (P22), offspring were fed a control (–con) or HF (–hf) diet. From P27, pubertal onset was assessed. At ∼P105 oestrous cyclicity was investigated. Maternal HF diet reduced maternal care; HF-fed mothers licked and groomed pups less than CON dams. Maternal fat:lean ratio was higher in HF dams at weaning and was associated with higher maternal plasma leptin and insulin concentrations, but there was no effect of maternal care on fat:lean ratio or maternal hormone levels. Both female and male offspring of HF dams were lighter from birth to P11 than offspring of CON dams, but by P19, HF offspring were heavier than controls. Prepubertal retroperitoneal fat mass was greater in pups from HF-fed dams compared to CON and was associated with elevated circulating leptin concentrations in females only, but there was neither an effect of maternal care, nor an interaction between maternal diet and care on prepubertal fat mass. Pups from HF-fed dams went into puberty early and this effect was exacerbated by a postweaning HF diet. Maternal and postweaning HF diets independently altered oestrous cyclicity in females: female offspring of HF-fed mothers were more likely to have prolonged or persistent oestrus, whilst female offspring fed a HF diet postweaning were more likely to have irregular oestrous cycles and were more likely to have prolonged or persistent oestrus. These data indicate that maternal HF nutrition during pregnancy and lactation results in a maternal obese phenotype and has significant impact on maternal care during lactation. Maternal and postweaning nutritional signals, independent of maternal care, alter offspring body fat pre-puberty and female reproductive function in adulthood, which may be associated with advanced ovarian ageing and altered fertility. PMID:22411006
EDLOW, Andrea G.; GUEDJ, Faycal; PENNINGS, Jeroen L.A.; SVERDLOV, Deanna; NERI, Caterina; BIANCHI, Diana W.
2016-01-01
BACKGROUND Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared to lean women. OBJECTIVES We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures and associated pathways. STUDY DESIGN Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12–14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet (HFD/HFD), or transitioned to the CD (HFD/CD). Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10/diet group/sex) and hybridized to whole genome expression arrays. Significantly differentially expressed genes were identified using Welch’s t-test with the Benjamini-Hochberg correction. Functional analyses were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. RESULTS Embryos of HFD/HFD dams were significantly smaller than controls, with males more severely affected than females (p=0.01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male versus female fetal brains (386 vs 66, p<0.001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with overlap of only one gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared to females. CONCLUSIONS Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy significantly impacts the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment. PMID:26945603
USDA-ARS?s Scientific Manuscript database
Background: Sarcopenia, the age-related decline of muscle mass, is one of the most important causes of loss of physical function and falls in seniors. Causes of sarcopenia are multiple, but there is evidence that diet-related mild metabolic acidosis may play a role in the development of skeletal mus...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to manipulate the lean to fat ratio by feeding diets differing in lysine and metabolizable energy (ME) content to replacement gilts from 100 d to 260 d of age. A secondary objective was to evaluate lysine and caloric efficiency between dietary treatments fed to develo...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to manipulate the lean:fat ratio by feeding diets differing in lysine and ME content to replacement gilts housed in groups from 100 d of age until slaughter (approximately 260 d of age) to evaluate lysine and caloric efficiency between dietary treatments. Crossbred ...
Garbow, Joel R.; Doherty, Jason M.; Schugar, Rebecca C.; Travers, Sarah; Weber, Mary L.; Wentz, Anna E.; Ezenwajiaku, Nkiruka; Cotter, David G.; Brunt, Elizabeth M.
2011-01-01
Low-carbohydrate diets are used to manage obesity, seizure disorders, and malignancies of the central nervous system. These diets create a distinctive, but incompletely defined, cellular, molecular, and integrated metabolic state. Here, we determine the systemic and hepatic effects of long-term administration of a very low-carbohydrate, low-protein, and high-fat ketogenic diet, serially comparing these effects to a high-simple-carbohydrate, high-fat Western diet and a low-fat, polysaccharide-rich control chow diet in C57BL/6J mice. Longitudinal measurement of body composition, serum metabolites, and intrahepatic fat content, using in vivo magnetic resonance spectroscopy, reveals that mice fed the ketogenic diet over 12 wk remain lean, euglycemic, and hypoinsulinemic but accumulate hepatic lipid in a temporal pattern very distinct from animals fed the Western diet. Ketogenic diet-fed mice ultimately develop systemic glucose intolerance, hepatic endoplasmic reticulum stress, steatosis, cellular injury, and macrophage accumulation, but surprisingly insulin-induced hepatic Akt phosphorylation and whole-body insulin responsiveness are not impaired. Moreover, whereas hepatic Pparg mRNA abundance is augmented by both high-fat diets, each diet confers splice variant specificity. The distinctive nutrient milieu created by long-term administration of this low-carbohydrate, low-protein ketogenic diet in mice evokes unique signatures of nonalcoholic fatty liver disease and whole-body glucose homeostasis. PMID:21454445
The stigma of obesity surgery: negative evaluations based on weight loss history.
Vartanian, Lenny R; Fardouly, Jasmine
2013-10-01
The present study investigated the stigma of obesity surgery by examining whether attitudes towards a lean person can change after learning that the person used to be obese but recently lost weight either through surgery or through diet and exercise. Participants (total N = 135) initially viewed an image of a lean woman or man and rated their impression of that individual on a variety of characteristics. Participants were then shown an image of the individual before she/he lost weight and were informed that the weight loss was achieved through surgery or through diet and exercise. Participants once again rated their impressions of that individual. After learning about the previous weight loss, participants rated the individual who lost weight through surgery as significantly more lazy and sloppy, less competent and sociable, less attractive, and having less healthy eating habits. The individual who lost weight through diet and exercise, in contrast, was not evaluated as harshly. Mediation analysis further showed that the difference between the two weight loss conditions in ratings of laziness, competence, and sociability was due to participants viewing surgery patients as less responsible for their weight loss. These findings suggest that learning about someone's weight history can negatively impact the way that person is seen by others. Furthermore, these findings suggest that the stigma may be strongest for people who lose weight through obesity surgery because those individuals are not seen as being responsible for their weight loss.
Stevens, Briony; Watt, Kerrianne; Brimbecombe, Julie; Clough, Alan; Judd, Jenni; Lindsay, Daniel
2017-01-01
To investigate the association of seasonality with dietary diversity, household food security and nutritional status of pregnant women in a rural district of northern Bangladesh. A cross-sectional study was conducted from February 2013 to February 2015. Data were collected on demographics, household food security (using the Household Food Insecurity Access Scale), dietary diversity (using the women's dietary diversity questionnaire) and mid-upper arm circumference. Descriptive statistics were used to explore demographics, dietary diversity, household food security and nutritional status, and inferential statistics were applied to explore the role of seasonality on diversity, household food security and nutritional status. Twelve villages of Pirganj sub-district, Rangpur District, northern Bangladesh. Pregnant women (n 288). Seasonality was found to be associated with dietary diversity (P=0·026) and household food security (P=0·039). Dietary diversity was significantly lower in summer (P=0·029) and spring (P=0·038). Food security deteriorated significantly in spring (P=0·006) and late autumn (P=0·009). Seasons play a role in women's household food security status and dietary diversity, with food security deteriorating during the lean seasons and dietary diversity deteriorating during the second 'lesser' lean season and the season immediately after. Interventions that aim to improve the diet of pregnant women from low-income, subsistence-farming communities need to recognise the role of seasonality on diet and food security and to incorporate initiatives to prevent seasonal declines.
The effects of short-term overfeeding on insulin action in lean and reduced-obese individuals.
Cornier, Marc-Andre; Bergman, Bryan C; Bessesen, Daniel H
2006-09-01
Insulin resistance is clearly associated with obesity. However, the role of excess energy intake per se as opposed to increased fat mass in the development of insulin resistance has not been clearly defined. It may be that the nutrient load provided by short-term overfeeding is sufficient to induce measurable changes in insulin action in skeletal muscle and the liver. We examined the effects of 3 days of overfeeding on insulin action and glucose kinetics in 13 lean (body mass index, 20.9 +/- 2.4 kg/m(2); 6 men, 7 women) and 9 reduced-obese (RO) (body mass index, 29.1 +/- 2.2 kg/m(2); 4 men, 5 women) individuals. A two-step euglycemic hyperinsulinemic clamp study (5 and 40 mU m(-2) min(-1)) with a primed, constant infusion of [6,6-(2)H(2)]glucose was performed after 3 days of a weight-maintenance diet and again after 3 days of overfeeding by 50% (50% carbohydrate, 30% fat, 20% protein). At baseline, lean individuals were more insulin sensitive, as measured by glucose infusion rate, than RO individuals (12.08 +/- 0.8 vs 7.62 +/- 1.0 mg x kg(-1) x min(-1), P < .01) with lean women being more insulin sensitive than lean men (P < .01). Overfeeding resulted in a reduction in glucose infusion rate in lean women (13.37 +/- 1.3 to 11.42 +/- 1.0 mg x kg(-1) x min(-1), P < .05), but no change was noted in lean men or RO individuals. Basal and insulin-stimulated glucose disposal remained unchanged with overfeeding in all groups. Low-dose insulin suppression of endogenous glucose production was impaired after overfeeding in lean women (euenergetic, 1.92 +/- 0.36 to 0.36 +/- 0.16 mg x kg(-1) x min(-1); overfeeding: 2.13 +/- 0.17 to 0.86 +/- 0.12 mg x kg(-1) x min(-1); P = .04) but remained unchanged in the other groups. These findings demonstrate that insulin action is reduced in lean, obese-resistant women after short-term overfeeding primarily because of an inhibition of insulin-mediated suppression of endogenous glucose production, whereas short-term overfeeding does not appear to effect insulin action in lean men and RO individuals. This response may be indirectly involved in the ability of lean women to maintain weight in the face of an obesigenic environment.
Alterations in circadian and meal-induced gut peptide levels in lean and obese rats.
Moghadam, Alexander A; Moran, Timothy H; Dailey, Megan J
2017-12-01
Alterations in gut hormone signaling are a likely contributing factor to the metabolic disturbances associated with overweight/obesity as they coordinate the timing of feeding behavior, absorption, and utilization of nutrients. These hormones are released in response to food intake, or follow a circadian or anticipatory pattern of secretion that is independent of nutrient stimulation. The aim of this study was to identify the degree to which high-fat diet-induced obesity would alter the daily rhythm of gut peptide plasma levels (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], insulin or amylin [AMY]) or meal-induced levels in the middle of the light or dark cycle. Male Sprague-Dawley rats were fed a high-fat diet (OBESE) or chow (LEAN), implanted with jugular catheters, and blood samples were taken every 2 h throughout the light/dark cycle while freely feeding or after an Ensure liquid meal. We found that even when OBESE and LEAN animals ate the same kcals and have a similar pattern of food intake, there is a difference in both the levels and rhythm of plasma gut peptides. GLP-1 and PYY are higher during the light cycle in LEAN animals and AMY is higher in the OBESE group throughout the light/dark cycle. There was also a differential response of plasma gut signals after the Ensure meal, even though the composition and amount of intake of the meal were the same in both groups. These changes occur prior to the high-fat diet induced loss of glycemic control and may be a target for early intervention. Impact statement The aim of this study was to test if obesity would alter the daily rhythm of gut peptides or meal-induced levels in the middle of the light or dark cycle. We found that even when animals are eating the same amount (in kcal) of food that the obese animals have altered daily rhythms and meal-induced gut peptide levels. In particular, we are the first to show that obesity induces increases in peptide YY levels during the light cycle and amylin remains high throughout the light and dark cycle in obese animals. These changes occurred prior to a loss of glycemic control. Thus, the rhythm of gut peptides could be used as an early indicator of later and more serious metabolic disturbances and may be a target for early intervention.
Prandini, A; Sigolo, S; Gallo, A; Faeti, V; Della Casa, G
2015-09-01
A study was conducted to evaluate the quality and sensory properties of protected designation of origin (PDO) Parma ham and Piacentina neck obtained from heavy pigs (Italian Duroc × Italian Large White) fed barley-based diets. Four diets were tested: 1) a corn-based diet (control), 2) the control diet with 80% of a normal-amylose hulled barley variety (Cometa), 3) the control diet with 80% of a normal-amylose hulless barley variety (Astartis), and 4) the control diet with 80% of a low-amylose hulless barley variety (Alamo). All the meat products were analyzed for physicochemical and color parameters. The dry-cured hams and necks were also evaluated for sensory properties. The data of physicochemical, color, and sensory parameters were separately analyzed by multivariate factor analysis, and interpretation of each extracted factor was based on specific original variables loading on each one. The meat products obtained from pigs fed the barley-based diets differed from those obtained from the control pigs on the PUFA factors characterized by C18:2-6 and omega-3:omega-6 ratio. In particular, the meat products obtained from pigs fed the barley-based diets had a lower content of C18:2-6 and a higher omega-3:omega-6 ratio ( < 0.05) than the control. In fresh hams, iodine number and SFA (C16:0 and C18:0) in addition to PUFA and omega-3:omega-6 ratio loaded on the PUFA/SFA factor. The fresh hams produced from pigs fed the barley-based diets had subcutaneous fat (SC) with a lower iodine number and a higher SFA level compared with those produced from the control pigs ( < 0.05). A sex effect was measured for PUFA/SFA and oleic acid factors. In particular, the barrow SC had a lower SFA content, higher PUFA and C18:1-9 levels, and a higher iodine number ( < 0.05) than the gilt SC. There were no appreciable differences in the color and sensory properties of meat products obtained from pigs fed the different diets. The hams from barrows differed from those obtained from gilts on the lean properties factor describing properties related to aspect and odor of dry-cured hams. Indeed, the hams from barrows were depreciated compared with the hams from gilts for minor intensity, brightness, and uniformity of the lean, pinkish intermuscular fat and cured odor. In conclusion, barley could be used as a replacement for corn in heavy pig diets for the production of PDO Italian products without negative effects on the physicochemical, color, or sensory characteristics of meat products.
Gastebois, Caroline; Villars, Clément; Drai, Jocelyne; Canet-Soulas, Emmanuelle; Blanc, Stéphane; Bergouignan, Audrey; Lefai, Etienne; Simon, Chantal
2016-12-01
To delineate the direct effect of physical activity on adiponectin metabolism, we investigated the impact of contrasted physical activity changes, independent of body mass changes, on adiponectin plasma concentration and muscle sensitivity in lean and overweight adult males. Eleven physically active lean men (70.6 ± 2.1 kg) were subjected to 1-month detraining; 9 sedentary lean men (73.1 ± 3.3 kg); and 11 sedentary overweight men (97.5 ± 3.0 kg) participated in a 2-month aerobic-exercise training program. Diet was controlled to maintain stable energy balance. Body composition, VO 2peak , circulating adiponectin, adipose and muscle tissue adiponectin, muscle adiponectin receptors, and APPL1 mRNAs were measured before and after the interventions. At baseline, plasma high-molecular-weight adiponectin concentration was lower in both active lean (5.44 ± 0.58 µg/mL) and sedentary overweight (5.30 ± 1.06 µg/mL) than in sedentary lean participants (7.44 ± 1.06 µg/mL; both p < 0.05). Training reduced total and high-molecular-weight adiponectin concentrations by, respectively, -32 and -42 % in sedentary lean, and -26 and -35 % in sedentary overweight, while detraining increased them by +25 and +27 % in active lean participants. Total and high-molecular-weight adiponectin changes were inversely correlated with VO 2peak changes (respectively, R 2 = 0.45, R 2 = 0.59; both p < 0.001) and positively with changes in fasting plasma insulin (both p < 0.05). Muscle and adipose tissue adiponectin mRNA did not differ between groups and with interventions. Muscle AdipoR2 and APPL1 mRNAs were lower in sedentary groups compared with the active group; and were positively associated with VO 2peak and inversely with fasting plasma insulin concentration. Plasma adiponectin concentration is inversely correlated with aerobic capacity. Future investigations will need to confirm the contribution of changes in muscle adiponectin sensitivity.
Saande, Cassondra J; Jones, Samantha K; Hahn, Kaylee E; Reed, Carter H; Rowling, Matthew J; Schalinske, Kevin L
2017-09-01
Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to excessive urinary loss of 25-hydroxycholecalciferol [25(OH)D]. We previously reported that a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining circulating 25(OH)D concentrations in rats with T2D. Furthermore, whole egg consumption reduced body weight gain in rats with T2D. Objective: This study was conducted to compare whole egg consumption with supplemental cholecalciferol with respect to vitamin D balance, weight gain, and body composition in rats with T2D. Methods: Male Zucker diabetic fatty (ZDF) rats ( n = 24) and their lean controls ( n = 24) were obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet (CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental cholecalciferol (CAS+D) at the same amount of cholecalciferol provided by WE (37.6 μg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain and food intake were measured daily, circulating 25(OH)D concentrations were measured by ELISA, and body composition was analyzed by dual X-ray absorptiometry. Results: Weight gain and percentage of body fat were reduced by ∼20% and 11%, respectively, in ZDF rats fed WE compared with ZDF rats fed CAS or CAS+D. ZDF rats fed CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, WE consumption increased serum 25(OH)D concentrations 130% compared with CAS, whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% compared with CAS. Conclusions: Our data suggest that dietary consumption of whole eggs is more effective than supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in rats with T2D. Moreover, whole egg consumption attenuated weight gain and reduced percentage of body fat in ZDF rats. These data may support new dietary recommendations targeting the prevention of vitamin D insufficiency in T2D. © 2017 American Society for Nutrition.
Boggiano, M M; Artiga, A I; Pritchett, C E; Chandler-Laney, P C; Smith, M L; Eldridge, A J
2007-09-01
To determine the stability of individual differences in non-nutritive 'junk' palatable food (PF) intake in rats; assess the relationship of these differences to binge-eating characteristics and susceptibility to obesity; and evaluate the practicality of using these differences to model binge-eating and obesity. Binge-eating prone (BEP) and resistant (BER) groups were identified. Differential responses to stress, hunger, macronutrient-varied PFs, a diet-induced obesity (DIO) regimen and daily vs intermittent access to a PF+chow diet, were assessed. One hundred and twenty female Sprague-Dawley rats. Reliability of intake patterns within rats; food intake and body weight after various challenges over acute (1, 2, 4 h), 24-h and 2-week periods. Although BEP and BER rats did not differ in amount of chow consumed, BEPs consumed >50% more intermittent PF than BERs (P<0.001) and consistently so (alpha=0.86). BEPs suppressed chow but not PF intake when stressed, and ate as much when sated as when hungry. Conversely, BERs were more affected by stress and ate less PF, not chow, when stressed and were normally hyperphagic to energy deficit. BEP overeating generalized to other PFs varying in sucrose, fat and nutrition content. Half the rats in each group proved to be obesity prone after a no-choice high fat diet (DIO diet) but a continuous diet of PF+chow normalized the BEPs high drive for PF. Greater intermittent intake of PF predicts binge-eating independent of susceptibility to weight gain. Daily fat consumption in a nutritious source (DIO-diet; analogous to a fatty meal) promoted overeating and weight gain but limiting fat to daily non-nutritive food (PF+chow; analogous to a snack with a low fat meal), did not. The data offer an animal model of lean and obese binge-eating, and obesity with and without binge-eating that can be used to identify the unique physiology of these groups and henceforth suggest more specifically targeted treatments for binge-eating and obesity.
International society of sports nutrition position stand: diets and body composition.
Aragon, Alan A; Schoenfeld, Brad J; Wildman, Robert; Kleiner, Susan; VanDusseldorp, Trisha; Taylor, Lem; Earnest, Conrad P; Arciero, Paul J; Wilborn, Colin; Kalman, Douglas S; Stout, Jeffrey R; Willoughby, Darryn S; Campbell, Bill; Arent, Shawn M; Bannock, Laurent; Smith-Ryan, Abbie E; Antonio, Jose
2017-01-01
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3-3.1 g/kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (>3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management.
A practical guide to fad diets.
Porcello, L A
1984-07-01
This discussion of fad diets may be concluded by comparing the 14 selected diets with the standards previously outlined for desirable weight reducing plans. Many of the popular diets supply large quantities of saturated fat and cholesterol, which are dietary components that have been associated with cardiovascular disease. Ketogenic diets are not appropriate for athletes because of problems with secondary dehydration and hyponatremia. Almost all of the diets are nutritionally inadequate. The rate of anticipated weight loss will vary according to the age, sex, weight, basal energy requirement, and activity level of an individual. However, it is expected that weight loss will be excessively rapid if a competitive athlete consumes a diet of less than 1000 calories per day. These hypocaloric diets cannot meet the training demands of athletes and will promote loss of lean body mass and carbohydrate stores. Many of the ketogenic diets do not restrict calories; therefore, weight loss will depend upon individual daily caloric consumption. The Cambridge Diet and starvation diets produce weight loss far in excess of that desired for an athlete in training. Long-term eating patterns to maintain weight loss are not encouraged in any of the 14 selected fad diets. In fact, most of these diets promote patterns of poor nutrition. Not one of the diets provides options or choices for dieters to use in accommodating food preference and lifestyle patterns. Some of the diets are fairly easy to comply with and others require special foods and supplements. None of the 14 diets reviewed fulfull all of the standards for a sound weight reduction diet plan.(ABSTRACT TRUNCATED AT 250 WORDS)
García-González, Ricardo; Aldezabal, Arantza; Laskurain, Nere Amaia; Margalida, Antoni; Novoa, Claude
2016-01-01
The Pyrenean rock ptarmigan (Lagopus muta pyrenaica) lives at one of the southernmost limits of the ptarmigan range. Their small population sizes and the impacts of global changes are limiting factors in the conservation of this threatened subspecies. An effective conservation policy requires precise basic knowledge of a species' food and habitat requirements, information that is practically non-existent for this Pyrenean population. Here, we describe the diet of a ptarmigan population in the Eastern Pyrenees, the environmental factors influencing its variability and the relationship between diet floristic composition and quality. Diet composition was determined by microhistological analysis of faeces and diet quality was estimated from free-urate faecal N content. Our results show that grouse diet is based mainly on arctic-alpine shrubs of the Ericaceae family, as well as dwarf willows (Salix spp.) and Dryas octopetala. The most frequently consumed plant species was Rhododendron ferrugineum, but its abundance in the diet was negatively related to the diet nitrogen content. Conversely, the abundance of Salix spp., grass leaves and arthropods increased the nitrogen content of the diet. Seasonality associated with snow-melting contributed the most to variability in the Pyrenean ptarmigan diet, differentiating winter from spring/summer diets. The latter was characterised by a high consumption of dwarf willows, flowers, arthropods and tender forb leaves. Geographic area and sex-age class influenced diet variability to a lesser extent. Current temperature increases in the Pyrenees due to global warming may reduce the persistence and surface area of snow-packs where preferred plants for rock ptarmigan usually grow, thus reducing food availability. The high consumption of Rh. ferrugineum characterised the diet of the Pyrenean population. Given the toxicity of this plant for most herbivores, its potential negative effect on Pyrenean ptarmigan populations should be evaluated.
García-González, Ricardo; Aldezabal, Arantza; Laskurain, Nere Amaia; Margalida, Antoni; Novoa, Claude
2016-01-01
The Pyrenean rock ptarmigan (Lagopus muta pyrenaica) lives at one of the southernmost limits of the ptarmigan range. Their small population sizes and the impacts of global changes are limiting factors in the conservation of this threatened subspecies. An effective conservation policy requires precise basic knowledge of a species' food and habitat requirements, information that is practically non-existent for this Pyrenean population. Here, we describe the diet of a ptarmigan population in the Eastern Pyrenees, the environmental factors influencing its variability and the relationship between diet floristic composition and quality. Diet composition was determined by microhistological analysis of faeces and diet quality was estimated from free-urate faecal N content. Our results show that grouse diet is based mainly on arctic-alpine shrubs of the Ericaceae family, as well as dwarf willows (Salix spp.) and Dryas octopetala. The most frequently consumed plant species was Rhododendron ferrugineum, but its abundance in the diet was negatively related to the diet nitrogen content. Conversely, the abundance of Salix spp., grass leaves and arthropods increased the nitrogen content of the diet. Seasonality associated with snow-melting contributed the most to variability in the Pyrenean ptarmigan diet, differentiating winter from spring/summer diets. The latter was characterised by a high consumption of dwarf willows, flowers, arthropods and tender forb leaves. Geographic area and sex-age class influenced diet variability to a lesser extent. Current temperature increases in the Pyrenees due to global warming may reduce the persistence and surface area of snow-packs where preferred plants for rock ptarmigan usually grow, thus reducing food availability. The high consumption of Rh. ferrugineum characterised the diet of the Pyrenean population. Given the toxicity of this plant for most herbivores, its potential negative effect on Pyrenean ptarmigan populations should be evaluated. PMID:26863532
USDA-ARS?s Scientific Manuscript database
Background: Progressive decline in skeletal muscle mass and function are growing concerns in an aging population. Diet and physical activity are important for muscle maintenance but these requirements are not always met. This highlights the potential for nutritional supplementation. As a primary obj...
Stonehouse, Welma; Wycherley, Thomas; Luscombe-Marsh, Natalie; Taylor, Pennie; Brinkworth, Grant; Riley, Malcolm
2016-01-01
Background/Aims: A meta-analysis of randomized controlled trials (RCTs) was performed to investigate the effects of dairy food or supplements during energy restriction on body weight and composition in 18–50-year-old. Methods: RCTs ≥ 4 weeks comparing the effect of dairy consumption (whole food or supplements) with control diets lower in dairy during energy restriction on body weight, fat and lean mass were identified by searching MEDLINE, EMBASE, Pubmed, Cochrane Central and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) until March 2016. Reports were identified and critically appraised in duplicate. Data were pooled using random-effects meta-analysis. Chi2- and I2-statistics indicated heterogeneity. Dose effect was assessed using meta-regression analysis. GRADE guidelines were used to rate the quality (QR) of the evidence considering risk of bias, inconsistency, indirectness, imprecision, publication bias and effect estimates. Results: 27 RCTs were reviewed. Participants consumed between 2 and 4 standard servings/day of dairy food or 20–84 g/day of whey protein compared to low dairy control diets, over a median of 16 weeks. A greater reduction in body weight (−1.16 kg [−1.66, −0.66 kg], p < 0.001, I2 = 11%, QR = high, n = 644) and body fat mass (−1.49 kg [−2.06, −0.92 kg], p < 0.001, I2 = 21%, n = 521, QR = high) were found in studies largely including women (90% women). These effects were absent in studies that imposed resistance training (QR = low-moderate). Dairy intake resulted in smaller loss of lean mass (all trials pooled: 0.36 kg [0.01, 0.71 kg], p = 0.04, I2 = 64%, n = 651, QR = moderate). No between study dose-response effects were seen. Conclusions: Increased dairy intake as part of energy restricted diets resulted in greater loss in bodyweight and fat mass while attenuating lean mass loss in 18–50-year-old adults. Further research in males is needed to investigate sex effects. PMID:27376321
Eating patterns and lipid levels in older adolescent girls.
Bradlee, M L; Singer, M R; Daniels, S R; Moore, L L
2013-03-01
Few studies have evaluated the effects of food-based eating patterns on adolescent lipid levels. This study examines whether usual adolescent eating patterns (ages 9-17 years) predict lipid levels at 18-20 years of age. This study uses previously collected data from the longitudinal NHLBI Growth and Health Study in which 2379 girls were enrolled at ages 9-10 years and followed for ten years. Food-based eating patterns were derived from multiple 3-day diet records. After adjusting for age, race, socioeconomic status, height, physical activity, and television viewing, girls with higher intakes of dairy, fruit and non-starchy vegetables had about a 40-50% reduced risk an LDL-C ≥ 170 mg/dL and non-HDL-C ≥ 145 mg/dL. Diets characterized by higher intakes of dairy and whole grains had similar benefits on TC and LDL-C. Girls consuming more fruits and non-starchy vegetables as well as more whole grains were much less likely to have high-risk lipid levels. Lean meat, poultry and fish when consumed in the context of other healthy eating patterns had no adverse effects on lipid levels in late adolescence. In fact when consumed with higher amounts of fruit and non-starchy vegetables, lean meat, poultry and fish had beneficial effects on HDL. Finally, dietary patterns that included more whole grains tended to be associated with lower TG levels. Healthy childhood eating patterns characterized by higher intakes of a variety of fruits, vegetables, whole grains, dairy, lean meat, poultry and fish are important modifiable predictors of lipid levels in late adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.
Roth, Jonathan D; Hughes, Heather; Kendall, Eric; Baron, Alain D; Anderson, Christen M
2006-12-01
Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 microg/kg.d, 22d) reduced food intake and slowed weight gain: approximately 10% (P<0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P<0.05). Whereas PF decreased lean tissue (P<0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean+/-se, 0.82+/-0.0, 0.81+/-0.0, respectively; P<0.05) similar to VEH (0.84+/-0.01). Energy expenditure (EE mean+/-se) tended to be reduced by PF (5.67+/-0.1 kcal/h.kg) and maintained by amylin (5.86+/-0.1 kcal/h.kg) relative to VEH (5.77+/-0.0 kcal/h.kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74+/-0.09 kcal/.kg; P<0.05) relative to VEH (5.49+/-0.06) and PF (5.38+/-0.07 kcal/h.kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P<0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P<0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.
The impact of obesity, sex, and diet on hepatic glucose production in cats.
Kley, Saskia; Hoenig, Margarethe; Glushka, John; Jin, Eunsook S; Burgess, Shawn C; Waldron, Mark; Jordan, Erin T; Prestegard, James H; Ferguson, Duncan C; Wu, Shaoxiong; Olson, Darin E
2009-04-01
Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using (2)H(2)O, [U-(13)C(3)]propionate, and [3,4-(13)C(2)]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin (P < 0.001) but similar blood glucose concentrations. EGP was lower in obese cats (P < 0.001) due to lower glycogenolysis and gluconeogenesis (GNG; P < 0.03). Insulin, body mass index, and girth correlated negatively with EGP (P < 0.003). Female obese cats had approximately 1.5 times higher fluxes through phosphoenolpyruvate carboxykinase (P < 0.02) and citrate synthase (P < 0.05) than male obese cats. However, GNG was not higher because pyruvate cycling was increased 1.5-fold (P < 0.03). These results support the notion that fasted obese cats have lower hepatic EGP compared with lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.
Evers-van Gogh, Inkie J A; Oteng, Antwi-Boasiako; Alex, Sheril; Hamers, Nicole; Catoire, Milene; Stienstra, Rinke; Kalkhoven, Eric; Kersten, Sander
2016-03-01
Obesity is associated with a state of chronic low-grade inflammation that is believed to contribute to the development of skeletal muscle insulin resistance. However, the extent to which local and systemic elevation of cytokines, such as monocyte chemoattractant protein 1 (MCP-1), interferes with the action of insulin and promotes insulin resistance and glucose intolerance in muscle remains unclear. Here, we aim to investigate the effect of muscle-specific overexpression of MCP-1 on insulin sensitivity and glucose tolerance in lean and obese mice. We used Mck-Mcp-1 transgenic (Tg) mice characterised by muscle-specific overexpression of Mcp-1 (also known as Ccl2) and elevated plasma MCP-1 levels. Mice were fed either chow or high-fat diet for 10 weeks. Numerous metabolic variables were measured, including glucose and insulin tolerance tests, muscle insulin signalling and plasma NEFA, triacylglycerol, cholesterol, glucose and insulin. Despite clearly promoting skeletal muscle inflammation, muscle-specific overexpression of Mcp-1 did not influence glucose tolerance or insulin sensitivity in either lean chow-fed or diet-induced obese mice. In addition, plasma NEFA, triacylglycerol, cholesterol, glucose and insulin were not affected by MCP-1 overexpression. Finally, in vivo insulin-induced Akt phosphorylation in skeletal muscle did not differ between Mcp-1-Tg and wild-type mice. We show that increased MCP-1 production in skeletal muscle and concomitant elevated MCP-1 levels in plasma promote inflammation in skeletal muscle but do not influence insulin signalling and have no effect on insulin resistance and glucose tolerance in lean and obese mice. Overall, our data argue against MCP-1 promoting insulin resistance in skeletal muscle and raise questions about the impact of inflammation on insulin sensitivity in muscle.
