Science.gov

Sample records for dietary deficiency induces

  1. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  2. Dietary zinc deficiency exaggerates ethanol-induced liver injury in mice: involvement of intrahepatic and extrahepatic factors.

    PubMed

    Zhong, Wei; Zhao, Yantao; Sun, Xinguo; Song, Zhenyuan; McClain, Craig J; Zhou, Zhanxiang

    2013-01-01

    Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.

  3. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    PubMed

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect.

  4. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    PubMed

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect. PMID:27544374

  5. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.

    PubMed

    Ryz, Natasha R; Lochner, Arion; Bhullar, Kirandeep; Ma, Caixia; Huang, Tina; Bhinder, Ganive; Bosman, Else; Wu, Xiujuan; Innis, Sheila M; Jacobson, Kevan; Vallance, Bruce A

    2015-11-01

    Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense.

  6. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment.

    PubMed

    Delpech, Jean-Christophe; Thomazeau, Aurore; Madore, Charlotte; Bosch-Bouju, Clementine; Larrieu, Thomas; Lacabanne, Chloe; Remus-Borel, Julie; Aubert, Agnès; Joffre, Corinne; Nadjar, Agnès; Layé, Sophie

    2015-11-01

    Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment.

  7. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency

    PubMed Central

    Zhang, Yu; Gu, Ming; Cai, Wujie; Yu, Lijing; Feng, Li; Zhang, Lu; Zang, Qingqing; Wang, Yahui; Wang, Dongshan; Chen, Hui; Tong, Qingchun; Ji, Guang; Huang, Cheng

    2016-01-01

    Studies on peroxisome proliferator-activated receptor (PPAR)-γ ligands have been focused on agonists. However, PPARγ activation may induce obesity and nonalcoholic fatty liver disease (NAFLD), one of the most challenging medical conditions. Here, we identified that isorhamnetin, a naturally occurring compound in fruits and vegetables and the metabolite of quercetin, is a novel antagonist of PPARγ. Isorhamnetin treatment inhibited the adipocyte differentiation induced by the PPARγ agonist rosiglitazone, reduced obesity development and ameliorated hepatic steatosis induced by both high-fat diet treatment and leptin deficiency. Our results suggest that dietary supplement of isorhamnetin may be beneficial to prevent obesity and steatosis and PPARγ antagonists may be useful to treat hepatic steatosis. PMID:26775807

  8. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency.

    PubMed

    Zhang, Yu; Gu, Ming; Cai, Wujie; Yu, Lijing; Feng, Li; Zhang, Lu; Zang, Qingqing; Wang, Yahui; Wang, Dongshan; Chen, Hui; Tong, Qingchun; Ji, Guang; Huang, Cheng

    2016-01-01

    Studies on peroxisome proliferator-activated receptor (PPAR)-γ ligands have been focused on agonists. However, PPARγ activation may induce obesity and nonalcoholic fatty liver disease (NAFLD), one of the most challenging medical conditions. Here, we identified that isorhamnetin, a naturally occurring compound in fruits and vegetables and the metabolite of quercetin, is a novel antagonist of PPARγ. Isorhamnetin treatment inhibited the adipocyte differentiation induced by the PPARγ agonist rosiglitazone, reduced obesity development and ameliorated hepatic steatosis induced by both high-fat diet treatment and leptin deficiency. Our results suggest that dietary supplement of isorhamnetin may be beneficial to prevent obesity and steatosis and PPARγ antagonists may be useful to treat hepatic steatosis. PMID:26775807

  9. Changes in circulating levels of fibroblast growth factor 23 induced by short-term dietary magnesium deficiency in rats.

    PubMed

    Matsuzaki, Hiroshi; Katsumata, Shinichi; Maeda, Yoshiaki; Kajita, Yasutaka

    2016-06-01

    Fibroblast growth factor 23 (FGF23) is a potent regulator of phosphorus (P) and vitamin D metabolism. Long-term dietary magnesium (Mg) deficiency increases circulating levels of FGF23, whereas the effects of short-term dietary Mg deficiency are unclear. Thus, the present study investigated whether short-term dietary Mg deficiency affects circulating levels of FGF23. We also assessed changes in renal mRNA expression of vitamin D metabolizing enzymes and type II sodium-phosphate (Na/Pi) cotransporters, since these are regulated by FGF23. Rats were fed a control diet (control group) or an Mg-deficient diet (Mg-deficient group) for 2, 4 or 7 days. Serum Mg levels were significantly lower in the Mg-deficient group than in the control group at all time points. Serum FGF23 levels were significantly higher in the Mg-deficient group than in the control group at day 7. The 25-hydroxyvitamin D-24-hydroxylase (24(OH)ase) mRNA levels were significantly higher in the Mg-deficient group than in the control group at day 7 . No significant differences in types IIa and IIc Na/Pi cotransporter mRNA levels were observed between the control and Mg-deficient groups. These results suggest that dietary Mg deficiency causes a rapid increase in circulating levels of FGF23 and renal 24(OH)ase mRNA levels. PMID:27624533

  10. Dietary zinc deficiency induces oxidative stress and promotes tumor necrosis factor-α- and interleukin-1β-induced RANKL expression in rat bone

    PubMed Central

    Suzuki, Takako; Katsumata, Shin-ichi; Matsuzaki, Hiroshi; Suzuki, Kazuharu

    2016-01-01

    We investigated the effects of dietary zinc deficiency on oxidative stress and bone metabolism. Four-week-old male Wistar rats were randomly assigned to one of three groups for 4 weeks: a zinc-adequate group (30 ppm); a zinc-deficient group (1 ppm); and a pair-fed group (30 ppm) that was pair-fed to the zinc-deficient group. The iron content and the thiobarbituric acid reactive substance level in bone were higher in the zinc-deficient group than in the zinc-adequate and pair-fed groups. The mRNA expression level of osteoblastogenesis-related genes such as bone morphogenetic protein 2 and runt-related transcription factor 2 was lower in the zinc-deficient group than in the zinc-adequate and pair-fed groups. In contrast, the mRNA expression levels of tumor necrosis factor-α, interleukin-1β and osteoclastogenesis-related genes such as receptor activator of nuclear factor-κB ligand and nuclear factor of activated T cells cytoplasmic 1 were higher in the zinc-deficient group than in the zinc-adequate and pair-fed groups. These findings suggested that dietary zinc deficiency reduced osteoblastogenesis via a decrease in the expression of bone morphogenetic protein 2 and increased osteoclastogenesis via enhancement of the expression of receptor for activator of nuclear factor-κB ligand induced by oxidative stress-stimulated tumor necrosis factor-α and interleukin-1β. PMID:27013778

  11. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-01-01

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer's disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  12. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model

    PubMed Central

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-01-01

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  13. [Vitamin deficiencies in breastfed children due to maternal dietary deficiency].

    PubMed

    Kollée, L A A

    2006-03-01

    Dietary deficiencies of vitamin B12 and vitamin D during pregnancy and lactation may result in health problems in exclusively breastfed infants. Vitamin-B12 deficiency in these infants results in irritability, anorexia and failure to thrive during the first 4-8 months of life. Severe and permanent neurodevelopmental disturbances may occur. The most at risk for vitamin-B12 deficiency are breast-fed infants ofveganist and vegetarian mothers. Mothers who cover their skin prevent exposure to the sun and may consequently be at risk for vitamin-D deficiency, as well as putting their offspring at risk. In prenatal and perinatal care, it is important to take the maternal dietary history in order to be able to prevent or treat these disorders. Guidelines for obstetrical and neonatal care should include the topic of vitamin deficiency.

  14. Muricidal suppression by chlorpheniramine and changes in brain levels following dietary-induced thiamine deficiency in rats.

    PubMed

    Onodera, K

    1987-01-01

    The effects of thiamine deficiency on pharmacological and pharmacokinetic activities of chlorpheniramine were investigated in rats. Chlorpheniramine (5-10 mg/kg) showed a dose-dependent suppressive effect on muricide induced by thiamine deficiency. The ED50 value for muricidal suppression at 1 hr was approximately 7.1 mg/kg (95% confidence limits, 5.4-9.3 mg/kg) after oral administration. Using a high-performance liquid chromatographic (HPLC) method, chlorpheniramine was detectable at 10 min in the blood and brain of rats. The present pharmacokinetic data suggest that chlorpheniramine can easily pass through the blood-brain barrier (B.B.B.) and enter the brain. It is stored therein and is later slowly released and excreted. In thiamine deficient rats, chlorpheniramine entered the brain in much higher concentrations than in normal and pair-fed rats, and significantly higher levels were maintained for a period of 1.5 hr. These results suggest that thiamine deficiency affects pharmacological and pharmacokinetic activities in rats, and support the view that there is a malfunction of the B.B.B. in thiamine deficient rats. These factors should be taken into consideration in clinical usage and dosage. PMID:3685155

  15. Dietary Silicon Deficiency Does Not Exacerbate Diet-Induced Fatty Lesions in Female ApoE Knockout Mice123

    PubMed Central

    Jugdaohsingh, Ravin; Kessler, Katharina; Messner, Barbara; Stoiber, Martin; Pedro, Liliana D; Schima, Heinrich; Laufer, Günther; Powell, Jonathan J; Bernhard, David

    2015-01-01

    Background: Dietary silicon has been positively linked with vascular health and protection against atherosclerotic plaque formation, but the mechanism of action is unclear. Objectives: We investigated the effect of dietary silicon on 1) serum and aorta silicon concentrations, 2) the development of aortic lesions and serum lipid concentrations, and 3) the structural and biomechanic properties of the aorta. Methods: Two studies, of the same design, were conducted to address the above objectives. Female mice, lacking the apolipoprotein E (apoE) gene, and therefore susceptible to atherosclerosis, were separated into 3 groups of 10–15 mice, each exposed to a high-fat diet (21% wt milk fat and 1.5% wt cholesterol) but with differing concentrations of dietary silicon, namely: silicon-deprived (−Si; <3-μg silicon/g feed), silicon-replete in feed (+Si-feed; 100-μg silicon/g feed), and silicon-replete in drinking water (+Si-water; 115-μg silicon/mL) for 15–19 wk. Silicon supplementation was in the form of sodium metasilicate (feed) or monomethylsilanetriol (drinking water). Results: The serum silicon concentration in the −Si group was significantly lower than in the +Si-feed (by up to 78%; P < 0.003) and the +Si-water (by up to 84%; P < 0.006) groups. The aorta silicon concentration was also lower in the −Si group than in the +Si-feed group (by 65%; P = 0.025), but not compared with the +Si-water group. There were no differences in serum and aorta silicon concentrations between the silicon-replete groups. Body weights, tissue wet weights at necropsy, and structural, biomechanic, and morphologic properties of the aorta were not affected by dietary silicon; nor were the development of fatty lesions and serum lipid concentrations. Conclusions: These findings suggest that dietary silicon has no effect on atherosclerosis development and vascular health in the apoE mouse model of diet-induced atherosclerosis, contrary to the reported findings in the cholesterol

  16. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis.

    PubMed

    Lazic, Milos; Inzaugarat, Maria Eugenia; Povero, Davide; Zhao, Iris C; Chen, Mark; Nalbandian, Madlena; Miller, Yury I; Cherñavsky, Alejandra C; Feldstein, Ariel E; Sears, Dorothy D

    2014-01-01

    Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6) promote and omega-3 fatty acids (ω3) reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO) enzymatically produces some of these metabolites and is induced by high fat (HF) diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT) mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH), similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL). Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO) mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet significantly reduces

  17. Dietary vitamin B12 deficiency in an adolescent white boy.

    PubMed

    O'Gorman, P; Holmes, D; Ramanan, A V; Bose-Haider, B; Lewis, M J; Will, A

    2002-06-01

    Dietary deficiency of cobalamin resulting in tissue deficiency in white individuals is unusual. However, several patients with dietary deficiency who were neither vegan nor Hindu have been described. This report describes the case of a 14 year old boy who was a white non-Hindu with a very low intake of cobalamin, which was not apparent until a detailed dietary assessment was performed. The patient responded rapidly to a combination of oral and parenteral B12. This case illustrates the fact that severe dietary vitamin B12 deficiency can occur in non-Hindu white individuals. Inadequate dietary content of B12 may not be apparent until a detailed dietary assessment is performed. This patient is likely to have had subclinical vitamin B12 deficiency for several years. Increased vitamin B12 requirements associated with the adolescent growth spurt may have provoked overt tissue deficiency.