Geidenstam, Nina; Danielsson, Anders P H; Spégel, Peter; Ridderstråle, Martin
2016-03-01
Weight loss improves insulin sensitivity and glucose tolerance in obese subjects with impaired glucose tolerance (IGT), but the long term dynamic effects on blood metabolites other than glucose during an oral glucose tolerance test (OGTT), are largely unknown. Here, we studied changes in OGTT-elicited metabolite patterns in obese subjects during a diet-induced weight loss study. Blood samples from 14 obese individuals with IGT were collected at 0, 30 and 120 min during a standard 75 g OGTT at baseline (BMI 44 ± 2 kg/m(2)), after weight loss (BMI 36 ± 2 kg/m(2)) and after weight maintenance (BMI 35 ± 2 kg/m(2)). Serum metabolite levels were analyzed by gas chromatography/mass spectrometry and compared to a lean glucose tolerant group. Changes in the OGTT-elicited metabolite patterns occurred differentially during weight loss and weight maintenance. Enhanced suppression of aromatic amino acids were associated with decreased insulinogenic index observed after weight loss (tyrosine: r=0.72, p=0.013; phenylalanine: r=0.63, p=0.039). The OGTT-elicited suppression and/or lack of increase in levels of glutamate, glutamine, isoleucine, leucine, and the fatty acids laurate, oleate and palmitate, improved towards the lean profile after weight maintenance, paralleling an improvement in glucose tolerance. The greater heterogeneity in the response before and after weight loss in the obese, compared to lean subjects, was markedly reduced after weight maintenance. Diet-induced weight loss followed by weight maintenance results in changes in metabolite profiles associated with either hepatic insulin sensitivity or peripheral glucose tolerance. Our results highlight the importance of evaluating the effects of weight loss and weight maintenance separately. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Baker, Peter R; Boyle, Kristen E; Koves, Timothy R; Ilkayeva, Olga R; Muoio, Deborah M; Houmard, Joseph A; Friedman, Jacob E
2015-05-01
Investigate the effects of obesity and high-fat diet (HFD) exposure on fatty acid oxidation and TCA cycle intermediates and amino acids in skeletal muscle to better characterize energy metabolism. Plasma and skeletal muscle metabolomic profiles were measured from lean and obese males before and after a 5-day HFD in the 4 h postprandial condition. At both time points, plasma short-chain acylcarnitine species (SCAC) were higher in the obese subjects, while the amino acids glycine, histidine, methionine, and citrulline were lower in skeletal muscle of obese subjects. Skeletal muscle medium-chain acylcarnitines (MCAC) C6, C8, C10:2, C10:1, C10, and C12:1 increased in obese subjects, but decreased in lean subjects, from pre- to post-HFD. Plasma content of C10:1 was also decreased in the lean but increased in the obese subjects from pre- to post-HFD. CD36 increased from pre- to post-HFD in obese but not lean subjects. Lower skeletal muscle amino acid content and accumulation of plasma SCAC in obese subjects could reflect increased anaplerosis for TCA cycle intermediates, while accumulation of MCAC suggests limitations in β-oxidation. These measures may be important markers of or contributors to dysregulated metabolism observed in skeletal muscle of obese humans. © 2015 The Obesity Society.
Torres, Susan J; Robinson, Sian; Orellana, Liliana; O'Connell, Stella L; Grimes, Carley A; Mundell, Niamh L; Dunstan, David W; Nowson, Caryl A; Daly, Robin M
2017-06-01
Resistance training (RT) and increased dietary protein are recommended to attenuate age-related muscle loss in the elderly. This study examined the effect of a lean red meat protein-enriched diet combined with progressive resistance training (RT+Meat) on health-related quality of life (HR-QoL) in elderly women. In this 4-month cluster randomised controlled trial, 100 women aged 60-90 years (mean 73 years) from self-care retirement villages participated in RT twice a week and were allocated either 160 g/d (cooked) lean red meat consumed across 2 meals/d, 6 d/week or ≥1 serving/d (25-30 g) carbohydrates (control group, CRT). HR-QoL (SF-36 Health Survey questionnaire), lower limb maximum muscle strength and lean tissue mass (LTM) (dual-energy X-ray absorptiometry) were assessed at baseline and 4 months. In all, ninety-one women (91 %) completed the study (RT+Meat (n 48); CRT (n 43)). Mean protein intake was greater in RT+Meat than CRT throughout the study (1·3 (sd 0·3) v. 1·1 (sd 0·3) g/kg per d, P<0·05). Exercise compliance (74 %) was not different between groups. After 4 months there was a significant net benefit in the RT+Meat compared with CRT group for overall HR-QoL and the physical component summary (PCS) score (P<0·01), but there were no changes in either group in the mental component summary (MCS) score. Changes in lower limb muscle strength, but not LTM, were positively associated with changes in overall HR-QoL (muscle strength, β: 2·2 (95 % CI 0·1, 4·3), P<0·05). In conclusion, a combination of RT and increased dietary protein led to greater net benefits in overall HR-QoL in elderly women compared with RT alone, which was because of greater improvements in PCS rather than MCS.
Emissions data by category of engines
NASA Technical Reports Server (NTRS)
Barriage, J.; Westfield, W.; Becker, E. E.
1976-01-01
Exhaust gas pollutant emissions data under test stand conditions were obtained for the following: (1) full-rich baseline test (7-mode cycle), (2) lean-out tests for each power mode, and (3) different spark settings. The test data were also used to create a theoretical 5-mode cycle baseline. The emissions data in the framework of the theoretical 5-mode cycle were emphasized. There is no significant difference in the test results produced by data exhibited on the 7-mode cycle or 5-mode cycle. The 5-mode cycle was slightly more conservative for the carbon monoxide pollutant than the 7-mode cycle. The data were evaluated to determine which mode(s) had the greatest influence on improving general aviation piston engine emissions. Improvements that were achieved as a result of making lean-out adjustments to the fuel metering device were: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out of the climb mode to best power.
Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema.
Savetsky, Ira L; Torrisi, Jeremy S; Cuzzone, Daniel A; Ghanta, Swapna; Albano, Nicholas J; Gardenier, Jason C; Joseph, Walter J; Mehrara, Babak J
2014-07-15
Although obesity is a major clinical risk factor for lymphedema, the mechanisms that regulate this effect remain unknown. Recent reports have demonstrated that obesity is associated with acquired lymphatic dysfunction. The purpose of this study was to determine how obesity-induced lymphatic dysfunction modulates the pathological effects of lymphatic injury in a mouse model. We used a diet-induced model of obesity in adult male C57BL/6J mice in which experimental animals were fed a high-fat diet and control animals were fed a normal chow diet for 8-10 wk. We then surgically ablated the superficial and deep lymphatics of the midportion of the tail. Six weeks postoperatively, we analyzed changes in lymphatic function, adipose deposition, inflammation, and fibrosis. We also compared responses to acute inflammatory stimuli in obese and lean mice. Compared with lean control mice, obese mice had baseline decreased lymphatic function. Lymphedema in obese mice further impaired lymphatic function and resulted in increased subcutaneous adipose deposition, increased CD45(+) and CD4(+) cell inflammation (P < 0.01), and increased fibrosis, but caused no change in the number of lymphatic vessels. Interestingly, obese mice had a significantly increased acute inflammatory reaction to croton oil application. In conclusion, obese mice have impaired lymphatic function at baseline that is amplified by lymphatic injury. This effect is associated with increased chronic inflammation, fibrosis, and adipose deposition. These findings suggest that obese patients are at higher risk for lymphedema due to impaired baseline lymphatic clearance and an increased propensity for inflammation in response to injury. Copyright © 2014 the American Physiological Society.
The origins of western obesity: a role for animal protein?
McCarty, M F
2000-03-01
A reduced propensity to oxidize fat, as indicated by a relatively high fasting respiratory quotient, is a major risk factor for weight gain. Increased insulin secretion works in various ways to impede fat oxidation and promote fat storage. The substantial 'spontaneous' weight loss often seen with very-low-fat dietary regimens may reflect not only a reduced rate of fat ingestion, but also an improved insulin sensitivity of skeletal muscle that down-regulates insulin secretion. Reduction of diurnal insulin secretion may also play a role in the fat loss often achieved with exercise training, low-glycemic-index diets, supplementation with soluble fiber or chromium, low-carbohydrate regimens, and biguanide therapy. The exceptional leanness of vegan cultures may reflect an additional factor - the absence of animal protein. Although dietary protein by itself provokes relatively little insulin release, it can markedly potentiate the insulin response to co-ingested carbohydrate; Western meals typically unite starchy foods with an animal protein-based main course. Thus, postprandial insulin secretion may be reduced by either avoiding animal protein, or segregating it in low-carbohydrate meals; the latter practice is a feature of fad diets stressing 'food combining'. Vegan diets tend to be relatively low in protein, legume protein may be slowly absorbed, and, as compared to animal protein, isolated soy protein provokes a greater release of glucagon, an enhancer of fat oxidation. The low insulin response to rice may mirror its low protein content. Minimizing diurnal insulin secretion in the context of a low fat intake may represent an effective strategy for achieving and maintaining leanness. Copyright 2000 Harcourt Publishers Ltd.
Preserving Healthy Muscle during Weight Loss123
Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina
2017-01-01
Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015
Folgueira, C; Sanchez-Rebordelo, E; Barja-Fernandez, S; Leis, R; Tovar, S; Casanueva, F F; Dieguez, C; Nogueiras, R; Seoane, L M
2016-03-01
Uroguanylin (UGN) is a 16 amino acid peptide produced mainly by intestinal epithelial cells. Nutrients intake increases circulating levels of prouroguanylin that is processed and converted to UGN to activate the guanylyl cyclase 2C receptor (GUCY2C). Given that the UGN-GUCY2C system has been proposed as a novel gut-brain endocrine axis regulating energy balance, the aim of the present study was to investigate the regulation of UGN protein levels in duodenum and circulating levels in lean and obese mice under different nutritional conditions and its potential interaction with leptin. Swiss, C57BL/6 wild-type and ob/ob male adult mice under different nutritional conditions were used: fed ad libitum standard diet (control); 48 h fasting (fasted); 48 h fasting followed by 24 h of feeding (refed); and fed high-fat diet (45 %) during 10 weeks. In addition, peripheral leptin administration was performed. Intestinal uroguanylin expression was studied by Western blot analysis; plasma levels were measured by ELISA. Food deprivation significantly reduced plasma UGN levels, which were correlated with the lower protein levels of UGN in duodenum. These effects were reverted after refeeding and leptin challenge. Consistently, in ob/ob mice UGN expression was decreased, whereas leptin treatment up-regulated UGN levels in duodenum in these genetically modified mice compared to WT. Diet-induced obese mice displayed increased UGN levels in intestine and plasma in comparison with lean mice. Our findings suggest that UGN levels are correlated with energy balance status and that the regulation of UGN by nutritional status is leptin-dependent.
Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P
2016-12-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.
Frihauf, Jennifer B.; Fekete, Éva M.; Nagy, Tim R.; Levin, Barry E.
2016-01-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. PMID:27654396
Sato, Ikuko; Arima, Hiroshi; Ozaki, Noriyuki; Ozaki, Nobuaki; Watanabe, Minemori; Goto, Motomitsu; Shimizu, Hiroshi; Hayashi, Masayuki; Banno, Ryouichi; Nagasaki, Hiroshi; Oiso, Yutaka
2007-10-16
Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.
2012-01-01
Abstract Limited data on sex differences in body composition changes in response to higher protein diets (PRO) compared to higher carbohydrate diets (CARB) suggest that a PRO diet helps preserve lean mass (LM) in women more so than in men. Objective To compare male and female body composition responses to weight loss diets differing in macronutrient content. Design Twelve month randomized clinical trial with 4mo of weight loss and 8mo weight maintenance. Subjects Overweight (N = 130; 58 male (M), 72 female (F); BMI = 32.5 ± 0.5 kg/m2) middle-aged subjects were randomized to energy-restricted (deficit ~500 kcal/d) diets providing protein at 1.6 g.kg-1.d-1 (PRO) or 0.8 g.kg-1.d-1 (CARB). LM and fat mass (FM) were measured using dual X-ray absorptiometry. Body composition outcomes were tested in a repeated measures ANOVA controlling for sex, diet, time and their two- and three-way interactions at 0, 4, 8 and 12mo. Results When expressed as percent change from baseline, males and females lost similar amounts of weight at 12mo (M:-11.2 ± 7.1 %, F:-9.9 ± 6.0 %), as did diet groups (PRO:-10.7 ± 6.8 %, CARB:-10.1 ± 6.2 %), with no interaction of gender and diet. A similar pattern emerged for fat mass and lean mass, however percent body fat was significantly influenced by both gender (M:-18.0 ± 12.8 %, F:-7.3 ± 8.1 %, p < 0.05) and diet (PRO:-14.3 ± 11.8 %, CARB:-9.3 ± 11.1 %, p < 0.05), with no gender-diet interaction. Compared to women, men carried an extra 7.0 ± 0.9 % of their total body fat in the trunk (P < 0.01) at baseline, and reduced trunk fat during weight loss more than women (M:-3.0 ± 0.5 %, F:-1.8 ± 0.3 %, p < 0.05). Conversely, women carried 7.2 ± 0.9 % more total body fat in the legs, but loss of total body fat in legs was similar in men and women. Conclusion PRO was more effective in reducing percent body fat vs. CARB over 12mo weight loss and maintenance. Men lost percent total body fat and trunk fat more effectively than women. No interactive effects of protein intake and gender are evident. PMID:22691622
Scandal Clouds News Corporation's Move into Education
ERIC Educational Resources Information Center
Quillen, Ian
2011-01-01
When News Corporation announced last fall its entry into the education technology market, some observers said the media conglomerate led by Rupert Murdoch was a bad fit for education. Between the ownership of conservative-leaning outlets like Fox News and a reputation for identifying opportunities to generate lots of revenue very quickly, News…
Campaign Targets Perceived Liberal Bias in Schools
ERIC Educational Resources Information Center
Cavanagh, Sean
2006-01-01
Having witnessed what they regard as the corruption of colleges by liberals and left-leaning academics, conservative activists say they are launching a venture to eliminate any such bias from the nation's public schools. "It's a campaign we're beginning today," said David Horowitz, who helped organize an April 7, 2006 conference to promote those…
Christensen, P; Bliddal, H; Riecke, B F; Leeds, A R; Astrup, A; Christensen, R
2011-02-01
There is no consensus on whether 'very low-energy diets' (VLED; <800 kcal d(-1) ) cause greater weight loss in obese individuals than 'low-energy diets' (LED; 800-1200 kcal d(-1) ). The objective was to determine whether a very low-energy formula diet would cause greater weight loss than a formula 810 kcal d(-1) LED in older sedentary individuals. This is a pragmatic randomized controlled trial. obesity (body mass index [BMI] > 30); age >50 years, with knee osteoarthritis. Participants were randomized to VLED (420-554 kcal d(-1) ) or LED (810 kcal d(-1) ) for 8 weeks, followed by a fixed-energy (1200 kcal d(-1) ) diet with food and two diet products daily for 8 weeks. In all, 192 participants were randomized. Mean age was 63 years (standard deviation: 6), mean weight 103.2 kg (15.0) and BMI of 37.3 kg m(-2) (4.8) at baseline. Mean weight losses in VLED and LED groups were 11.4 kg (standard error: 0.5) and 10.7 kg (0.5) at week 8 and 13.3 kg (0.7) and 12.2 kg (0.6) at week 16. Mean differences between groups were 0.76 kg (95% confidence interval: -0.59 to 2.10; P = 0.27) and 1.08 kg (-0.66 to 2.81; P = 0.22) at 8 and 16 weeks, respectively. Loss of lean body mass was 2.1 kg (0.2) and 1.2 kg (0.4) (17% and 11% of the weight lost, respectively) at week 16 in the VLED and LED group with a mean difference of 0.85 kg (0.01 to 1.69; P = 0.047). Significant adverse effects comparing VLED and LED, were bad breath: 34 (35%) vs. 21 (22%), intolerance to cold: 39 (41%) vs. 17 (18%) and flatulence: 43 (45%) vs. 28 (29%) for VLED and LED at 8 weeks (P < 0.05 in all cases). The VLED and LED regimens were equally successful in inducing weight loss. The significantly lower loss of lean tissue in the LED group together with more frequently reported side effects in the VLED group, favours the choice of low-energy diet (LED) for the treatment of obesity. © 2011 The Authors. Clinical Obesity © 2011 International Association for the Study of Obesity.
Jiang, Zheng; Zhang, Xiaoyan; Yang, Lichuan; Li, Zi; Qin, Wei
2016-03-01
To evaluate the efficacy and safety of the restricted protein diet (low or very low protein diet) supplemented with keto analogues in the treatment of chronic kidney disease (CKD). The Cochrane library, PubMed, Embase, CBM and CENTRAL databases were searched and reviewed up to April 2015. Clinical trials were analyzed using RevMan 5.3 software. Seven random control trials, one cross-over trial and one non-randomized concurrent control trial were selected and included in this study according to our inclusion and exclusion criteria. The changes of eGFR, BUN, Scr, albumin, PTH, triglyceride, cholesterol, calcium, phosphorus and nutrition indexes (BMI, lean body mass and mid-arm muscular circumference) before and after treatment were analyzed. The meta-analysis results indicated that, comparing with normal protein diet, low protein diet (LPD) or very low protein diet (vLPD) supplemented with keto analogues (s(v)LPD) could significantly prevent the deterioration of eGFR (P < 0.001), hyperparathyroidism (P = 0.04), hypertension (P < 0.01) and hyperphosphatemia (P < 0.001). No differences in BUN, Scr, Albumin, triglyceride, cholesterol, hemoglobin, calcium and nutrition indexes were observed between different protein intake groups. Restricted protein diet supplemented with keto analogues (s(v)LPD) could delay the progression of CKD effectively without causing malnutrition.
Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.
2016-01-01
BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313
Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N
2016-04-01
BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity.
Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio
2014-01-01
Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823
Psychological correlates of habitual diet in healthy adults.
Stevenson, Richard J
2017-01-01
There are 3 motivations for studying the psychological correlates of habitual diet. First, diet is a major but modifiable cause of morbidity and mortality, and dietary interventions could be improved by knowing the psychological characteristics of consumers of healthy/unhealthy diets. Second, animal studies indicate that diet can impair cognition, stress responsiveness, and affective processing, but it is unclear whether this also happens in humans. Third, certain psychological traits are associated with obesity, but it is not known whether these precede and thus contribute to weight gain. Although many psychological correlates of diet have been identified, the literature is highly dispersed, and there has been no previous comprehensive narrative review. Organized here by psychological domain, studies linking diet with individual differences in perception, cognition, impulsivity, personality, affective processing, mental health, and attitudes, beliefs and values-in healthy adults-are reviewed. Although there is a growing literature on the psychological correlates of fruit/vegetable intake-the core of a healthy diet-consumers of unhealthy diets have characteristics that probably make them less responsive to education-based interventions. Diet may be a causal contributor to depression, and diet is consistently linked to impulsivity and certain personality traits. There are inconsistent and less explored links to perceptual, affective and cognitive processes, with several emerging parallels to the animal literature. Impulsivity and personality traits common to obese individuals also occur in lean consumers of unhealthy diets, suggesting these may contribute to weight gain. Diet-psychology correlates remain understudied even though this could significantly benefit human health. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.
Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter
2017-12-01
Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.
Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity.
Remely, M; Aumueller, E; Jahn, D; Hippe, B; Brath, H; Haslberger, A G
2014-03-01
Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.
Efficacy of dietary behavior modification for preserving cardiovascular health and longevity.
Pryde, Moira McAllister; Kannel, William Bernard
2010-12-28
Cardiovascular disease (CVD) and its predisposing risk factors are major lifestyle and behavioral determinants of longevity. Dietary lifestyle choices such as a heart healthy diet, regular exercise, a lean weight, moderate alcohol consumption, and smoking cessation have been shown to substantially reduce CVD and increase longevity. Recent research has shown that men and women who adhere to this lifestyle can substantially reduce their risk of coronary heart disease (CHD). The preventive benefits of maintaining a healthy lifestyle exceed those reported for using medication and procedures. Among the modifiable preventive measures, diet is of paramount importance, and recent data suggest some misconceptions and uncertainties that require reconsideration. These include commonly accepted recommendations about polyunsaturated fat intake, processed meat consumption, fish choices and preparation, transfatty acids, low carbohydrate diets, egg consumption, coffee, added sugar, soft drink beverages, glycemic load, chocolate, orange juice, nut consumption, vitamin D supplements, food portion size, and alcohol.
HONDA'S IDEA ABOUT THE UTILIZATION OF NATURAL SCENERY ON "THE USE OF SCENIC LANDSCAPES"
NASA Astrophysics Data System (ADS)
Ogawa, Toru; Sanada, Junko
Essentially, natural scenery area plan must include scenery conservation and utilization as well as natural conservation, actually however, it is said that natural scenery area plan leans much toward natural conservation. So this study aims to focus on Seiroku Honda who has a major thinking about "utilization of scenery" in the Japanese national park's formation stage and clarify Honda's idea about the utilization of natural scenery by analyzing his "the Use of Scenic Landscapes". As a result, following three points are clarified. 1) Honda has four ideas in the base of each plans. 2) scenic landscape as resources in Honda's own ideas. 3) there was some conflict between modification ways and landscape resources.
Substitutions of red meat, poultry and fish and risk of myocardial infarction.
Würtz, Anne M L; Hansen, Mette D; Tjønneland, Anne; Rimm, Eric B; Schmidt, Erik B; Overvad, Kim; Jakobsen, Marianne U
2016-05-01
Red meat has been suggested to be adversely associated with risk of myocardial infarction (MI), but previous studies have rarely taken replacement foods into consideration. We aimed to investigate optimal substitutions between and within the food groups of red meat, poultry and fish for MI prevention. We followed up 55 171 women and men aged 50-64 years with no known history of MI at recruitment. Diet was assessed by a validated 192-item FFQ at baseline. Adjusted Cox proportional hazard models were used to calculate hazard ratios (HR) and 95 % CI for specified food substitutions of 150 g/week. During a median follow-up time of 13·6 years, we identified 656 female and 1694 male cases. Among women, the HR for replacing red meat with fatty fish was 0·76 (95 % CI 0·64, 0·89), whereas the HR for replacing red meat with lean fish was 1·00 (95 % CI 0·89, 1·14). Similarly, replacing poultry with fatty but not lean fish was inversely associated with MI: the HR was 0·81 (95 % CI 0·67, 0·98) for fatty fish and was 1·08 (95 % CI 0·92, 1·27) for lean fish. The HR for replacing lean with fatty fish was 0·75 (95 % CI 0·60, 0·94). Replacing processed with unprocessed red meat was not associated with MI. Among men, a similar pattern was found, although the associations were not statistically significant. This study suggests that replacing red meat, poultry or lean fish with fatty fish is associated with a lower risk of MI.
Báez-Ruiz, Adrián; Luna-Moreno, Dalia; Carmona-Castro, Agustín; Cárdenas-Vázquez, René; Díaz-Muñoz, Mauricio; Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Manuel, Miranda-Anaya
2014-01-01
Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin. The main comparisons are between mice fed ad libitum and mice after 24 hours of fasting. Mice above 65 g body weight were considered obese, based on behavioral and physiological parameters such as food intake, plasma free fatty acids, and glucose tolerance. Hypothalamic tissue from obese and lean mice was analysed by western blot. Our results indicate that after ad libitum food access, obese mice show no significant differences in hypothalamic leptin receptors, but a significant increase of 60% in the GHS-R, and a nearly 62% decrease in VPAC2 was noted. After a 24-hour fast, plasma ghrelin increased nearly two fold in both lean and obese mice; increases of hypothalamic leptin receptors and GHS-R were also noted, while VPAC2 did not change significantly; levels of plasma free fatty acids were 50% less after fasting in obese than in lean animals. Our results indicate that in obese N. alstoni mice, the levels of orexigenic receptors in the hypothalamus correlate with overfeeding, and the fact that lean and obese females respond in different ways to a metabolic demand such as a 24-hour fast.
Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age
Martin, Julie C.; Moran, Lisa J.; Teede, Helena J.; Ranasinha, Sanjeeva; Lombard, Catherine B.; Harrison, Cheryce L.
2017-01-01
Health disparities, including weight gain and obesity exist between urban and rural dwelling women. The primary aim was to compare diet quality in urban and rural women of reproductive age, and secondary analyses of the difference in macronutrient and micronutrient intake in urban and rural women, and the predictors of diet quality. Diet quality was assessed in urban (n = 149) and rural (n = 394) women by a modified version of the Dietary Guideline Index (DGI) energy, macronutrient and micronutrient intake from a food frequency questionnaire (FFQ) and predictors of diet quality. Diet quality did not significantly differ between urban and rural women (mean ± standard deviation (SD), 84.8 ± 15.9 vs. 83.9 ± 16.5, p = 0.264). Rural women reported a significantly higher intake of protein, fat, saturated fat, monounsaturated fat, cholesterol and iron and a higher score in the meat and meat alternatives component of the diet quality tool in comparison to urban women. In all women, a higher diet quality was associated with higher annual household income (>$Australian dollar (AUD) 80,000 vs. <$AUD80,000 p = 0.013) and working status (working fulltime/part-time vs. unemployed p = 0.043). Total diet quality did not differ in urban and rural women; however, a higher macronutrient consumption pattern was potentially related to a higher lean meat intake in rural women. Women who are unemployed and on a lower income are an important target group for future dietary interventions aiming to improve diet quality. PMID:28594351
Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age.
Martin, Julie C; Moran, Lisa J; Teede, Helena J; Ranasinha, Sanjeeva; Lombard, Catherine B; Harrison, Cheryce L
2017-06-08
Health disparities, including weight gain and obesity exist between urban and rural dwelling women. The primary aim was to compare diet quality in urban and rural women of reproductive age, and secondary analyses of the difference in macronutrient and micronutrient intake in urban and rural women, and the predictors of diet quality. Diet quality was assessed in urban ( n = 149) and rural ( n = 394) women by a modified version of the Dietary Guideline Index (DGI) energy, macronutrient and micronutrient intake from a food frequency questionnaire (FFQ) and predictors of diet quality. Diet quality did not significantly differ between urban and rural women (mean ± standard deviation (SD), 84.8 ± 15.9 vs. 83.9 ± 16.5, p = 0.264). Rural women reported a significantly higher intake of protein, fat, saturated fat, monounsaturated fat, cholesterol and iron and a higher score in the meat and meat alternatives component of the diet quality tool in comparison to urban women. In all women, a higher diet quality was associated with higher annual household income (>$Australian dollar (AUD) 80,000 vs. <$AUD80,000 p = 0.013) and working status (working fulltime/part-time vs. unemployed p = 0.043). Total diet quality did not differ in urban and rural women; however, a higher macronutrient consumption pattern was potentially related to a higher lean meat intake in rural women. Women who are unemployed and on a lower income are an important target group for future dietary interventions aiming to improve diet quality.
McAllan, Liam; Skuse, Peter; Cotter, Paul D; O'Connor, Paula; Cryan, John F; Ross, R Paul; Fitzgerald, Gerald; Roche, Helen M; Nilaweera, Kanishka N
2014-01-01
Macronutrient quality and composition are important determinants of energy balance and the gut microbiota. Here, we investigated how changes to protein quality (casein versus whey protein isolate; WPI) and the protein to carbohydrate (P/C) ratio within a high fat diet (HFD) impacts on these parameters. Mice were fed a low fat diet (10% kJ) or a high fat diet (HFD; 45% kJ) for 21 weeks with either casein (20% kJ, HFD) or WPI at 20%, 30% or 40% kJ. In comparison to casein, WPI at a similar energy content normalised energy intake, increased lean mass and caused a trend towards a reduction in fat mass (P = 0.08), but the protein challenge did not alter oxygen consumption or locomotor activity. WPI reduced HFD-induced plasma leptin and liver triacylglycerol, and partially attenuated the reduction in adipose FASN mRNA in HFD-fed mice. High throughput sequence-based analysis of faecal microbial populations revealed microbiota in the HFD-20% WPI group clustering closely with HFD controls, although WPI specifically increased Lactobacillaceae/Lactobacillus and decreased Clostridiaceae/Clostridium in HFD-fed mice. There was no effect of increasing the P/C ratio on energy intake, but the highest ratio reduced HFD-induced weight gain, fat mass and plasma triacylglycerol, non-esterified fatty acids, glucose and leptin levels, while it increased lean mass and oxygen consumption. Similar effects were observed on adipose mRNA expression, where the highest ratio reduced HFD-associated expression of UCP-2, TNFα and CD68 and increased the diet-associated expression of β3-AR, LPL, IR, IRS-1 and GLUT4. The P/C ratio also impacted on gut microbiota, with populations in the 30/40% WPI groups clustering together and away from the 20% WPI group. Taken together, our data show that increasing the P/C ratio has a dramatic effect on energy balance and the composition of gut microbiota, which is distinct from that caused by changes to protein quality.
McAllan, Liam; Skuse, Peter; Cotter, Paul D.; Connor, Paula O'; Cryan, John F.; Ross, R. Paul; Fitzgerald, Gerald; Roche, Helen M.; Nilaweera, Kanishka N.