  18. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  19. Iron induced nickel deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  20. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis.

    PubMed

    Zhu, Longdong; Kong, Ming; Han, Yuan-Ping; Bai, Li; Zhang, Xiaohui; Chen, Yu; Zheng, Sujun; Yuan, Hong; Duan, Zhongping

    2015-05-01

    Epidemiological studies have revealed an association between vitamin D deficiency and various chronic liver diseases. However, it is not known whether lack of vitamin D can induce spontaneous liver fibrosis in an animal model. To study this, mice were fed either a control diet or a vitamin D deficient diet (VDD diet). For the positive control, liver fibrosis was induced with carbon tetrachloride. Here we show, for the first time, that liver fibrosis spontaneously developed in mice fed the VDD diet. Long-term administration of a VDD diet resulted in necro-inflammation and liver fibrosis. Inflammatory mediators including tumor necrosis factor-α, interleulin-1, interleukin-6, Toll-like-receptor 4, and monocyte chemotactic protein-1 were up-regulated in the livers of the mice fed the VDD diet. Conversely, the expression of Th2/M2 markers such as IL-10, IL-13, arginase 1, and heme oxygenase-1 were down-regulated in the livers of mice fed the VDD diet. Transforming growth factor-β1 and matrix metalloproteinase 13, which are important for fibrosis, were induced in the livers of mice fed the VDD diet. Moreover, the VDD diet triggered apoptosis in the parenchymal cells, in agreement with the increased levels of Fas and FasL, and decreased Bcl2 and Bclx. Thus, long-term vitamin D deficiency can provoke chronic inflammation that can induce liver apoptosis, which consequently activates hepatic stellate cells to initiate liver fibrosis.

  1. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency.

  2. Dietary Zinc Deficiency in Rodents: Effects on T-Cell Development, Maturation and Phenotypes

    PubMed Central

    Blewett, Heather J.; Taylor, Carla G.

    2012-01-01

    Zinc deficiency is one of the leading risk factors for developing disease and yet we do not have a clear understanding of the mechanisms behind the increased susceptibility to infection. This review will examine the interrelationships among the hypothalamus-pituitary-adrenal stress axis, p56lck, and T-cell maturation in both zinc deficiency and responses during zinc repletion. We will highlight differences between the adult mouse model (wasting malnutrition) and growing rat model (stunting malnutrition) of dietary zinc deficiency and discuss the use of various controls to separate out the effects of zinc deficiency from the associated malnutrition. Elevated serum corticosterone in both zinc deficient and pair-fed rats does not support the hypothesis that zinc deficiency per se leads to corticosterone-induced apoptosis and lymphopenia. In fact, the zinc deficient rat does not have lymphopenia. Thymocytes from zinc deficient mice and rats have elevated levels of p56lck, a signalling protein with a zinc clasp structure, but this does not appear to affect thymocyte maturation. However, post-thymic T-cell maturation appears to be altered based on the lower proportion of splenic late thymic emigrants in zinc deficient rats. Fewer new T-cells in the periphery could adversely affect the T-cell repertoire and contribute to immunodeficiency in zinc deficiency. PMID:22822446

  3. Dietary pattern and nutritional deficiencies among urban adolescents

    PubMed Central

    Deka, Mrigen Kr.; Malhotra, Anil Kumar; Yadav, Rashmi; Gupta, Shubhanshu

    2015-01-01

    Introduction: Adolescents are considered to be a nutritionally vulnerable segment of the population. There is a greater need to look into the nutritional status of adolescents but unfortunately, precise estimates of their dietary intake, dietary practices as well as nutritional deficiencies have been the least explored area. The general objective for conducting this study was to assess the dietary pattern and nutritional deficiencies among adolescents. Materials and Methods: A cross-sectional study was conducted among adolescents in schools and colleges in the urban areas of Jhansi district in Uttar Pradesh. The study sample consisted of 400 school children in the age group of 10-19 years. Food consumption of the subjects was assessed using a 3-day food intake recall method. Results: Mean age of the adolescents was 14.16 years. More than half of the children studied had malnutrition (53.5%). Mean intake of calorie, protein, fat, iron, and vitamins A and C were lower than the Recommended Dietary Allowances (RDAs). The habitual dietary pattern indicated poor consumption of milk, liver, and leafy vegetables. In comparison to boys (31.5%), more girls (46%) were underweight. On seeing the association, nutritional status of these adolescents within the normal limits were found to be significantly higher in those from nuclear families (P < 0.001), those with better educated parents (P < 0.000), and those from families of higher socioeconomic status (P < 0.000). Conclusion: Overall, among the participants, there were both macro- and micronutrients deficiencies. Therefore, there is a need to encourage people to adopt small family norms, and a need for the sensitization of both adolescents and their parents through health and nutrition education (HNE) to improve the health and nutritional status of the adolescents. PMID:26288775

  4. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background. PMID:27630560

  5. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice.

    PubMed

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background. PMID:27630560

  6. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  7. Brain damage in infancy and dietary vitamin B12 deficiency.

    PubMed

    Wighton, M C; Manson, J I; Speed, I; Robertson, E; Chapman, E

    1979-07-14

    A case of the exclusively breast-fed infant of a vegetarian mother is reported. Neurological deterioration commenced between three and six months of age, and progressed to a comatose premoribund state by the age of nine months. Investigations revealed a mild nutritional vitamin B12 deficiency in the mother, and a very severe nutritional B12 deficiency in the infant, with severe megaloblastic anaemia. Treatment of the infant with vitamin B12 resulted in a rapid clinical and haematological improvement, but neurological recovery was incomplete. Evidence is presented that dietary B12 deficiency was the sole cause of the infant's deterioration, and the literature relating to the condition is reviewed. It is recommended that all strict vegetarians (vegans), especially women in the child-bearing age group, take vitamin B12 supplements.

  8. Selenium and selenoprotein deficiencies induce widespread pyogranuloma formation in mice, while high levels of dietary selenium decrease liver tumor size driven by TGFa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying l...

  9. Iron-induced nickel deficiency in pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic loss due to nickel (Ni) deficiency can occur in horticultural and agronomic crops. This study assesses impact of excessive iron (Fe) on expression of Ni deficiency in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Field and greenhouse experiments found Ni deficiency to be inducible by ei...

  10. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets.

    PubMed

    Glorieux, Francis H; Pettifor, John M

    2014-01-01

    This review describes the pathogenesis, clinical presentation and biochemical perturbations found in privational (nutritional) rickets and pseudo-vitamin D deficiency rickets (PDDR), an autosomal recessive condition with loss of function mutations in CYP27B1. It may seem strange to combine a discussion on privational rickets and PDDR as a single topic, but privational rickets and PDDR present with similar clinical signs and symptoms and with similar perturbations in bone and mineral metabolism. Of interest is the characteristic lack of features of rickets at birth in infants with PDDR, a finding which has also been reported in infants born to vitamin D-deficient mothers. This highlights the independence of the fetus and neonate from the need for vitamin D to maintain calcium homeostasis during this period. The variable roles of vitamin D deficiency and dietary calcium deficiency in the pathogenesis of privational rickets are discussed and the associated alterations in vitamin D metabolism highlighted. Although PDDR is a rare autosomal recessive disorder, results of long-term follow-up are now available on the effect of treatment with calcitriol, and these are discussed. Areas of uncertainty, such as should affected mothers breastfeed their infants, are emphasized.

  11. Effects of dietary magnesium deficiency on thallium-201 kinetics and distribution in rat myocardium: concise communication

    SciTech Connect

    Llaurado, J.G.; Madden, J.A.; Smith, G.A.

    1983-05-01

    Kinetics and distribution of TI-201 were studied in myocardium of rats with chronic dietary induced Mg deficiency. Rats were fed the Mg-deficient diet for 30 days and were then injected intravenously with 0.2 mCi of TI-201. Comparable control animals were fed a standard laboratory diet. One-half hour after injection, rats were killed and a segment of myocardium was washed with nonradioactive Krebs solution in a special chamber. Radioactivity in the tissue was recorded continuously for 1 hr. A three-compartment model (extracellular, main intracellular, and subcellular) was found to describe adequately the kinetics of TI-201. In myocardium of Mg-deficient animals, significant changes in values of transport rate constants and compartment sizes for TI-201 indicated a moderate decrease in extracellular compartment and a threefold enlargement in subcellular compartment (presumably mitochondrial) at the expense of the main intracellular compartment, which underwent a marked reduction. Bulk TI-201 uptake in myocardium of Mg-deficient rats was unchanged. The findings are interpreted as being consistent with mitochondrial alterations reported in Mg-deficient animals. Clinical implications are discussed.

  12. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus. PMID:20624989

  13. Dietary factors and luteal phase deficiency in healthy eumenorrheic women

    PubMed Central

    Andrews, Mary A.; Schliep, Karen C.; Wactawski-Wende, Jean; Stanford, Joseph B.; Zarek, Shvetha M.; Radin, Rose G.; Sjaarda, Lindsey A.; Perkins, Neil J.; Kalwerisky, Robyn A.; Hammoud, Ahmad O.; Mumford, Sunni L.

    2015-01-01

    STUDY QUESTION Are prospectively assessed dietary factors, including overall diet quality, macronutrients and micronutrients, associated with luteal phase deficiency (LPD) in healthy reproductive aged women with regular menstrual cycles? SUMMARY ANSWER Mediterranean Diet Score (MDS), fiber and isoflavone intake were positively associated with LPD while selenium was negatively associated with LPD after adjusting for age, percentage body fat and total energy intake. WHAT IS KNOWN ALREADY LPD may increase the risk of infertility and early miscarriage. Prior research has shown positive associations between LPD and low energy availability, either through high dietary restraint alone or in conjunction with high energy expenditure via exercise, but few studies with adequate sample sizes have been conducted investigating dietary factors and LPD among healthy, eumenorrheic women. STUDY DESIGN, SIZE, DURATION The BioCycle Study (2005–2007) prospectively enrolled 259 women from Western New York state, USA, and followed them for one (n = 9) or two (n = 250) menstrual cycles. PARTICIPANTS/MATERIALS, SETTING, METHODS Women aged 18–44 years, with self-reported BMI between 18 and 35 kg/m2 and cycle lengths between 21 and 35 days, were included in the study. Participants completed baseline questionnaires, four 24-h dietary recalls per cycle and daily diaries capturing vigorous exercise, perceived stress and sleep; they also provided up to eight fasting serum samples during clinic visits timed to specific phases of the menstrual cycle using a fertility monitor. Cycles were included for this analysis if the peak serum luteal progesterone was >1 ng/ml and a urine or serum LH surge was detected. Associations between prospectively assessed diet quality, macronutrients and micronutrients and LPD (defined as luteal duration <10 days) were evaluated using generalized linear models adjusting for age, percentage body fat and total energy intake. MAIN RESULTS AND THE ROLE OF CHANCE LPD

  14. MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency

    PubMed Central

    Fong, Louise Y.; Taccioli, Cristian; Jing, Ruiyan; Smalley, Karl J.; Alder, Hansjuerg; Jiang, Yubao; Fadda, Paolo; Farber, John L.; Croce, Carlo M.

    2016-01-01

    Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ∼16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC. PMID:26918602

  15. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2014-01-01

    Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342

  16. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent.

    PubMed

    Kumssa, Diriba B; Joy, Edward J M; Ander, E Louise; Watts, Michael J; Young, Scott D; Walker, Sue; Broadley, Martin R

    2015-01-01

    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita(-1) d(-1) (± SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge. PMID:26098577

  17. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    PubMed Central

    Kumssa, Diriba B.; Joy, Edward J. M.; Ander, E. Louise; Watts, Michael J.; Young, Scott D.; Walker, Sue; Broadley, Martin R.

    2015-01-01

    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge. PMID:26098577

  18. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    NASA Astrophysics Data System (ADS)

    Kumssa, Diriba B.; Joy, Edward J. M.; Ander, E. Louise; Watts, Michael J.; Young, Scott D.; Walker, Sue; Broadley, Martin R.

    2015-06-01

    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita-1 d-1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge.

  19. Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick.

    PubMed

    Hunt, C D

    1989-11-01

    The metabolic effects of dietary boron, magnesium, and molybdenum on mineral metabolism in the cholecalciferol-deficient chick, with emphasis on growth cartilage histology, were studied. One-day-old cockerel chicks were assigned to groups in a fully-crossed, three factor, 2 x 2 x 2 design. The basal diet was based on ground corn, high-protein casein, and corn oil and contained 125 IU cholecalciferol (inadequate), 0.465 mg B, 2.500 mg Mg, and 0.420 mg Mo/kg. The treatments were the supplementation of the basal diet with B at O or 3; Mg at 300 (inadequate) or 500 (adequate); and Mo at 0 or 20 mg/kg. At d 25, B depressed mortality, alleviated the cholecalciferol-deficiency induced distortion of the marrow sprouts (MS) of the proximal tibial epiphysial plate, and elevated the numbers of osteoclasts within the MS. Adequate Mg exacerbated the cholecalciferol-deficiency induced bone lesions. Mo widened the MS markedly. In Mg-deficient chicks, B elevated plasma Ca and Mg concentrations and growth, but inhibited initiation of cartilage calcification; B had the opposite effect in Mg-adequate chicks. An interaction among B, Mg, and Mo affected plasma uric acid and glucose concentrations. B may function to modify mineral metabolism in cholecalciferol deficiency, suppressing bone anabolism in concurrent Mg deficiency and bone catabolism in concurrent Mg adequacy.

  20. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat.

    PubMed

    Takeuchi, Takashi; Fukumoto, Yutaka; Harada, Etsumori

    2002-04-01

    Female rats were fed on a diet deficient in (n-3) fatty acid or enriched in docosahexaenoic acid (DHA) diet from mating and throughout pregnancy and lactation. Pups fed on the same diet as their dams were used for experiments. The effects of dietary (n-3) fatty acid deficiency on cerebral catecholamine contents and electroencephalogram (EEG) in rat pups during the postnatal development were investigated. The (n-3) deficient rat pups showed significantly lower levels of noradrenaline (NA) in cerebral cortex, hippocampus and striatum, compared with those in the DHA adequate rats. Dopamine (DA) contents were significantly lower in the (n-3) deficient rats until the 7th day of age. These results were consistent with observations in the EEG analysis, relative powers of fast activities in the EEG recorded from the (n-3) deficient rats were significantly lower than those in the DHA adequate rats. The effect of supplementation with DHA in (n-3) deficient rats on learning ability was also studied in a model of learning, active avoidance test and three-panel run way test, after weaning. Although the percentages of avoidance in the (n-3) deficient rats (saline group) were constantly 20% or less until the 3rd session, the percentage of avoidance in the DHA supplemented rats rapidly increased to 53% following the first administration. While in the three-panel runway test, there were no significant differences between two groups. These results suggest that chronic consumption of a (n-3) fatty acid deficient diet could modify the biosynthesis of catecholamine in the brain, and might induce the behavioral disturbances. Furthermore, the decreased learning ability induced by (n-3) deficiency in the active avoidance test is a reversible following a supplementing DHA after the weaning.

  1. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  2. Dietary Cholesterol-Induced Post-Testicular Infertility

    PubMed Central

    Ouvrier, Aurélia; Alves, Georges; Damon-Soubeyrand, Christelle; Marceau, Geoffroy; Cadet, Rémi; Janny, Laurent; Brugnon, Florence; Kocer, Ayhan; Pommier, Aurélien; Lobaccaro, Jean-Marc A.; Drevet, Joël R.; Saez, Fabrice

    2011-01-01

    This work shows that an overload of dietary cholesterol causes complete infertility in dyslipidemic male mice (the Liver X Receptor-deficient mouse model). Infertility resulted from post-testicular defects affecting the fertilizing potential of spermatozoa. Spermatozoa of cholesterol-fed lxr−/− animals were found to be dramatically less viable and motile, and highly susceptible to undergo a premature acrosome reaction. We also provide evidence, that this lipid-induced infertility is associated with the accelerated appearance of a highly regionalized epididymal phenotype in segments 1 and 2 of the caput epididymidis that was otherwise only observed in aged LXR-deficient males. The epididymal epithelial phenotype is characterized by peritubular accumulation of cholesteryl ester lipid droplets in smooth muscle cells lining the epididymal duct, leading to their transdifferentiation into foam cells that eventually migrate through the duct wall, a situation that resembles the inflammatory atherosclerotic process. These findings establish the high level of susceptibility of epididymal sperm maturation to dietary cholesterol overload and could partly explain reproductive failures encountered by young dyslipidemic men as well as ageing males wishing to reproduce. PMID:22073227

  3. Dietary Induced Atherogenesis in Swine

    PubMed Central

    Gerrity, Ross G.; Naito, Herbert K.; Richardson, Mary; Schwartz, Colin J.

    1979-01-01

    Hypercholesterolemia was induced in pigs by feeding a chow diet supplemented with 1.5% cholesterol and 19.5% lard for periods up to 12 weeks. The aortic intima from areas of spontaneously differing permeability to proteins, as demarcated by their uptake of Evans blue dye, was examined using light microscopy and both scanning and transmission electron microscopy to describe the earliest detectable changes in intimal morphology induced by the diet. After 2, 4, and 6 weeks of feeding, cholesterol/lardfed pigs demonstrated monocyte adherence to the endothelium in areas of enhanced permeability (blue areas) in 86% of samples examined, as compared to 52% in areas of lesser permeability (white areas) and 17% in control animals. Similarly, the number of monocytes in the intima was higher in blue areas than in adjacent white areas or blue areas from control animals. After 12 weeks of feeding, all blue areas showed intimal monocytes, with fewer seen in white areas. Aortic endothelial cells in hypercholesterolemic pigs were normal in ultrastructural appearance, except they contained more lysosomes and cytoplasmic filaments than those from control animals. No lesions were observed at 2, 4, and 6 weeks, although plasma cholesterol levels were substantially elevated (200-400 mg/dl) at these times. A marked hyper-β-lipoproteinemia was evident from 4 weeks onward, but no elevation of serum triglycerides was evident at any stage. Plasma phospholipid concentrations increased but not in direct proportion to cholesterol levels. At 12 weeks, foam cell lesions were observed in areas of enhanced permeability but not in adjacent areas of normal permeability. Lesion foam cells appeared to be derived from the monocytes which adhered to and penetrated the endothelium at earlier stages, since no intimal involvement, or lipid engorgement, by medial smooth muscle cells was observed. ImagesFigure 2Figure 3Figure 1Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 4Figure 5Figure 6Figure

  4. Dietary Deficiency of Cobalamin Presented Solely as Schizoaffective Disorder in a Lacto-Vegetarian Adolescent.

    PubMed

    Dhananjaya, Somashekarappa; Manjunatha, Narayana; Manjunatha, Rajashekaaiah; Kumar, Seetharamarao Udaya

    2015-01-01

    Cobalamin is an important nutrient. It is not synthesized in human body and supplied only in nonvegetarian diet. Its deficiency reported with range of psychiatric disorders. Only four pediatric cases have been reported as psychiatric disorders. Authors report a case of dietary deficiency of cobalamin presenting solely as schizoaffective disorder without hematological/neurological manifestations. Early diagnosis and treatment of cobalamin deficiency is an opportunity to reverse pathophysiology. This case highlights the importance of diet history and serum cobalamin level in atypical psychiatric presentations.

  5. Dietary Deficiency of Cobalamin Presented Solely as Schizoaffective Disorder in a Lacto-Vegetarian Adolescent.

    PubMed

    Dhananjaya, Somashekarappa; Manjunatha, Narayana; Manjunatha, Rajashekaaiah; Kumar, Seetharamarao Udaya

    2015-01-01

    Cobalamin is an important nutrient. It is not synthesized in human body and supplied only in nonvegetarian diet. Its deficiency reported with range of psychiatric disorders. Only four pediatric cases have been reported as psychiatric disorders. Authors report a case of dietary deficiency of cobalamin presenting solely as schizoaffective disorder without hematological/neurological manifestations. Early diagnosis and treatment of cobalamin deficiency is an opportunity to reverse pathophysiology. This case highlights the importance of diet history and serum cobalamin level in atypical psychiatric presentations. PMID:26664085

  6. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  7. The influence of dietary folate supplementation on the incidence of teratogenesis in zinc-deficient rats.

    PubMed

    Quinn, P B; Cremin, F M; O'Sullivan, V R; Hewedi, F M; Bond, R J

    1990-07-01

    Two studies were conducted to investigate the possibility that pteroylmonoglutamic acid supplementation would alleviate teratogenesis in zinc-deficient rats. Pregnant rats of the Wistar strain were fed on Zn-deficient (less than 0.5 mg Zn/kg) or Zn-supplemented (75 or 95 mg Zn/kg) diets from mating until day 18.5 of gestation. The basal level of pteroylmonoglutamic acid added to all diets (0.56 mg/kg) was supplemented with 30-200 mg/kg in selected diets. Dietary Zn deprivation resulted in fetal resorption, fetal growth retardation and reduced concentrations of Zn in fetuses and maternal plasma and tibia. Low maternal body-weight at conception emerged as an important determinant of risk of resorption in Zn-deficient rats. Dietary Zn deficiency resulted in reduced maternal plasma folate concentrations and these values were inversely correlated with litter size or weight in Zn-deficient rats. Pteroylmonoglutamic acid supplementation increased maternal plasma folate concentrations, but did not reduce the high incidence of teratogenesis which occurred in Zn-deficient rats. Supplementation of Zn-deficient rats with pteroylmonoglutamic acid significantly increased the incidence of clubbed foot and tended to increase the incidence of brain or meningeal abnormalities, or both, and cleft palate, but did not reduce maternal or fetal Zn status. Pteroylmonoglutamic acid supplementation also increased the weights of Zn-supplemented control fetuses. PMID:2400764

  8. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency

    PubMed Central

    Bondi, Corina O.; Taha, Ameer Y.; Tock, Jody L.; Totah, Nelson K.; Cheon, Yewon; Torres, Gonzalo E.; Rapoport, Stanley I.; Moghaddam, Bita

    2013-01-01

    Background Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at-risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition, in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs), has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence may be the critical age range for the negative impact of diet as an environmental insult. Methods A rat model involving consecutive generations of n-3 PUFA deficiency was developed based on the assumption that dietary trends toward decreased consumption of these fats began four-five decades ago when the parents of current adolescents were born. Behavioral performance in a wide range of tasks, as well as markers of dopamine-related neurotransmission was compared in adolescents and adults fed n-3 PUFA adequate and deficient diets. Results In adolescents, dietary n-3 PUFA deficiency across consecutive generations produced a modality-selective and task-dependent impairment in cognitive and motivated behavior distinct from the deficits observed in adults. While this dietary deficiency affected expression of dopamine-related proteins in both age groups, in adolescents, but not adults, there was an increase in tyrosine hydroxylase expression that was selective to the dorsal striatum. Conclusions These data support a nutritional contribution to optimal cognitive and affective functioning in adolescents. Furthermore, they suggest that n-3 PUFA deficiency disrupts adolescent behaviors through enhanced dorsal striatal dopamine availability. PMID:23890734

  9. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets

    PubMed Central

    Antonides, Alexandra; Schoonderwoerd, Anne C.; Scholz, Gabi; Berg, Brian M.; Nordquist, Rebecca E.; van der Staay, Franz Josef

    2015-01-01

    Iron deficiency is the most common nutritional deficiency in humans, affecting more than two billion people worldwide. Early-life iron deficiency can lead to irreversible deficits in learning and memory. The pig represents a promising model animal for studying such deficits, because of its similarities to humans during early development. We investigated the effects of pre-weaning dietary iron deficiency in piglets on growth, blood parameters, cognitive performance, and brain histology later in life. Four to six days after birth, 10 male sibling pairs of piglets were taken from 10 different sows. One piglet of each pair was given a 200 mg iron dextran injection and fed a control milk diet for 28 days (88 mg Fe/kg), whereas the other sibling was given a saline injection and fed an iron deficient (ID) milk diet (21 mg Fe/kg). Due to severely retarded growth of two of the ID piglets, only eight ID piglets were tested behaviorally. After dietary treatment, all piglets were fed a balanced commercial pig diet (190–240 mg Fe/kg). Starting at 7.5 weeks of age, piglets were tested in a spatial cognitive holeboard task. In this task, 4 of 16 holes contain a hidden food reward, allowing measurement of working (short-term) memory and reference (long-term) memory (RM) simultaneously. All piglets received 40–60 acquisition trials, followed by a 16-trial reversal phase. ID piglets showed permanently retarded growth and a strong decrease in blood iron parameters during dietary treatment. After treatment, ID piglets' blood iron values restored to normal levels. In the holeboard task, ID piglets showed impaired RM learning during acquisition and reversal. Iron staining at necropsy at 12 weeks of age showed that ID piglets had fewer iron-containing cells in hippocampal regions CA1 and dentate gyrus (DG). The number of iron-containing cells in CA3 correlated positively with the average RM score during acquisition across all animals. Our results support the hypothesis that early

  10. Effect of selenium and vitamin E dietary deficiencies on chick lymphoid organ development (42361)

    SciTech Connect

    Marsh, J.A.; Combs, G.F. Jr.; Whitacre, M.E.; Dietert, R.R.