2014-01-01
Macronutrient quality and composition are important determinants of energy balance and the gut microbiota. Here, we investigated how changes to protein quality (casein versus whey protein isolate; WPI) and the protein to carbohydrate (P/C) ratio within a high fat diet (HFD) impacts on these parameters. Mice were fed a low fat diet (10% kJ) or a high fat diet (HFD; 45% kJ) for 21 weeks with either casein (20% kJ, HFD) or WPI at 20%, 30% or 40% kJ. In comparison to casein, WPI at a similar energy content normalised energy intake, increased lean mass and caused a trend towards a reduction in fat mass (P = 0.08), but the protein challenge did not alter oxygen consumption or locomotor activity. WPI reduced HFD-induced plasma leptin and liver triacylglycerol, and partially attenuated the reduction in adipose FASN mRNA in HFD-fed mice. High throughput sequence-based analysis of faecal microbial populations revealed microbiota in the HFD-20% WPI group clustering closely with HFD controls, although WPI specifically increased Lactobacillaceae/Lactobacillus and decreased Clostridiaceae/Clostridium in HFD-fed mice. There was no effect of increasing the P/C ratio on energy intake, but the highest ratio reduced HFD-induced weight gain, fat mass and plasma triacylglycerol, non-esterified fatty acids, glucose and leptin levels, while it increased lean mass and oxygen consumption. Similar effects were observed on adipose mRNA expression, where the highest ratio reduced HFD-associated expression of UCP-2, TNFα and CD68 and increased the diet-associated expression of β3-AR, LPL, IR, IRS-1 and GLUT4. The P/C ratio also impacted on gut microbiota, with populations in the 30/40% WPI groups clustering together and away from the 20% WPI group. Taken together, our data show that increasing the P/C ratio has a dramatic effect on energy balance and the composition of gut microbiota, which is distinct from that caused by changes to protein quality. PMID:24520424
Engel, J J; Smith, J W; Unruh, J A; Goodband, R D; O'Quinn, P R; Tokach, M D; Nelssen, J L
2001-06-01
Eighty-four crossbred gilts were used to evaluate the effects of dietary choice white grease (CWG) or poultry fat (PF) on growth performance, carcass characteristics, and quality characteristics of longissimus muscle (LM), belly, and bacon of growing-finishing pigs. Pigs (initially 60 kg) were fed a control diet with no added fat or diets containing 2, 4, or 6% CWG or PF. Diets were fed from 60 to 110 kg and contained 2.26 g lysine/Mcal ME. Data were analyzed as a 2 x 3 factorial plus a control with main effects of fat source (CWG and PF) and fat level (2, 4, and 6%). Pigs fed the control diet, 2% fat, and 4% fat had greater (P < 0.05) ADFI than pigs fed 6% fat. Pigs fed 6% fat had greater (P < 0.05) gain/feed (G/F) than pigs fed the control diet or other fat levels. Subcutaneous fat over the longissimus muscle from pigs fed CWG had more (P < 0.05) moisture than that from pigs fed PF. Feeding dietary fat (regardless of source or level) reduced (P < 0.05) the amount of saturated fats present in the LM. Similarly, 4 or 6% fat decreased (P < 0.05) the amount of saturated fats and increased unsaturated fats present in the bacon. No differences (P > 0.05) were observed for ADG, dressing percentage, leaf fat weight, LM pH, backfat depth, LM area, percentage lean, LM visual evaluation, LM waterholding capacity, Warner-Bratzler shear and sensory evaluation of the LM and bacon, fat color and firmness measurements, or bacon processing characteristics. Adding dietary fat improved G/F and altered the fatty acid profiles of the LM and bacon, but differences in growth rate, carcass characteristics, and quality and sensory characteristics of the LM and bacon were minimal. Dietary additions of up to 6% CWG or PF can be made with little effect on quality of pork LM, belly, or bacon.
Silvi, S; Rumney, C J; Cresci, A; Rowland, I R
1999-03-01
The effect of sucrose and resistant starch ('CrystaLean'--a retrograded, amylose starch) on human gut microflora and associated parameters was studied in human flora-associated (HFA) rats, colonized with microfloras from UK or Italian subjects, to determine whether such floras were affected differently by dietary carbohydrates. Consumption of the resistant starch diet resulted in significant changes in four of the seven main groups of bacteria enumerated. In both the UK and Italian flora-associated rats, numbers of lactobacilli and bifidobacteria were increased 10-100-fold, and there was a concomitant decrease in enterobacteria when compared with sucrose-fed rats. The induced changes in caecal microflora of both HFA rat groups were reflected in changes in bacterial enzyme activities and caecal ammonia concentration. Although it had little effect on caecal short-chain fatty acid concentration, CrystaLean markedly increased the proportion of n-butyric acid in both rat groups and was associated with a significant increase in cell proliferation in the proximal colon of the Italian flora-associated rats. CrystaLean appeared to play a protective role in the colon environment, lowering caecal ammonia concentration, caecal pH and beta-glucuronidase activity.
Shaikh, Saame Raza; Shaver, Patti R; Shewchuk, Brian M
2018-05-08
Dietary fat composition can modulate gene expression in peripheral tissues in obesity. Observations of the dysregulation of growth hormone (GH) in obesity indicate that these effects extend to the hypothalamic-pituitary (H-P) axis. The authors thus determine whether specific high fat (HF) diets influence the levels of Gh and other key gene transcripts in the H-P axis. C57BL/6 mice are fed a lean control diet or a HF diet in the absence or presence of OA, EPA, or DHA ethyl esters. Comparative studies are conducted with menhaden fish oil. The HF diet lowered pituitary Gh mRNA and protein levels, and cell culture studies reveal that elevated insulin and glucose can reduce Gh transcripts. Supplementation of the HF diet with OA, EPA, DHA, or menhaden fish oil do not improve pituitary Gh levels. The HF diet also impaired the levels of additional genes in the pituitary and hypothalamus, which are selectively rescued with EPA or DHA ethyl esters. The effects of EPA and DHA are more robust relative to fish oil. A HF diet can affect H-P axis transcription, which can be mitigated in some genes by EPA and DHA, but not fish oil in most cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hamilton, Melissa; Hopkins, Loren E; AlZahal, Ousama; MacDonald, Tara L; Cervone, Daniel T; Wright, David C; McBride, Brian W; Dyck, David J
2015-09-28
We recently demonstrated that feeding a natural CLAt10,c12-enriched butter to lean female rats resulted in small, but significant increases in fasting glucose and insulin concentrations, and impaired insulin tolerance. Our goal was to extend these findings by utilizing the diabetes-prone female fatty Zucker rat. Rats were fed custom diets containing 45 % kcal of fat derived from control and CLAt10,c12-enriched butter for 8 weeks. CLA t10,c12-enriched butter was prepared from milk collected from cows fed a high fermentable carbohydrate diet to create subacute rumen acidosis (SARA); control (non-SARA) butter was collected from cows fed a low grain diet. Female fatty Zucker rats (10 weeks old) were randomly assigned to one of four diet treatments: i) low fat (10 % kcal), ii) 45 % kcal lard, iii) 45 % kcal SARA butter, or iv) 45 % kcal non-SARA butter. A low fat fed lean Zucker group was used as a control group. After 8 weeks, i) glucose and insulin tolerance tests, ii) insulin signaling in muscle, adipose and liver, and iii) metabolic caging measurements were performed. Glucose and insulin tolerance were significantly impaired in all fatty Zucker groups, but to the greatest extent in the LARD and SARA conditions. Insulin signaling (AKT phosphorylation) was impaired in muscle, visceral (perigonadal) adipose tissue and liver in fatty Zucker rats, but was generally similar across dietary groups. Physical activity, oxygen consumption, food intake and weight gain were also similar amongst the various fatty Zucker groups. Increasing the consumption of a food naturally enriched with CLAt10,c12 significantly worsens glucose and insulin tolerance in a diabetes-prone rodent model. This outcome is not explained by changes in tissue insulin signaling, physical activity, energy expenditure, food intake or body mass.
Dulloo, A G; Mensi, N; Seydoux, J; Girardier, L
1995-02-01
The energetics of body weight recovery after low food intake was examined in the rat during refeeding for 2 weeks with isocaloric amounts of high-fat (HF) diets providing 50% of energy as either lard, coconut oil, olive oil, safflower oil, menhaden fish oil, or a mixture of all these fat types. The results indicate that for both body fat and protein, the efficiency of deposition was dependent on the dietary fat type. The most striking differences were found (1) between diets rich in n-3 and n-6 polyunsaturated fatty acids (PUFA), with the diet high in fish oil resulting in a greater body fat deposition and lower protein gain than the diet high in safflower oil; and (2) between diets rich in long-chain (LCT) and medium-chain triglycerides (MCT), with the diet high in lard resulting in a greater gain in both body fat and protein than the diet high in coconut oil. Furthermore, the diet high in olive oil (a monounsaturated fat) and the mixed-fat diet (containing all fat types) were found to be similar to the fish oil diet in that the efficiency of fat deposition was greater (and that of protein gain lower) than with the diet high in safflower oil. Neither the efficiency of fat gain nor that of protein gain were found to correlate with fasting plasma insulin, the insulin to glucose ratio, or plasma lipids.(ABSTRACT TRUNCATED AT 250 WORDS)
Banai, Benjamin; Laustsen, Lasse; Banai, Irena Pavela; Bovan, Kosta
2018-01-01
Previous studies have shown that voters rely on sexually dimorphic traits that signal masculinity and dominance when they choose political leaders. For example, voters exert strong preferences for candidates with lower pitched voices because these candidates are perceived as stronger and more competent. Moreover, experimental studies demonstrate that conservative voters, more than liberals, prefer political candidates with traits that signal dominance, probably because conservatives are more likely to perceive the world as a threatening place and to be more attentive to dangerous and threatening contexts. In light of these findings, this study investigates whether country-level ideology influences the relationship between candidate voice pitch and electoral outcomes of real elections. Specifically, we collected voice pitch data for presidential and prime minister candidates, aggregate national ideology for the countries in which the candidates were nominated, and measures of electoral outcomes for 69 elections held across the world. In line with previous studies, we found that candidates with lower pitched voices received more votes and had greater likelihood of winning the elections. Furthermore, regression analysis revealed an interaction between candidate voice pitch, national ideology, and election type (presidential or parliamentary). That is, having a lower pitched voice was a particularly valuable asset for presidential candidates in conservative and right-leaning countries (in comparison to presidential candidates in liberal and left-leaning countries and parliamentary elections). We discuss the practical implications of these findings, and how they relate to existing research on candidates' voices, voting preferences, and democratic elections in general.
Masharani, U; Sherchan, P; Schloetter, M; Stratford, S; Xiao, A; Sebastian, A; Nolte Kennedy, M; Frassetto, L
2015-08-01
The contemporary American diet figures centrally in the pathogenesis of numerous chronic diseases--'diseases of civilization'--such as obesity and diabetes. We investigated in type 2 diabetes whether a diet similar to that consumed by our pre-agricultural hunter-gatherer ancestors ('Paleolithic' type diet) confers health benefits. We performed an outpatient, metabolically controlled diet study in type 2 diabetes patients. We compared the findings in 14 participants consuming a Paleo diet comprising lean meat, fruits, vegetables and nuts, and excluding added salt, and non-Paleolithic-type foods comprising cereal grains, dairy or legumes, with 10 participants on a diet based on recommendations by the American Diabetes Association (ADA) containing moderate salt intake, low-fat dairy, whole grains and legumes. There were three ramp-up diets for 7 days, then 14 days of the test diet. Outcomes included the following: mean arterial blood pressure; 24-h urine electrolytes; hemoglobin A1c and fructosamine levels; insulin resistance by euglycemic hyperinsulinemic clamp and lipid levels. Both groups had improvements in metabolic measures, but the Paleo diet group had greater benefits on glucose control and lipid profiles. Also, on the Paleo diet, the most insulin-resistant subjects had a significant improvement in insulin sensitivity (r = 0.40, P = 0.02), but no such effect was seen in the most insulin-resistant subjects on the ADA diet (r = 0.39, P = 0.3). Even short-term consumption of a Paleolithic-type diet improved glucose control and lipid profiles in people with type 2 diabetes compared with a conventional diet containing moderate salt intake, low-fat dairy, whole grains and legumes.
Canine body composition quantification using 3 tesla fat-water MRI.
Gifford, Aliya; Kullberg, Joel; Berglund, Johan; Malmberg, Filip; Coate, Katie C; Williams, Phillip E; Cherrington, Alan D; Avison, Malcolm J; Welch, E Brian
2014-02-01
To test the hypothesis that a whole-body fat-water MRI (FWMRI) protocol acquired at 3 Tesla combined with semi-automated image analysis techniques enables precise volume and mass quantification of adipose, lean, and bone tissue depots that agree with static scale mass and scale mass changes in the context of a longitudinal study of large-breed dogs placed on an obesogenic high-fat, high-fructose diet. Six healthy adult male dogs were scanned twice, at weeks 0 (baseline) and 4, of the dietary regiment. FWMRI-derived volumes of adipose tissue (total, visceral, and subcutaneous), lean tissue, and cortical bone were quantified using a semi-automated approach. Volumes were converted to masses using published tissue densities. FWMRI-derived total mass corresponds with scale mass with a concordance correlation coefficient of 0.931 (95% confidence interval = [0.813, 0.975]), and slope and intercept values of 1.12 and -2.23 kg, respectively. Visceral, subcutaneous and total adipose tissue masses increased significantly from weeks 0 to 4, while neither cortical bone nor lean tissue masses changed significantly. This is evidenced by a mean percent change of 70.2% for visceral, 67.0% for subcutaneous, and 67.1% for total adipose tissue. FWMRI can precisely quantify and map body composition with respect to adipose, lean, and bone tissue depots. The described approach provides a valuable tool to examine the role of distinct tissue depots in an established animal model of human metabolic disease. Copyright © 2013 Wiley Periodicals, Inc.
Reartes, Gabriela Angelina; Di Paola Naranjo, Romina Daniela; Eynard, Aldo Renato; Muñoz, Sonia Edith
2016-06-01
Content of carcinogenic molecules like, 2-Amino, 1-methyl, 6-phenylimidazo[4,5-b] pyridine in meals is one of the main mutagenic substances formed during meat cooking, and it can be used as a dietary exposure marker. Our objective was to estimate the amount of PhIP consumed from habitual Argentinean diet, rich in red meats, comparing different cooking procedures and meat type. Samples (n = 240) of lean and fatty beef, chicken, pork, and fish were cooked using different methods: griddle, grill, sauté pan, and oven. Samples were: Overcooked, or cooked with a microbiologically suitable or "healthy technique" (HT). The PhIP was determined by HPLC-MS. Meats cooked using HT formed little crust amounts and PhIP was below the detection levels. In overcooked meats, large amounts of crust were formed in lean meats, fatty beef, fatty chicken and baked pork. PhIP was measured in lean meats sauted or cooked on a griddle, a method reaching temperatures until 250 °C.It was estimated that Argentine people eats about 12,268.0 ng/day of PhIP being these values above those tolerated limits for total dietary heterocyclic amines in some developed countries. Hence, cooking small meat portions, at medium temperature, avoiding prolonged cooking and preferring baked lean meats could be recommended as a healthier habit. Copyright © 2016. Published by Elsevier Ltd.
Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A
2003-01-01
Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.
Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP
Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben
2014-01-01
Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats. PMID:24944903
Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP.
Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben
2014-07-01
Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.
Kim, Jung Eun; O’Connor, Lauren E.; Sands, Laura P.; Slebodnik, Mary B.
2016-01-01
Context: The impact of dietary protein on body composition changes after older adults purposefully lose weight requires systematic evaluation. Objective: This systematic review and meta-analysis assessed the effects of protein intake (<25% vs ≥25% of energy intake or 1.0 g/kg/d) on energy restriction–induced changes in body mass, lean mass, and fat mass in adults older than 50 years. Data Sources: PubMed, Cochrane, Scopus, and Google Scholar were searched using the keywords “dietary proteins,” “body composition,” “skeletal muscle,” and “muscle strength.” Study Selection: Two researchers independently screened 1542 abstracts. Data Extraction: Information was extracted from 24 articles. Data Synthesis: Twenty randomized control trials met the inclusion criteria. Conclusion: Older adults retained more lean mass and lost more fat mass during weight loss when consuming higher protein diets. PMID:26883880
Nutrient-induced intestinal adaption and its effect in obesity.
Dailey, Megan J
2014-09-01
Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan
2016-11-12
To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Newnham, Evan D; Shepherd, Susan J; Strauss, Boyd J; Hosking, Patrick; Gibson, Peter R
2016-02-01
Key aims of treatment of coeliac disease are to heal the intestinal mucosa and correct nutritional abnormalities. We aim to determine prospectively the degree of success and time course of achieving those goals with a gluten-free diet. Ninety-nine patients were enrolled at diagnosis and taught the diet. The first 52 were reassessed at 1 year and 46 at 5 years, 25 being assessed at the three time points regarding dietary compliance (dietitian-assessed), coeliac serology, bone mineral density and body composition analysis by dual energy X-ray absorptiometry, and intestinal histology. Mean age (range) was 40 (18-71) years and 48 (76%) were female. Dietary compliance was very good to excellent in all but one. Tissue transglutaminase IgA was persistently elevated in 44% at 1 year and 30% at 5 years and were poorly predictive of mucosal disease. Rates of mucosal remission (Marsh 0) and response (Marsh 0/1) were 37% and 54%, and 50% and 85% at 1 and 5 years, respectively. Fat mass increased significantly over the first year in those with normal/reduced body mass index. Lean body mass indices more slowly improved irrespective of status at diagnosis with significant improvement at 5 years. Bone mass increased only in those with osteopenia or osteoporosis, mostly in year 1. Dietary compliance is associated with a high chance of healing the intestinal lesion and correction of specific body compositional abnormalities. The time course differed with body fat improving within 1 year, and correction of the mucosal lesion and improvement in lean mass and bone mass taking longer. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
van Gemert, Willemijn A M; Schuit, Albertine J; van der Palen, Job; May, Anne M; Iestra, Jolein A; Wittink, Harriet; Peeters, Petra H; Monninkhof, Evelyn M
2015-09-02
Physical inactivity and overweight are risk factors for postmenopausal breast cancer. The effect of physical activity may be partially mediated by concordant weight loss. We studied the effect on serum sex hormones, which are known to be associated with postmenopausal breast cancer risk, that is attributable to exercise by comparing randomly obtained equivalent weight loss by following a hypocaloric diet only or mainly by exercise. Overweight, insufficiently active women were randomised to a diet (N = 97), mainly exercise (N = 98) or control group (N = 48). The goal of both interventions was to achieve 5-6 kg of weight loss by following a calorie-restricted diet or an intensive exercise programme combined with only a small caloric restriction. Primary outcomes after 16 weeks were serum sex hormones and sex hormone-binding globulin (SHBG). Body fat and lean mass were measured by dual-energy X-ray absorptiometry. Both the diet (-4.9 kg) and mainly exercise (-5.5 kg) groups achieved the target weight loss. Loss of body fat was significantly greater with exercise versus diet (difference -1.4 kg, P < 0.001). In the mainly exercise arm, the reduction in free testosterone was statistically significantly greater than that of the diet arm (treatment effect ratio [TER] 0.92, P = 0.043), and the results were suggestive of a difference for androstenedione (TER 0.90, P = 0.064) and SHBG (TER 1.05, P = 0.070). Compared with the control arm, beneficial effects were seen with both interventions, diet and mainly exercise, respectively, on oestradiol (TER 0.86, P = 0.025; TER 0.83, P = 0.007), free oestradiol (TER 0.80, P = 0.002; TER 0.77, P < 0.001), SHBG (TER 1.14; TER 1.21, both P < 0.001) and free testosterone (TER 0.91, P = 0.069; TER = 0.84, P = 0.001). After adjustment for changes in body fat, intervention effects attenuated or disappeared. Weight loss with both interventions resulted in favourable effects on serum sex hormones, which have been shown to be associated with a decrease in postmenopausal breast cancer risk. Weight loss induced mainly by exercise additionally resulted in maintenance of lean mass, greater fitness, greater fat loss and a larger effect on (some) sex hormones. The greater fat loss likely explains the observed larger effects on sex hormones. ClinicalTrials.gov identifier: NCT01511276 . Registered on 12 January 2012.
Level of supplemental protein does not influence the ruminally undegradable protein value.
Legleiter, L R; Mueller, A M; Kerley, M S
2005-04-01
Two experiments were conducted to determine whether elevating the percentage of ruminally undegradable protein (RUP) in the diet would influence the RUP value of the protein feedstuff. A single-effluent, continuous-culture study was designed to test the effect of RUP inclusion rate in the diet on ruminal degradability of the protein. Treatments consisted (DM basis) of a control diet with no supplemental protein, control + 2.5% bloodmeal (BM-L), control + 5% bloodmeal (BM-H), control + 4.45% soybean meal (SBM-L), and control + 8.89% soybean meal (SBM-H). Proteolytic activity and total VFA concentration were not affected (P = 0.73 and P = 0.13) by treatment. Within protein source, dietary RUP value was not affected (P = 0.94) by level of inclusion. When corrected for control diet RUP flow, the RUP value of the blood meal (BM) protein was higher (P = 0.01) than soybean meal (SBM); however, level of supplementation did not affect (P = 0.07) the RUP value of BM or SBM. In Exp. 2, 32 British x Continental crossbred steers (276 +/- 26.3 kg) were fed for 72 d to examine the effects of balancing the AA:energy ratio, using BM as a RUP source, on ADG, G:F, and lean tissue deposition. Diets were formulated to provide increasing levels of arginine, while ruminally degradable protein and energy were held constant. Four dietary treatments provided 0.5, 1, 1.5, and 2x the required amount of arginine, whereas the control diet had no BM included. Daily DMI averaged 7.6 kg/steer and did not differ (P = 0.71) among treatments. Steers gained an average of 1.9 kg/d and average G:F was 0.260, with no differences (P = 0.60 and P = 0.97, respectively) among treatments. There was no difference (P = 0.48) in the change in 12th-rib fat depth during the study; however, change in LM area was affected quadratically as the level of BM increased in the diet, with the greatest increase in LM area occurring in steers fed the 1x and 1.5x required arginine treatments. Balancing the AA:energy ratio did not affect G:F, DMI, or ADG; however, it increased deposition of lean in the LM quadratically. Level of dietary inclusion of BM as an RUP source does not affect its RUP value or efficacy of providing postruminal AA in growing steers.
Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed
2011-01-01
Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet. PMID:21464991
Dinesh Yadav, D M; Muralidhar, M N; Prasad, S M V K; Rajender Rao, K
2018-03-01
Obesity is a multifactorial disorder associated with increased body adiposity, chronic oxidative stress which contributes to impaired fertility in males. Diet restriction and anti-oxidant supplementations are known to protect obese subjects from oxidative stress and improves fertility. However, the role of oxidative stress and the age of intervention in restoring male fertility are poorly understood. This study was aimed to assess the effect of diet restriction on fertility with respect to the age of intervention, body composition and oxidative stress using WNIN/Ob obese mutant rat strain. Unlike lean and carrier phenotypes, obese rats are hyperphagic, hyperlipaemic and infertile. Male obese rats aged for 35, 60 and 90 days were fed either ad libitum or diet restricted for 6 weeks. Upon diet restriction mean body weight, total body fat percentage, circulatory lipids and oxidative stress markers were significantly reduced and it follows the order as 35 < 60 < 90 days. Diet-restricted males of the three age groups were allowed to mate with female carrier rats, and fertility was restored only in 35-day group. Diet restriction in male obese WNIN/Ob rats lowered the rate of body weight gain, with reduced oxidative stress overall and fertility restoration in groups intervened at pre-pubertal stages. © 2017 Blackwell Verlag GmbH.
Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda
2018-04-03
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.
Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids.
Kris-Etherton, Penny M; Innis, Sheila; Ammerican Dietetic Assocition; Dietitians of Canada
2007-09-01
It is the position of the American Dietetic Association (ADA) and Dietitians of Canada (DC) that dietary fat for the adult population should provide 20% to 35% of energy and emphasize a reduction in saturated fatty acids and trans-fatty acids and an increase in n-3 polyunsaturated fatty acids. ADA and DC recommend a food-based approach for achieving these fatty acid recommendations; that is, a dietary pattern high in fruits and vegetables, whole grains, legumes, nuts and seeds, lean protein (ie, lean meats, poultry, and low-fat dairy products), fish (especially fatty fish high in n-3 fatty acids), and use of nonhydrogenated margarines and oils. Implicit to these recommendations for dietary fatty acids is that unsaturated fatty acids are the predominant fat source in the diet. These fatty acid recommendations are made in the context of a diet consistent with energy needs (ie, to promote a healthful body weight). ADA and DC recognize that scientific knowledge about the effects of dietary fats on human health is incomplete and take a prudent approach in recommending a reduction in those fatty acids that increase risk of disease, while promoting intake of those fatty acids that benefit health. Registered dietitians play a pivotal role in translating dietary recommendations for fat and fatty acids into healthful dietary patterns for different population groups.
Obesity-induced decreases in muscle performance are not reversed by weight loss.
Seebacher, F; Tallis, J; McShea, K; James, R S
2017-08-01
Obesity can affect muscle phenotypes, and may thereby constrain movement and energy expenditure. Weight loss is a common and intuitive intervention for obesity, but it is not known whether the effects of obesity on muscle function are reversible by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and contractile phenotypes are reversible by weight loss. We used zebrafish (Danio rerio) in a factorial design to compare energy metabolism, locomotor capacity, muscle isometric force and work-loop power output, and myosin heavy chain (MHC) composition between lean fish, diet-induced obese fish, and fish that were obese and then returned to lean body mass following diet restriction. Obesity increased resting metabolic rates (P<0.001) and decreased maximal metabolic rates (P=0.030), but these changes were reversible by weight loss, and were not associated with changes in muscle citrate synthase activity. In contrast, obesity-induced decreases in locomotor performance (P=0.0034), and isolated muscle isometric stress (P=0.01), work-loop power output (P<0.001) and relaxation rates (P=0.012) were not reversed by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow MHCs, and a shift toward fast MHCs were not reversed by weight loss. Obesity-induced changes in locomotor performance and muscle contractile function were not reversible by weight loss. These results show that weight loss alone may not be a sufficient intervention.
Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.
Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A
2010-09-01
Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.
Herrador, Zaida; Perez-Formigo, Jesus; Sordo, Luis; Gadisa, Endalamaw; Moreno, Javier; Benito, Agustin; Aseffa, Abraham; Custodio, Estefania
2015-01-01
Background A low dietary diversity score (DDS) and low consumption of food from animal sources (ASF) are among the factors related to malnutrition in school-aged children living in Libo Kemkem and Fogera (Ethiopia). Objectives This study aimed to identify associated determinants for low dietary diversity and lack of consumption of ASF. Methods In 2009, a cross-sectional survey was carried out in May, at the end of the lean season. Socio-demographic characteristics and diet habits were collected from 886 school-aged children. Additionally, 516 children from rural sites were followed up in the post-harvest season, in December of the same year. Bivariate and multivariable statistical methods were employed to assess low DDS and ASF intake and their association with different factors. Results Up to 80% and 60% of school-aged children living in rural and urban sites, respectively, ate ≤ 3 food groups the day before the survey. The percentage of children consuming ASF was significantly higher in urban settings (64% vs 18%). In the rural areas, if the head of the household was male (OR: 1.91; 95%CI: 1.00-3.65) and older than 40 years (OR: 1.56; 95%CI: 1.02-2.38) the child had a lower DDS in the lean season, while differences by socioeconomic indexes were observed in the post-harvest season. Males took more ASF than females in rural settings (OR: 1.73; 95%CI: 1.14-2.62) and differences by socioeconomic indexes were observed in both settings in the lean season, though not in post-harvest survey. Conclusions The findings of this study revealed that the diet among school-aged children in Libo Kemkem and Fogera districts lacked diversity, and that the intake of foods from animal sources was low, especially among rural girls. To effectively tackle malnutrition, dietary diversification strategies oriented to the local needs are recommended. PMID:26203904
Effect of an acute fast on energy compensation and feeding behaviour in lean men and women.
Johnstone, A M; Faber, P; Gibney, E R; Elia, M; Horgan, G; Golden, B E; Stubbs, R J
2002-12-01
Humans appear to defend against energy deficit to a greater extent than energy surplus. Severe dietary energy restriction resulting in 5-30% weight loss often leads to hyperphagia and weight regain in lean subjects. However, the period of time over which fasting is often endured in Western society are far shorter, approximately 1-2 days. This study examined how a 36 h fast effected the subsequent day's energy and nutrient intake in a group of 24 healthy, lean men and women. Subjects underwent two 2 day treatments, termed 'fast' and 'maintenance'. During the 'fast' treatment, subjects were fed a maintenance diet on the day prior to the fast (day -1) to prevent overeating. They then consumed non-energy drinks only, from 20:00 h on day -1 to 08:00 h on day 2 (ad libitum feeding day), thus fasting for 36 h. On the 'maintenance' protocol, subjects received a maintenance diet throughout day 1. Throughout day 2 they had ad libitum access to a range of familiar foods, which were the same for both treatments. Body weight, blood glucose and respiratory quotient were used as compliance checks. Hunger was monitored on day's -1, 1 and 2 for the fast treatment only. On day 2, average energy intake was 10.2 vs 12.2 MJ/day (s.e.d. 1.0) on the post-maintenance and post-fast periods, respectively (P=0.049). Subjects altered feeding behaviour, in response to the fast, only at breakfast time, selecting a higher-fat meal (P<0.005). Compared to day -1, motivation to eat was elevated during the fast (P<0.05). This continued until breakfast was consumed during the re-feeding period (day 2), when values then returned to baseline. These data suggest that a 36 h fast, which generated a negative energy balance of approximately 12 MJ, did not induce a powerful, unconditioned stimulus to compensate on the subsequent day.
Millet, Sam; Aluwé, Marijke; De Paepe, Marc; De Brabander, Daniël L; Van Oeckel, Monique J
2010-02-01
This study examined the effect of decreasing ideal protein concentrations on performance and nutrient efficiency. The experimental diets contained 100%, 90%, 80% or 70% of the ideal dietary protein level (Diet 100%, 90%, 80% and 70%, respectively) estimated in previous experiments with pigs of the same genetic background. The four different treatments were divided among 16 pens of six pigs each. The average initial and final body weight were 20.8 +/- 1.1 and 107 +/- 3 kg, respectively. Three-phase feeding was applied (BW 20-40 kg, 40-70 kg and 70-110 kg). The dietary ileal digestible (ID) methionine + cystine, threonine, tryptophan, isoleucine, valine, and leucine contents expressed as percent of ID lysine were 63, 72, 22, 60, 68, and > 100%, respectively. The lysine to protein ratio was kept constant at 6.8%. Between 21 and 106 kg BW the best performance was achieved on Diet 90%. Diet 70% led to significantly worse results. Although lean meat percentage did not differ, protein content of the carcass was lower on Diet 70% than on Diets 90% and 100%. Decreased protein concentrations increased crude protein efficiency and consequently decreased nitrogen excretion most at the 80% level. If protein varies together with digestible amino acid content, it can be concluded that Diet 80% may be the best choice for the environment and for profitability. If protein content stays at a fixed level, Diet 90% may be the safest choice.
Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor
NASA Technical Reports Server (NTRS)
Shih, Tom I.-P.; Nguyen, H. Lee; Howe, Gregory W.; Li, Z.
1991-01-01
A computer program was developed to study the mixing process in the quick quench region of a rich burn-quick quench mix-lean burn combustor. The computer program developed was based on the density-weighted, ensemble-averaged conservation equations of mass, momentum (full compressible Navier-Stokes), total energy, and species, closed by a k-epsilon turbulence model with wall functions. The combustion process was modeled by a two-step global reaction mechanism, and NO(x) formation was modeled by the Zeldovich mechanism. The formulation employed in the computer program and the essence of the numerical method of solution are described. Some results obtained for nonreacting and reacting flows with different main-flow to dilution-jet momentum flux ratios are also presented.
Health benefits of dietary fat reduction by a novel fat replacer: Mimix.
Ruthig, D J; Sider, D; Meckling-Gill, K A
2001-01-01
The primary goals of this study were to identify any health benefits of the replacement of dietary fat with a novel fat replacer, Mimix, and to assure that the consumption of this fat replacer did not convey any deleterious health effects. Male, weanling, Fischer 344 rats were fed one of six diets containing between 5 and 20% w/w as fat for 8 weeks. These diets included two high fat diets (safflower oil or lard), a low fat diet and three diets where 15% of the fat in the high fat diets was replaced with various amounts of Mimix. When animals were fed a diet rich in saturated fat they consumed significantly more energy than other diet groups. When 15% saturated fat (lard) was replaced with safflower oil animals adjusted their food intake so that no difference in energy intake was observed between the high safflower diet and the low fat and Mimix diets. When the various Mimix fat replacements were compared to animals fed a high fat lard diet there was incomplete compensation of energy intake. Animals fed the high fat lard diet also had higher glucose and total serum cholesterol than their low fat and fat replacement counterparts. Feeding a high fat safflower oil diet to rats resulted in a significantly lower total serum cholesterol and serum triglyceride than all other diets. Replacement of dietary fat with Mimix demonstrated no deleterious effects on the heart, liver and intestinal tract that were all of normal weight, morphology and colour compared to other diet groups. Body composition analysis demonstrated that animals fed high fat diets had higher body fat mass at the expense of lean body mass. This was most obvious for animals fed high fat lard diets who had heavier epididymal fat pads. These data demonstrate that the replacement of dietary fat with the novel fat replacer Mimix can convey a number of health benefits in the absence of any deleterious effects.