    1986-09-01

    Diets specifically deficient in selenium (Se) and/or vitamin E or adequate in both nutrients were fed to chicks from the time of hatching. Lymphoid organs (bursa, thymus, and in some instances, spleen) were collected from chicks 7-35 days of age. Growth of the chicks fed these diets was monitored over the experimental period as was lymphoid organ growth. The development of the primary lymphoid organs was further assessed by histological techniques and the organ contents of vitamin E (..cap alpha..-tocopherol) and Se were determined. Specific deficiencies of either Se or vitamin E were found to significantly impair bursal growth as did a combined deficiency. Thymic growth was impaired only by the combined deficiency diet. Severe histopathological changes in the bursa resulted from the combined deficiency and these were detectable by 10-14 days after hatching. These changes were characterized by a gradual degeneration of the epithelium and an accompanying depletion of lymphocytes. Similar changes, although slower to develop and less severe, were observed in the thymus as a result of the combined deficiency. When both serum and tissue levels of vitamin E and Se were monitored, it was observed that these were rapidly and independently depleted by the specific deficiency diets. These data suggest that the primary lymphoid organs are major targets of Se and vitamin E dietary deficiencies and provide a possible mechanism by which immune function may be impaired.

  11. Contrasting effects of a dietary copper deficiency in male and female mice.

    PubMed

    Lynch, S M; Klevay, L M

    1994-02-01

    Female rats are protected from the lethal effects of a dietary copper (Cu) deficiency, but female mice fed a Cu-deficient diet develop atrial thromboses and die. To further investigate the effect of sex on Cu status in mice (n = 16), male and female adult Swiss-Webster mice were fed Cu-supplemented (8.4 mg Cu/kg) or Cu-deficient (0.3 mg Cu/kg) diets with deionized water for 43-49 days. Six female mice, but only one male mouse, fed the Cu-deficient diet died during the experiment. Both male and female mice fed the Cu-deficient diet exhibited typical features of deficiency. The severity of anemia and the values observed for several indicators of Cu status (plasma ceruloplasmin [EC 1.16.3.1.] and erythrocyte copper-zinc superoxide dismutase [EC 1.15.1.1.] activities, cardiac Cu) were similar in both male and female Cu-deficient mice. However, cardiac enlargement (0.97 vs 0.73 g/100 g body wt, P < 0.05), cardiac edema (79.9% vs 78.2% cardiac water, P < 0.05) and depletion of renal Cu (10.4 vs 12.5 micrograms/g dry weight, P < 0.05) were more severe in female compared with male, Cu-deficient mice. Furthermore, although hepatic Cu was significantly (P < 0.05) lower in female Cu-deficient compared with Cu-supplemented mice, it was not significantly decreased by deficiency in male mice. These data indicate that the female mice experienced a more extreme form of Cu deficiency than the males.

  12. Pannexin 1 deficiency can induce hearing loss.

    PubMed

    Zhao, Hong-Bo; Zhu, Yan; Liang, Chun; Chen, Jin

    Gap junctions play a critical role in hearing. Connexin gap junction gene mutations can induce a high incidence of hearing loss. Pannexin (Panx) gene also encodes gap junction proteins in vertebrates. Panx1 is a predominant pannexin isoform and has extensive expression in the cochlea. Here, we report that deletion of Panx1 in the cochlea could produce a progressive hearing loss. The auditory brainstem response (ABR) recording showed that hearing loss was moderate to severe and severe at high-frequencies. Distortion product otoacoustic emission (DPOAE), which reflects the activity of active cochlear mechanics that can amply acoustic stimulation to enhance hearing sensitivity and frequency selectivity, was also reduced. We further found that Panx1 deficiency could activate Caspase-3 cell apoptotic pathway in the cochlea to cause hair cells and other types of cells degeneration. These data indicate that like connexins Panx1 deficiency can also induce hearing loss. These data also suggest that pannexins play important rather than redundant roles in the cochlea and hearing.

  13. Effect of dietary zinc deficiency on the endogenous phosphorylation and dephosphorylation of rat erythrocyte membrane

    SciTech Connect

    Paterson, P.G.; Allen, O.B.; Bettger, W.J.

    1987-12-01

    The effect of dietary zinc deficiency on patterns of phosphorylation and dephosphorylation of rat erythrocyte membrane proteins and erythrocyte filterability was examined. Weanling male Wistar rats were fed an egg white-based diet containing less than 1.1 mg zinc/kg diet ad libitum for 3 wk. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg zinc/kg diet. Net phosphorylation and dephosphorylation of erythrocyte membrane proteins were carried out by an in vitro assay utilizing (gamma-/sup 32/P)ATP. The membrane proteins were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the /sup 32/P content of gel slices was counted by Cerenkov counting. Erythrocyte filterability was measured as the filtration time of suspensions of erythrocytes, both untreated and preincubated with diamide, under constant pressure. Erythrocyte ghosts from zinc-deficient rats demonstrated greater dephosphorylation of protein bands R1 plus R2 and R7 than pair-fed rats and greater net phosphorylation of band R2.2 than pair-fed or ad libitum-fed control rats (P less than 0.05). Erythrocytes from ad libitum-fed control rats showed significantly longer filtration times than those from zinc-deficient or pair-fed control rats. In conclusion, dietary zinc deficiency alters in vitro patterns of erythrocyte membrane protein phosphorylation and dephosphorylation, whereas the depression in food intake associated with the zinc deficiency increases erythrocyte filterability. 71 references.

  14. Effect of general dietary deficiency and protein malnutrition on the fibrogenesis caused by silica dust in rats

    PubMed Central

    Zaidi, S. H.; Kaw, J. L.

    1970-01-01

    Zaidi, S. H., and Kaw, J. L. (1970).Brit. J. industr. Med.,27, 250-259. Effect of general dietary deficiency and protein malnutrition on the fibrogenesis caused by silica dust in rats. In order to determine whether the dietary deficiency, which may occur in miners in India, is likely to influence their response to silica dust, two experiments were carried out on rats. In both experiments rats were exposed to silica dust by intratracheal inoculation of saline suspension, the dose being sufficient to cause marked fibrosis in normal rats. In the first experiment rats were fed on a multiple deficient diet and in the second on a diet grossly deficient in protein but otherwise adequate. Although these diets caused other evidence of dietary deficiency, in neither group was there any difference in the extent of silicotic fibrosis as assessed by histological or biochemical methods. Images PMID:4317610

  15. Fatty liver produced by dietary deficiencies: its pathogenesis and potentiation by ethanol.

    PubMed

    Lieber, C S; Spritz, N; DeCarli, L M

    1969-05-01

    In a study of the pathogenesis of hepatic fat accumulation under experimental conditions mimicking chronic alcoholism, rats were fed a low-fat diet, deficient in amino acids and choline, containing either ethanol or isocaloric amounts of carbohydrate. Dietary deficiencies alone produced a moderately fatty liver after 24 days. The combination of ethanol and dietary deficiencies resulted in enhanced lipid accumulation, which was apparent after only 11 days. In an investigation of the origin of hepatic triglyceride fatty acids, the experiment was repeated after the adipose lipids had been marked by the feeding of oils containing characteristic fatty acids (linseed oil, containing linolenate, or coconut oil, containing laurate and myristate). In all animals, the fatty acid composition of the hepatic triglycerides differed markedly from that of adipose tissue; it had a larger percentage of endogenously synthesized fatty acids and a five times smaller percentage of the marker fatty acids. In addition, ethanol feeding resulted in a greater retention of the marker fatty acids in the adipose tissue. Thus, the deposition of hepatic triglycerides produced by the feeding of deficient diets is markedly potentiated by ethanol; the triglyceride fatty acids accumulated under these conditions appear to originate, for the most part, not from mobilization of depot fat, but from endogenous synthesis.

  16. Influence of dietary iron level and form on biochemical, hematological, and immunological changes in copper deficient rats

    SciTech Connect

    Leu, H.; Gallaher, D.D.; Kramer, T.R.

    1986-03-01

    Weanling male Lewis rats (N = 10/group) were fed ad-libitum for 42 days diets based on AIN standards containing 21% casein, 5% safflower oil, deficient (0.6 ..mu..g/g) or adequate (5.6 ..mu..g/g) levels of Cu, and adequate (50 ..mu..g/g) or high (300 ..mu..g/g) levels of Fe/sup +2/ or Fe/sup +3/. Cu-deficient rats, regardless of Fe level or form, exhibited depressed (p < 0.05) serum Cu, Fe and ceruloplasmin activity, and hemoglobin levels; and elevated (p < 0.05) unsaturated serum Fe binding capacity. Except for high Fe/sup +3/ fed rats, Cu-deficient rats showed decreased hematocrits. Decreased proliferation was exhibited by concanavalin-A (Con-A) stimulated spleen lymphoid cells (SLC) of Cu-deficient rats fed adequate dietary Fe, but not by SLC of Cu-deficient rats fed high dietary Fe. High Fe fed rats exhibited reduced proliferation and increased variability in proliferation by Con-A stimulated SLC, which apparently caused a lack of difference in proliferation by SLC of Cu-deficient and Cu-adequate rats fed high Fe. Thus, high dietary Fe did not correct biochemical and hematological parameters in Cu-deficient rats, but because of lowered proliferation and increased variability of SLC proliferation, high dietary Fe did alleviate suppressed Con-A stimulated SLC proliferation in Cu-deficiency.

  17. Physiological management of dietary deficiency in n-3 fatty acids by spawning Gulf killifish (Fundulus grandis).

    PubMed

    Patterson, Joshua T; Green, Christopher C

    2015-08-01

    Lipid dynamics of spawning fish are critical to the production of viable embryos and larvae. The present study utilized manipulation of dietary fatty acid (FA) profiles to examine the ability of spawning Gulf killifish (Fundulus grandis) to mobilize critical lipid components from somatic reserves or synthesize long-chain polyunsaturated FAs (LC-PUFAs) de novo from shorter-chain C18 precursors. An egg and multi-tissue evaluation of changes in FA concentrations across time after fish were switched from LC-PUFA-rich to LC-PUFA-deficient experimental diets was employed. The two experimental diets contained lipid sources which differed drastically in n-3 C18 FA content but had similar levels of n-6 C18 FAs. Discrete effects of dietary n-3 FAs can be analyzed because n-3 and n-6 represent distinct metabolic families which cannot be exchanged in vivo. Results indicate that a combination of mobilization and de novo synthesis is likely utilized to maintain physiologically required FA levels in critical tissues and embryos. Mobilization was supported by decreases in LC-PUFAs in somatic tissues and decreases in intraperitoneal fat content and liver mass. Evidence for biosynthesis was provided by a higher level of n-3 LC-PUFAs in the liver and ova of fish fed diets containing n-3 C18 precursors versus those fed diets with low levels of precursor FAs. The characteristic physiological plasticity of Gulf killifish is exemplified in the nutritional domain by its management of dietary FA deficiency. PMID:25939715

  18. [Prevalence of deficiency and dietary intake of iron, zinc and copper in Chilean childbearing age women].

    PubMed

    Mujica-Coopman, María F; Borja, Angélica; Pizarro, Fernando; Olivares, Manuel

    2014-03-01

    The aim of the present study was to evaluate anemia, the biochemical status and dietary adequacy of iron (Fe), zinc (Zn) and copper (Cu), in Chilean childbearing age women. We studied a convenience sample of 86 women aged 18 to 48 years from Santiago, Chile. We determined anemia and the micronutrient status through hemoglobin (Hb) mean corpuscular volume, transferrin saturation, zinc protoporphyrin, serum ferritin (SF), serum Zn and Cu. Dietary adequacy was estimated using a food frequency questionnaire. Of all women, 4.7% had Fe deficiency (ID) anemia, 21 % ID without anemia, 26 % depleted Fe stores and 48.3% normal Fe status. Obese women had higher SF (p<0.01) compared with those classified as having normal BMI. Also, showed higher Hb (p<0.05) concentrations compared with overweight and normal weight women. Partidipants showed 3.5 % and 2.3 % of Zn and Cu deficiency, respectively. Also, 95 %, 94 % and 99 % had adequate intake of Fe, Zn and Cu respectively, according to EAR cut points. There were no significant differences in micronutrients intake across different nutritional status. There was a low prevalence of anemia, Fe, Zn and Cu deficiency. A high percentage of women reached micronutrient adequacy. However, 47% of women had ID without anemia and Fe depleted stores.

  19. The effect of zinc deficiency on salt taste acuity, preference, and dietary sodium intake in hemodialysis patients.

    PubMed

    Kim, So Mi; Kim, Miyeon; Lee, Eun Kyoung; Kim, Soon Bae; Chang, Jai Won; Kim, Hyun Woo

    2016-07-01

    Introduction High sodium intake is the main cause of fluid overload in hemodialysis (HD) patients, leading to increased cardiovascular mortality. High sodium intake is known to be associated with low salt taste acuity and/or high preference. As the zinc status could influence taste acuity, we analyzed the effect of zinc deficiency on salt taste acuity, preference, and dietary sodium intake in HD patients. Methods A total of 77 HD patients was enrolled in this cross-sectional study. Zinc deficiency was defined as serum zinc level with below 70 µg/mL. The patients were divided into two groups based on serum zinc level. Salt taste acuity and preference were determined by a sensory test using varying concentrations of NaCl solution, and dietary sodium intake was estimated using 3-day dietary recall surveys. Findings The mean salt recognition threshold and salt taste preference were significantly higher in the zinc deficient group than in the non-zinc deficient group. And there was significant positive correlation between salt taste preference and dietary sodium intake in zinc deficient group (r = 0.43, P = 0.002). Although, the dietary sodium intake showed a high tendency with no significance (P = 0.052), interdialytic weight gain was significantly higher in the zinc deficient group than in the non-zinc deficient group (2.68 ± 1.02 kg vs. 3.18 ± 1.02 kg; P = 0.047). Discussion Zinc deficiency may be related to low salt taste acuity and high salt preference, leading to high dietary sodium intake in HD patients.

  20. Copper deficiency potentiates ethanol induced liver damage

    SciTech Connect

    Zidenberg-Cherr, S.; Han, B.; Graham, T.W.; Keen, C.L. )

    1992-02-26

    Copper sufficient (+Cu) and deficient ({minus}Cu) rats were fed liquid diets with EtOH or dextrose at 36% of kcals for 2 mo. Consumption of either the {minus}Cu diet or EtOH resulted in lower liver CuZn superoxide dismutase (CuZnSOD) and glutathione peroxidase (GPx) activities were lowest in EtOH/{minus}Cu rats; being 20% and 50% of control values, respectively. Ethanol resulted in higher MnSOD activity in +Cu and {minus}Cu rats. Low Cu intake as well as EtOH resulted in lower mitochondrial (Mit) TBARS relative to controls. TBARS were lowest in Mit from EtOH/{minus}Cu rats. Microsomal (Micro) TBARS were lower in {minus}Cu and EtOH-fed rats than in controls. The peroxidizability index (PI) was calculated as an index of substrate availability for lipid peroxidation. Ethanol feeding resulted in lower PI's in Mit and Micro than measured in non-EtOH rats. There was a positive correlation between Micro PI's and TBARS. These results show that despite reductions in components of antioxidant defense, compensatory mechanism arise resulting in reduction in peroxidation targets and/or an increase in alternate free radical quenching factors. Histological examination demonstrated increased portal and intralobular connective tissue and cell necrosis in EtOH/{minus}Cu rats, suggesting that Cu may be a critical modulator of EtOH induced tissue damage.

  1. Optimal management of iron deficiency anemia due to poor dietary intake

    PubMed Central

    Aspuru, Kattalin; Villa, Carlos; Bermejo, Fernando; Herrero, Pilar; López, Santiago García

    2011-01-01

    Iron is necessary for the normal development of multiple vital processes. Iron deficiency (ID) may be caused by several diseases, even by physiological situations that increase requirements for this mineral. One of its possible causes is a poor dietary iron intake, which is infrequent in developed countries, but quite common in developing areas. In these countries, dietary ID is highly prevalent and comprises a real public health problem and a challenge for health authorities. ID, with or without anemia, can cause important symptoms that are not only physical, but can also include a decreased intellectual performance. All this, together with a high prevalence, can even have negative implications for a community’s economic and social development. Treatment consists of iron supplements. Prevention of ID obviously lies in increasing the dietary intake of iron, which can be difficult in developing countries. In these regions, foods with greater iron content are scarce, and attempts are made to compensate this by fortifying staple foods with iron. The effectiveness of this strategy is endorsed by multiple studies. On the other hand, in developed countries, ID with or without anemia is nearly always associated with diseases that trigger a negative balance between iron absorption and loss. Its management will be based on the treatment of underlying diseases, as well as on oral iron supplements, although these latter are limited by their tolerance and low potency, which on occasions may compel a change to intravenous administration. Iron deficiency has a series of peculiarities in pediatric patients, in the elderly, in pregnant women, and in patients with dietary restrictions, such as celiac disease. PMID:22114518

  2. Dietary vitamin C supplementation reduces noise-induced hearing loss in guinea pigs.

    PubMed

    McFadden, Sandra L; Woo, Jenifer M; Michalak, Nathan; Ding, Dalian

    2005-04-01

    Vitamin C (ascorbate) is a water-soluble, low molecular weight antioxidant that works in conjunction with glutathione and other cellular antioxidants, and is effective against a variety of reactive oxygen species, including superoxide and hydroxyl radicals that have been implicated in the etiology of noise-induced hearing loss (NIHL). Whereas most animals can manufacture their own vitamin C, humans and a few other mammals such as guinea pigs lack the terminal enzyme for vitamin C synthesis and must obtain it from dietary sources. To determine if susceptibility to NIHL could be influenced by manipulating dietary levels of vitamin C, albino guinea pigs were raised for 35 days on a diet with normal, supplemented or deficient levels of ascorbate, then exposed to 4 kHz octave band noise at 114 dB SPL for 6 h to induce permanent threshold shifts (PTS) of the scalp-recorded auditory brainstem response. Animals that received the highest levels of dietary ascorbate developed significantly less PTS for click stimuli and 4, 8, 12, and 16 kHz tones than animals on normal and deficient diets. Outer hair cell loss was minimal in all groups after noise exposure, but permanent damage to stereocilia were observed in noise-exposed ears. The results support the hypothesis that dietary factors influence individual susceptibility to hearing loss, and suggest that high levels of vitamin C may be beneficial in reducing susceptibility to NIHL.

  3. Selenium deficiency and detoxication functions in the rat: effect of chronic dietary cadmium.

    PubMed

    Olsson, U

    1985-01-01

    Male rats from moderately selenium-deficient dams were fed a Torula yeast-based, selenium-deficient diet for 7 weeks, with or without added supplements of sodium selenite (0.2 ppm selenium) and cadmium chloride (50 ppm cadmium) in the drinking water. Cadmium caused about 10% body-weight loss in selenium-deficient, as well as in supplemented rats. Glutathione peroxidase activity in liver 105,000 g supernatant and in erythrocyte hemolysate from selenium-deficient rats was about 1% and 3%, respectively, of that in supplemented rats. A cadmium-induced decrease of glutathione peroxidase activity was found in erythrocyte and liver preparations from selenium-supplemented rats, while cadmium caused an increase of the liver activity in selenium deficiency. Selenium deficiency per se caused a significant decrease of cytochrome P-450 content, while cadmium treatment did not modify further the content of this enzyme. NADPH-cytochrome c reductase was not changed by selenium regimen or cadmium treatment, while cytochrome b5 was increased on cadmium treatment of the supplemented rat. The microsomal metabolism of N,N-dimethylaniline showed a decrease of the cytochrome P-450-dependent C-oxygenation in selenium-deficient groups. Cadmium treatment had no further significant effect. The flavin-containing monooxygenase, which performs N-oxygenation of N,N-dimethylaniline, was decreased significantly by cadmium treatment in selenium deficiency. Selenium deficiency seems thus to be connected with higher susceptibility to cadmium-induced impairments of liver detoxication functions, although progressive accumulation of cadmium in the liver appears to produce only modest effects.

  4. Effect of dietary zinc deficiency on testes of Wistar rats: Morphometric and cell quantification studies.

    PubMed

    Kumari, Deepa; Nair, Neena; Bedwal, Ranveer Singh

    2011-01-01

    The present study investigates the effect of dietary zinc deficiency on testes of Wistar rats. Pre-pubertal rats (40-50g) were divided into three groups of 10 each viz. zinc control (ZC) and pair fed (PF) [100ppm zinc diet] and zinc deficient (ZD) [1ppm zinc diet]. Experiments were set for 2- and 4-weeks. Pre-pubertal rats fed zinc deficient diet for 2- and 4-weeks exhibited significant (P<0.05) decrease in diet consumption when compared with their respective control groups. Parallel to the reduced diet consumption, a significant (P<0.05) decrease in body and testicular weight of ZD animals was also observed. These observations indicate that the zinc deficiency reduces diet consumption and growth of the animals. Histological studies revealed degeneration in testes of ZD rats as evident by decreased seminiferous tubular diameter and Leydig cell nuclear diameter. Decreased Leydig cell nuclear diameter is responsible for disruption of the biochemical function of Leydig cell. Testicular atrophy (viz. wavy tunica propria, karyolysis, pyknosis, karyorhexis, apoptotic bodies, multinucleated giant cells, few sperms in the lumen, atrophied Leydig cells and accumulation of oedematous fluid in the interstitium) accompanied by significant loss of germ/somatic cells (viz. Type A and Type B spermatogonia, leptotene, zygotene, pachytene spermatocytes, Golgi, cap and acrosome spermatids, Sertoli and Leydig cell) was evident in ZD groups. The degeneration was severe after 4-weeks of zinc deficiency. These observations provide evidence that the functional and morphological changes in testes are probably due to zinc deficiency. Further, the increased oedematous fluid in the interstitial region is due to the cellular death. Impairment of spermatogenesis can be attributed to the direct action of zinc on testes or indirectly from Leydig cell degeneration indicating that zinc is a critical component for maintenance of both mitotic and meiotic stages of spermatogenesis.