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.
2017-01-01
Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources, such as carrion, are important for overwinter survival.
Abdullah, Abdullah Y; Muwalla, Marwan M; Qudsieh, Rasha I; Titi, Hosam H
2010-02-01
The objective of this study was to evaluate the effects of replacing the protein source of soybean meal (SBM) with different levels of bitter vetch seeds (BVS) in the diets of finishing Awassi ram lambs on performance, and carcass characteristics. Diets were designed based on replacing SBM with BVS as a percentage of the diet. Diets were: control (0% BVS), substituting 5% of SBM (5% BVS), 10% of SBM (10% BVS) and the entire SBM in the ration with BVS (15% BVS). Forty eight lambs (18.74 +/- 3.95 kg initial body weight and 70 days of age) were randomly assigned to 4 treatment diets (12 lambs/treatment). Lambs were given an adaptation period of 10 days and the experiment lasted for 84 days. At the end of the trial, a digestibility experiment was performed and 6 lambs from each treatment were slaughtered to evaluate carcass characteristics. Average daily gain tended (P = 0.07) to be higher for lambs fed 10% BVS when compared to the other diets. Neutral detergent fiber digestibility was higher (P < 0.01) in control diet compared to the other diets. Fat depth (C) and leg fat depth (L3) tended (0.05 < P < 0.1) to be affected by BVS levels in the diet. Leg total lean % was the highest (P < 0.05) in 5% BVS and 10% BVS diets. These results suggest that substituting SBM with BVS in the diets did not influence performance or carcass characteristics of lambs. However, the cost of ration formulation decreases since SBM is a very expensive component of the ration.
Sayer, R Drew; Peters, John C; Pan, Zhaoxing; Wyatt, Holly R; Hill, James O
2018-05-31
Previously published findings from the Beef WISE Study (Beef's Role in Weight Improvement, Satisfaction, and Energy) indicated equivalent weight loss between two energy-restricted higher protein (HP) diets: A HP diet with ≥4 weekly servings of lean beef (B; n = 60) and a HP diet restricted in all red meats (NB; n = 60). Long-term adherence to dietary prescriptions is critical for weight management but may be adversely affected by changes in appetite, food cravings, and diet satisfaction that often accompany weight loss. A secondary a priori aim of the Beef WISE Study was to compare subjective ratings of appetite (hunger and fullness), food cravings, and diet satisfaction (compliance, satisfaction, and deprivation) between the diets and determine whether these factors influenced weight loss. Subjective appetite, food cravings, and diet satisfaction ratings were collected throughout the intervention, and body weight was measured at the baseline, after the weight loss intervention (week 16), and after an eight-week follow-up period (week 24). Hunger and cravings were reduced during weight loss compared to the baseline, while fullness was not different from the baseline. The reduction in cravings was greater for B vs. NB at week 16 only. Higher deprivation ratings during weight loss were reported in NB vs. B at weeks 16 and 24, but participants in both groups reported high levels of compliance and diet satisfaction with no difference between groups. Independent of group assignment, higher baseline hunger and cravings were associated with less weight loss, and greater diet compliance, diet satisfaction, and lower feelings of deprivation were associated with greater weight loss. Strategies to promote reduced feelings of hunger, cravings, and deprivation may increase adherence to dietary prescriptions and improve behavioral weight loss outcomes.
Faecal microbiota in lean and obese dogs.
Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S
2013-05-01
Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.
2016-01-01
All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.
Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.
Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A
2018-04-01
Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.
Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo
2013-11-01
Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.
Katz, Paige S.; Kelly, Amy P.; Galantowicz, Maarten L.; Cismowski, Mary J.; West, T. Aaron; Neeb, Zachary P.; Berwick, Zachary C.; Goodwill, Adam G.; Alloosh, Mouhamad; Tune, Johnathan D.; Sturek, Michael; Lucchesi, Pamela A.
2012-01-01
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 106 ± 0.7 × 106 and 1.1 × 106 ± 0.2 × 106 dyn/cm2 in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS. PMID:22837170
Park, H-J; Lee, S-E; Kim, H-B; Isaacson, R E; Seo, K-W; Song, K-H
2015-01-01
Serotonin (5-hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity. To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity. Fourteen healthy Beagle dogs were used in this study. Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF-5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system. Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5-hydroytryptamine of cerebrospinal fluid (CSF-5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group. Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram-negative might be related with chronic inflammation status in obese dogs. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Pomar, C A; van Nes, R; Sánchez, J; Picó, C; Keijer, J; Palou, A
2017-08-01
The suckling period is a critical phase of development, in which maternal overnutrition may program the susceptibility of developing chronic diseases and disorders, such as obesity and metabolic alterations, in adult life. Here, we questioned whether the consumption of a cafeteria diet throughout lactation in rats affects the macronutrient composition of milk and whether it results in permanent metabolic effects in the offspring. Nursing rats were fed a control diet or a cafeteria diet during lactation. Milk was obtained at different time points of lactation. Offspring (males and females) were weaned onto a control diet until the age of 6 months. Circulating parameters were measured under ad libitum feeding and under 12-h fasting conditions at weaning and at 3 and 6 months of age. An oral glucose tolerance test (OGTT) was performed at 3 and 6 months of age. Rats fed a cafeteria diet during lactation consumed an unbalanced diet, with lower protein and higher fat content versus controls, which was reflected in the composition of the milk. The offspring of rats fed a cafeteria diet during lactation showed lower body weight and lower lean mass, but greater fat accumulation, compared with controls. They also displayed hyperleptinaemia, altered lipid profile and impaired response to an OGTT. Maternal consumption of a cafeteria diet throughout lactation in rats produces lasting effects in the metabolic health of their offspring, which are not associated with a higher body weight but with a greater fat accumulation, similarly to the thin-outside-fat-inside phenotype.
Physical performance is maintained in women consuming only foods used on the U.S. Space Shuttle.
Gretebeck, R J; Siconolfi, S F; Rice, B; Lane, H W
1994-11-01
In-flight reductions in caloric intake, body weight, lean body mass (LBM), aerobic capacity, and other measures of physical performance have been consistent findings in the U.S. and Russian space programs. The diet provided for astronauts in space has been suggested as a possible contributor to these changes because food selection, preparation, and storage facilities are limited on spacecraft. In this ground-based study, consuming only foods used on the Space Shuttle for 28 d did not affect aerobic capacity, LBM, or measures of muscle strength or endurance in 12 healthy women (ages 28-47 years). However, normal consumption patterns were affected by restriction to the Space Shuttle diet, namely a proportional increase in carbohydrate consumed, with compensatory decreases in protein and fat. These results suggest that physical performance and LBM can be maintained under normal gravity conditions in active women who consume a Space Shuttle food-system diet for 28 d.
Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S
2006-08-01
Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.
Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore
2017-10-01
Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO 2 max) was also unaffected by maternal WD, but HR had higher VO 2 max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Buehlmeier, Judith; Mulder, Edwin; Noppe, Alexandra; Frings-Meuthen, Petra; Angerer, Oliver; Rudwill, Floriane; Biolo, Gianni; Smith, Scott M.; Blanc, Stéphane; Heer, Martina
2014-02-01
Inactivity, as it appears during space flight and in bed rest, induces reduction of lean body and bone mass, glucose intolerance, and weakening of the cardiovascular system. Increased protein intake, whey protein in particular, has been proposed to counteract some of these effects, but has also been associated with negative effects on bone, likely caused by a correspondingly high ratio of acid to alkali precursors in the diet.
Dieter, Brad P; Schoenfeld, Brad Jon; Aragon, Alan A
2016-01-01
J Int Soc Sports Nutr 13:1-015-0112-9, 2016 describe the efficacy of branched chain amino acid (BCAA) supplementation and resistance training for maintaining lean body mass during a calorie-restricted diet, and claim that this occurs with concurrent losses in fat mass. However, the reported results appear to be at odds with the data presented on changes in fat mass. This letter discusses the issues with the paper.
Kordi, Ramin; Dehghani, Saeed; Noormohammadpour, Pardis; Rostami, Mohsen; Mansournia, Mohammad Ali
2015-01-01
The aim of this study was to compare the effect of diet and an abdominal resistance training program to diet alone on abdominal subcutaneous fat thickness and waist circumference of overweight and obese women. This randomized clinical trial included 40 overweight and obese women randomly divided into 2 groups: diet only and diet combined with 12 weeks of abdominal resistance training. Waist and hip circumferences and abdominal skin folds of the subjects were measured at the beginning and 12 weeks after the interventions. In addition, abdominal subcutaneous fat thickness of the subjects was measured using ultrasonography. Percentage body fat and lean body mass of all the subjects were also measured using a bioelectric impedance device. After 12 weeks of intervention, the weight of participants in both groups decreased; but the difference between the 2 groups was not significant (P = .45). Similarly, other variables including abdominal subcutaneous fat, waist circumference, hip circumference, body mass index, body fat percentage, and skin fold thickness were reduced in both groups; but there were no significant differences between the groups. This study found that abdominal resistance training besides diet did not reduce abdominal subcutaneous fat thickness compared to diet alone in overweight or obese women. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Moderate red-wine consumption partially prevents body weight gain in rats fed a hyperlipidic diet.
Vadillo, Montserrat; Bargalló, Montserrat Vadillo; Ardévol, Anna; Grau, Anna Ardévol; Fernández-Larrea, Juan; Fernández-Larrea, Juan de Dios; Pujadas, Gerard; Anguiano, Gerard Pujadas; Bladé, Cinta; Segarra, Maria Cinta Bladé; Salvadó, Maria Josepa; Rovira, Maria Josepa Salvadó; Arola, Lluís; Ferré, Lluia Arola; Blay, Mayte; Olivé, Mayte Blay
2006-02-01
Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; P<.05) and lower energy intake (269.45 +/- 4.02 KJ/animal.day vs day vs 300.81 +/- 4.52 KJ/animal.day; P<.05) and had less fat mass at epididymal location respect to the whole body weight (0.014 +/- 0.001 vs 0.017 +/- 0.001; P<.05) than the HFD group. However, the red wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity.
Badin, Jill K; Bruning, Rebecca S; Sturek, Michael
2018-05-03
Metabolic syndrome (MetS) and aging are prevalent risk factors for coronary artery disease (CAD) and contribute to the etiology of CAD, including dysregulation of Ca 2+ handling mechanisms in coronary smooth muscle (CSM). The current study tested the hypothesis that CAD severity and CSM Ca 2+ dysregulation were different in MetS-induced CAD compared to aging-induced CAD. Young (2.5 ± 0.2 years) and old (8.8 ± 1.2 years) Ossabaw miniature swine were fed an atherogenic diet for 11 months to induce MetS and were compared to lean age-matched controls. The metabolic profile was confirmed by body weight, plasma cholesterol and triglycerides, and intravenous glucose tolerance test. CAD was measured with intravascular ultrasound and histology. Intracellular Ca 2+ ([Ca 2+ ] i ) was assessed with fura-2 imaging. CAD severity was similar between MetS young and lean old swine, with MetS old swine exhibiting the most severe CAD. Compared to CSM [Ca 2+ ] i handling in lean young, the MetS young and lean old swine exhibited increased sarcoplasmic reticulum Ca 2+ store release, increased Ca 2+ influx through voltage-gated Ca 2+ channels, and attenuated sarco-endoplasmic reticulum Ca 2+ ATPase activity. MetS old and MetS young swine had similar Ca 2+ dysregulation. Ca 2+ dysregulation, mainly the SR Ca 2+ store, in CSM is more pronounced in lean old swine, which is indicative of mild, proliferative CAD. MetS old and MetS young swine exhibit Ca 2+ dysfunction that is typical of late, severe disease. The more advanced, complex plaques in MetS old swine suggest that the "aging milieu" potentiates effects of Ca 2+ handling dysfunction in CAD. Copyright © 2018 Elsevier Inc. All rights reserved.
Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay
2015-01-01
This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119
2012-01-01
Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle) mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy) in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP) and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1. PMID:22974011
Edholm, Peter; Strandberg, Emelie; Kadi, Fawzi
2017-07-01
The effects of 24 wk of resistance training combined with a healthy diet on lower limb explosive strength capacity were investigated in a population of healthy elderly women. Participants ( n = 63; 67.5 ± 0.4 yr) were randomized into three groups; resistance training (RT), resistance training and healthy diet (RT-HD), and control (CON). Progressive resistance training was performed at a load of 75-85% one-repetition maximum. A major adjustment in the healthy dietary approach was an n-6/n-3 polyunsaturated fatty acid (PUFA) ratio below 2. Lower limb maximal strength, explosive force capacity during dynamic and isometric movements, whole body lean mass, and physical function were assessed. Whole body lean mass significantly increased by 1.5 ± 0.5% in RT-HD only. Isometric strength performance during knee extension as well as the performance in the five sit-to-stand and single-leg-stance tests increased similarly in RT and RT-HD. Improvements in dynamic peak power and time to reach peak power (i.e shorter time) during knee extension occurred in both RT (+15.7 ± 2.6 and -11.0 ± 3.8%, respectively) and RT-HD (+24.6 ± 2.6 and -20.3 ± 2.7%, respectively); however, changes were significantly larger in RT-HD. Similarly, changes in peak force and rate of force development during squat jump were higher in RT-HD (+58.5 ± 8.4 and +185.4 ± 32.9%, respectively) compared with RT (+35.7 ± 6.9 and +105.4 ± 22.4%, respectively). In conclusion, a healthy diet rich in n-3 PUFA can optimize the effects of resistance training on dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. NEW & NOTEWORTHY Age-related decline in lower limb explosive strength leads to impaired ability to perform daily living tasks. The present randomized controlled trial demonstrates that a healthy diet rich in n-3 polyunsaturated fatty acid (n-3 PUFA) enhances resistance training-induced gains in dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. This supports the use of strategies combining resistance training and dietary changes to mitigate the decline in explosive strength capacity in older adults. Copyright © 2017 the American Physiological Society.
Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.
2013-01-01
Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425
Abdussalam, Ali; Elshenawy, Osama H; Bin Jardan, Yousef A; El-Kadi, Ayman O S; Brocks, Dion R
2017-06-01
Obesity is caused by a number of factors including heredity, lack of exercise, and poor diet. Diets rich in fats and carbohydrates are the common culprits leading to obesity. Here we studied the effects of these components on proteins involved in drug disposition. Male rats were given a normal diet (lean controls) or one rich in fats, carbohydrates (as high-fructose corn syrup equivalent) or in combination. After 14 weeks, plasma biochemistry, liver and kidney mRNA and protein for selected cytochrome P450 (CYP) and transporters were determined. Significant increases in body and perinephric fat weight were noted in each of the high-calorie diet-fed groups, with increases being higher in those given high-fat diets. Increases in the protein of CYP3A1/2 and CYP2C11 were seen in liver in high-fat-fed rats. No changes were seen for CYP1A1 at the level of mRNA or protein. For transporters, decreases in expressions of Oct1/2 and Mate1 were seen, with no change in Mdr1. The results showed similarity to earlier assessments of genetically prone rats and suggested that diet-induced obesity has the potential to lead to decreases in the clearance of drugs acting as substrates for CYP 3A, 2C11, and organic cation transport. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.
2011-01-01
Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.
Kephart, Wesley C.; Pledge, Coree D.; Roberson, Paul A.; Mumford, Petey W.; Romero, Matthew A.; Mobley, Christopher B.; Young, Kaelin C.; Lowery, Ryan P.; Wilson, Jacob M.; Huggins, Kevin W.; Roberts, Michael D.
2018-01-01
Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation.
Jönsson, Tommy; Granfeldt, Yvonne; Lindeberg, Staffan; Hallberg, Ann-Christine
2013-07-29
We found marked improvement of glycemic control and several cardiovascular risk factors in patients with type 2 diabetes given advice to follow a Paleolithic diet, as compared to a diabetes diet. We now report findings on subjective ratings of satiety at meal times and participants' other experiences of the two diets from the same study. In a randomized cross-over study, 13 patients with type 2 diabetes (3 women and 10 men), were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts, and a diabetes diet designed in accordance with dietary guidelines, during two consecutive 3-month periods. In parallel with a four-day weighed food record, the participants recorded their subjective rating of satiety. Satiety quotients were calculated as the intra-meal quotient of change in satiety during a meal and consumed energy or weight of food and drink for that specific meal. All participants answered the same three open-ended questions in a survey following each diet: "What thoughts do you have about this diet?", "Describe your positive and negative experiences with this diet" and "How do you think this diet has affected your health?". The participants were equally satiated on both diets. The Paleolithic diet resulted in greater satiety quotients for energy per meal (p = 0.004), energy density per meal (p = 0.01) and glycemic load per meal (p = 0.02). The distribution of positive and negative comments from the survey did not differ between the two diets, and the comments were mostly positive. Among comments relating to recurring topics, there was no difference in distribution between the two diets for comments relating to tastelessness, but there was a trend towards more comments on the Paleolithic diet being satiating and improving blood sugar values, and significantly more comments on weight loss and difficulty adhering to the Paleolithic diet. A Paleolithic diet is more satiating per calorie than a diabetes diet in patients with type 2 diabetes. The Paleolithic diet was seen as instrumental in weight loss, albeit it was difficult to adhere to.
Cook, Toni M; Russell, Jean M; Barker, Margo E
2014-10-11
The dietary content of advice in men's lifestyle magazines has not been closely scrutinised. We carried out an analysis of such content in all 2009 issues (n = 11) of Men's Health (MH) focusing on muscularity, leanness and weight control. Promotion of a mesomorphic body image underpinned advice to affect muscle building and control weight. Diet advice was underpinned by a strong pseudo-scientific discourse, with citation of expert sources widely used to legitimise the information. Frequently multiple dietary components were advocated within one article e.g. fat, omega-3 fatty acids, thiamine, zinc and high-glycaemic index foods. Furthermore advice would cover numerous nutritional effects, e.g. strengthening bones, reducing stress and boosting testosterone, with little contextualisation. The emphasis on attainment of a mesomorphic body image permitted promotion of slimming diets.Advice to increase calorie and protein intake to augment muscle mass was frequent (183 and 262 references, respectively). Such an anabolic diet was advised in various ways, including consumption of traditional protein foods (217 references) and sports foods (107 references), thereby replicating muscle magazines' support for nutritional supplements. Although advice to increase consumption of red meat was common (52 references), fish and non-flesh sources of protein (eggs, nuts & pulses, and soy products) together exceeded red meat in number of recommendations (206 references). Advice widely asserted micronutrients and phytochemicals from plant food (161 references) as being important in muscle building. This emphasis diverges from stereotypical gender-based food consumption patterns.Dietary advice for control of body weight largely replicated that of muscularity, with strong endorsement to consume fruits and vegetables (59 references), diets rich in nuts and pulses and fish (66 references), as well as specific micronutrients and phytochemicals (62 references). Notably there was emphasis on fat-burning, good fats and consumption of single foods, with relatively little mention of dietary restriction. Despite the widespread use of scientific information to endorse dietary advice, the content, format and scientific basis of dietary content of MH leaves much to be desired. The dietary advice as provided may not be conducive to public health.
Responses of gut microbiota to diet composition and weight loss in lean and obese mice.
Ravussin, Yann; Koren, Omry; Spor, Ayme; LeDuc, Charles; Gutman, Roee; Stombaugh, Jesse; Knight, Rob; Ley, Ruth E; Leibel, Rudolph L
2012-04-01
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.
Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji
2009-07-01
The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.
Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance?
Borer, Katarina; Lin, Po-Ju
2017-01-01
Abstract Low-carbohydrate-high-fat (LCHF) diets have been used as a means of weight loss and control of symptoms in several clinical conditions. There is emerging evidence that the metabolic changes induced by LCHF diets enhance endurance performance. The aims of this review are to examine the evidence of LCHF diets in improving various aspects of athletic performance. Long-term LCHF dietary intake may help control body weight and fat mass while maintaining lean body mass in athletes in weight-sensitive sports. LCHF-adapted endurance athletes can reach the maximal fat oxidation rate of approximately 1.5 g/min, with a lower carbohydrate oxidation rate and similar muscle glycogen content and a resynthesis rate compared to their counterparts consuming high-carbohydrate-low-fat (HCLF) diets. The elevated fat oxidation rate and glycogen sparing effect may improve performance in ultra-endurance events. These metabolic changes may also prevent the decline in performance in later stages of repeated high-intensity movements, in which the aerobic metabolism becomes more important. However, elevated blood concentrations of non-esterified fatty acids and ammonia during exercise after LCHF diets may lead to early development of central fatigue. It appears that at least several months of adaptation to a LCHF diet are required for the metabolic changes and restoration of muscle glycogen to occur. Further investigations on LCHF diets are needed regarding (1) performance after weight loss in weight-categorized sports; (2) repeated high-intensity exercise performance; (3) development of central fatigue during endurance events; (4) perceptual-motor performance during prolonged intermittent sports; and (5) ideal dietary fatty acid compositions. PMID:28469746
McClung, James P; Stahl, Chad H; Marchitelli, Louis J; Morales-Martinez, Nelson; Mackin, Katherine M; Young, Andrew J; Scrimgeour, Angus G
2006-03-01
Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.
Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance?
Chang, Chen-Kang; Borer, Katarina; Lin, Po-Ju
2017-02-01
Low-carbohydrate-high-fat (LCHF) diets have been used as a means of weight loss and control of symptoms in several clinical conditions. There is emerging evidence that the metabolic changes induced by LCHF diets enhance endurance performance. The aims of this review are to examine the evidence of LCHF diets in improving various aspects of athletic performance. Long-term LCHF dietary intake may help control body weight and fat mass while maintaining lean body mass in athletes in weight-sensitive sports. LCHF-adapted endurance athletes can reach the maximal fat oxidation rate of approximately 1.5 g/min, with a lower carbohydrate oxidation rate and similar muscle glycogen content and a resynthesis rate compared to their counterparts consuming high-carbohydrate-low-fat (HCLF) diets. The elevated fat oxidation rate and glycogen sparing effect may improve performance in ultra-endurance events. These metabolic changes may also prevent the decline in performance in later stages of repeated high-intensity movements, in which the aerobic metabolism becomes more important. However, elevated blood concentrations of non-esterified fatty acids and ammonia during exercise after LCHF diets may lead to early development of central fatigue. It appears that at least several months of adaptation to a LCHF diet are required for the metabolic changes and restoration of muscle glycogen to occur. Further investigations on LCHF diets are needed regarding (1) performance after weight loss in weight-categorized sports; (2) repeated high-intensity exercise performance; (3) development of central fatigue during endurance events; (4) perceptual-motor performance during prolonged intermittent sports; and (5) ideal dietary fatty acid compositions.
Microvascular disorders in obese Zucker rats are restored by a rice bran diet.
Justo, M L; Claro, C; Vila, E; Herrera, M D; Rodriguez-Rodriguez, R
2014-05-01
Nutritional-based approaches aimed to prevent microvascular dysfunction associated to obesity present potential advantages over pharmacological strategies. Our aim was to test whether a rice bran enzymatic extract (RBEE)-supplemented diet could attenuate microvascular alterations in obese rats. Lean and obese Zucker rats were fed standard diet supplemented or not with 1% and 5% RBEE for 20 weeks. Functional studies were performed in small mesenteric arteries in isometric myograph. Immunoblotting and fluorescence studies were made in arterial homogenates and arterial sections, respectively. RBEE-supplementation restored microvascular function in obese rats through a marked increase in NO and endothelial-derived hyperpolarizing factor contribution by up-regulation of eNOS and calcium-activated potassium channels expression, respectively, in association to a substantial reduction of microvascular inflammation and superoxide anion formation. These data agrees with the beneficial actions of RBEE on dyslipidemia, hyperinsulinemia and hypertension in obesity. The multi-factorial properties of RBEE-diet, especially for restoring the function of small resistance arteries shows this dietary-based approach to be a promising candidate for prevention of microvascular alterations in obesity, which are crucial in cardiovascular events in obese subjects. Copyright © 2013 Elsevier B.V. All rights reserved.
O'Keefe, James H; Cordain, Loren
2004-01-01
Our genetic make-up, shaped through millions of years of evolution, determines our nutritional and activity needs. Although the human genome has remained primarily unchanged since the agricultural revolution 10,000 years ago, our diet and lifestyle have become progressively more divergent from those of our ancient ancestors. Accumulating evidence suggests that this mismatch between our modern diet and lifestyle and our Paleolithic genome is playing a substantial role in the ongoing epidemics of obesity, hypertension, diabetes, and atherosclerotic cardiovascular disease. Until 500 generations ago, all humans consumed only wild and unprocessed food foraged and hunted from their environment. These circumstances provided a diet high in lean protein, polyunsaturated fats (especially omega-3 [omega-3] fatty acids), monounsaturated fats, fiber, vitamins, minerals, antioxidants, and other beneficial phytochemicals. Historical and anthropological studies show hunter-gatherers generally to be healthy, fit, and largely free of the degenerative cardiovascular diseases common in modern societies. This review outlines the essence of our hunter-gatherer genetic legacy and suggests practical steps to re-align our modern milieu with our ancient genome in an effort to improve cardiovascular health.
Classification of trace elements in tissues from organic and conventional French pig production.
Parinet, Julien; Royer, Eric; Saint-Hilaire, Mailie; Chafey, Claude; Noël, Laurent; Minvielle, Brice; Dervilly-Pinel, Gaud; Engel, Erwan; Guérin, Thierry
2018-07-01
This study assesses the impact of the farming system on the levels of copper, zinc, arsenic, cadmium, lead and mercury in pig tissues from three types of production (Organic (n = 28), Label Rouge (n = 12) and Conventional (n = 30)) randomly sampled in different slaughterhouses. All the concentrations were below regulatory limits. In muscles, Cu, Zn and As were measured at slightly higher levels in organic samples but no differences between organic and Label Rouge was observed. Livers from conventional and Label Rouge pig farms exhibited higher Zn and Cd contents than the organic ones, probably due to different practice in zinc or phytase supplementation of fattening diets. Principal component analysis indicated a correlation between Cu and As concentrations in liver and carcass weight, and between Zn and Cd liver levels and lean meat percentage. The linear discriminant analysis succeeded in predicting the farming process on the basis of the lean meat percentage and the liver Cd level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Blanchard, G; Paragon, B M; Sérougne, C; Férézou, J; Milliat, F; Lutton, C
2004-04-01
Anorexia in obese cats may result in feline hepatic lipidosis (FHL). This study was designed to determine plasma lipids and lipoprotein profiles in queens at different stages during experimental induction of FHL (lean, obese, FHL), and after 10 weeks of treatment. Results were compared with those obtained from lean queens of same age fed the same diet but at a maintenance level, once a day. Hepatic lipidosis led to an increase in plasma triacylglycerol (TG), very low density lipoprotein (VLDL) and low density lipoprotein (LDL), and an enrichment of LDL with TG and of high density lipoprotein (HDL) with cholesterol, suggesting that VLDL secretion is enhanced, VLDL and LDL catabolism is lowered, and lipoprotein exchanges are impaired in FHL. This study also showed that cholesterolaemia is increased in cats fed at a dietary rhythm of one meal per day compared to ad libitum feeding.
Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity.
Friend, Danielle M; Devarakonda, Kavya; O'Neal, Timothy J; Skirzewski, Miguel; Papazoglou, Ioannis; Kaplan, Alanna R; Liow, Jeih-San; Guo, Juen; Rane, Sushil G; Rubinstein, Marcelo; Alvarez, Veronica A; Hall, Kevin D; Kravitz, Alexxai V
2017-02-07
Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring G i signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity. Published by Elsevier Inc.
Morton, Nicholas M.; Beltram, Jasmina; Carter, Roderick N.; Michailidou, Zoi; Gorjanc, Gregor; Fadden, Clare Mc; Barrios-Llerena, Martin E.; Rodriguez-Cuenca, Sergio; Gibbins, Matthew T. G.; Aird, Rhona E.; Moreno-Navarrete, José Maria; Munger, Steven C.; Svenson, Karen L.; Gastaldello, Annalisa; Ramage, Lynne; Naredo, Gregorio; Zeyda, Maximilian; Wang, Zhao V.; Howie, Alexander F.; Saari, Aila; Sipilä, Petra; Stulnig, Thomas M.; Gudnason, Vilmundur; Kenyon, Christopher J.; Seckl, Jonathan R.; Walker, Brian R.; Webster, Scott P.; Dunbar, Donald R.; Churchill, Gary A.; Vidal-Puig, Antonio; Fernandez-Real, José Manuel; Emilsson, Valur; Horvat, Simon
2017-01-01
Discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic Lean mouse model, selected for low adiposity over 60 generations, to identify thiosulfate sulfurtransferase (Tst, Rhodanese) as a candidate obesity-resistance gene with selectively increased adipocyte expression. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst gene deficiency markedly exacerbated diabetes whereas pharmacological TST activation ameliorated diabetes in mice in vivo. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, adipose TST mRNA correlated positively with adipose insulin sensitivity and negatively with fat mass. Genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for type 2 diabetes. PMID:27270587
Campbell, Joan I A; Mortensen, Alicja; Mølgaard, Per
2006-04-06
The toxicity and anti-diabetic properties of an aqueous plant extract made by boiling Rauwolfia vomitoria foilage and Citrus aurantium fruits were evaluated in mice. A single dosage corresponding to 70x the human-daily-dose was non-toxic when administered to 6-week-old NMRI lean mice or 6- or 11-week-old C57BL/6J lean mice. Daily treatment of 11-week-old C57BL/KsBom-db (db/db) genetic diabetic mice with a dose corresponding to 10x human-daily-dose for 6 weeks facilitated a significant weight loss as compared to the untreated controls. During treatment, the db/db mice were maintained on the carbohydrate-deficient Altromin C1009 diet. Although the food intake in the treated mice was not statistically significant from that in the controls, the treated animals had significantly higher serum triglyceride contents, suggesting that the treatment induced lipid mobilization from internal stores. Moreover, the fatty acid profile of the eyes from the treated animals showed a significant reduction in total fatty acid content accompanied by a 33% reduction in estimated Stearoyl-CoA desaturase activity (p = 0.039) as compared with controls. The fatty acid mobilization and a protection of the brittle C57BL/KsBom-db pancreas were observed 5 weeks after cessation of treatment when the treated animals were maintained on the poorer Altromin C1009 diet.