  5. Dietary Determinants of and Possible Solutions to Iron Deficiency for Young Women Living in Industrialized Countries: A Review

    PubMed Central

    Beck, Kathryn L.; Conlon, Cathryn A.; Kruger, Rozanne; Coad, Jane

    2014-01-01

    Iron deficiency is a concern in both developing and developed (industrialized) countries; and young women are particularly vulnerable. This review investigates dietary determinants of and possible solutions to iron deficiency in young women living in industrialized countries. Dietary factors including ascorbic acid and an elusive factor in animal protein foods (meat; fish and poultry) enhance iron absorption; while phytic acid; soy protein; calcium and polyphenols inhibit iron absorption. However; the effects of these dietary factors on iron absorption do not necessarily translate into an association with iron status and iron stores (serum ferritin concentration). In cross-sectional studies; only meat intake has consistently (positively) been associated with higher serum ferritin concentrations. The enhancing effects of ascorbic acid and meat on iron absorption may be negated by the simultaneous consumption of foods and nutrients which are inhibitory. Recent cross-sectional studies have considered the combination and timing of foods consumed; with mixed results. Dietary interventions using a range of focused dietary measures to improve iron status appear to be more effective than dietary approaches that focus on single nutrients or foods. Further research is needed to determine optimal dietary recommendations for both the prevention and treatment of iron deficiency. PMID:25244367

  6. Dietary phosphate supplementation delays the onset of iron deficiency anemia and affects iron status in rats.

    PubMed

    Nakao, Mari; Yamamoto, Hironori; Nakahashi, Otoki; Ikeda, Shoko; Abe, Kotaro; Masuda, Masashi; Ishiguro, Mariko; Iwano, Masayuki; Takeda, Eiji; Taketani, Yutaka

    2015-11-01

    Inorganic phosphate (Pi) plays critical roles in bone metabolism and is an essential component of 2,3-diphosphoglycerate (2,3-DPG). It has been reported that animals fed a low-iron diet modulate Pi metabolism, whereas the effect of dietary Pi on iron metabolism, particularly in iron deficiency anemia (IDA), is not fully understood. In this study, we hypothesized the presence of a link between Pi and iron metabolism and tested the hypothesis by investigating the effects of dietary Pi on iron status and IDA. Wistar rats aged 4 weeks were randomly assigned to 1 of 4 experimental dietary groups: normal iron content (Con Fe)+0.5% Pi, low-iron (Low Fe)+0.5% Pi, Con Fe+1.5% Pi, and Low Fe+1.5% Pi. Rats fed the 1.5% Pi diet for 14 days, but not for 28 days, maintained their anemia state and plasma erythropoietin concentrations within the reference range, even under conditions of low iron. In addition, plasma concentrations of 2,3-DPG were significantly increased by the 1.5% Pi diets and were positively correlated with plasma Pi concentration (r=0.779; P<.001). Dietary Pi regulated the messenger RNA expression of iron-regulated genes, including divalent metal transporter 1, duodenal cytochrome B, and hepcidin. Furthermore, iron concentration in liver tissues was increased by the 1.5% Pi in Con Fe diet. These results suggest that dietary Pi supplementation delays the onset of IDA and increases plasma 2,3-DPG concentration, followed by modulation of the expression of iron-regulated genes.

  7. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection.

    PubMed

    Herbas, Maria Shirely; Shichiri, Mototada; Ishida, Noriko; Kume, Aiko; Hagihara, Yoshihisa; Yoshida, Yasukazu; Suzuki, Hiroshi

    2015-01-01

    The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction. PMID:26296197

  8. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection

    PubMed Central

    Ishida, Noriko; Kume, Aiko; Hagihara, Yoshihisa; Yoshida, Yasukazu; Suzuki, Hiroshi

    2015-01-01

    The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction. PMID:26296197

  9. Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis

    PubMed Central

    Usui, Michihiko; Yoshida, Yutaka; Tsuji, Kunikazu; Oikawa, Kaoru; Miyazono, Kohei; Ishikawa, Isao; Yamamoto, Tadashi; Nifuji, Akira; Noda, Masaki

    2004-01-01

    Tob (transducer of erbB2) is a member of antiproliferative family proteins and acts as a bone morphogenic protein inhibitor as well as a suppressor of proliferation in T cells, which have been implicated in postmenopausal bone loss. To determine the effect of Tob deficiency on estrogen deficiency-induced bone loss, we analyzed bone metabolism after ovariectomy or sham operation in Tob-deficient mice. Ovariectomy in WT mice decreased trabecular bone volume and bone mineral density (BMD) as expected. In Tob-deficient mice, ovariectomy reduced bone volume and BMD. However, even after ovariectomy, both trabecular bone volume and BMD levels in Tob-deficient bone were comparable to those in sham-operated WT bones. Bone formation parameters (mineral apposition rate and bone formation rate) in the ovariectomized Tob-deficient mice were significantly higher than those in the ovariectomized WT mice. In contrast, the ovariectomy-induced increase in the bone resorption parameters, osteoclast surface, and osteoclast number was similar between Tob-deficient mice and WT mice. Furthermore, in ex vivo nodule formation assay, ovariectomy-induced enhancement of nodule formation was significantly higher in the bone marrow cells from Tob-deficient mice than in the bone marrow cells from ovariectomized WT mice. Both Tob and estrogen signalings converge at bone morphogenic protein activation of alkaline phosphatase and GCCG-reporter gene expression in osteoblasts, revealing interaction between the two signals. These data indicate that Tob deficiency prevents ovariectomy-induced bone loss through the superenhancement of osteoblastic activities in bone and that this results in further augmentation in the bone formation rate and the mineral apposition rate after ovariectomy in vivo. PMID:15100414

  10. Dietary iron-deficiency up-regulates hephaestin mRNA level in small intestine of rats.

    PubMed

    Sakakibara, Shoji; Aoyama, Yoritaka

    2002-05-17

    Hephaestin is a protein, recently found from the study of sla (sex-linked anemia) mouse. Hephaestin is suggested to transport iron from intestinal enterocytes into the circulation. Iron is essential for living and for humans to maintain a constant total iron concentration in whole body. In this study, it was found that dietary iron-deficiency up-regulated hephaestin mRNA level in the proximal small intestine of rats. Therefore, it is suggested that in dietary iron-deficiency, hephaestin gene expression in proximal small intestine is up-regulated to absorb more iron from diet.

  11. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.

  12. Blood donation, being Asian, and a history of iron deficiency are stronger predictors of iron deficiency than dietary patterns in premenopausal women.

    PubMed

    Beck, Kathryn L; Conlon, Cathryn A; Kruger, Rozanne; Heath, Anne-Louise M; Matthys, Christophe; Coad, Jane; Jones, Beatrix; Stonehouse, Welma

    2014-01-01

    This study investigated dietary patterns and nondietary determinants of suboptimal iron status (serum ferritin < 20 μg/L) in 375 premenopausal women. Using multiple logistic regression analysis, determinants were blood donation in the past year [OR: 6.00 (95% CI: 2.81, 12.82); P < 0.001], being Asian [OR: 4.84 (95% CI: 2.29, 10.20); P < 0.001], previous iron deficiency [OR: 2.19 (95% CI: 1.16, 4.13); P = 0.016], a "milk and yoghurt" dietary pattern [one SD higher score, OR: 1.44 (95% CI: 1.08, 1.93); P = 0.012], and longer duration of menstruation [days, OR: 1.38 (95% CI: 1.12, 1.68); P = 0.002]. A one SD change in the factor score above the mean for a "meat and vegetable" dietary pattern reduced the odds of suboptimal iron status by 79.0% [OR: 0.21 (95% CI: 0.08, 0.50); P = 0.001] in women with children. Blood donation, Asian ethnicity, and previous iron deficiency were the strongest predictors, substantially increasing the odds of suboptimal iron status. Following a "milk and yoghurt" dietary pattern and a longer duration of menstruation moderately increased the odds of suboptimal iron status, while a "meat and vegetable" dietary pattern reduced the odds of suboptimal iron status in women with children.

  13. Influence of dietary n-3 polyunsaturated fatty acids on plasma lipemic effect of vitamin B6 deficiency.

    PubMed

    Bergami, R; Maranesi, M; Marchetti, M; Sangiorgi, Z; Tolomelli, B

    1999-09-01

    Since many connections exist between vitamin B6 and lipid metabolism, we aim to investigate the lipemic effect of different dietary intakes of polyunsaturated fatty acids in rats fed a vitamin B6 deficient diet. Diets were either vitamin B6 deficient (-B6) or vitamin B6 sufficient, pair-fed to the deficient group (PF) and ad libitum (N). The diets were combined with normal lipid (LC: soya bean-coconut-palm oils) and fish oil (FO: soya bean-fish oil). The fish oil diet with sufficient vitamin B6 content caused an increase in n-3 long chain polyunsaturated fatty acids and a decrease in arachidonic acid. In the -B6 group fed a normal lipid diet, the arachidonic acid percentage decreased and the linoleic acid percentage increased; in the -B6 group fed fish oil these changes in fatty acid composition, already consequent upon dietary intake of n-3 long chain polyunsaturated fatty acids, did not show further variations. In the dietary condition of vitamin B6 deficiency, plasma cholesterol content increased in rats fed a lipid control diet, whereas no hypocholesterolemic effect was observed in those fed a fish oil diet. Plasma triglyceride contents were not influenced by dietary lipid quality because, in all conditions, the lower food intake of the PF groups caused a decrease and vitamin B6 deficiency caused an elevation in triglyceride contents which reached those of the ad libitum groups. The study highlights the interaction between vitamin B6 and polyunsaturated fatty acids and the opportunity of dietary intake of fish oil to counterbalance some effects of vitamin B6 deficiency.

  14. Cross-sectional dietary deficiencies among a prison population in Papua New Guinea

    PubMed Central

    2013-01-01

    Background To investigate the dietary adequacy of prisoners of Beon Prison, Madang, Papua New Guinea in response to a report of possible nutritional deficiency. Methods We undertook an observational, cross-sectional study. All 254 male inmates (May 2010) were eligible to answer a validated interview-based questionnaire; to have a comprehensive dietary assessment; and to provide blood for biochemical analysis (α-tocopherol, β-carotene, lutein, thiamin, riboflavin, niacin, folate, homocysteine, zinc, ferritin, and vitamins A, B12 and C). Prison guards were invited to participate as a comparison group. Results 148 male prisoners (58.3%) and 13 male prison guards participated. Prison rations consisted of white rice fortified with thiamin, niacin, and iron, tinned tuna, tinned corned beef, water crackers, and black tea, with occasional intakes of fruit and vegetables. Some prisoners received supplementary food from weekend visitors. From assessment of the prisoners dietary data, median intakes of calcium (137 mg), potassium (677 mg), magnesium (182 mg), riboflavin (0.308 mg), vitamin A (54.1 μg), vitamin E (1.68 mg), vitamin C (5.7 mg) and folate (76.4 μg) were found to be below estimated average requirements (EAR). Following are the prisoners median (P25, P75) concentration of circulating nutrients and the percentage of prisoners with levels below normal reference ranges or recognized cut-off values: serum retinol 0.73 (0.40, 1.21) μmol/L, 46% below 0.7 μmol/L; plasma folate 2.0 (1.4, 2.6) nmol/L, 98% below 6.8 nmol/L; plasma vitamin C 6.3 (1.0, 19.3) μmol/L, 64% below 11.4 μmol/L; serum zinc 9.9 (8.8, 11.1) μmol/L, 66% below 10.7 μmol/L. Guards had diets with a higher dietary diversity that were associated with greater intakes of nutrients and biomarker concentrations. Conclusions The prisoners diets are likely lacking in several micronutrients and recommendations for dietary change have been made to the prison authorities. Ongoing vigilance is

  15. Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Th1/ Th2 paradigm has become an important issue in the pathogenesis of asthma, characterized by normal Th-1 and elevated Th-2 cytokine expression, resulting in a Th2 predominance. Vitamin A deficiency (VAD) produces a significant Th1 bias, while high-level dietary vitamin A supplementation promo...

  16. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    SciTech Connect

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  17. Dietary fat level and alcohol-induced pancreatic injury

    SciTech Connect

    Towner, S.J.; Inomata, T.; Largman, C.; French, S.W.

    1986-03-01

    Effects of dietary fat levels on alcohol-induced pancreatic injury were studied in a rat model which achieves sustained blood alcohol levels and maximal nutritional control. A diet containing 5, 25, or 35% of fat (corn oil; % total calories) and either ethanol or isocaloric dextrose were intragastrically infused in male Wistar rats for 30-120 days. Following intoxication, the pancreatic pathology was examined light-microscopically. None of pair-fed controls showed abnormal pancreas histology. These results indicate potentiation of alcohol-induced pancreatic injury. Particularly higher incidence of chronic interstitial pancreatitis with increased dietary fat.

  18. The effect of estrogens and dietary calcium deficiency on the extracellular matrix of articular cartilage in Göttingen miniature pigs.

    PubMed

    Claassen, Horst; Hornberger, Frank; Scholz-Ahrens, Katharina; Schünke, Michael; Schrezenmeir, Jürgen; Kurz, Bodo

    2002-03-01

    Clinical observations have suggested that estrogens are involved in the pathogenesis of postmenopausal osteoarthritis (OA). However, positive and negative associations between the incidence of OA and serum estrogen concentrations have been reported. In contrast to this, osteoporosis is regarded as a disease with a strong estrogen-dependent component. Moreover, there is an interaction between estrogen and calcium deficiency: calcium supplementation potentiates the effect of estrogen therapy. The present study was designed to investigate how estrogen deficiency affects the articular cartilage depending on calcium supply. The distribution of different types of glycosaminoglycans and collagens can be used as an indicator for extracellular matrix changes induced by estrogen deficiency. Different levels of dietary calcium were therefore fed to intact and ovariectomized Göttingen miniature pigs for one year before articular cartilage was harvested. The histochemical staining for heavy sulfated glycosaminoglycans in the extracellular matrix of ovariectomized miniature pigs, especially of those fed with a low calcium diet, was stronger in comparison to intact animals. In intact animals type II-collagen was immunodetected in all zones of unmineralized and mineralized articular cartilage, while immunostaining for this protein was negative to weak in the deep radiated fiber zone of ovariectomized minipigs. These results suggest that the synthesis of heavy sulfated glycosaminoglycans and immunohistochemically detectable type II-collagen is possibly influenced by estrogen deficiency. In conclusion, under estrogen deficiency, the extracellular matrix of articular cartilage underwent similar changes to those observed in physiologically aging cartilage where keratan sulfate is increased as a heavy sulfated glycosaminoglycan.

  19. A Polyamine-Deficient Diet Prevents Oxaliplatin-Induced Acute Cold and Mechanical Hypersensitivity in Rats

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Pereira, Bruno; Daulhac, Laurence; Eschalier, Alain; Pezet, Denis; Moulinoux, Jacques-Philippe; Balayssac, David

    2013-01-01

    Background Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission. Methods The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor. Results A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity. Conclusion A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity. PMID:24204988

  20. Opioid-induced androgen deficiency (OPIAD).

    PubMed

    Smith, Howard S; Elliott, Jennifer A

    2012-07-01

    Opioid therapy is one of the most effective forms of analgesia currently in use. In the past few decades, the use of opioids as a long-term treatment for chronic pain has increased dramatically. Accompanying this upsurge in the use of long-term opioid therapy has been an increase in the occurrence of opioid associated endocrinopathy, most commonly manifested as an androgen deficiency and therefore referred to as opioid associated androgen deficiency (OPIAD). This syndrome is characterized by the presence of inappropriately low levels of gonadotropins (follicle stimulating hormone and luteinizing hormone) leading to inadequate production of sex hormones, particularly testosterone. Symptoms that may manifest in patients with OPIAD include reduced libido, erectile dysfunction, fatigue, hot flashes, and depression. Physical findings may include reduced facial and body hair, anemia, decreased muscle mass, weight gain, and osteopenia or osteoporosis. Additionally, both men and women with OPIAD may suffer from infertility. While the literature regarding OPIAD remains limited, it is apparent that OPIAD is becoming increasingly prevalent among chronic opioid consumers but often goes unrecognized. OPIAD can have a significant negative impact on the the quality of life of opioid users, and clinicians should anticipate the potential for its occurrence whenever long-term opioid prescribing is undertaken. Once diagnosed, treatment for OPIAD may be offered utilizing a number of androgen replacement therapy options including a variety of testosterone preparations and, for female patients with OPIAD, dehydroepiandrosterone (DHEA) supplementation. Follow-up evaluation of patients receiving androgen replacement therapy should include a review of any unresolved symptoms of hypogonadism, laboratory evaluation, and surveillance for potential adverse effects of androgen replacement therapy including prostate disease in males.: PMID:22786453

  1. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    PubMed

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P < 0.001). Decrease (P < 0.001) was recorded in serum FSH and testosterone after 2 and 4 weeks of zinc deficiency. The changes were more prominent after 4 weeks of synthetic zinc deficient diet. The results indicate that zinc deficiency during prepubertal period affects the prostate structure, total protein concentration, enhanced protein carbonyl concentration, nitric oxide as well as acid phosphatase activities and impaired hydroxysteroid dehydrogenase activities. Evidently these changes could be attributed to dysfunction of dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity. PMID

  2. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. PMID:27282869

  3. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation.

  4. Dietary influences of evening primrose and fish oil on the skin of essential fatty acid-deficient guinea pigs.

    PubMed

    Chapkin, R S; Ziboh, V A; McCullough, J L

    1987-08-01

    There have been reports that certain dietary lipids are capable of regulating cellular inflammation and hyperproliferation. To investigate further the role of dietary manipulation involving gamma-linolenic acid (18:3n-6) and eicosapentaenoic acid (20:5n-3) on hyperproliferative cellular components, the effects of orally administered primrose oil (containing 18:3n-6) and menhaden fish oil (containing 20:5n-3) were tested in a cutaneous system using the essential fatty acid (EFA)-deficient guinea pig fed a hydrogenated coconut oil (HCO) diet. The effects of the dietary crossover regimen were determined on epidermal 1) morphology, 2) DNA synthesis, 3) delta 6- and delta 5-desaturase activities and 4) fatty acid composition of skin and liver lipids. Our results demonstrated that dietary fish oil lacked the capacity to reverse the signs of epidermal hyperproliferation, acanthosis and hypergranulosis that are characteristic of EFA deficiency. In contrast, primrose oil feeding reversed the histological and biochemical signs of hyperproliferation. These results suggest that dietary fish oil, which contains largely the 20:5n-3 fatty acid, lacks EFA-functional properties in the skin. In addition, substitution of HCO with primrose or fish oil after 6 wk revealed incorporation of 18:3n-6 and 20:5n-3 into epidermal lipids, respectively. The significance of these altered epidermal fatty acid profiles is discussed.

  5. Hepatotoxicity induced by herbal and dietary supplements.

    PubMed

    Navarro, Victor J; Lucena, M Isabel

    2014-05-01

    Herbals and dietary supplements (HDS) can cause hepatotoxicity. Regulation of HDS varies across the globe. In the United States, it is defined by a law that is now two decades old. More recent regulatory approaches in Europe still do not require testing for premarket safety. The true incidence of hepatotoxicity from HDS is unknown. The presentation is most often with a hepatocellular enzyme pattern, and the outcomes can be severe, leading to transplantation in some circumstances. The diagnosis of hepatotoxicity due to HDS is made in the same way as for drugs. However, patients often must be coaxed into revealing a history of use. No causality assessment approach is perfectly suited for hepatotoxicity from HDS, but the Roussel Uclaf Causality Assessment Method is most used. Future endeavors must focus on defining epidemiology, establishing an accepted nomenclature, and identifying culprit ingredients, predisposing host factors, and useful biomarkers for injury.

  6. Effects of dietary deficiency of selective amino acids on the function of the cornea and lens in rats.

    PubMed

    Wegener, A; Golubnitschaja, O; Breipohl, W; Schild, H H; Vrensen, G F J M

    2002-01-01

    Effects of dietary deficiencies of tryptophan and methionin on the transparency of cornea and lens were investigated in young rats (Brown-Norway, BN; Sprague-Dawley, SD) over 3 months. Transparency of the cornea and lens were evaluated in weekly intervals using a photo-slitlamp microscope. After sacrifice and lens fresh weight determination the lenses were prepared for histopathology. Methionin deficiency had no effect on the parameters investigated. Tryptophan deficiency caused severe loss of body weight in both strains, with additional loss of hair in SD rats. These developed corneal neovascularisations and cataracts. BN rats showed an enhanced zone of discontinuity in the lens. Diet intermission arrested the pathological processes in the eye which restarted when feeding the diet again. This observation is supported by lens fresh weight data. DNA staining evidenced that tryptophan deficiency arrested lens fiber maturation in both strains but stimulated corneal neovascularisation only in SD rats.

  7. Fumonisin contamination of a corn sample associated with the induction of hepatocarcinogenesis in rats-role of dietary deficiencies.

    PubMed

    Gelderblom, W C A; Rheeder, J P; Leggott, N; Stockenstrom, S; Humphreys, J; Shephard, G S; Marasas, W F O

    2004-03-01

    A corn sample associated with a field outbreak of equine leukoencephalomalacia in Pennsylvania, USA, during 1983/1984 and induced hepatotoxic and hepatocarcinogenic effects when fed to male Fischer rats was analyzed mycologically and chemically for the presence of fumonisins (FB), hydrolysed FB derivatives and aflatoxins (AFB). Fusarium verticillioides was found to be the predominant fungal contaminant in the corn sample but Aspergillus flavus was also present. Trace amounts (0.1 microg/kg) of AFB(1) and AFB(2) and a total FB level of 33.5 mg/kg (FB(1):FB(2):FB(3) ratio of 9:2.3:1) were found. No hydrolysed FB derivatives or AFG(1) and AFG(2) were detected. Based on the chemical stability of the fumonisins in different corn cultures of F. verticillioides kept at 4 degrees C over a period of 13-20 years, a level of approximately 55 mg/kg of total FB is estimated in the original corn sample. A possible role of certain dietary constituents such as the high protein content and deficiencies in certain micronutrients is evaluated to address differences in the organ-specific toxicity of FB(1) in rats using commercial, semi-purified, purified and corn-only diets.

  8. Dietary exposure to diesel exhaust particles and oxidatively damaged DNA in young oxoguanine DNA glycosylase 1 deficient mice.

    PubMed

    Risom, Lotte; Møller, Peter; Dybdahl, Marianne; Vogel, Ulla; Wallin, Håkan; Loft, Steffen

    2007-12-10

    Pulmonary exposure to diesel exhaust particles (DEP) has been associated with high levels of oxidized DNA in lung cells, whereas long-term oral DEP exposure appears to induce the DNA repair system with concomitant unaltered levels of oxidized DNA in the colon and liver of rats. Here we studied the generation of oxidatively damaged DNA in young wild type (WT) and oxoguanine DNA glycosylase 1 (OGG1) deficient mice after dietary exposure to 0mg/kg, 0.8 mg/kg, or 8 mg/kg Standard Reference Material 1650 in the feed for 21 days. The ingestion of DEP did not increase the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine and comet assay endpoints in terms of strand break, endonuclease III, and formamidopyrimidine glycosylase (FPG) in the colon, liver, and lung tissue of WT or Ogg1(-/-) mice. The level of OGG1 mRNA could only be measured in WT mice and it was not increased by DEP feeding. On the contrary, the level of FPG sites was twofold higher in the liver and lung of Ogg1(-/-) mice compared to the levels in the WT mice tissues. In conclusion, although Ogg1(-/-) mice have high levels of oxidized guanine lesions, they do not appear to be markedly vulnerable to the genotoxicity by oral administration of DEP. PMID:17964092

  9. Relative roles of genetic factors, dietary deficiency, and infection in anaemia in Vanuatu, South-West Pacific.

    PubMed

    Bowden, D K; Hill, A V; Higgs, D R; Weatherall, D J; Clegg, J B

    1985-11-01

    Hypochromic anaemia is very common among the island populations of Vanuatu in the South-West Pacific. Results of a large-scale survey show that, unexpectedly, this form of anaemia is seldom due to iron deficiency or coexistent parasitic disease. Rather, it results from a previously unsuspected high incidence of alpha-thalassaemia which has been identified only by application of DNA analysis to the populations studied. These findings suggest that hypochromic anaemia in tropical or subtropical populations should not necessarily be attributed to iron deficiency; detailed studies of iron status should be carried out before major dietary changes or fortification of food with iron are implemented.