Anastasilakis, Athanasios D; Polyzos, Stergios A; Saridakis, Zacharias G; Kynigopoulos, Georgios; Skouvaklidou, Elpida C; Molyvas, Dimitrios; Vasiloglou, Maria F; Apostolou, Aggeliki; Karagiozoglou-Lampoudi, Thomai; Siopi, Aikaterina; Mougios, Vassilis; Chatzistavridis, Panagiotis; Panagiotou, Grigorios; Filippaios, Andreas; Delaroudis, Sideris; Mantzoros, Christos S
2014-09-01
The myokine irisin may increase energy expenditure and affect metabolism. The objective of the study was to elucidate predictors of irisin and study whether circulating irisin may have day-night rhythm in humans. This was an observational, cross-sectional study with an additional 24-hour prospective observational arm (day-night rhythm substudy) and two prospective interventional arms (mixed meal substudy and exercise substudy). The study was conducted at the Hellenic Military School of Medicine (Thessaloniki, Greece). One hundred twenty-two healthy, young individuals were subjected to anthropometric and body composition measurements, and their eating and exercise behavior profiles were assessed with validated questionnaires. Subgroups were subjected to day-night rhythm, standardized meal ingestion, and 30-minute aerobic exercise studies. Circulating irisin levels were measured. Ιrisin levels were lower in males than females (P = .02) after adjustment for lean body mass, which was its major determinant. Irisin levels followed a day-night rhythm (P < .001) with peak at 9:00 pm. Irisin levels were increased at the end of exercise (84.1 ± 10.0 vs 105.8 ± 14.3 ng/mL; P < .001). Irisin levels were not affected by intake of a standardized meal and were not associated with caloric intake or diet quality. In healthy, young individuals, circulating irisin displays a day-night rhythm, is correlated with lean body mass, and increases acutely after exercise.
Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans
Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O.; Fontana, Luigi
2011-01-01
Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7±9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769±348 kcal/d) than in the WD (2302±668 kcal/d) and EX (2798±760 kcal/d) groups (P<0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P≤0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging. PMID:21483032
Is breakfast the most important meal of the day?
Betts, James A; Chowdhury, Enhad A; Gonzalez, Javier T; Richardson, Judith D; Tsintzas, Kostas; Thompson, Dylan
2016-11-01
The Bath Breakfast Project is a series of randomised controlled trials exploring the effects of extended morning fasting on energy balance and health. These trials were categorically not designed to answer whether or not breakfast is the most important meal of the day. However, this review will philosophise about the meaning of that question and about what questions we should be asking to better understand the effects of breakfast, before summarising how individual components of energy balance and health respond to breakfast v. fasting in lean and obese adults. Current evidence does not support a clear effect of regularly consuming or skipping breakfast on body mass/composition, metabolic rate or diet-induced thermogenesis. Findings regarding energy intake are variable, although the balance of evidence indicates some degree of compensatory feeding later in the day such that overall energy intake is either unaffected or slightly lower when breakfast is omitted from the diet. However, even if net energy intake is reduced, extended morning fasting may not result in expected weight loss due to compensatory adjustments in physical activity thermogenesis. Specifically, we report that both lean and obese adults expended less energy during the morning when remaining in the fasted state than when consuming a prescribed breakfast. Further research is required to examine whether particular health markers may be responsive to breakfast-induced responses of individual components of energy balance irrespective of their net effect on energy balance and therefore body mass.
Uttaro, B E; Ball, R O; Dick, P; Rae, W; Vessie, G; Jeremiah, L E
1993-09-01
One hundred twenty-eight 64-kg crossbred barrows and gilts were administered either 0 or 20 ppm of Ractopamine (RAC) in a pelleted corn-soybean meal diet that contained either 17.5 or 19.6% CP. Carcass quality was evaluated after slaughter at 100 kg. Dietary protein levels produced few significant effects; therefore, data were pooled for analysis. Pigs fed RAC exhibited improvement in feed efficiency (P < .01), ADG (P < .01), and number of days to slaughter (P < .01). Pigs fed RAC had 1.8 mm less fat (P < .05) and 3.4 mm more lean (P < .01) at the grading probe site. Gilts had 4.9 mm less fat than barrows at the probe site (P < .01) and also yielded an estimated 4.1% more lean (P < .01). Trimmed loins and bellies of animals fed 20 ppm of RAC were 230 g heavier (P < .05) than those of animals fed the control diet. Trimmed loins from gilts were 260 g heavier (P < .05), whereas barrows produced bellies that were 490 g heavier (P < .05) than those of gilts. The yield of processed ham was greater from both pigs fed RAC (P < .01) and barrows (P < .05). Loins of pigs fed RAC had lower cooking loss (P < .05), greater Warner-Bratzler shear value (P < .05), and higher fragmentation index value (P < .01). Although effects of sex were similar to or greater than the effects of 20 ppm of RAC, these effects were additive.
Wade, Alexandra T; Davis, Courtney R; Dyer, Kathryn A; Hodgson, Jonathan M; Woodman, Richard J; Keage, Hannah A D; Murphy, Karen J
2017-12-22
The Mediterranean diet is characterised by the high consumption of extra virgin olive oil, fruits, vegetables, grains, legumes and nuts; moderate consumption of fish, poultry, eggs and dairy; and low consumption of red meat and sweets. Cross sectional, longitudinal and intervention studies indicate that a Mediterranean diet may be effective for the prevention of cardiovascular disease and dementia. However, previous research suggests that an Australian population may find red meat restrictions difficult, which could affect long term sustainability of the diet. This paper outlines the protocol for a randomised controlled trial that will assess the cardiovascular and cognitive benefits of a Mediterranean diet modified to include 2-3 weekly serves of fresh, lean pork. A 24-week cross-over design trial will compare a modified Mediterranean diet with a low-fat control diet in at-risk men and women. Participants will follow each of the two diets for 8 weeks, with an 8-week washout period separating interventions. Home measured systolic blood pressure will be the primary outcome measure. Secondary outcomes will include body mass index, body composition, fasting blood lipids, C-reactive protein, fasting plasma glucose, fasting serum insulin, erythrocyte fatty acids, cognitive function, psychological health and well-being, and dementia risk. To our knowledge this research is the first to investigate whether an alternate source of protein can be included in the Mediterranean diet to increase sustainability and feasibility for a non-Mediterranean population. Findings will be significant for the prevention of cardiovascular disease and age-related decline, and may inform individuals, clinicians and public health policy. ACTRN12616001046493 . Registered 5 August 2016.
Papadopoulou, Eleni; Kogevinas, Manolis; Botsivali, Maria; Pedersen, Marie; Besselink, Harrie; Mendez, Michelle A; Fleming, Sarah; Hardie, Laura J; Knudsen, Lisbeth E; Wright, John; Agramunt, Silvia; Sunyer, Jordi; Granum, Berit; Gutzkow, Kristine B; Brunborg, Gunnar; Alexander, Jan; Meltzer, Helle Margrete; Brantsæter, Anne Lise; Sarri, Katerina; Chatzi, Leda; Merlo, Domenico F; Kleinjans, Jos C; Haugen, Margaretha
2014-06-15
Maternal diet can result in exposure to environmental contaminants including dioxins which may influence foetal growth. We investigated the association between maternal diet and birth outcomes by defining a dioxin-rich diet. We used validated food frequency questionnaires to assess the diet of pregnant women from Greece, Spain, United Kingdom, Denmark and Norway and estimated plasma dioxin-like activity by the Dioxin-Responsive Chemically Activated LUciferase eXpression (DR-CALUX®) bioassay in 604 maternal blood samples collected at delivery. We applied reduced rank regression to identify a dioxin-rich dietary pattern based on dioxin-like activity (DR-CALUX®) levels in maternal plasma, and calculated a dioxin-diet score as an estimate of adherence to this dietary pattern. In the five country population, dioxin-diet score was characterised by high consumption of red and white meat, lean and fatty fish, low-fat dairy and low consumption of salty snacks and high-fat cheese, during pregnancy. The upper tertile of the dioxin-diet score was associated with a change in birth weight of -121g (95% confidence intervals: -232, -10g) compared to the lower tertile after adjustment for confounders. A small non-significant reduction in gestational age was also observed (-1.4days, 95% CI: -3.8, 1.0days). Our results suggest that maternal diet might contribute to the exposure of the foetus to dioxins and dioxin-like compounds and may be related to reduced birth weight. More studies are needed to develop updated dietary guidelines for women of reproductive age, aiming to the reduction of dietary exposure to persistent organic pollutants as dioxins and dioxin-like compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Yamada, Letícia Tamie Paiva; de Oliveira, Marina Chaves; Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Pereira, Rafaela Vaz Sousa; Perez, Denise Alves; Teixeira, Mauro Martins; Cara, Denise Carmona; Ferreira, Adaliene Versiani Matos
2016-02-01
Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge. Copyright © 2016 Elsevier Inc. All rights reserved.
Ruth, Megan R; Port, Ava M; Shah, Mitali; Bourland, Ashley C; Istfan, Nawfal W; Nelson, Kerrie P; Gokce, Noyan; Apovian, Caroline M
2013-12-01
High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. Obese subjects (29.0-44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. The age range of subjects was 21-62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets. © 2013.
Vu, John P; Luong, Leon; Parsons, William F; Oh, Suwan; Sanford, Daniel; Gabalski, Arielle; Lighton, John Rb; Pisegna, Joseph R; Germano, Patrizia M
2017-12-01
Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake. Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones. Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points. Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL ( P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL ( P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL ( P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL ( P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice. Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as leptin and GLP-1 concentrations while elevating postprandial glucagon concentrations. This study suggests that long-term use of HPDs may be an effective strategy to decrease energy intake and expenditure and to maintain body lean mass. © 2017 American Society for Nutrition.
Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36.
Pfluger, P T; Kampe, J; Castaneda, T R; Vahl, T; D'Alessio, D A; Kruthaupt, T; Benoit, S C; Cuntz, U; Rochlitz, H J; Moehlig, M; Pfeiffer, A F H; Koebnick, C; Weickert, M O; Otto, B; Spranger, J; Tschöp, M H
2007-02-01
Recent findings suggest that low plasma peptide YY (PYY) levels may contribute to diet-induced human obesity and justify PYY replacement therapy. Although the pharmacological value of PYY is controversial, further study of the secretion of the precursor PYY(1-36) and the pharmacologically active PYY(3-36) is indicated to determine the potential role in energy balance regulation. Our objective was to determine the effects of acute and chronic changes in human body weight on circulating levels of the putative satiety hormone peptide YY. Total plasma PYY levels (PYY(1-36) + PYY(3-36)) were measured in 66 lean, 18 anorectic, 63 obese, and 16 morbidly obese humans. In addition, total PYY was measured in 17 of the obese patients after weight loss and in the 18 anorectic patients after weight gain. Fasting PYY(3-36) levels were measured in 17 lean and 15 obese individuals. Fasting total plasma PYY levels were highest in patients with anorexia nervosa (80.9 +/- 12.9 pg/ml, P < 0.05) compared with lean (52.4 +/- 4.6 pg/ml), obese (43.9 +/- 3.8 pg/ml), or morbidly obese (45.6 +/- 11.2 pg/ml) subjects. In obese patients, weight loss of 5.4% was associated with a 30% decrease in fasting total PYY plasma levels. In anorectic patients, weight gain had no effect on fasting PYY. PYY(3-36) levels did not differ between lean (96.2 +/- 8.6 pg/ml) and obese (91.5 +/- 6.9 pg/ml) subjects. Our findings do not support a role for abnormal circulating PYY in human obesity. We conclude that circulating PYY levels in humans are significantly elevated in anorexia nervosa and, given the controversially discussed anorectic effect of PYY, could theoretically contribute to that syndrome.
Jhun, Joo-Yeon; Yoon, Bo-Young; Park, Mi-Kyung; Oh, Hye-Joa; Byun, Jae-Kyeong; Lee, Seon-Young; Min, Jun-Ki; Park, Sung-Hwan; Kim, Ho-Youn
2012-01-01
White fat cells secrete adipokines that induce inflammation and obesity has been reported to be characterized by high serum levels of inflammatory cytokines such as IL-6 and TNF-α. Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis, but the relationship between RA and obesity is controversial. We made an obese inflammatory arthritis model: obese collagen-induced arthritis (CIA). C57BL/6 mice were fed a 60-kcal high fat diet (HFD) from the age of 4 weeks and they were immunized twice with type II collagen (CII). After immunization, the obese CIA mice showed higher arthritis index scores and histology scores and a more increased incidence of developing arthritis than did the lean CIA mice. After treatment with CII, mixed lymphocyte reaction also showed CII-specific response more intensely in the obese CIA mice than lean CIA. The anti-CII IgG and anti-CII IgG2a levels in the sera of the obese CIA mice were higher than those of the lean CIA mice. The number of Th17 cells was higher and the IL-17 mRNA expression of the splenocytes in the obese CIA mice was higher than that of the lean CIA mice. Obese CIA mice also showed high IL-17 expression on synovium in immunohistochemistry. Although obesity may not play a pathogenic role in initiating arthritis, it could play an important role in amplifying the inflammation of arthritis through the Th1/Th17 response. The obese CIA murine model will be an important tool when we investigate the effect of several therapeutic target molecules to treat RA. PMID:22513335
Coker, Robert H; Miller, Sharon; Schutzler, Scott; Deutz, Nicolaas; Wolfe, Robert R
2012-12-11
Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR) would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR). We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day): 1) EAAMR or a 2) competitive meal replacement (CMR) in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.
Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet.
Frassetto, L A; Schloetter, M; Mietus-Synder, M; Morris, R C; Sebastian, A
2009-08-01
The contemporary American diet figures centrally in the pathogenesis of numerous chronic diseases-'diseases of civilization'. We investigated in humans whether a diet similar to that consumed by our preagricultural hunter-gatherer ancestors (that is, a paleolithic type diet) confers health benefits. We performed an outpatient, metabolically controlled study, in nine nonobese sedentary healthy volunteers, ensuring no weight loss by daily weight. We compared the findings when the participants consumed their usual diet with those when they consumed a paleolithic type diet. The participants consumed their usual diet for 3 days, three ramp-up diets of increasing potassium and fiber for 7 days, then a paleolithic type diet comprising lean meat, fruits, vegetables and nuts, and excluding nonpaleolithic type foods, such as cereal grains, dairy or legumes, for 10 days. Outcomes included arterial blood pressure (BP); 24-h urine sodium and potassium excretion; plasma glucose and insulin areas under the curve (AUC) during a 2 h oral glucose tolerance test (OGTT); insulin sensitivity; plasma lipid concentrations; and brachial artery reactivity in response to ischemia. Compared with the baseline (usual) diet, we observed (a) significant reductions in BP associated with improved arterial distensibility (-3.1+/-2.9, P=0.01 and +0.19+/-0.23, P=0.05);(b) significant reduction in plasma insulin vs time AUC, during the OGTT (P=0.006); and (c) large significant reductions in total cholesterol, low-density lipoproteins (LDL) and triglycerides (-0.8+/-0.6 (P=0.007), -0.7+/-0.5 (P=0.003) and -0.3+/-0.3 (P=0.01) mmol/l respectively). In all these measured variables, either eight or all nine participants had identical directional responses when switched to paleolithic type diet, that is, near consistently improved status of circulatory, carbohydrate and lipid metabolism/physiology. Even short-term consumption of a paleolithic type diet improves BP and glucose tolerance, decreases insulin secretion, increases insulin sensitivity and improves lipid profiles without weight loss in healthy sedentary humans.
Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice.
Cho, Youngjin; Gutierrez, Linda; Bordonaro, Michael; Russo, Daniel; Anzelmi, Frank; Hooven, Jayde T; Cerra, Carmine; Lazarova, Darina L
2016-09-01
Obesity is associated with colorectal cancer (CRC). This effect might be attributed to adipokine-supported signaling. We have established that propolis suppresses survival signaling in CRC cells in vitro; therefore, we ascertained the ability of a propolis supplement to modulate intestinal neoplastic development in C57BL/6J-ApcMin/+/J mice in the lean and obese state. To induce obesity, mice were fed with a Western diet containing 40% fat. Since the propolis supplement includes gamma-cyclodextrin, the interventions included diets supplemented with or without gamma-cyclodextrin. The animals were administered the following diets: (1) control diet, (2) control diet/gamma-cyclodextrin, (3) control diet/propolis, (4) Western diet, (5) Western diet/gamma-cyclodextrin, and (6) Western diet/propolis. Western diet, resulting in obesity, accelerated neoplastic progression, as evidenced by the larger size and higher grade dysplasia of the neoplasms. In the context of normal weight, gamma-cyclodextrin and propolis affected neoplastic progression, as determined by the size of the lesions and their grade of dysplasia. A statistically significant decrease in the number of adenomas was detected in mice fed a control diet with the propolis supplement (61.8 ± 10.6 vs. 35.3 ± 7.6, P = 0.008). Although there was no significant difference in the polyp numbers between the six groups, the mice with the lowest number and size of adenomas were those fed a Western diet with gamma-cyclodextrin. This unexpected outcome might be explained by the increased levels of apoptosis detected in the intestinal tissues of these obese mice. We posit that butyrate derived from the metabolism of gamma-cyclodextrin may contribute to the decreased neoplastic burden in the context of obesity; however, future studies are required to address this possibility. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup
Cowley, Michael; Garfield, Alastair S.; Madon-Simon, Marta; Charalambous, Marika; Clarkson, Richard W.; Smalley, Matthew J.; Kendrick, Howard; Isles, Anthony R.; Parry, Aled J.; Carney, Sara; Oakey, Rebecca J.; Heisler, Lora K.; Moorwood, Kim; Wolf, Jason B.; Ward, Andrew
2014-01-01
Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk. PMID:24586114
Brantsæter, Anne Lise; Englund-Ögge, Linda; Haugen, Margareta; Birgisdottir, Bryndis Eva; Knutsen, Helle Katrine; Sengpiel, Verena; Myhre, Ronny; Alexander, Jan; Nilsen, Roy M; Jacobsson, Bo; Meltzer, Helle Margrete
2017-01-19
Preterm delivery increases the risk of neonatal morbidity and mortality. Studies suggest that maternal diet may affect the prevalence of preterm delivery. The aim of this study was to assess whether maternal intakes of seafood and marine long chain n-3 polyunsaturated fatty acids (LCn-3PUFA) from supplements were associated with preterm delivery. The study population included 67,007 women from the Norwegian Mother and Child Cohort Study. Maternal food and supplement intakes were assessed by a validated self-reported food frequency questionnaire in mid-pregnancy. Information about gestational duration was obtained from the Medical Birth Registry of Norway. We used Cox regression to estimate hazard ratios (HR) with 95% confidence intervals (CI) for associations between total seafood, lean fish, fatty fish, and LCn-3PUFA intakes and preterm delivery. Preterm was defined as any onset of delivery before gestational week 37, and as spontaneous or iatrogenic deliveries and as preterm delivery at early, moderate, and late preterm gestations. Lean fish constituted 56%, fatty fish 34% and shellfish 10% of seafood intake. Any intake of seafood above no/rare intake (>5 g/d) was associated with lower prevalence of preterm delivery. Adjusted HRs were 0.76 (CI: 0.66, 0.88) for 1-2 servings/week (20-40 g/d), 0.72 (CI: 0.62, 0.83) for 2-3 servings/week (40-60 g/d), and 0.72 (CI: 0.61, 0.85) for ≥3 servings/week (>60 g/d), p-trend <0.001. The association was seen for lean fish (p-trend: 0.005) but not for fatty fish (p-trend: 0.411). The intake of supplementary LCn-3PUFA was associated only with lower prevalence of early preterm delivery (before 32 gestational weeks), while increasing intake of LCn-3PUFA from food was associated with lower prevalence of overall preterm delivery (p-trend: 0.002). Any seafood intake above no/rare was associated with lower prevalence of both spontaneous and iatrogenic preterm delivery, and with lower prevalence of late preterm delivery. Any intake of seafood above no/rare consumption was associated with lower prevalence of preterm delivery. The association was stronger for lean than for fatty fish. Intake of supplementary LCn-3PUFA was associated only with early preterm delivery. The findings corroborate the current advice to include fish and seafood as part of a balanced diet during pregnancy.
Forsberg, C W; Meidinger, R G; Ajakaiye, A; Murray, D; Fan, M Z; Mandell, I B; Phillips, J P
2014-10-01
A transgenic line of Yorkshire (YK) pigs named the Cassie (CA) line was produced with a low copy number phytase transgene inserted in the genome. The transgenic line efficiently digests P, Ca, and other major minerals of plant dietary origin. The objectives of this study were to 1) compare carcass and tissue nutrient composition and meat quality traits for third generation hemizygous CA line market BW finisher pigs (n = 24) with age-matched conventional YK finisher pigs (n = 24) and 2) examine effects of outbreeding with high-index conventional YK boars on modifying carcass leanness from the third to sixth generations in CA line finisher boars (n = 73) and gilts (n = 103). Cassie boars (n = 12) and CA gilts (n = 12) were fed diets without supplemental P and comparable numbers of age-matched YK boars and gilts fed diets containing supplement P were raised throughout the finisher phase. The pigs were slaughtered and then fabricated into commercial pork primals before meat composition and quality evaluation. Proximate and major micronutrient composition was determined on tissues including fat, kidney, lean, liver, and skin. The main difference observed was greater (P = 0.033) crude fat content in CA boar carcasses and increased (P < 0.04) leaf lard in both CA boars and gilts but no differences were observed (P = 0.895 and P = 0.223, respectively) in carcass backfat thickness as compared with YK pigs. There were no substantive differences in tissue composition, except for CA boar kidneys. Numerous changes in the mineral, fatty acid, and indispensable AA composition for CA boar kidneys were not apparent in CA gilts. These changes may point to adaptive physiological changes in the boar kidney necessary for homeostatic regulation of mineral retention related to phytase action rather than to insertion of the transgene. However, from a meat composition perspective, transgenic expression of phytase in the CA line of YK pigs had little overall effect on meat composition. Outbreeding of high-index CA gilts with high-index commercial YK boars linearly reduced (P = 0.002) back fat thickness with a corresponding linear increase (P = 0.001) in lean yield in finisher CA gilts, although no change in these parameters was observed in CA finisher boars. The increase in lean yield in CA gilts by selective breeding without affecting the level of salivary phytase activity documents the value of conventional genetic selection in conjunction with genetic modification.
Biology and conservation of owls of the Northern Hemisphere: 2nd International symposium
James R. Duncan; David H. Johnson; Thomas H. Nicholls
1997-01-01
The proceeding contains 91 papers authored by 143 people from 13 countries covering biology, ecology, monitoring, habitat-use, status conservation, education, genetics, toxicology, diet, migration, mortality and related topics concerning owls of the Northern Hemisphere. Thirty-three owl species are discussed. Information presented will be useful in owl conservation,...
Diet-induced thermogenesis in postoperatve Roux-en-Y gastric bypass patients with weight regain.
Cardeal, Mariane de Almeida; Faria, Silvia Leite; Faria, Orlando Pereira; Facundes, Marcela; Ito, Marina Kiyomi
2016-06-01
Bariatric surgery has been shown to be an effective treatment for obesity. Changes in energy expenditure, especially through diet-induced thermogenesis (DIT), have been identified as one of the mechanisms to explain this success. However, not all patients are able to maintain healthy postoperative weight loss. Therefore, a question arises: In the weight regain after bariatric surgery, are these changes in energy metabolism still active? To investigate if weight regain after Roux-en-Y gastric bypass (RYGB) surgery is associated with a lower diet-induced thermogenesis in the late postoperative period. A cross-sectional study with the participants chosen from among the patients from a private practice. This was a cross-sectional study where 3 groups of female patients were evaluated: (1) 20 patients with a RYGB postoperative time period of at least 2 years, who kept a healthy weight after surgery (loss of at least 50% of excess weight; Healthy group); (2) 19 patients with clinically severe obesity (BMI>40 kg/m(2), without co-morbidities and>35 kg/m(2), with co-morbidities; Pre group); (3) 18 patients who experienced weight regain after RYGB (Regain group). The 3 groups were submitted to indirect calorimetry to measure resting metabolic rate (RMR), respiratory quotient (RQ), and DIT. Immediately after the RMR measurement, a mixed meal of regular consistency was offered. Ten minutes after the food intake began, energy expenditure measurements were initiated continuing throughout the following 3 postprandial hours. Body composition was evaluated using multifrequency bioelectrical impedance. In subgroups of the studied population, glucose and insulin levels were measured at baseline and at 30, 60, 90, 120, and 180 minutes after feeding. The mean area under the curve (AUC) between the 3 groups and measurements at baseline were compared using the analysis of variance (ANOVA). The Healthy group had the highest weight adjusted RMR value compared with both the Pre and Regain group (23.03±3.02 kcal/kg; 16.18±2.94 kcal/kg; 17.11±3.28 kcal/kg, respectively; P<.0001). The Regain and Pre groups showed no difference for this variable. The weight-adjusted DIT (AUC 0-180 min) was about 42% and 34% higher in the Healthy group compared with the Pre and Regain groups, respectively (P<.0001). Lean body mass (kg) showed a positive correlation with the AUC of weight-adjusted DIT in the 3 groups. Multiple regression revealed that lean body mass was the only variable related to weight adjusted DIT, independent of group and other selected variables. Weight-adjusted DIT in the Regain group was smaller compared with the Healthy group, and with no difference compared with the Pre group. The lean body mass seems to have a positive association with diet-induced thermogenesis. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Laflamme, Dorothy P; Hannah, Steven S
2013-08-01
This study was undertaken to contrast the minimum protein intake needed to maintain nitrogen balance or lean body mass (LBM) in adult cats using a prospective evaluation of 24 adult, neutered male cats fed one to three different diets. Following a 1-month baseline period during which all cats consumed a 34% protein diet, cats were fed a 20% (LO), 26% (MOD) or 34% (HI) protein diet for 2 months. During the baseline period and following the 2-month feeding period, nitrogen balance was assessed using a 96-h complete collection of urine and feces, and LBM was assessed using dual energy X-ray absorptiometry. Weight loss increased in a linear manner with decreasing protein intake (P <0.01), despite no significant difference in calorie intake. Linear regression of the data indicated that approximately 1.5 g protein/kg (2.1 g/kg(0.75)) body weight is needed to maintain nitrogen balance, while 5.2 g protein/kg (7.8 g/kg(0.75)) body weight is needed to maintain LBM. This study provides evidence that nitrogen balance studies are inadequate for determining optimum protein requirements. Animals, including cats, can adapt to low protein intake and maintain nitrogen balance while depleting LBM. Loss of LBM and an associated reduction in protein turnover can result in compromised immune function and increased morbidity. Current Association of American Feed Control Officials (AAFCO) and National Research Council (NRC) standards for protein adequacy may not provide adequate protein to support LBM. The minimum daily protein requirement for adult cats appears to be at least 5.2 g/kg (7.8 g/kg(0.75)) body weight, well in excess of current AAFCO and NRC recommendations. Further research is needed to determine the effect, if any, of body condition, age and gender on protein requirements.
Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F
2015-09-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4 h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of the hypothalamic neuropeptides, Kisspeptin and CART. © 2015 Society for Endocrinology.
Waling, Maria; Isaksson, Andreas; Tellström, Anna; Lundin-Olsson, Lillemor; Brage, Søren; Ryberg, Mats; Svensson, Michael; Olsson, Tommy
2017-01-01
Background Means to reduce future risk for cardiovascular disease in subjects with type 2 diabetes are urgently needed. Methods Thirty-two patients with type 2 diabetes (age 59±8 years) followed a Paleolithic diet for 12 weeks. Participants were randomized to either standard care exercise recommendations (PD) or 1-h supervised exercise sessions (aerobic exercise and resistance training) three times per week (PD-EX). Results For the within group analyses, fat mass decreased by 5.7 kg (IQR: −6.6, −4.1; p<0.001) in the PD group and by 6.7 kg (−8.2, −5.3; p<0.001) in the PD-EX group. Insulin sensitivity (HOMA-IR) improved by 45% in the PD (p<0.001) and PD-EX (p<0.001) groups. HbA1c decreased by 0.9% (−1.2, −0.6; p<0.001) in the PD group and 1.1% (−1.7, −0.7; p<0.01) in the PD-EX group. Leptin decreased by 62 % (p<0.001) in the PD group and 42 % (p<0.001) in the PD-EX group. Maximum oxygen uptake increased by 0.2 L/min (0.0, 0.3) in the PD-EX group, and remained unchanged in the PD group (p<0.01 for the difference between intervention groups). Male participants decreased lean mass by 2.6 kg (−3.6, −1.3) in the PD group and by 1.2 kg (−1.3, 1.0) in the PD-EX group (p<0.05 for the difference between intervention groups). Conclusions A Paleolithic diet improves fat mass and metabolic balance including insulin sensitivity, glycemic control, and leptin in subjects with type 2 diabetes. Supervised exercise training may not enhance the effects on these outcomes, but preserves lean mass in men and increases cardiovascular fitness. PMID:27235022
Kos, Katrina; Wong, Steve; Tan, Bee; Gummesson, Anders; Jernas, Margareta; Franck, Niclas; Kerrigan, David; Nystrom, Fredrik H.; Carlsson, Lena M.S.; Randeva, Harpal S.; Pinkney, Jonathan H.; Wilding, John P.H.
2009-01-01
OBJECTIVE Matricellular Secreted Protein, Acidic and Rich in Cysteine (SPARC), originally discovered in bone as osteonectin, is a mediator of collagen deposition and promotes fibrosis. Adipose tissue collagen has recently been found to be linked with metabolic dysregulation. Therefore, we tested the hypothesis that SPARC in human adipose tissue is influenced by glucose metabolism and adipokines. RESEARCH DESIGN AND METHODS Serum and adipose tissue biopsies were obtained from morbidly obese nondiabetic subjects undergoing bariatric surgery and lean control subjects for analysis of metabolic markers, SPARC, and various cytokines (RT-PCR). Additionally, 24 obese subjects underwent a very-low-calorie diet of 1,883 kJ (450 kcal)/day for 16 weeks and serial subcutaneous-abdominal-adipose tissue (SCAT) biopsies (weight loss: 28 ± 3.7 kg). Another six lean subjects underwent fast-food–based hyperalimentation for 4 weeks (weight gain: 7.2 ± 1.6 kg). Finally, visceral adipose tissue explants were cultured with recombinant leptin, insulin, and glucose, and SPARC mRNA and protein expression determined by Western blot analyses. RESULTS SPARC expression in human adipose tissue correlated with fat mass and was higher in SCAT. Weight loss induced by very-low-calorie diet lowered SPARC expression by 33% and increased by 30% in adipose tissue of subjects gaining weight after a fast-food diet. SPARC expression was correlated with leptin independent of fat mass and correlated with homeostasis model assessment–insulin resistance. In vitro experiments showed that leptin and insulin potently increased SPARC production dose dependently in visceral adipose tissue explants, while glucose decreased SPARC protein. CONCLUSIONS Our data suggest that SPARC expression is predominant in subcutaneous fat and its expression and secretion in adipose tissue are influenced by fat mass, leptin, insulin, and glucose. The profibrotic effects of SPARC may contribute to metabolic dysregulation in obesity. PMID:19509023
Craig, Maureen A; Richeson, Jennifer A
2014-06-01
The U.S. Census Bureau projects that racial minority groups will make up a majority of the U.S. national population in 2042, effectively creating a so-called majority-minority nation. In four experiments, we explored how salience of such racial demographic shifts affects White Americans' political-party leanings and expressed political ideology. Study 1 revealed that making California's majority-minority shift salient led politically unaffiliated White Americans to lean more toward the Republican Party and express greater political conservatism. Studies 2, 3a, and 3b revealed that making the changing national racial demographics salient led White Americans (regardless of political affiliation) to endorse conservative policy positions more strongly. Moreover, the results implicate group-status threat as the mechanism underlying these effects. Taken together, this work suggests that the increasing diversity of the nation may engender a widening partisan divide. © The Author(s) 2014.
Ressler, Ilana B; Grayson, Bernadette E; Ulrich-Lai, Yvonne M; Seeley, Randy J
2015-06-15
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age. Although a comorbidity of PCOS is obesity, many are lean. We hypothesized that increased saturated fat consumption and obesity would exacerbate metabolic and stress indices in a rodent model of PCOS. Female rats were implanted with the nonaromatizable androgen dihydrotestosterone (DHT) or placebo pellets prior to puberty. Half of each group was maintained ad libitum on either a high-fat diet (HFD; 40% butter fat calories) or nutrient-matched low-fat diet (LFD). Irrespective of diet, DHT-treated animals gained more body weight, had irregular cycles, and were glucose intolerant compared with controls on both diets. HFD/DHT animals had the highest levels of fat mass and insulin resistance. DHT animals demonstrated increased anxiety-related behavior in the elevated plus maze by decreased distance traveled and time in the open arms. HFD consumption increased immobility during the forced-swim test. DHT treatment suppressed diurnal corticosterone measurements in both diet groups. In parallel, DHT treatment significantly dampened stress responsivity to a mild stressor. Brains of DHT animals showed attenuated c-Fos activation in the ventromedial hypothalamus and arcuate nucleus; irrespective of DHT-treatment, however, all HFD animals had elevated hypothalamic paraventricular nucleus c-Fos activation. Whereas hyperandrogenism drives overall body weight gain, glucose intolerance, anxiety behaviors, and stress responsivity, HFD consumption exacerbates the effect of androgens on adiposity, insulin resistance, and depressive behaviors. Copyright © 2015 the American Physiological Society.
Ressler, Ilana B.; Grayson, Bernadette E.; Ulrich-Lai, Yvonne M.
2015-01-01
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age. Although a comorbidity of PCOS is obesity, many are lean. We hypothesized that increased saturated fat consumption and obesity would exacerbate metabolic and stress indices in a rodent model of PCOS. Female rats were implanted with the nonaromatizable androgen dihydrotestosterone (DHT) or placebo pellets prior to puberty. Half of each group was maintained ad libitum on either a high-fat diet (HFD; 40% butter fat calories) or nutrient-matched low-fat diet (LFD). Irrespective of diet, DHT-treated animals gained more body weight, had irregular cycles, and were glucose intolerant compared with controls on both diets. HFD/DHT animals had the highest levels of fat mass and insulin resistance. DHT animals demonstrated increased anxiety-related behavior in the elevated plus maze by decreased distance traveled and time in the open arms. HFD consumption increased immobility during the forced-swim test. DHT treatment suppressed diurnal corticosterone measurements in both diet groups. In parallel, DHT treatment significantly dampened stress responsivity to a mild stressor. Brains of DHT animals showed attenuated c-Fos activation in the ventromedial hypothalamus and arcuate nucleus; irrespective of DHT-treatment, however, all HFD animals had elevated hypothalamic paraventricular nucleus c-Fos activation. Whereas hyperandrogenism drives overall body weight gain, glucose intolerance, anxiety behaviors, and stress responsivity, HFD consumption exacerbates the effect of androgens on adiposity, insulin resistance, and depressive behaviors. PMID:26078189
Huang, Zhonghao; Huang, Chengming; Tang, Chuangbin; Huang, Libin; Tang, Huaxing; Ma, Guangzhi; Zhou, Qihai
2015-02-01
Limestone hills are an unusual habitat for primates, prompting them to evolve specific behavioral adaptations to the component karst habitat. From September 2012 to August 2013, we collected data on the diet of one group of Assamese macaques living in limestone forests at Nonggang National Nature Reserve, Guangxi Province, China, using instantaneous scan sampling. Assamese macaques were primarily folivorous, young leaves accounting for 75.5% and mature leaves an additional 1.8% of their diet. In contrast, fruit accounted for only 20.1%. The young leaves of Bonia saxatilis, a shrubby, karst-endemic bamboo that is superabundant in limestone hills, comprised the bulk of the average monthly diet. Moreover, macaques consumed significantly more bamboo leaves during the season when the availability of fruit declined, suggesting that bamboo leaves are an important fallback food for Assamese macaques in limestone forests. In addition, diet composition varied seasonally. The monkeys consumed significantly more fruit and fewer young leaves in the fruit-rich season than in the fruit-lean season. Fruit consumption was positively correlated with fruit availability, indicating that fruit is a preferred food for Assamese macaques. Of seventy-eight food species, only nine contributed >0.5% of the annual diet, and together these nine foods accounted for 90.7% of the annual diet. Our results suggest that bamboo consumption represents a key factor in the Assamese macaque's dietary adaptation to limestone habitat. © 2014 Wiley Periodicals, Inc.
Lichtenstein, Alice H; Appel, Lawrence J; Brands, Michael; Carnethon, Mercedes; Daniels, Stephen; Franch, Harold A; Franklin, Barry; Kris-Etherton, Penny; Harris, William S; Howard, Barbara; Karanja, Njeri; Lefevre, Michael; Rudel, Lawrence; Sacks, Frank; Van Horn, Linda; Winston, Mary; Wylie-Rosett, Judith
2006-07-04
Improving diet and lifestyle is a critical component of the American Heart Association's strategy for cardiovascular disease risk reduction in the general population. This document presents recommendations designed to meet this objective. Specific goals are to consume an overall healthy diet; aim for a healthy body weight; aim for recommended levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides; aim for normal blood pressure; aim for a normal blood glucose level; be physically active; and avoid use of and exposure to tobacco products. The recommendations are to balance caloric intake and physical activity to achieve and maintain a healthy body weight; consume a diet rich in vegetables and fruits; choose whole-grain, high-fiber foods; consume fish, especially oily fish, at least twice a week; limit intake of saturated fat to <7% of energy, trans fat to <1% of energy, and cholesterol to <300 mg/day by choosing lean meats and vegetable alternatives, fat-free (skim) or low-fat (1% fat) dairy products and minimize intake of partially hydrogenated fats; minimize intake of beverages and foods with added sugars; choose and prepare foods with little or no salt; if you consume alcohol, do so in moderation; and when you eat food prepared outside of the home, follow these Diet and Lifestyle Recommendations. By adhering to these diet and lifestyle recommendations, Americans can substantially reduce their risk of developing cardiovascular disease, which remains the leading cause of morbidity and mortality in the United States.
Kobayashi-Hattori, Kazuo; Amuzie, Chidozie J; Flannery, Brenna M; Pestka, James J
2011-07-01
To characterize the effects of ingesting the common foodborne mycotoxin deoxynivalenol (DON) on body weight and composition in the high-fat (HF) diet-induced obese mice, a model of human obesity. Female B6C3F1 mice were initially fed HF diets containing 45% kcal (HF45) or 60% kcal (HF60) as fat for 94 days to induce obesity. Half of each group was either continued on unamended HF diets or fed HF diets containing 10 mg/kg DON (DON-HF45 or DON-HF60) for another 54 days. Additional control mice were fed a low-fat (LF) diet containing 10% kcal as fat for the entire 148-day period. DON induced rapid decreases in body weights and fat mass, which stabilized to those of the LF control within 11 days. These effects corresponded closely to a robust transient decrease in food consumption. While lean body mass did not decline in DON-fed groups, further increases were suppressed. DON exposure reduced plasma insulin, leptin, insulin-like growth factor 1, and insulin-like growth factor acid labile subunit as well as increased hypothalamic mRNA level of the orexigenic agouti-related protein. DON-mediated effects on body weight, fat mass, food intake, and hormonal levels in obese mice were consistent with a state of chronic energy restriction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thomson, Cynthia A; Stopeck, Alison T; Bea, Jennifer W; Cussler, Ellen; Nardi, Emily; Frey, Georgette; Thompson, Patricia A
2010-01-01
Overweight status is common among women breast cancer survivors and places them at greater risk for metabolic disorders, cardiovascular morbidity, and breast cancer recurrence than nonoverweight survivors. Efforts to promote weight control in this population are needed. The objective of this research was to evaluate the effect of low-fat or low-carbohydrate diet counseling on weight loss, body composition, and changes in metabolic indexes in overweight postmenopausal breast cancer survivors. Survivors (n = 40) were randomized to receive dietitian counseling for a low-fat or a reduced carbohydrate diet for 6 mo. Weight and metabolic measures, including glucose, insulin, HbA1c, HOMA, lipids, hsCRP, as well as blood pressure were measured at baseline, 6, 12 and 24 wk. Dietary intake of fat and carbohydrate was reduced by 24 and 76 g/day, respectively. Weight loss averaged 6.1 (± 4.8 kg) at 24 wk and was not significantly different by diet group; loss of lean mass was also demonstrated. All subjects demonstrated improvements in total/HDL cholesterol ratio, and significant reductions in HbA1c, insulin, and HOMA. Triglycerides levels were significantly reduced only in the low-carbohydrate diet group (-31.1 ± 36.6; P = 0.01). Significant improvements in weight and metabolic indexes can be demonstrated among overweight breast cancer survivors adherent to either a carbohydrate- or fat-restricted diet.
Pasiakos, Stefan M
2015-03-01
The Inst. of Medicine and World Health Organization have determined that 0.8 to 0.83 g protein·kg(-1) ·d(-1) is the quantity of protein required to establish nitrogen balance in nearly all healthy individuals. However, consuming higher protein diets may be metabolically advantageous, particularly for overweight and obese adults attempting weight loss, and for physically active individuals such as athletes and military personnel. Studies have demonstrated that higher protein diets may spare lean body mass during weight loss, promote weight management, enhance glycemic regulation, and increase intestinal calcium absorption, which may result in long-term improvements in bone health. The extent to which higher protein diets are beneficial is largely attributed to the digestive and absorptive properties, and also to the essential amino acid (EAA) content of the protein. Proteins that are rapidly digested and absorbed likely contribute to the metabolic advantages conferred by consuming higher protein diets. The EAA profiles, as well as the digestive and absorptive properties of dairy proteins, such as whey protein and casein, are particularly advantageous because they facilitate a rapid, robust, and sustained delivery of EAAs to the periphery. This article reviews the scientific literature assessing metabolic advantages associated with higher protein diets on weight management, glycemic regulation, and bone, with emphasis given to studies evaluating the potential benefits associated with dairy. © 2015 Institute of Food Technologists®
Jew, Stephanie; AbuMweis, Suhad S; Jones, Peter J H
2009-10-01
The evolution of the human diet over the past 10,000 years from a Paleolithic diet to our current modern pattern of intake has resulted in profound changes in feeding behavior. Shifts have occurred from diets high in fruits, vegetables, lean meats, and seafood to processed foods high in sodium and hydrogenated fats and low in fiber. These dietary changes have adversely affected dietary parameters known to be related to health, resulting in an increase in obesity and chronic disease, including cardiovascular disease (CVD), diabetes, and cancer. Some intervention trials using Paleolithic dietary patterns have shown promising results with favorable changes in CVD and diabetes risk factors. However, such benefits may be offset by disadvantages of the Paleolithic diet, which is low in vitamin D and calcium and high in fish potentially containing environmental toxins. More advantageous would be promotion of foods and food ingredients from our ancestral era that have been shown to possess health benefits in the form of functional foods. Many studies have investigated the health benefits of various functional food ingredients, including omega-3 fatty acids, polyphenols, fiber, and plant sterols. These bioactive compounds may help to prevent and reduce incidence of chronic diseases, which in turn could lead to health cost savings ranging from $2 to $3 billion per year as estimated by case studies using omega-3 and plant sterols as examples. Thus, public health benefits should result from promotion of the positive components of Paleolithic diets as functional foods.
Bakker, Leontine E H; van Schinkel, Linda D; Guigas, Bruno; Streefland, Trea C M; Jonker, Jacqueline T; van Klinken, Jan B; van der Zon, Gerard C M; Lamb, Hildo J; Smit, Johannes W A; Pijl, Hanno; Meinders, A Edo; Jazet, Ingrid M
2014-01-01
South Asians (SAs) develop type 2 diabetes at a younger age and lower BMI compared with Caucasians (Cs). The underlying cause is still poorly understood but might result from an innate inability to adapt to the Westernized diet. This study aimed to compare the metabolic adaptation to a high-fat, high-calorie (HFHC) diet between both ethnicities. Twelve healthy, young lean male SAs and 12 matched Cs underwent a two-step hyperinsulinemic-euglycemic clamp with skeletal muscle biopsies and indirect calorimetry before and after a 5-day HFHC diet. Hepatic triglyceride content (HTG) and abdominal fat distribution were assessed using magnetic resonance imaging and spectroscopy. At baseline, SAs had higher insulin clamp levels than Cs, indicating reduced insulin clearance rate. Despite the higher insulin levels, endogenous glucose production was comparable between groups, suggesting lower hepatic insulin sensitivity in SAs. Furthermore, a 5-day HFHC diet decreased the insulin-stimulated (nonoxidative) glucose disposal rate only in SA. In skeletal muscle, no significant differences were found between groups in insulin/mammalian target of rapamycin signaling, metabolic gene expression, and mitochondrial respiratory chain content. Furthermore, no differences in (mobilization of) HTG and abdominal fat were detected. We conclude that HFHC feeding rapidly induces insulin resistance only in SAs. Thus, distinct adaptation to Western food may partly explain their propensity to develop type 2 diabetes.
Salles, Jérôme; Cardinault, Nicolas; Patrac, Véronique; Berry, Alexandre; Giraudet, Christophe; Collin, Marie-Laure; Chanet, Audrey; Tagliaferri, Camille; Denis, Philippe; Pouyet, Corinne; Boirie, Yves; Walrand, Stéphane
2014-01-01
Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats. PMID:25470375
Rozenberg, Serge; Body, Jean-Jacques; Bruyère, Olivier; Bergmann, Pierre; Brandi, Maria Luisa; Cooper, Cyrus; Devogelaer, Jean-Pierre; Gielen, Evelien; Goemaere, Stefan; Kaufman, Jean-Marc; Rizzoli, René; Reginster, Jean-Yves
2016-01-01
Dairy products provide a package of essential nutrients that is difficult to obtain in low-dairy or dairy-free diets, and for many people it is not possible to achieve recommended daily calcium intakes with a dairy-free diet. Despite the established benefits for bone health, some people avoid dairy in their diet due to beliefs that dairy may be detrimental to health, especially in those with weight management issues, lactose intolerance, osteoarthritis, rheumatoid arthritis, or trying to avoid cardiovascular disease. This review provides information for health professionals to enable them to help their patients make informed decisions about consuming dairy products as part of a balanced diet. There may be a weak association between dairy consumption and a possible small weight reduction, with decreases in fat mass and waist circumference and increases in lean body mass. Lactose intolerant individuals may not need to completely eliminate dairy products from their diet, as both yogurt and hard cheese are well tolerated. Among people with arthritis, there is no evidence for a benefit to avoid dairy consumption. Dairy products do not increase the risk of cardiovascular disease, particularly if low fat. Intake of up to three servings of dairy products per day appears to be safe and may confer a favourable benefit with regard to bone health.
Food choices and diet costs: an economic analysis.
Drewnowski, Adam; Darmon, Nicole
2005-04-01
Obesity in the United States is a socioeconomic issue. It is related to limited social and economic resources and may be linked to disparities in access to healthy foods. Added sugars and added fats are far more affordable than are the recommended "healthful" diets based on lean meats, whole grains, and fresh vegetables and fruit. There is an inverse relationship between energy density of foods (kJ/g) and energy cost ($/MJ), such that energy-dense grains, fats, and sweets represent the lowest-cost dietary options to the consumer. Good taste, high convenience, and the low cost of energy-dense foods, in conjunction with large portions and low satiating power, may be the principal reasons for overeating and weight gain. Financial disparities in access to healthier diets may help explain why the highest rates of obesity and diabetes are found among minorities and the working poor. If so, then encouraging low-income households to consume more costly foods is not an effective strategy for public health. What is needed is a comprehensive policy approach that takes behavioral nutrition and the economics of food choice into account.
Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.
Parsons, T J; van Dusseldorp, M; van der Vliet, M; van de Werken, K; Schaafsma, G; van Staveren, W A
1997-09-01
This study investigated the effect of a macrobiotic (vegan-type) diet, low in calcium and vitamin D, consumed in early life, on bone mineral during adolescence. Bone mineral content (BMC) and bone area were measured in 195 adolescents (103 girls, 92 boys) aged 9-15 years, using dual-energy X-ray absorptiometry. Ninety-three adolescents (43 girls, 50 boys) had followed a macrobiotic diet in childhood, and 102 (60 girls, 42 boys) were control subjects. After adjustment for bone area, weight, height, percent body lean, age, and puberty, BMC was significantly lower in macrobiotic subjects, in boys and girls, respectively, at the whole body, -3.4% and -2.5%, spine, -8.5% and -5.0%, femoral neck, -8.0% and -8.2%, midshaft radius, -6.8% and -5.6%, and also in girls, at the trochanter, -5.8% (p < 0.05). No group differences were observed at the wrist. Group differences were not explained by current calcium adjusted bone mass at age 9-15 years, observations which may hold important implications for fracture risk in later life.
Singh, Arashdeep; Pezeshki, Adel; Zapata, Rizaldy C; Yee, Nicholas J; Knight, Cameron G; Tuor, Ursula I; Chelikani, Prasanth K
2016-11-01
High-fat diets induce obesity and increase risks of diabetes and cardiovascular and renal disorders. Whey- or casein-enriched diets decrease food intake and weight gain; however, their cardiovascular and renal benefits are unclear. We determined whether whey- and casein-enriched diets improve energy balance and are protective against renal damage and morbidity associated with stroke in an obesogenic and hypertensive experimental setting. We also assessed whether the hypophagic effects of these diets were due to reduced diet preference. In experiment 1, spontaneously hypertensive stroke-prone rats were randomized to (a) control (CON; 14% kcal protein, 33% fat), (b) whey (WHY; 40% protein, 33% fat), (c) casein (CAS; 40% protein, 33% fat) or (d) chow (CHW; 24% protein, 13% fat) for 12 weeks with 1% salt in drinking water for CON, WHY and CAS groups. Our results demonstrated that both WHY and CAS produced short-term hypophagia, moderately increased energy expenditure and decreased respiratory quotient, body weight and lean mass, with effects of WHY being more prolonged. Further, only WHY decreased fat mass and blood pressure. Importantly, both WHY and CAS prevented morbidity associated with stroke and decreased indices of renal inflammation (tumor necrosis factor-α, interleukin-6) and damage (osteopontin, renal lesions). In experiment 2, following four initial conditioning trials, the preference for CON, WHY or CAS diet was determined. Both WHY and CAS decreased food intake during conditioning and decreased preference. In conclusion, diets enriched in whey or casein improved energy balance, increased survival and prevented renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Background The beneficial effects of the Mediterranean diet have been amply proven in adults with cardiovascular risk factors. The effects of this diet have not been extensively assessed in pediatric populations with obesity, insulin resistance (IR) and metabolic syndrome (MetS). The aim of this study was to assess the efficacy of the Mediterranean style diet (MSD) to decrease cardiovascular risk factors in children and adolescents with obesity. Methods Participants were randomly assigned to a MSD rich in polyunsaturated fatty acids, fiber, flavonoids and antioxidants (60% of energy from carbohydrate, 25% from fat, and 15% from protein, (n = 24); or a standard diet (55% of carbohydrate, 30% from fat and 15% from protein, (n = 25), the caloric ingest was individualized. At baseline and 16-week of intervention, the glucose, triglycerides (TG), total cholesterol (TC), HDL-C, LDL-C were measured as well as the body composition and anthropometric data. The diet compliance was determined by the 24-hour recalls. Paired Student’s t and Macnemar’s test were used to compare effects in biochemical, body composition, anthropometric, and dietary variables. Results The MSD group had a significantly decrease in BMI, lean mass, fat mass, glucose, TC, TG, HDL-C and LDL-C. (p < 0.05); the diet compliance increased consumption of omega 9 fatty acids, zinc, vitamin E, selenium, and decreased consumption of saturated fatty acids (p < 0.05). The standard diet group decrease in glucose levels and frequency of glucose >100 mg/dL (p < 0.05). Conclusion The MSD improves the BMI, glucose and lipid profile in children and adolescents with obesity and any MetS component. PMID:24997634
Velázquez-López, Lubia; Santiago-Díaz, Gerardo; Nava-Hernández, Julia; Muñoz-Torres, Abril V; Medina-Bravo, Patricia; Torres-Tamayo, Margarita
2014-07-05
The beneficial effects of the Mediterranean diet have been amply proven in adults with cardiovascular risk factors. The effects of this diet have not been extensively assessed in pediatric populations with obesity, insulin resistance (IR) and metabolic syndrome (MetS). The aim of this study was to assess the efficacy of the Mediterranean style diet (MSD) to decrease cardiovascular risk factors in children and adolescents with obesity. Participants were randomly assigned to a MSD rich in polyunsaturated fatty acids, fiber, flavonoids and antioxidants (60% of energy from carbohydrate, 25% from fat, and 15% from protein, (n = 24); or a standard diet (55% of carbohydrate, 30% from fat and 15% from protein, (n = 25), the caloric ingest was individualized. At baseline and 16-week of intervention, the glucose, triglycerides (TG), total cholesterol (TC), HDL-C, LDL-C were measured as well as the body composition and anthropometric data. The diet compliance was determined by the 24-hour recalls.Paired Student's t and Macnemar's test were used to compare effects in biochemical, body composition, anthropometric, and dietary variables. The MSD group had a significantly decrease in BMI, lean mass, fat mass, glucose, TC, TG, HDL-C and LDL-C. (p < 0.05); the diet compliance increased consumption of omega 9 fatty acids, zinc, vitamin E, selenium, and decreased consumption of saturated fatty acids (p < 0.05). The standard diet group decrease in glucose levels and frequency of glucose >100 mg/dL (p < 0.05). The MSD improves the BMI, glucose and lipid profile in children and adolescents with obesity and any MetS component.
Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki
2014-01-01
Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.
Dorresteijn, Johannes A N; van der Graaf, Yolanda; Zheng, Kailiang; Spiering, Wilko; Visseren, Frank L J
2013-01-01
Objectives To evaluate whether four types of low-cost interventions in the working environment can promote the small everyday lifestyle adaptations that can halt the epidemics of obesity and hypertension when maintained long term. Design A single-blind uninterrupted time-series intervention study consisting of four study periods: run-in (2 weeks), baseline (2 weeks), intervention (2 weeks), and after intervention 2 weeks). Setting University Medical Centre with over 11 000 employees, over 1000 hospital beds and over 2000 customers visiting the hospital restaurant each day. Participants Hospital staff and visitors. Interventions (1) Point-of-decision prompts on hospital elevator doors promoting stair use. (2) Point-of-purchase prompts in the hospital restaurant promoting reduced-salt soup. (3) Point-of-purchase prompts in the hospital restaurant promoting lean croissants. (4) Reversal of the accessibility and availability of diet margarine and butter in the hospital restaurant. Main outcome measures (1) Number of passages through 15 different parts of the hospital staircases. (2) Number and ratio of normal-salt and reduced-salt soup purchased. (3) Number and ratio of butter croissants and lean croissants purchased. (4) Number and ratio of diet margarine and butter purchased. Results Elevator signs increased the mean 24-h number of stair passages per measurement site (baseline: 992 ± 479 on week days and 208 ± 116 on weekend days) by 11.2% (95% CI 8.7% to 13.7%). This effect was maintained at least 2 weeks after the point-of-decision prompts were removed. Point-of-purchase prompts promoting low-salt soup and lean croissants did not result in altered purchase behaviour. The ratio between the purchase of margarine and butter was changed sevenfold (p<0.01) by reversing the positions of these products in the hospital restaurant. Conclusions Healthy lifestyle adaptations in the working environment can be effectively promoted by making healthy choices easier than unhealthy ones. Educational prompts at points-of-decision moderately increase stair climbing, but do not affect healthy food choices. Protocol registration Clinicaltrials.gov identifier number: NCT01574040. PMID:23355669
Dorresteijn, Johannes A N; van der Graaf, Yolanda; Zheng, Kailiang; Spiering, Wilko; Visseren, Frank L J
2013-01-24
To evaluate whether four types of low-cost interventions in the working environment can promote the small everyday lifestyle adaptations that can halt the epidemics of obesity and hypertension when maintained long term. A single-blind uninterrupted time-series intervention study consisting of four study periods: run-in (2 weeks), baseline (2 weeks), intervention (2 weeks), and after intervention 2 weeks). University Medical Centre with over 11 000 employees, over 1000 hospital beds and over 2000 customers visiting the hospital restaurant each day. Hospital staff and visitors. (1) Point-of-decision prompts on hospital elevator doors promoting stair use. (2) Point-of-purchase prompts in the hospital restaurant promoting reduced-salt soup. (3) Point-of-purchase prompts in the hospital restaurant promoting lean croissants. (4) Reversal of the accessibility and availability of diet margarine and butter in the hospital restaurant. (1) Number of passages through 15 different parts of the hospital staircases. (2) Number and ratio of normal-salt and reduced-salt soup purchased. (3) Number and ratio of butter croissants and lean croissants purchased. (4) Number and ratio of diet margarine and butter purchased. Elevator signs increased the mean 24-h number of stair passages per measurement site (baseline: 992 ± 479 on week days and 208 ± 116 on weekend days) by 11.2% (95% CI 8.7% to 13.7%). This effect was maintained at least 2 weeks after the point-of-decision prompts were removed. Point-of-purchase prompts promoting low-salt soup and lean croissants did not result in altered purchase behaviour. The ratio between the purchase of margarine and butter was changed sevenfold (p<0.01) by reversing the positions of these products in the hospital restaurant. Healthy lifestyle adaptations in the working environment can be effectively promoted by making healthy choices easier than unhealthy ones. Educational prompts at points-of-decision moderately increase stair climbing, but do not affect healthy food choices. Clinicaltrials.gov identifier number: NCT01574040.
Neacsu, Madalina; Fyfe, Claire; Horgan, Graham; Johnstone, Alexandra M
2014-08-01
There is limited evidence with regard to the effect of different sources of protein on appetite during weight loss. Vegetarian and meat-based high-protein diets may have contrasting effects on appetite and biomarkers of protein-induced satiety. The aim was to assess appetite response to meat or vegetarian high-protein weight-loss (HPWL) diets in obese men to monitor plasma amino acid profile and gut peptide response as potential satiety biomarkers. Twenty obese [body mass index (in kg/m²): 34.8] men participated in a dietary intervention study. After 3 d of a maintenance diet, they were provided in a crossover design with either a vegetarian HPWL (Soy-HPWL) or a meat-based HPWL (Meat-HPWL) diet for 2 wk. Both diets comprised 30% protein, 30% fat, and 40% carbohydrate, provided to measured resting metabolic rate. Body weight and the motivation to eat were measured daily. Plasma satiety biomarkers were collected during a test-meal challenge (5 h) at the end of each diet period. Over the 2 wk, subjects lost, on average, 2.41 and 2.27 kg with consumption of the Soy- and Meat-HPWL diets, respectively [P = 0.352; SE of the difference (SED): 0.1]. ANOVA confirmed that subjectively rated hunger (P = 0.569; SED: 3.8), fullness (P = 0.404; SED: 4.1), desire to eat (P = 0.356; SED: 3.7), preservation of lean body mass (P = 0.334; SED: 0.2), and loss of percentage fat mass (P = 0.179; SED: 0.2) did not differ between the 2 HPWL diets. There were differences in absolute concentrations of ghrelin and peptide YY between the 2 HPWL diets, although the response as net area under the curve was not different. Appetite control and weight loss were similar for both HPWL diets. Gut hormone profile was similar between the diets, which suggests that vegetarian diets can be as effective as meat-based diets for appetite control during weight loss. © 2014 American Society for Nutrition.
Mialon, M M; Renand, G; Ortigues-Marty, I; Bauchart, D; Hocquette, J F; Mounier, L; Noël, T; Micol, D; Doreau, M
2015-01-01
The aim of this study was to compare the responses in fattening performance and meat composition for high-concentrate diets rich in either starch and lipids (especially omega-3 fatty acids) or fibrous by-products. A total of 140 Charolais bulls (initially 319 ± 27 kg BW) were allocated to 3 high-concentrate diets and were fattened for up to 18 mo. The diet treatments included concentrate mixtures rich in either fiber (FR; n = 56) or starch plus linseed (diets SL and SLR; n = 56 and n = 28, respectively) and barley straw. The concentrate mix was offered ad libitum in SL and FR diets but was kept isoenergetic to the FR diet in the SLR diet. Bulls were weighed every 15 d. Feed intake was measured daily. Carcass composition was assessed for all animals slaughtered at 699 ± 65 kg BW. Meat nutritional quality traits (e.g., fat content and fatty acid composition focusing on n-6 and n-3 polyunsaturated fatty acids) were measured on the longissimus thoracis, rectus abdominis, and semitendinosus muscles. Metabolic enzyme activity (phosphofructokinase, lactate dehydrogenase, and cytochrome-c oxidase) was measured on these muscles and on liver. The SL diet bulls had greater fattening performance, BW gain (P = 0.006), and efficiency for growth (P = 0.025) at an energy intake similar to that of FR diet bulls. They also had heavier carcasses with a greater proportion of fat. However, liver samples showed no difference in specific metabolic activity. Compared to bulls fed the SL diet, bulls fed SLR consumed 15% less energy and had lower BW gain (P < 0.001) but were slightly more efficient for growth (P = 0.010). They had lower carcass weight but a greater muscle-to-fat ratio. Compared to bulls fed the FR diet, SLR bulls had lower than planned NEg intake and lower BW gain but did not have differences in body composition. Compared to the FR diet, the SL diet led to a greater omega-3 fatty acid content because of a greater supply of dietary linoleic acid, especially in lean muscle.
High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.
Cao, Jay J
2017-12-01
Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... the Antarctic Science, Tourism and Conservation Act of 1996, has developed regulations for the... and structure of the cetacean communities. In order to understand the diet of different marine mammals...
2013-01-01
Background We found marked improvement of glycemic control and several cardiovascular risk factors in patients with type 2 diabetes given advice to follow a Paleolithic diet, as compared to a diabetes diet. We now report findings on subjective ratings of satiety at meal times and participants’ other experiences of the two diets from the same study. Methods In a randomized cross-over study, 13 patients with type 2 diabetes (3 women and 10 men), were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts, and a diabetes diet designed in accordance with dietary guidelines, during two consecutive 3-month periods. In parallel with a four-day weighed food record, the participants recorded their subjective rating of satiety. Satiety quotients were calculated as the intra-meal quotient of change in satiety during a meal and consumed energy or weight of food and drink for that specific meal. All participants answered the same three open-ended questions in a survey following each diet: “What thoughts do you have about this diet?”, “Describe your positive and negative experiences with this diet” and “How do you think this diet has affected your health?”. Results The participants were equally satiated on both diets. The Paleolithic diet resulted in greater satiety quotients for energy per meal (p = 0.004), energy density per meal (p = 0.01) and glycemic load per meal (p = 0.02). The distribution of positive and negative comments from the survey did not differ between the two diets, and the comments were mostly positive. Among comments relating to recurring topics, there was no difference in distribution between the two diets for comments relating to tastelessness, but there was a trend towards more comments on the Paleolithic diet being satiating and improving blood sugar values, and significantly more comments on weight loss and difficulty adhering to the Paleolithic diet. Conclusions A Paleolithic diet is more satiating per calorie than a diabetes diet in patients with type 2 diabetes. The Paleolithic diet was seen as instrumental in weight loss, albeit it was difficult to adhere to. Trial registration ClinicalTrials.gov: NCT00435240 PMID:23890471
Thompson, Benjamin W.; Anekonda, Vishwanath T.; Ho, Jacqueline M.; Graham, James L.; Roberts, Zachary S.; Hwang, Bang H.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J.; Havel, Peter J.; Bales, Karen L.; Morton, Gregory J.; Schwartz, Michael W.; Baskin, Denis G.
2016-01-01
Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity. PMID:26791828
Rogero, Marcelo Macedo; Borelli, Primavera; Vinolo, Marco Aurélio Ramirez; Fock, Ricardo Ambrósio; de Oliveira Pires, Ivanir Santana; Tirapegui, Julio
2008-06-01
To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal macrophages, hematopoiesis and nutritional status of mice. Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P<0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal macrophages obtained from the -GLN group (P<0.05). These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters.
Liu, Amy Y; Silvestre, Marta P; Poppitt, Sally D
2015-11-01
Type 2 diabetes (T2D) incidence is increasing worldwide, driven by a rapidly changing environment and lifestyle and increasing rates of overweight and obesity. Prevention of diabetes is key and is most likely achieved through prevention of weight gain and/or successful long-term weight loss maintenance. Weight loss is readily achievable but there is considerable challenge in maintaining that weight loss over the long term. Lower-fat carbohydrate-based diets are widely used for T2D prevention. This is supported primarily by 3 successful long-term interventions, the US Diabetes Prevention Program, the Finnish Diabetes Prevention Study, and the Chinese Da Qing Study, but evidence is building in support of novel higher-protein (>20% of energy) diets for successful weight loss maintenance and prevention of T2D. Higher-protein diets have the advantage of having relatively low energy density, aiding longer-term appetite suppression, and preserving lean body mass, all central to successful weight loss and prevention of weight regain. Here, we review the carbohydrate-based intervention trials and present mechanistic evidence in support of increased dietary protein for weight loss maintenance and a possible novel role in prevention of dysglycemia and T2D. © 2015 American Society for Nutrition.
The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet
Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia
2017-01-01
Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809
Lipoprotein profile, diet and body composition in athletes practicing mixed an anaerobic activities.
Giada, F; Zuliani, G; Baldo-Enzi, G; Palmieri, E; Volpato, S; Vitale, E; Magnanini, P; Colozzi, A; Vecchiet, L; Fellin, R
1996-09-01
To compare lipoprotein profile, body composition and diet in a sample of athletes practicing mixed and anaerobic sports activities, and in a group of sedentary controls. Cross selectional study. Twenty professional soccer players (mixed trained), twenty body builders (anaerobic trained) and twenty sedentary subjects, all males and matched for age were studied. No significant differences in total serum cholesterol, triglycerides, HDL-C, LDL-C, apolipoprotein A-I, A-II, B, C-II, C-III, and E levels were found when the three groups were compared. Bioelectrical impendance analysis disclosed significantly lower body fat percentages in both groups of athletes, and increased fat free mass only in body builders. Daily calorie intake was higher, and alcohol intake was lower in the athletes, compared with controls. Body builders had lower carbohydrate, and higher protein and cholesterol intakes, while soccer players had a lower polyunsaturated to saturated fat ratio. None of the apolipoproteins examined was correlated with any body composition of diet parameters. No correlations between lipid parameters and anthropometric or dietary variables were found by multivariate analysis when the subjects were considered as a whole. Our data suggest that in healthy lean normolipemic males, the lipoprotein profile is not modified by mixed or anaerobic sport activities and the respective modifications in body composition and diet.
Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G
2016-04-01
Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.
The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.
Glastras, Sarah J; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia
2017-01-01
Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.
Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status
Jaroslawska, Julia; Chabowska-Kita, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.
2015-01-01
The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6) mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD), B6. Ucp1-/- mice with variable diet-induced obesity (DIO) and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat. PMID:26070086
Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664
Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.
Longland, Thomas M; Oikawa, Sara Y; Mitchell, Cameron J; Devries, Michaela C; Phillips, Stuart M
2016-03-01
A dietary protein intake higher than the Recommended Dietary Allowance during an energy deficit helps to preserve lean body mass (LBM), particularly when combined with exercise. The purpose of this study was to conduct a proof-of-principle trial to test whether manipulation of dietary protein intake during a marked energy deficit in addition to intense exercise training would affect changes in body composition. We used a single-blind, randomized, parallel-group prospective trial. During a 4-wk period, we provided hypoenergetic (~40% reduction compared with requirements) diets providing 33 ± 1 kcal/kg LBM to young men who were randomly assigned (n = 20/group) to consume either a lower-protein (1.2 g · kg(-1) · d(-1)) control diet (CON) or a higher-protein (2.4 g · kg(-1) · d(-1)) diet (PRO). All subjects performed resistance exercise training combined with high-intensity interval training for 6 d/wk. A 4-compartment model assessment of body composition was made pre- and postintervention. As a result of the intervention, LBM increased (P < 0.05) in the PRO group (1.2 ± 1.0 kg) and to a greater extent (P < 0.05) compared with the CON group (0.1 ± 1.0 kg). The PRO group had a greater loss of fat mass than did the CON group (PRO: -4.8 ± 1.6 kg; CON: -3.5 ± 1.4kg; P < 0.05). All measures of exercise performance improved similarly in the PRO and CON groups as a result of the intervention with no effect of protein supplementation. Changes in serum cortisol during the intervention were associated with changes in body fat (r = 0.39, P = 0.01) and LBM (r = -0.34, P = 0.03). Our results showed that, during a marked energy deficit, consumption of a diet containing 2.4 g protein · kg(-1) · d(-1) was more effective than consumption of a diet containing 1.2 g protein · kg(-1) · d(-1) in promoting increases in LBM and losses of fat mass when combined with a high volume of resistance and anaerobic exercise. Changes in serum cortisol were associated with changes in body fat and LBM, but did not explain much variance in either measure. This trial was registered at clinicaltrials.gov as NCT01776359. © 2016 American Society for Nutrition.
Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin
2018-04-01
A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.
Snel, Marieke; van Diepen, Janna A; Stijnen, Theo; Pijl, Hanno; Romijn, Johannes A; Meinders, A E; Voshol, Peter; Jazet, Ingrid M
2011-12-01
To assess the short- and long-term effects of addition of exercise to a very low calorie diet (VLCD) on low-grade inflammation in obese patients with type 2 diabetes mellitus (T2DM). Twenty seven obese, insulin-dependent T2DM patients followed a 4-month VLCD with (n=13) or without (n=14) exercise and were followed up to 18 months. Anthropometric measurements, metabolic and inflammatory parameters were assessed before, directly after the intervention and at 6 and 18 months follow-up. The same measurements were performed only once in 56 healthy lean and 56 healthy obese controls. At baseline hsCRP, IL10 and IL8 were significantly elevated in obese T2DM compared to lean healthy controls. After 4 months, despite substantial weight loss (-25.4 ± 1.3 kg), neither the VLCD nor VLCD+exercise had an effect on plasma cytokines. At 6 months, in the weight-stabilizing period, measures of low-grade inflammation had decreased substantially and equally in both intervention groups. Despite subsequent weight regain, beneficial effect was sustained up to 18 months in both groups, except for IL1 and hsCRP which had returned to baseline in the VLCD-only group. Our findings suggest that severe caloric restriction increases cytokine production by adipose tissue macrophages and that the beneficial effects of weight loss become apparent only in the eucaloric state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solís-Martínez, Obed; Plasa-Carvalho, Valentina; Phillips-Sixtos, Geraldine; Trujillo-Cabrera, Yanelly; Hernández-Cuellar, Arturo; Queipo-García, Gloria E; Meaney-Mendiolea, Eduardo; Ceballos-Reyes, Guillermo M; Fuchs-Tarlovsky, Vanessa
2018-01-01
Head and neck cancer patients are at high risk of anorexia-cachexia syndrome and literature shows that Eicosapentaenoic acid (EPA) could regulate it. We aim to determine the EPA effect on body composition and pro-inflammatory markers in patients with head neck cancer. A randomized single-blind placebo-controlled clinical trial was conducted in patients with head and neck squamous cell cancer who received a polymeric diet with 2 g of EPA or a standard polymeric diet for six weeks before antineoplastic treatment. We assessed body composition by bioelectrical impedance analysis and determined IL-1β, IL-6, TNF-α and IFN-γ, CRP, serum proteins, and blood count at baseline and at the end of the study. 32 patients received EPA (2 g/day) and 32 became controls. A decrease in serum levels of IL-1β, IL-6, TNF-α, and IFN-γ was observed in the experimental group, as well as regulation of body weight (-0.3 ± 5.9 vs. -2.1 ± 3.7), lean body mass (-0.2 ± 3.8 vs. -1.3 ± 3.6), body fat mass (0.2 ± 3.5 vs. -1.2 ± 3.8), and quality of life (10 ± 33 vs. 5 ± 34). Supplementing with 2 g/day of EPA to head and neck cancer patient during antineoplastic treatment regulates serum pro-inflammatory cytokines, body weight, lean body mass, and improve quality of life.
Kondoh, Takashi; Torii, Kunio
2008-09-03
Monosodium l-glutamate (MSG), an umami taste substance, may be a key molecule coupled to a food intake signaling pathway, possibly mediated through a specific l-glutamate (GLU) sensing mechanism in the gastrointestinal tract. Here we investigated the effect of the spontaneous ingestion of a 1% MSG solution and water on food intake and body weight in male Sprague-Dawley rats fed diets of varying caloric density, fat and carbohydrate contents. Fat mass and lean mass in the abdomen, blood pressure, and several blood metabolic markers were also measured. Rats given free access to MSG and water showed a high preference (93-97%) for the MSG solution, regardless of the diet they consumed. Rats ingesting MSG had a significantly smaller weight gain, reduced abdominal fat mass, and lower plasma leptin levels, compared to rats ingesting water alone. Naso-anal length, lean mass, food and energy intakes, blood pressure, blood glucose, and plasma levels of insulin, triglyceride, total cholesterol, albumin, and GLU were not influenced by the ingestion of the MSG solution. These same effects were observed in a study of adult rats. Together, these results suggest that MSG ingestion reduces weight gain, body fat mass, and plasma leptin levels. Moreover, these changes are likely to be mediated by increased energy expenditure, not reduced energy intake or delayed development. Conceivably, these effects of MSG might be mediated via gut GLU receptors functionally linked to afferent branches of the vagus nerve in the gut, or the afferent sensory nerves in the oral cavity.
Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao
2015-04-14
Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.
Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation.
Muñoz, Vitor R; Gaspar, Rafael C; Kuga, Gabriel K; Nakandakari, Susana C B R; Baptista, Igor L; Mekary, Rania A; da Silva, Adelino S R; de Moura, Leandro P; Ropelle, Eduardo R; Cintra, Dennys E; Pauli, José R
2018-03-25
The accumulation of fatty acids in the liver associated with obesity condition is also known as nonalcoholic fatty liver disease (NAFLD). The impaired fat oxidation in obesity condition leads to increased hepatic fat accumulation and increased metabolic syndrome risk. On the other hand, physical exercise has been demonstrated as a potent strategy in the prevention of NAFLD. Also, these beneficial effects of exercise occur through different mechanisms. Recently, the Cdc2-like kinase (CLK2) protein was associated with the suppression of fatty acid oxidation and hepatic ketogenesis. Thus, obese animals demonstrated elevated levels of hepatic CLK2 and decreased fat acid oxidation. Here, we explored the effects of chronic physical exercise in the hepatic metabolism of obese mice. Swiss mice were distributed in Lean, Obese (fed with high-fat diet during 16 weeks) and Trained Obese group (fed with high-fat diet during 16 weeks and exercised (at 60% exhaustion velocity during 1 h/5 days/week) during 8 weeks. In our results, the obese animals showed insulin resistance, increased hepatic CLK2 content and increased hepatic fat accumulation compared to the Lean group. Otherwise, the chronic physical exercise improved insulin resistance state, prevented the increased CLK2 in the liver and attenuated hepatic fat accumulation. In summary, these data reveal a new protein involved in the prevention of hepatic fat accumulation after chronic physical exercise. More studies can evidence the negative role of CLK2 in the control of liver metabolism, contributing to the improvement of insulin resistance, obesity, and type 2 diabetes. © 2018 Wiley Periodicals, Inc.
Ashtary-Larky, Damoon; Ghanavati, Matin; Lamuchi-Deli, Nasrin; Payami, Seyedeh Arefeh; Alavi-Rad, Sara; Boustaninejad, Mehdi; Afrisham, Reza; Abbasnezhad, Amir; Alipour, Meysam
2017-07-01
Achieving weight loss (WL) in a short time regardless of its consequences has always been the focus of many obese and overweight people. In this study, anthropometric and metabolic effects of two diets for rapid and slow WL and their consequences were examined. Forty-two obese and overweight individuals were randomly divided to 2 groups; rapid WL (weight loss of at least 5% in 5 weeks) and slow WL (weight loss of at least 5% in 15 weeks). To compare the effects of the rate of WL in 2 groups, the same amount of was achieved with different durations. Anthropometric indices, lipid, and glycemic profiles, and systolic and diastolic blood pressures were evaluated before and after the intervention. Both protocols of rapid WL and slow WL caused reduction in waist circumference, hip circumference, total body water, body fat mass, lean body mass, and resting metabolic rate (RMR). Further reduction in waist circumference, hip circumference, fat mass, and percentage of body fat was observed in slow WL and decreased total body water, lean body mass, fat free mass, and RMR was observed in rapid WL. Improvement in lipid and glycemic profiles was observed in both groups. Reduction of low-density lipoprotein and fasting blood sugar, improvement of insulin resistance, and sensitivity were more significant in rapid WL in comparison to slow WL. Weight Loss regardless of its severity could improve anthropometric indicators, although body composition is more favorable following a slow WL. Both diets improved lipid and glycemic profiles. In this context, rapid WL was more effective. (IRCT2016010424699N2).
Diet, weight, cytokines and bone health in postmenopausal women.
Gunn, C A; Weber, J L; Kruger, M C
2014-05-01
To investigate diet and nutrition-related factors associated with bone loss in a group of postmenopausal (PM) women. Nutritional intake, inflammatory markers and body composition (weight, body mass index, fat/lean mass) were analysed for associations with bone mineral density (BMD). A cross sectional study examining correlations between BMD (Duel-energy X ray absorptiometry; (DXA) and dietary intake (3-day diaries), body composition and plasma bone and inflammatory markers: C-terminal telopeptide of type I collagen (CTX) and procollagen type I N propeptide (P1NP), C- reactive protein (CRP), interleukin 6 and 10 (IL-6, IL-10), tumour necrosis factor (TNF) and osteoprotegerin (OPG). Community dwelling women from the Auckland, Hawke's Bay and Manawatu regions in New Zealand. 142 healthy, PM women aged 50-70 years. OPG (per kilogram fat mass) was increased in women with osteoporosis (p<0.001) compared to groups classified with normal BMD and osteopenia. Protein, vitamin B12, zinc, potassium and dairy intake were all positively correlated with higher BMD while dairy and potassium intakes also inversely correlated with CTX. Body composition (weight, BMI and fat/lean mass) had strong positive associations with BMD. Multiple regression analysis showed body weight, potassium and dairy intake were predictors of increased BMD in PM women and explained 39% (r2=0.39, p< 0.003) of variance. BMD was negatively correlated with OPG and positively with weight, dairy and potassium intake. This study highlights the importance of maintaining adequate body weight and emphasising dairy and potassium predominantly sourced from fruit/vegetables to reduce bone loss at midlife.
Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer.
Guo, Hui; Zhong, Yan; Jackson, Amanda L; Clark, Leslie H; Kilgore, Josh; Zhang, Lu; Han, Jianjun; Sheng, Xiugui; Gilliam, Timothy P; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L
2016-04-12
Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers.
Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance.
Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben
2015-12-01
Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia.
Leptin Is Required for Glucose Homeostasis after Roux-en-Y Gastric Bypass in Mice.
Mokadem, Mohamad; Zechner, Juliet F; Uchida, Aki; Aguirre, Vincent
2015-01-01
Leptin, the protein product of the ob gene, increases energy expenditure and reduces food intake, thereby promoting weight reduction. Leptin also regulates glucose homeostasis and hepatic insulin sensitivity via hypothalamic proopiomelanocortin neurons in mice. Roux-en-Y gastric bypass (RYGB) induces weight loss that is substantial and sustained despite reducing plasma leptin levels. In addition, patients who fail to undergo diabetes remission after RYGB are hypoletinemic compared to those who do and to lean controls. We have previously demonstrated that the beneficial effects of RYGB in mice require the melanocortin-4 receptor, a downstream effector of leptin action. Based on these observations, we hypothesized that leptin is required for sustained weight reduction and improved glucose homeostasis observed after RYGB. To investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet. RYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.
Islam, Ajmila; Civitarese, Anthony E; Hesslink, Robert L; Gallaher, Daniel D
2012-02-01
Dietary interventions that reduce accumulation of body fat are of great interest. Consumption of viscous dietary fibers cause well-known positive metabolic effects, such as reductions in the postprandial glucose and insulin concentrations. However, their effect on body composition and fuel utilization has not been previously studied. To examine this, rats were fed a viscous nonfermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), for 6 weeks. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and fat pad weight. Plasma adipokines, AMP kinase activation, and enzyme and mRNA analysis of key regulators of energetics in liver and soleus muscle were measured. The HPMC diet significantly lowered percent body fat mass and increased percent lean body mass, compared to a cellulose-containing diet (no viscosity). Fasting leptin was reduced 42% and resistin 28% in the HPMC group compared to the cellulose group. Rats fed HPMC had greater activation of AMP kinase in liver and muscle and lower phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. mRNA expression in skeletal muscle was significantly increased for carnitine palmitoyltransferase 1B (CPT-1B), PPARγ coactivator 1α, PPARδ and uncoupling protein 3 (UCP3), as was citrate synthase (CS) activity, in the HPMC group relative to the cellulose group. These results indicate that viscous dietary fiber preserves lean body mass and reduces adiposity, possibly by increasing mitochondrial biogenesis and fatty acid oxidation in skeletal muscle, and thus represents a metabolic effect of viscous fiber not previously described. Thus, viscous dietary fiber may be a useful dietary component to assist in reduction of body fat.
Kleckner, Amber S.; Wong, Siu; Corkey, Barbara E.
2015-01-01
A low glycemic response (LGR) vs. high glycemic response (HGR) diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity) at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate) or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state. PMID:26030878
Meckling, Kelly A; O'Sullivan, Caitriona; Saari, Dayna
2004-06-01
Overweight and obese men and women (24-61 yr of age) were recruited into a randomized trial to compare the effects of a low-fat (LF) vs. a low-carbohydrate (LC) diet on weight loss. Thirty-one subjects completed all 10 wk of the diet intervention (retention, 78%). Subjects on the LF diet consumed an average of 17.8% of energy from fat, compared with their habitual intake of 36.4%, and had a resulting energy restriction of 2540 kJ/d. Subjects on the LC diet consumed an average of 15.4% carbohydrate, compared with habitual intakes of about 50% carbohydrate, and had a resulting energy restriction of 3195 kJ/d. Both groups of subjects had significant weight loss over the 10 wk of diet intervention and nearly identical improvements in body weight and fat mass. LF subjects lost an average of 6.8 kg and had a decrease in body mass index of 2.2 kg/m2, compared with a loss of 7.0 kg and decrease in body mass index of 2.1 kg/m2 in the LC subjects. The LF group better preserved lean body mass when compared with the LC group; however, only the LC group had a significant decrease in circulating insulin concentrations. Group results indicated that the diets were equally effective in reducing systolic blood pressure by about 10 mm Hg and diastolic pressure by 5 mm Hg and decreasing plasminogen activator inhibitor-1 bioactivity. Blood beta-hydroxybutyrate concentrations were increased in the LC only, at the 2- and 4-wk time points. These data suggest that energy restriction achieved by a very LC diet is equally effective as a LF diet strategy for weight loss and decreasing body fat in overweight and obese adults.
Carter, W J; van der Weijden Benjamin, W S; Faas, F H
1984-01-01
Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3. PMID:6696742
Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine
2017-12-01
The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.
High protein consumption in trained women: bad to the bone?
Antonio, Jose; Ellerbroek, Anya; Evans, Cassandra; Silver, Tobin; Peacock, Corey A
2018-01-01
It has been posited that the consumption of extra protein (> 0.8 g/kg/d) may be deleterious to bone mineral content. However, there is no direct evidence to show that consuming a high-protein diet results in a demineralization of the skeleton. Thus, the primary endpoint of this randomized controlled trial was to determine if a high-protein diet affected various parameters of whole body and lumbar bone mineral content in exercise-trained women. Twenty-four women volunteered for this 6-month investigation ( n = 12 control, n = 12 high-protein). The control group was instructed to consume their habitual diet; however, the high-protein group was instructed to consume ≥2.2 g of protein per kilogram body weight daily (g/kg/d). Body composition was assessed via dual-energy x-ray absorptiometry (DXA). Subjects were instructed to keep a food diary via the mobile app MyFitnessPal ® . Exercise or activity level was not controlled. Subjects were asked to maintain their current levels of exercise. During the 6-month treatment period, there was a significant difference in protein intake between the control and high-protein groups (mean±SD; control: 1.5±0.3, high-protein: 2.8±1.1 g/kg/d); however, there were no differences in the consumption total calories, carbohydrate or fat. Whole body bone mineral density did not change in the control (pre: 1.22±0.08, post: 1.22±0.09 g/cm 2 ) or high-protein group (pre: 1.25±0.11, post: 1.24±0.10 g/cm 2 ). Similarly, lumbar bone mineral density did not change in the control (pre: 1.08±0.16, post: 1.05±0.13 g/cm 2 ) or high-protein group (pre: 1.07±0.11, post: 1.08±0.12 g/cm 2 ). In addition, there were no changes in whole body or lumbar T-Scores in either group. Furthermore, there were no changes in fat mass or lean body mass. Despite an 87% higher protein intake (high-protein versus control), 6 months of a high-protein diet had no effect on whole body bone mineral density, lumbar bone mineral density, T-scores, lean body mass or fat mass.
Low weight and overweightness in older adults: risk and clinical management.
Jahangir, Eiman; De Schutter, Alban; Lavie, Carl J
2014-01-01
The prevalence of individuals who are overweight or obese is growing exponentially in the United States and worldwide. This growth is concerning, as both overweightness and obesity lead to impaired physical function, decreased quality of life, and increased risk of chronic diseases. Additionally, overweightness and obesity are related to increased mortality among young and middle-aged adults. This weight-related risk of mortality is more ambiguous among older adults. In fact, obesity may be protective in this population, a relationship described as the "obesity paradox". In this review we discuss the effects of overweightness and obesity among the elderly on cardiovascular disease and all-cause mortality, along with the risks of low weight. We conclude by discussing the goal of weight management among older adults, focusing particularly on benefits of preserving lean body mass and muscular strength while stabilizing body fat. Ideally, overweight or mildly obese elderly individuals should devise a plan with their physicians to maintain their weight, while increasing lean body mass through a plan of healthy diet, behavioral therapy, and physical activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.
2013-01-01
Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P < 0.05). Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680
[Strategies for successful weight reduction - focus on energy balance].
Weck, M; Bornstein, S R; Barthel, A; Blüher, M
2012-10-01
The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options. Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis. The extremely high failure rate (> 80%) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called "adaptive thermogenesis" is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss. Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable. In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction. © Georg Thieme Verlag KG Stuttgart · New York.
Westropp, Jodi L; Larsen, Jennifer A; Johnson, Eric G; Bannasch, Dannika; Fascetti, Andrea J; Biourge, Vincent; Queau, Yann
2017-02-08
Urate urolithiasis is a common problem in breed homozygous for the mutation that results in hyperuricosuria. Low purine diets have been recommended to reduce purine intake in these dogs. A higher protein, purine restricted diet with water added was evaluated in dogs with genetic hyperuricosuria and a history of clinical urate urolithiasis over a one year time period. Dogs were evaluated at baseline and 2, 6, and 12 months after initiating the test diet. Bloodwork, urinalysis, abdominal ultrasound, body composition, and 24-h urinary purine metabolite analyses were performed. Transient, mild, self-limited lower urinary tract signs were noted in only one dog on a single day, despite variable but usually mild and occasionally moderate amounts of echogenic bladder stones (<2-3 mm in size) in almost every dog at each visit. No significant differences were noted in urine specific gravity, urine pH, lean body condition score or body composition. Urinary uric acid concentration was lower on the test diet (p = 0.008), but 24-h uric acid excretions were similar (p = 0.220) compared to baseline. Significant differences between least squares mean plasma amino acid concentrations measured at the 0 and 12-month visits were found only for valine (p = 0.0119) and leucine (p = 0.0017). This study suggests the use of a low purine, higher protein diet with added water may be beneficial as part of the management of dogs with genetic hyperuricosuria and history of clinical urate urolithiasis.
André, A; Leriche, I; Chaix, G; Thorin, C; Burger, M; Nguyen, P
2017-06-01
This study investigated the effects of an experimental high-protein medium-carbohydrate diet (protein level, 46% metabolizable energy, ME). First, postprandial plasma glucose and insulin kinetics were determined in steady-state overweight/obese Beagle dogs (28%-41% excess body weight) for an experimental high-protein medium-carbohydrate diet (protein level, 46% ME) and a commercial high-carbohydrate medium-protein diet (protein level, 24%ME) in obese dogs. Secondly, all the dogs were included in a weight loss programme. They were fed the high-protein medium-carbohydrate diet, and the energy allocation was gradually reduced until they reached their optimal body weight. Insulin sensitivity and body composition were evaluated before and after weight loss using a euglycaemic-hyperinsulinaemic clamp and the deuterium oxide dilution technique respectively. For statistical analysis, linear mixed effect models were used with a significance level of 5%. Postprandial plasma glucose and insulin concentrations were substantially lower with the high-protein medium-carbohydrate diet than the high-carbohydrate medium-protein diet. These differences can be explained mainly by the difference in carbohydrate content between the two diets. Energy restriction (35% lower energy intake than in the obese state) resulted in a 2.23 ± 0.05% loss in body weight/week, and the dogs reached their optimal body weight in 12-16 weeks. Weight loss was associated with a significant increase in insulin sensitivity. The high-protein medium-carbohydrate diet allowed fat-free mass preservation despite a relatively high rate of weekly weight loss. The increase in insulin sensitivity indicated improved control of carbohydrate metabolism, possible due to weight loss and to the nature of the diet. Thus, a high-protein medium-carbohydrate diet is a good nutritional solution for managing the weight of overweight dogs. This diet may improve glycaemic control, which could be beneficial for preventing or managing impaired glucose tolerance in obese dogs and for safe and successful weight loss while preserving lean body mass. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.
The effect of ingesting a saltbush and barley ration on the carcass and eating quality of sheepmeat.
Pearce, K L; Pethick, D W; Masters, D G
2008-03-01
Forage halophytes such as saltbush (Atriplex spp.) are widely used to revegetate Australian saline land and can provide a medium-quality fodder source. An animal house experiment was conducted to investigate differences in the carcass and eating quality of sheep ingesting saltbush from saline land in combination with a barley supplement. Twenty-six merino hoggets (two groups of 13) were fed either a 60 : 40 dried saltbush (Atriplex nummularia): barley (S + B) ration or a 33 : 25 : 42 lupins : barley : oaten hay ration (C) for 10 weeks prior to commercial slaughter. After 10 weeks, all sheep were commercially slaughtered and a single loin (from 12th rib to chump) collected from each animal for taste-panel analysis. Carcass weight, total tissue depth over the 12th rib 110 mm from the midline (GR fat depth), ultimate pH and colour were determined and X-ray bone densitometry used to estimate the fat content of the carcass. Blood samples were taken to assess the hormonal response to ingesting these diets and fatty acid profiles of the subcutaneous and intramuscular fat were determined. Both groups grew at the same rate (62 g/day) and had similar hot carcass weights (P > 0.01) (17.2 ± 0.3 kg for S + B and 17.9 ± 0.3 kg for C). However, these live weights may not be high enough to be commercially viable such that saltbush and barley may only be suitable as a maintenance feed. The S + B-fed sheep had a significantly (P = 0.055) lower fat and higher lean content (P < 0.05) than the C group. This is a positive finding as fat denudation is a significant cost to processors and farmers can produce sheep that are depositing less fat or more lean per unit of live-weight gain. The decreased fat and increased lean content were attributed to the higher protein : energy ratio available for production and lower circulating insulin and higher growth hormone of the S + B-fed sheep. The lower body-fat content and lower metabolisable energy and digestible organic matter intake did correlate with the sheep fed the S + B diet, having a significantly lower percentage of unsaturated fat and equal levels of saturated fat than the C treatment. Diet had no effect on the ultimate pH or colour of the meat. Treatment had no significant effect on any of the eating-quality attributes (P > 0.1). The drying of the saltbush, the shorter length of the experimental period and the low carcass fat content were believed to have contributed to this result. Further field experiments are needed to clarify the benefits to carcass and eating quality of ingesting saltbush.
Ruth, Megan R.; Port, Ava M.; Shah, Mitali; Bourland, Ashley C.; Istfan, Nawfal W.; Nelson, Kerrie P.; Gokce, Noyan; Apovian, Caroline M.
2013-01-01
Objective High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. Methods Obese subjects (29.0–44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. Results The age range of subjects was 21–62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2 h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. Conclusions Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets. PMID:24075505
High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.
Heisel, Timothy; Montassier, Emmanuel; Johnson, Abigail; Al-Ghalith, Gabriel; Lin, Yi-Wei; Wei, Li-Na; Knights, Dan; Gale, Cheryl A
2017-01-01
Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet.
Vieira de Sousa, M; Fukui, R; Krustrup, P; Dagogo-Jack, S; Rossi da Silva, M E
2017-01-01
Moderate calorie-restricted diets and exercise training prevent loss of lean mass and cardiovascular risk. Because adherence to routine exercise recommendation is generally poor, we utilized recreational soccer training as a novel therapeutic exercise intervention in type 2 diabetes (T2D) patients. We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated to the soccer+diet-group (SDG) or to the diet-group (DG). The 40-min soccer sessions were held 3 times per week for 12 weeks. Nineteen participants attended 100% of scheduled soccer sessions, and none suffered any injuries. The SDG group showed higher levels of growth hormone (GH), free fatty acids and ammonia compared with DG. After 12 weeks, insulin-like growth factor binding protein (IGFPB)-3 and glucose levels were lower in SDG, whereas insulin-like growth factor (IGF)-1/ IGFBP-3 ratio increased in both groups. After the last training session, an increase in IGF-1/IGFBP-3 and attenuation in ammonia levels were suggestive of lower muscle protein catabolism. Recreational soccer training was popular and safe, and was associated with decreased plasma glucose and IGFBP-3 levels, decreased ammoniagenesis, and increased lipolytic activity and IGF-1/IGFBP-3 ratio, all indicative of attenuated catabolism.
High Intensity Exercise: Can It Protect You from A Fast Food Diet?
Duval, Christian; Rouillier, Marc-Antoine; Rabasa-Lhoret, Rémi; Karelis, Antony D
2017-08-26
The purpose of this study was to assess the ability of high intensity exercise to counteract the deleterious effects of a fast food diet on the cardiometabolic profile of young healthy men. Fifteen men were subjected to an exclusive fast food diet from a popular fast food restaurant chain (three extra value meals/day + optional snack) for 14 consecutive days. Simultaneously, participants were asked to perform each day high intensity interval training (HIIT) (15 × 60 sec sprint intervals (~90% of maximal heart rate)) on a treadmill. Fast food diet and energy expenditure profiles of the participants during the intervention were assessed as well as body composition (DXA), cardiometabolic profile (lipid, hepatic enzymes, glycated hemoglobin, glucose, insulin, hsC-reactive protein (hsCRP) and blood pressure) and estimated maximal oxygen consumption (VO2 max) pre- and post-experiment. We found significant improvements for fat mass, lean body mass, estimated VO₂ max, fasting glucose, serum lipoprotein(a) and hsCRP after the intervention ( p < 0.05). HDL-cholesterol significantly decreased ( p < 0.002), but the triglycerides/HDL-cholesterol ratio did not change. All other cardiometabolic variables measured remained stable, which includes the primary outcome: the HOMA index (pre: 1.83 ± 1.2 vs. post: 1.54 ± 0.7 values; p = 0.35). In conclusion, in large part, insulin resistance and the cardiometabolic profile of young healthy individuals seems to be protected by HIIT from a fast food diet.
General aviation energy-conservation research programs at NASA-Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.
1977-01-01
The major thrust of NASA's nonturbine general aviation engine programs is directed toward (1) reduced specific fuel consumption, (2) improved fuel tolerance; and (3) emission reduction. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines.
Motta-Tavares, Tatiana; Maia-Carneiro, Thiago; Dantas, Leonardo F; Sluys, Monique Van; Hatano, Fábio H; Vrcibradic, Davor; Rocha, Carlos F D
2016-03-01
In this study, we analyzed diet, sexual dimorphism and bromeliad use in three populations of the hylid frog Phyllodytes luteolus from restinga habitats along the Brazilian coast. We found 13 arthropods categories in 161 stomachs. Ants and termites were the dominant prey items. The similar trophic niche across populations suggests this species has a conservative diet. We found sexual dimorphism regarding body size and jaw width. We recordedP. luteolus in five bromeliad species, but predominantly inAechmeablanchetiana (35.6% of individuals recorded). We recorded solitary individuals in 44% of occupied bromeliads, and never found two males sharing the same bromeliad. The data is suggestive that populations ofP. luteolus has a conservative diet independent of area, with ants and termites the being most relevant prey items. The sexual dimorphism in jaw and the solitary males may suggest that this species have territorial behavior.
The Future of Japanese Nationalism
1985-01-01
its soil. Lest these principles be regarded as unconditional, Sato clarified matters in a Diet speech in 1968 in which he described the four pillars of...incident, the conservative leader Shiina Etsusaburo once in Diet proceedings referred to the Americans as "the dog at the gate (banken)," protecting...Japan. When another Diet member asked if it wasn’t rude and insulting to call the Americans "dogs," Shiina in mock apology responded, "Excuse me. They are
Liu, Gang; Lu, Ling; Sun, Qi; Ye, Xingwang; Sun, Liang; Liu, Xin; Zong, Geng; Jin, Qianlu; Li, Huaixing; Lin, Xu
2014-10-01
Poor vitamin D status can increase age-related muscle mass loss. However, existing prospective evidence is limited and controversial. This study aimed to investigate the association of plasma 25-hydroxyvitamin D [25(OH)D] with muscle mass loss in middle-aged and elderly Chinese individuals over 6 years. We conducted a prospective cohort study. This community-based study included 568 men and women aged 50 to 70 years at baseline. Baseline plasma concentrations of 25(OH)D and biomarkers of liver and kidney functions and inflammation were measured. Body composition was assessed at baseline and 6-year follow-up by dual-energy x-ray absorptiometry. Appendicular skeletal muscle mass (ASMM) and trunk lean mass were calculated and total body lean mass was defined as an overall measure of total nonfat and nonbone tissues. Descriptive statistics and multiple linear regression were applied. The 6-year loss of ASMM was 1.14 kg (5.3%) in men and 0.47 kg (3.1%) in women (all P values <0.001). Compared with the highest 25(OH)D tertile, participants in the lowest tertile had significantly more absolute loss of ASMM (-1.21 vs -1.00 kg; P for trend=0.024) after multivariate adjustments for conventional confounders, as well as protein intake. The association persisted after additional adjustment of bone mineral density and inflammatory markers (P for trend=0.017). No significant associations were detected between 25(OH)D and absolute loss of trunk lean mass or total body lean mass. Lower 25(OH)D concentrations were prospectively associated with greater ASMM loss in middle-aged and elderly Chinese individuals independent of bone mineral density, inflammation, diet, and other risk factors. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
A core gut microbiome in obese and lean twins.
Turnbaugh, Peter J; Hamady, Micah; Yatsunenko, Tanya; Cantarel, Brandi L; Duncan, Alexis; Ley, Ruth E; Sogin, Mitchell L; Jones, William J; Roe, Bruce A; Affourtit, Jason P; Egholm, Michael; Henrissat, Bernard; Heath, Andrew C; Knight, Rob; Gordon, Jeffrey I
2009-01-22
The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).
Bhasin, Shalender; Apovian, Caroline M; Travison, Thomas G; Pencina, Karol; Huang, Grace; Moore, Lynn L; Campbell, Wayne W; Howland, Andrew; Chen, Ruo; Singer, Martha R; Shah, Mitali; Eder, Richard; Schram, Haley; Bearup, Richelle; Beleva, Yusnie M; McCarthy, Ashley C; Li, Zhouying; Woodbury, Erin; McKinnon, Jennifer; Storer, Thomas W; Basaria, Shehzad
2017-07-01
The dietary protein allowance for older men to maintain lean body mass and muscle strength and to accrue optimal anabolic responses to promyogenic stimuli is poorly characterized. The OPTIMEN trial was designed to assess in older men with moderate physical dysfunction and insufficient habitual protein intake (
Estany, J; Ros-Freixedes, R; Tor, M; Pena, R N
2017-05-01
The intramuscular fat (IMF) and oleic acid (OL) content have been favorably related to pork quality and human health. This influences the purchasing behavior of consumers and, therefore, also shifts the attention of breeding companies toward whether these traits are included into the breeding goal of the lines producing for high-valued markets. Because IMF and OL are unfavorably associated with lean content, a key economic trait, the real challenge for the industry is not simply to increase IMF and OL, but rather to come up with the right trade-off between them and lean content. In this paper we review the efforts performed to genetically improve IMF and OL, with particular reference to the research we conducted in a Duroc line aimed at producing high quality fresh and dry-cured pork products. Based on this research, we conclude that there are selection strategies that lead to response scenarios where IMF, OL, and lean content can be simultaneously improved. Such scenarios involve regular recording of IMF and OL, so that developing a cost-efficient phenotyping system for these traits is paramount. With the economic benefits of genomic selection needing further assessment in pigs, selection on a combination of pedigree-connected phenotypes and genotypes from a panel of selected genetic markers is presented as a suitable alternative. Evidence is provided supporting that at least a polymorphism in the leptin receptor and another in the stearoyl-CoA desaturase genes should be in that panel. Selection for IMF and OL results in an opportunity cost on lean growth. The extent to which it is affordable relies on the consumers' willingness to pay for premium products and on the cost to benefit ratio of alternative management strategies, such as specific dietary manipulations. How the genotype can influence the effect of the diet on IMF and OL remains a topic for further research.
Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan
2017-10-26
Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The relation of eating problems and amenorrhea in ballet dancers.
Brooks-Gunn, J; Warren, M P; Hamilton, L H
1987-02-01
Exercise-induced amenorrhea has received considerable attention in the medical literature. The combination of exercise and low body weight is thought to exert synergistic effects in the pathogenesis of amenorrhea, while the role of dieting and eating problems, another possible causative mechanism, has not been examined. A sample of 55 adult dancers in national and regional classical ballet companies was studied; their mean age was 24.7 yr. Fifty-six percent of the dancers had delayed menarche (age 14 or later) and 19% of the sample were currently amenorrheic (5 months or longer). One-third of the dancers reported having had an eating problem (self-reported anorexia nervosa or bulimia). Amenorrhea and reported eating problems were significantly related: 50% of amenorrheics reported anorexia nervosa while 13% of the normals did. In addition, prolonged amenorrhea was significantly related to dieting (as measured by EAT-26 scales, a measure of dieting behavior). As expected, leanness and absolute weight also were related to prolonged amenorrhea. Amenorrhea in this sample of adult dancers was not related to current activity level or age at which training began. Thus, eating problems may be one factor in the pathogenesis of prolonged amenorrhea in certain athletic groups.
LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity
Tajan, Mylène; Batut, Aurélie; Cadoudal, Thomas; Deleruyelle, Simon; Le Gonidec, Sophie; Saint Laurent, Céline; Vomscheid, Maëlle; Wanecq, Estelle; Tréguer, Karine; De Rocca Serra-Nédélec, Audrey; Vinel, Claire; Marques, Marie-Adeline; Pozzo, Joffrey; Kunduzova, Oksana; Salles, Jean-Pierre; Tauber, Maithé; Raynal, Patrick; Cavé, Hélène; Edouard, Thomas; Valet, Philippe; Yart, Armelle
2014-01-01
LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders. PMID:25288766
Narvaez, Carmen J; Matthews, Donald; Broun, Emily; Chan, Michelle; Welsh, JoEllen
2009-02-01
Increased adiposity is a feature of aging in both mice and humans, but the molecular mechanisms underlying age-related changes in adipose tissue stores remain unclear. In previous studies, we noted that 18-month-old normocalcemic vitamin D receptor (VDR) knockout (VDRKO) mice exhibited atrophy of the mammary adipose compartment relative to wild-type (WT) littermates, suggesting a role for VDR in adiposity. Here we monitored body fat depots, food intake, metabolic factors, and gene expression in WT and VDRKO mice on the C57BL6 and CD1 genetic backgrounds. Regardless of genetic background, both sc and visceral white adipose tissue depots were smaller in VDRKO mice than WT mice. The lean phenotype of VDRKO mice was associated with reduced serum leptin and compensatory increased food intake. Similar effects on adipose tissue, leptin and food intake were observed in mice lacking Cyp27b1, the 1alpha-hydroxylase enzyme that generates 1,25-dihydroxyvitamin D(3), the VDR ligand. Although VDR ablation did not reduce expression of peroxisome proliferator-activated receptor-gamma or fatty acid synthase, PCR array screening identified several differentially expressed genes in white adipose tissue from WT and VDRKO mice. Uncoupling protein-1, which mediates dissociation of cellular respiration from energy production, was greater than 25-fold elevated in VDRKO white adipose tissue. Consistent with elevation in uncoupling protein-1, VDRKO mice were resistant to high-fat diet-induced weight gain. Collectively, these studies identify a novel role for 1,25-dihydroxyvitamin D(3) and the VDR in the control of adipocyte metabolism and lipid storage in vivo.
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C.; Buettner, Christoph; Salton, Stephen R.
2016-01-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/−,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. PMID:28024880
Watson, Elizabeth; Hahm, Seung; Mizuno, Tooru M; Windsor, Joan; Montgomery, Carla; Scherer, Philipp E; Mobbs, Charles V; Salton, Stephen R J
2005-12-01
Targeted deletion of the gene encoding the neuronal and endocrine secreted peptide precursor called VGF (nonacronymic) produces a lean, hypermetabolic, hyperactive mouse. Because VGF mutant mice are resistant to specific forms of diet-, lesion-, and genetically induced obesity, we investigated the role that this polypeptide plays in glucose homeostasis. We report that VGF mutant mice have increased insulin sensitivity by hyperinsulinemic euglycemic clamp analysis, and by insulin and glucose tolerance testing. Blunted counterregulatory responses in VGF-deficient mice were likely influenced by their significantly lower liver glycogen levels. VGF deficiency lowered circulating glucose and insulin levels in several murine models of obesity that are also susceptible to adult onset diabetes mellitus, including A(y)/a agouti, ob/ob, and MC4R(-)/MC4R(-) mice. Interestingly, ablation of Vgf in ob/ob mice decreased circulating glucose and insulin levels but did not affect adiposity, whereas MC4R(-)/MC4R(-) mice that are additionally deficient in VGF have improved insulin responsiveness at 7-8 wk of age, when lean MC4R(-)/MC4R(-) mice already have impaired insulin tolerance but are not yet obese. VGF mutant mice also resisted developing obesity and hyperglycemia in response to a high-fat/high-carbohydrate diet, and after gold thioglucose treatment, which is toxic to hypothalamic glucose-sensitive neurons. Lastly, circulating adiponectin, an adipose-synthesized protein the levels of which are correlated with improved insulin sensitivity, increased in VGF mutant compared with wild-type mice. Modulation of VGF levels and/or VGF signaling may consequently represent an alternative means to regulate circulating glucose levels and insulin sensitivity.
Shin, Andrew C.; Townsend, R. Leigh; Patterson, Laurel M.
2011-01-01
Cross-sectional studies in both humans and animals have demonstrated associations between obesity and altered reward functions at the behavioral and neural level, but it is unclear whether these alterations are cause or consequence of the obese state. Reward behaviors were quantified in male, outbred Sprague-Dawley (SD) and selected line obesity-prone (OP) and obesity-resistant (OR) rats after induction of obesity by high-fat diet feeding and after subsequent loss of excess body weight by chronic calorie restriction. As measured by the brief access lick and taste-reactivity paradigms, both obese SD and OP rats “liked” low concentrations of sucrose and corn oil less, but “liked” the highest concentrations more, compared with lean rats, and this effect was fully reversed by weight loss in SD rats. Acute food deprivation was unable to change decreased responsiveness to low concentrations but eliminated increased responsiveness to high concentrations in obese SD rats, and leptin administration in weight-reduced SD rats shifted concentration-response curves toward that seen in the obese state in the brief access lick test. “Wanting” and reinforcement learning as assessed in the incentive runway and progressive ratio lever-pressing paradigms was paradoxically decreased in both obese (compared with lean SD rats) and OP (compared with OR rats). Thus, reversible, obesity-associated, reduced “liking” and “wanting” of low-calorie foods in SD rats suggest a role for secondary effects of the obese state on reward functions, while similar differences between select lines of OP and OR rats before induction of obesity indicate a genetic component. PMID:21849633
Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance
Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben
2015-01-01
Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312
LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity.
Tajan, Mylène; Batut, Aurélie; Cadoudal, Thomas; Deleruyelle, Simon; Le Gonidec, Sophie; Saint Laurent, Céline; Vomscheid, Maëlle; Wanecq, Estelle; Tréguer, Karine; De Rocca Serra-Nédélec, Audrey; Vinel, Claire; Marques, Marie-Adeline; Pozzo, Joffrey; Kunduzova, Oksana; Salles, Jean-Pierre; Tauber, Maithé; Raynal, Patrick; Cavé, Hélène; Edouard, Thomas; Valet, Philippe; Yart, Armelle
2014-10-21
LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.
Ashtary-Larky, Damoon; Ghanavati, Matin; Lamuchi-Deli, Nasrin; Payami, Seyedeh Arefeh; Alavi-Rad, Sara; Boustaninejad, Mehdi; Afrisham, Reza; Abbasnezhad, Amir; Alipour, Meysam
2017-01-01
Background Achieving weight loss (WL) in a short time regardless of its consequences has always been the focus of many obese and overweight people. In this study, anthropometric and metabolic effects of two diets for rapid and slow WL and their consequences were examined. Methods Forty-two obese and overweight individuals were randomly divided to 2 groups; rapid WL (weight loss of at least 5% in 5 weeks) and slow WL (weight loss of at least 5% in 15 weeks). To compare the effects of the rate of WL in 2 groups, the same amount of was achieved with different durations. Anthropometric indices, lipid, and glycemic profiles, and systolic and diastolic blood pressures were evaluated before and after the intervention. Results Both protocols of rapid WL and slow WL caused reduction in waist circumference, hip circumference, total body water, body fat mass, lean body mass, and resting metabolic rate (RMR). Further reduction in waist circumference, hip circumference, fat mass, and percentage of body fat was observed in slow WL and decreased total body water, lean body mass, fat free mass, and RMR was observed in rapid WL. Improvement in lipid and glycemic profiles was observed in both groups. Reduction of low-density lipoprotein and fasting blood sugar, improvement of insulin resistance, and sensitivity were more significant in rapid WL in comparison to slow WL. Conclusions Weight Loss regardless of its severity could improve anthropometric indicators, although body composition is more favorable following a slow WL. Both diets improved lipid and glycemic profiles. In this context, rapid WL was more effective. (IRCT2016010424699N2) PMID:29201070
Jönsson, Tommy; Granfeldt, Yvonne; Ahrén, Bo; Branell, Ulla-Carin; Pålsson, Gunvor; Hansson, Anita; Söderström, Margareta; Lindeberg, Staffan
2009-07-16
Our aim was to compare the effects of a Paleolithic ('Old Stone Age') diet and a diabetes diet as generally recommended on risk factors for cardiovascular disease in patients with type 2 diabetes not treated with insulin. In a randomized cross-over study, 13 patients with type 2 diabetes, 3 women and 10 men, were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts; and a Diabetes diet designed in accordance with dietary guidelines during two consecutive 3-month periods. Outcome variables included changes in weight, waist circumference, serum lipids, C-reactive protein, blood pressure, glycated haemoglobin (HbA1c), and areas under the curve for plasma glucose and plasma insulin in the 75 g oral glucose tolerance test. Dietary intake was evaluated by use of 4-day weighed food records. Study participants had on average a diabetes duration of 9 years, a mean HbA1c of 6,6% units by Mono-S standard and were usually treated with metformin alone (3 subjects) or metformin in combination with a sulfonylurea (3 subjects) or a thiazolidinedione (3 subjects). Mean average dose of metformin was 1031 mg per day. Compared to the diabetes diet, the Paleolithic diet resulted in lower mean values of HbA1c (-0.4% units, p = 0.01), triacylglycerol (-0.4 mmol/L, p = 0.003), diastolic blood pressure (-4 mmHg, p = 0.03), weight (-3 kg, p = 0.01), BMI (-1 kg/m2, p = 0.04) and waist circumference (-4 cm, p = 0.02), and higher mean values of high density lipoprotein cholesterol (+0.08 mmol/L, p = 0.03). The Paleolithic diet was mainly lower in cereals and dairy products, and higher in fruits, vegetables, meat and eggs, as compared with the Diabetes diet. Further, the Paleolithic diet was lower in total energy, energy density, carbohydrate, dietary glycemic load, saturated fatty acids and calcium, and higher in unsaturated fatty acids, dietary cholesterol and several vitamins. Dietary GI was slightly lower in the Paleolithic diet (GI = 50) than in the Diabetic diet (GI = 55). Over a 3-month study period, a Paleolithic diet improved glycemic control and several cardiovascular risk factors compared to a Diabetes diet in patients with type 2 diabetes.
Cheim, Loanda Maria G; Oliveira, Elisângela A; Arantes, Vanessa C; Veloso, Roberto V; Reis, Marise Auxiliadora B; Gomes-da-Silva, Maria Helena G; Carneiro, Everardo M; Boschero, Antonio C; Latorraca, Márcia Q
2009-01-01
Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA) and insulin by radioimmunoassay (RIA). Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA). Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC group. Conclusion Protein restriction during intrauterine life and lactation periods did not provoke obesity in adulthood. Nutritional recovery with soybean diet decreased the body weight at the expense of lower energy efficiency with repercussion on lean mass. PMID:19703309
Otten, Julia; Stomby, Andreas; Waling, Maria; Isaksson, Andreas; Tellström, Anna; Lundin-Olsson, Lillemor; Brage, Søren; Ryberg, Mats; Svensson, Michael; Olsson, Tommy
2017-01-01
Means to reduce future risk for cardiovascular disease in subjects with type 2 diabetes are urgently needed. Thirty-two patients with type 2 diabetes (age 59 ± 8 years) followed a Paleolithic diet for 12 weeks. Participants were randomized to either standard care exercise recommendations (PD) or 1-h supervised exercise sessions (aerobic exercise and resistance training) three times per week (PD-EX). For the within group analyses, fat mass decreased by 5.7 kg (IQR: -6.6, -4.1; p < 0.001) in the PD group and by 6.7 kg (-8.2, -5.3; p < 0.001) in the PD-EX group. Insulin sensitivity (HOMA-IR) improved by 45% in the PD (p < 0.001) and PD-EX (p < 0.001) groups. HbA 1c decreased by 0.9% (-1.2, -0.6; p < 0.001) in the PD group and 1.1% (-1.7, -0.7; p < 0.01) in the PD-EX group. Leptin decreased by 62% (p < 0.001) in the PD group and 42% (p < 0.001) in the PD-EX group. Maximum oxygen uptake increased by 0.2 L/min (0.0, 0.3) in the PD-EX group, and remained unchanged in the PD group (p < 0.01 for the difference between intervention groups). Male participants decreased lean mass by 2.6 kg (-3.6, -1.3) in the PD group and by 1.2 kg (-1.3, 1.0) in the PD-EX group (p < 0.05 for the difference between intervention groups). A Paleolithic diet improves fat mass and metabolic balance including insulin sensitivity, glycemic control, and leptin in subjects with type 2 diabetes. Supervised exercise training may not enhance the effects on these outcomes, but preserves lean mass in men and increases cardiovascular fitness. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun; Park, Sunmin
2015-04-01
Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. © 2014 by the Society for Experimental Biology and Medicine.
Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.
Heep, Hansjoerg; Wedemeyer, Christian; Wegner, Alexander; Hofmeister, Sebastian; von Knoch, Marius
2008-06-15
It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Animals with an ad-libitum-diet (Group A) were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B). From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N.), trabecular thickness (Tb.Th.)) revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in cortical and trabecular bone will be examined in later studies. It is not possible to conclude that these results also apply to human beings.
Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun
2015-01-01
Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. PMID:25258426
Smith, Gordon I; Magkos, Faidon; Reeds, Dominic N; Okunade, Adewole L; Patterson, Bruce W; Mittendorfer, Bettina
2013-08-01
The exact mechanisms responsible for increased plasma triglyceride (TG) concentration in obese people are unclear, and it is not known whether excess energy intake per se is involved in the pathophysiology of this abnormality. The purpose of our study was to examine how excess energy intake from a balanced diet for 1 day affects very-low-density lipoprotein (VLDL)-TG kinetics and its putative regulators hepatic insulin sensitivity and plasma free fatty acid availability. We used stable isotope-labeled tracer methods to evaluate glucose and lipid kinetics in 8 overweight and obese men (age, 38 ± 3 years; body mass index, 33.7 ± 1.7 kg/m(2); means ± SEM) on 2 occasions (randomized crossover design): once, the day after they consumed a balanced diet that provided an amount of energy that matched their energy expenditure, and another time, the day after they consumed a balanced diet that provided 30% excess calories. Eight healthy, lean men (34 ± 1 years; 22.5 ± 0.6 kg/m(2)) were studied under isocaloric conditions only to provide a reference for normal lipid kinetics. VLDL-TG and VLDL-apolipoprotein B-100 (apoB-100) concentrations and secretion rates were significantly greater (P < .01) in overweight/obese compared with lean men. Hypercaloric, compared with isocaloric, feeding in overweight/obese men increased glucose rate of appearance in plasma (904 ± 21 vs 873 ± 26 μmol/min), the hepatic insulin resistance index (10.9 ± 2.2 vs 8.3 ± 1.8), and VLDL-apoB-100 concentration and secretion rate (1.91 ± 0.24 vs. 1.53 ± 0.13 nmol/min), whereas VLDL-apoB-100 plasma clearance rate, VLDL-TG secretion and plasma clearance rates, and free fatty acid rate of appearance in plasma were not affected by overfeeding. One day of moderate overfeeding (30% excess energy intake) stimulates hepatic glucose and VLDL-apo B-100 secretion rates but has no effect on hepatic and adipose tissue fatty acid metabolism in overweight/obese men.
Tracy, Andrea L; Wee, Colin J M; Hazeltine, Grace E; Carter, Rebecca A
2015-03-15
Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption. Explicitly manipulating experience with the sucrose reinforcer by pre-exposing half the rats prior to 10weeks of HFD consumption attenuated the motivational deficit seen in the absence of this familiarity, resulting in obese rats performing at the same level as lean rats. Finally, after 8weeks on a HFD, rats did not express a conditioned place preference for sucrose, indicating a decrement in reward value independent of motivation. These findings are consistent with prior literature showing an increase in food motivation for rats with a shorter time consuming the obesigenic diet, and for those with more prior experience with the reinforcer. This account also helps reconcile these findings with increased food motivation in obese humans due to extensive experience with palatable food and suggests that researchers engaging in non-human animal studies of obesity would better model the conditions under which human obesity develops by using a varied, cafeteria-style diet to increase the breadth of food experiences. Copyright © 2015 Elsevier Inc. All rights reserved.
Cassie, Nikki; Anderson, Richard L; Wilson, Dana; Pawsey, Anne; Mercer, Julian G; Barrett, Perry
2017-10-01
Food structure contributes to the induction of satiation and the maintenance of satiety following intake of a meal. There is evidence from human studies that protein-crosslinking of a milk-protein based meal may enhance satiety, but the mechanism underpinning this effect is unknown. We investigated whether a rat model would respond in a similar manner and might provide mechanistic insight into enhanced satiety by structural modification of a food source. Rats were schedule fed a modified AIN-93M based diet in a liquid form or protein-crosslinked to produce a soft-solid form. This was compared to a modified AIN-93M solid diet. Average daily caloric intake was in the order solid > liquid > crosslinked. Body composition was unaltered in the solid group, but there was a loss of fat in the liquid group and a loss of lean and fat tissue in the crosslinked group. Compared to rats fed a solid diet, acute responses in circulating GLP-1, leptin and insulin were eliminated or attenuated in rats fed a liquid or crosslinked diet. Quantification of homeostatic neuropeptide expression in the hypothalamus showed elevated levels of Npy and Agrp in rats fed the liquid diet. Measurement of food intake after a scheduled meal indicated that reduced energy intake of liquid and crosslinked diets is not due to enhancement of satiety. When continuously available ad-libitum, rats fed a liquid diet showed reduced weight gain despite greater 24 h caloric intake. During the dark phase, caloric intake was reduced, but compensated for during the light phase. We conclude that structural modification from a liquid to a solidified state is beneficial for satiation, with less of a detrimental effect on metabolic parameters and homeostatic neuropeptides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tucker, Kristal R.; Godbey, Steven J.; Thiebaud, Nicolas; Fadool, Debra Ann
2012-01-01
Physiological and nutritional state can modify sensory ability and perception through hormone signaling. Obesity and related metabolic disorders present a chronic imbalance in hormonal signaling that could impact sensory systems. In the olfactory system, external chemical cues are transduced into electrical signals to encode information. It is becoming evident that this system can also detect internal chemical cues in the form of molecules of energy homeostasis and endocrine hormones, whereby neurons of the olfactory system are modulated to change animal behavior towards olfactory cues. We hypothesized that chronic imbalance in hormonal signaling and energy homeostasis due to obesity would thereby disrupt olfactory behaviors in mice. To test this idea, we utilized three mouse models of varying body weight, metabolic hormones, and visceral adiposity – 1) C57BL6/J mice maintained on a condensed-milk based, moderately high-fat diet (MHF) of 32% fat for 6 months as the diet-induced obesity model, 2) an obesity-resistant, lean line of mice due to a gene-targeted deletion of a voltage-dependent potassium channel (Kv1.3-null), and 3) a genetic model of obesity as a result of a gene-targeted deletion of the melanocortin 4 receptor (MC4R-null). Diet-induced obese (DIO) mice failed to find fatty-scented hidden peanut butter cracker, based solely on olfactory cues, any faster than an unscented hidden marble, initially suggesting general anosmia. However, when these DIO mice were challenged to find a sweet-scented hidden chocolate candy, they had no difficulty. Furthermore, DIO mice were able to discriminate between fatty acids that differ by a single double bond and are components of the MHF diet (linoleic and oleic acid) in a habituation-dishabituation paradigm. Obesity-resistant, Kv1.3-null mice exhibited no change in scented object retrieval when placed on the MHF-diet, nor did they perform differently than wild-type mice in parallel habituation-dishabituation paradigms of fatty food-related odor components. Genetically obese, MC4R-null mice successfully found hidden scented objects, but did so more slowly than lean, wild-type mice, in an object-dependent fashion. In habituation-dishabituation trials of general odorants, MC4R-null mice failed to discriminate a novel odor, but were able to distinguish two fatty acids. Object memory recognition tests for short- and long-term memory retention demonstrated that maintenance on the MHF diet did not modify ability to perform these tasks independent of whether mice became obese or were resistant to weight gain (Kv1.3-null), however, the genetically predisposed obese mice (MC4R-null) failed the long-term object memory recognition performed at 24 hours. These results demonstrate that even though both the DIO mice and genetically predisposed obese mice are obese, they vary in the degree to which they exhibit behavioral deficits in odor detection, odor discrimination, and long-term memory. PMID:22995978
Salomão, Emilianne Miguel; Gomes-Marcondes, Maria Cristina Cintra
2012-12-01
Nutritional supplementation with some amino acids may influence host's responses and also certain mechanism involved in tumor progression. It is known that exercise influences body weight and muscle composition. Previous findings from our group have shown that leucine has beneficial effects on protein composition in cachectic rat model as the Walker 256 tumor. The main purpose of this study was to analyze the effects of light exercise and leucine and/or glutamine-rich diet in body composition and skeletal muscle protein synthesis and degradation in young tumor-bearing rats. Walker tumor-bearing rats were subjected to light aerobic exercise (swimming 30 min/day) and fed a leucine-rich (3%) and/or glutamine-rich (4%) diet for 10 days and compared to healthy young rats. The carcasses were analyzed as total water and fat body content and lean body mass. The gastrocnemious muscles were isolated and used for determination of total protein synthesis and degradation. The chemical body composition changed with tumor growth, increasing body water and reducing body fat content and total body nitrogen. After tumor growth, the muscle protein metabolism was impaired, showing that the muscle protein synthesis was also reduced and the protein degradation process was increased in the gastrocnemius muscle of exercised rats. Although short-term exercise (10 days) alone did not produce beneficial effects that would reduce tumor damage, host protein metabolism was improved when exercise was combined with a leucine-rich diet. Only total carcass nitrogen and protein were recovered by a glutamine-rich diet. Exercise, in combination with an amino acid-rich diet, in particular, leucine, had effects beyond reducing tumoral weight such as improving protein turnover and carcass nitrogen content in the tumor-bearing host.
Diet quality is associated with measures of body fat in adolescents from Otago, New Zealand.
Wong, Jyh Eiin; Parnell, Winsome R; Howe, Anna S; Lubransky, Alexandra C; Black, Katherine E; Skidmore, Paula M L
2015-06-01
To examine the potential associations between diet quality and multiple measures of body composition in a sample of New Zealand adolescents aged 14-18 years. Cross-sectional survey of eleven high schools in Otago, New Zealand. Each participant completed an online FFQ and a New Zealand Diet Quality Index for Adolescents (NZDQI-A) score was calculated based on variety and adequacy of intake for five major food groups. Besides height and waist circumference measurements, body composition was assessed using segmental bio-impedance analysis. Generalized estimating equations were used to examine associations between diet quality and body composition in models adjusted for sex, age, ethnicity and socio-economic status. High schools in Otago, New Zealand. High-school students (n 681, 56 % male, mean age 16·1 (sd 1·5) years) participating in the Otago School Students Lifestyle Survey Two. Higher NZDQI-A scores were significantly associated with lower body fat percentage (β=-0·19; 95 % CI -0·35, -0·04; P=0·014), fat-to-lean mass ratio (β=-0·26; 95 % CI -0·46, -0·05; P=0·016) and lower fat mass index (β=-0·23; 95 % CI -0·45, -0·004; P=0·046) after multivariate adjustment. No association was found between NZDQI-A and BMI, waist circumference or waist-to-height ratio. Diet quality, as measured by NZDQI-A, was associated only with measures of body fat, not measures of overall body size. Measures specific to body fat should be used for more accurate ascertainment of body composition in examining the diet-body composition associations in this age group.
Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K
2016-01-01
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.