  10. Dietary sodium protects fish against copper-induced olfactory impairment.

    PubMed

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  11. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  12. Dietary xenosterols lead to infertility and loss of abdominal adipose tissue in sterolin-deficient mice.

    PubMed

    Solca, Curzio; Tint, G Stephen; Patel, Shailendra B

    2013-02-01

    The investigation of the human disease sitosterolemia (MIM 210250) has shed light not only on the pathways by which dietary sterols may traffic but also on how the mammalian body rids itself of cholesterol and defends against xenosterols. Two genes, ABCG5 and ABCG8, located at the sitosterolemia locus, each encodes a membrane-bound ABC half-transporter and constitutes a functional unit whose activity has now been shown to account for biliary and intestinal sterol excretion. Knockout mice deficient in Abcg5 or Abcg8 recapitulate many of the phenotypic features of sitosterolemia. During the course of our studies to characterize these knockout mice, we noted that these mice, raised on normal rodent chow, exhibited infertility as well as loss of abdominal fat. We show that, although sitosterolemia does not lead to any structural defects or to any overt endocrine defects, fertility could be restored if xenosterols are specifically blocked from entry and that the loss of fat is also reversed by a variety of maneuvers that limit xenosterol accumulation. These studies show that xenosterols may have a significant biological impact on normal mammalian physiology and that the Abcg5 or Abcg8 knockout mouse model may prove useful in investigating the role of xenosterols on mammalian physiology.

  13. Threonine-deficient diets induced changes in hepatic bioenergetics

    PubMed Central

    Ross-Inta, Catherine M.; Zhang, Yi-Fan; Almendares, Andrew; Giulivi, Cecilia

    2009-01-01

    Diets deficient in an indispensable amino acid are known to suppress food intake in rats. Few studies were focused at understanding how amino acid-deficient diets may elicit biochemical changes at the mitochondrial level. The goal of this study was to evaluate mitochondrial function in rats fed diets with 0.00, 0.18, 0.36, and 0.88% threonine (Thr) (set at 0, 30, 60, and 140% of Thr requirement for growth). Here, it is described for the first time that Thr-deficient diets induce a specific uncoupling of mitochondria in liver, especially with NADH-linked substrates, not observed in heart (except for Thr-devoid diet). The advantage of this situation would be to provide ATP to support growth and maintenance when high-quality protein food (or wealth of high-quality food in general) is available, whereas Thr-deficient diets (or deficient-quality protein food) promote the opposite, increasing mitochondrial uncoupling in liver. The uncoupling with NADH substrates would favor the use of nutrients as energy sources with higher FADH-to-NADH ratios, such as fat, minimizing the first irreversible NADH-dependent catabolism of many amino acids, including Thr, thus enhancing the use of the limiting amino acid for protein synthesis when a low quality protein source is available. PMID:19228885

  14. Effects of methionine supplementation on the incidence of dietary fat induced myocardial lesions in the rat.

    PubMed

    Clandinin, M T; Yamashiro, S

    1980-06-01

    Purified diets were prepared to evaluate the effect of methionine supplementation on the incidence and severity of vegetable oil-induced myocardial lesions in the rat. The unsupplemented basal diet fed was similar in nutrient composition to typical semipurified diets currently utilized for cardiopathogenic evaluation of dietary rapeseed oils and contained 1.276 mg of S-amino acid per kilocalorie. The methionine-supplemented diet contained an additional 0.25% (w/w) L-methionine or a total of 1.815 mg of S-amino acid per kilocalorie. Feeding trials were conducted in which weanling rats were fed either a diet containing 20% (w/w) soybean oil (SBO), low erucic acid rapeseed oil (LER) or high urucic acid rapeseed oil (HER) for 16 or 28 weeks. Dietary supplementation with methionine was found to reduce the incidence of focal myocardial lesions in SBO-fed animals to zero. These results suggest that marginal deficiencies in methionine may interact with the frequency and severity of myocardial changes reported for Sprague-Dawley rats fed various dietary oils. The results indicate that levels of essential nutrients should be adjusted when the energy level of the diet is increased.

  15. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  16. Leptin Deficiency Causes Insulin Resistance Induced by Uncontrolled Diabetes

    PubMed Central

    German, Jonathan P.; Wisse, Brent E.; Thaler, Joshua P.; Oh-I, Shinsuke; Sarruf, David A.; Ogimoto, Kayoko; Kaiyala, Karl J.; Fischer, Jonathan D.; Matsen, Miles E.; Taborsky, Gerald J.; Schwartz, Michael W.; Morton, Gregory J.

    2010-01-01

    OBJECTIVE Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. RESEARCH DESIGN AND METHODS Adult male Wistar rats remained nondiabetic or were injected with the β-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 μg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. RESULTS Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate–phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. CONCLUSIONS We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine

  17. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part I--Folate, Vitamin B12, Vitamin B6.

    PubMed

    Simpson, Joe Leigh; Bailey, Lynn B; Pietrzik, Klaus; Shane, Barry; Holzgreve, Wolfgang

    2010-12-01

    This two-part review highlights micronutrients for which either public health policy has been established or for which new evidence provides guidance as to recommended intakes during pregnancy. One pivotal micronutrient is folate, the generic name for different forms of a water-soluble vitamin essential for the synthesis of thymidylate and purines and, hence, DNA. For non-pregnant adult women the recommended intake is 400 μg/day dietary folate equivalent. For women capable of becoming pregnant an additional 400 μg/day of synthetic folic acid from supplements or fortified foods is recommended to reduce the risk of neural tube defects (NTD). The average amount of folic acid received through food fortification (grains) in the US is only 128 μg/day, emphasising the need for the supplemental vitamin for women of reproductive age. Vitamin B12 (cobalamin) is a cofactor required for enzyme reactions, including generation of methionine and tetrahydrofolate. B12 is found almost exclusively in foods of animal origin (meats, dairy products); therefore, vegetarians are at greatest risk for dietary vitamin B12 deficiency and should be supplemented. Vitamin B6 is required for many reactions, primarily in amino acid metabolism. Meat, fish and poultry are good dietary sources. Supplementation beyond routine prenatal vitamins is not recommended.

  18. Vitamin A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E−/− Mice and Dietary β-Carotene Prevents This Consequence

    PubMed Central

    Relevy, Noa Zolberg; Harats, Dror; Harari, Ayelet; Ben-Amotz, Ami; Bitzur, Rafael; Rühl, Ralph; Shaish, Aviv

    2015-01-01

    Vitamin A is involved in regulation of glucose concentrations, lipid metabolism, and inflammation, which are major risk factors for atherogenesis. However, the effect of vitamin A deficiency on atherogenesis has not been investigated. Therefore, the objective of the current study was to examine whether vitamin A deficiency accelerates atherogenesis in apolipoprotein E-deficient mice (apoE−/−). ApoE−/− mice were allocated into the following groups: control, fed vitamin A-containing chow diet; BC, fed chow diet fortified with Dunaliella powder containing βc isomers; VAD, fed vitamin A-deficient diet; and VAD-BC group, fed vitamin A-deficient diet fortified with a Dunaliella powder. Following 15 weeks of treatment, liver retinol concentration had decreased significantly in the VAD group to about 30% that of control group. Vitamin A-deficient diet significantly increased both plasma cholesterol concentrations and the atherosclerotic lesion area at the aortic sinus (+61%) compared to the control group. Dietary βc fortification inhibited the elevation in plasma cholesterol and retarded atherogenesis in mice fed the vitamin A-deficient diet. The results imply that dietary vitamin A deficiency should be examined as a risk factor for atherosclerosis and that dietary βc, as a sole source of retinoids, can compensate for vitamin A deficiency. PMID:25802864

  19. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice

    PubMed Central

    Ghosh, Shampa; Sinha, Jitendra Kumar; Putcha, Uday Kumar; Raghunath, Manchala

    2016-01-01

    Vitamin B12 deficiency is widely prevalent in women of childbearing age, especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters, and reproductive performance. Female weanling C57BL/6 mice were fed for 4 weeks: (a) control AIN-76A diet, (b) vitamin B12-restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption), or (c) vitamin B12-restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption). After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation, and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat% significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 h of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects. PMID:26835453

  20. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease.

    PubMed

    Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L

    2015-10-01

    Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis.

  1. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease.

    PubMed

    Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L

    2015-10-01

    Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis. PMID:26033743

  2. Immunomodulatory and Antioxidant Effects of Purple Sweet Potato Extract in LP-BM5 Murine Leukemia Virus-Induced Murine Acquired Immune Deficiency Syndrome.

    PubMed

    Kim, Ok-Kyung; Nam, Da-Eun; Yoon, Ho-Geun; Baek, Sun Jung; Jun, Woojin; Lee, Jeongmin

    2015-08-01

    The immunomodulatory effects of a dietary supplement of purple sweet potato extract (PSPE) in LP-BM5 murine leukemia virus (MuLV)-induced immune-deficient mice were investigated. Mice were divided into six groups: normal control, infected control (LP-BM5 MuLV infection), positive control (LP-BM5 MuLV infection+dietary supplement of red ginseng 300 mg/kg), purple sweet potato water extract (PSPWE) (LP-BM5 MuLV infection+dietary supplement of PSPE 300 mg/kg), PSP10EE (LP-BM5 MuLV infection+dietary supplement of 10% ethanol PSPE 300 mg/kg), and PSP80EE (LP-BM5 MuLV infection+dietary supplement of 80% ethanol PSPE 300 mg/kg). Dietary supplementation began on the day of LP-BM5 MuLV infection and continued for 12 weeks. Dietary supplementation of PSPE inhibited LP-BM5 MuLV-induced splenomegaly and lymphadenopathy and attenuated the suppression of T- and B-cell proliferation and T helper 1/T helper 2 cytokine imbalance in LP-BM5 MuLV-infected mice. Dietary supplement of PSPE increased the activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase. The data suggest that PSPE may ameliorate immune dysfunction due to LP-BM5 MuLV infection by modulating antioxidant defense systems. PMID:26076116

  3. Serotonin deficiency exacerbates acetaminophen-induced liver toxicity in mice.

    PubMed

    Zhang, Jingyao; Song, Sidong; Pang, Qing; Zhang, Ruiyao; Zhou, Lei; Liu, Sushun; Meng, Fandi; Wu, Qifei; Liu, Chang

    2015-01-29

    Acetaminophen (APAP) overdose is a major cause of acute liver failure. Peripheral 5-hydroxytryptamine (serotonin, 5-HT) is a cytoprotective neurotransmitter which is also involved in the hepatic physiological and pathological process. This study seeks to investigate the mechanisms involved in APAP-induced hepatotoxicity, as well as the role of 5-HT in the liver's response to APAP toxicity. We induced APAP hepatotoxicity in mice either sufficient of serotonin (wild-type mice and TPH1-/- plus 5- Hydroxytryptophan (5-HTP)) or lacking peripheral serotonin (Tph1-/- and wild-type mice plus p-chlorophenylalanine (PCPA)). Mice with sufficient 5-HT exposed to acetaminophen have a significantly lower mortality rate and a better outcome compared with mice deficient of 5-HT. This difference is at least partially attributable to a decreased level of inflammation, oxidative stress and endoplasmic reticulum (ER) stress, Glutathione (GSH) depletion, peroxynitrite formation, hepatocyte apoptosis, elevated hepatocyte proliferation, activation of 5-HT2B receptor, less activated c-Jun NH₂-terminal kinase (JNK) and hypoxia-inducible factor (HIF)-1α in the mice sufficient of 5-HT versus mice deficient of 5-HT. We thus propose a physiological function of serotonin that serotonin could ameliorate APAP-induced liver injury mainly through inhibiting hepatocyte apoptosis ER stress and promoting liver regeneration.

  4. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  5. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  6. Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain.

    PubMed

    Craciunescu, Corneliu N; Johnson, Amy R; Zeisel, Steven H

    2010-06-01

    In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient, choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11-17) of pregnancy, and on E17, fetal brains were collected for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the ventricular zones of the developing mouse brain septum (47%; P < 0.01), hippocampus (29%; P < 0.01), striatum (34%; P < 0.01), and anterior and mid-posterior neocortex (33% in both areas; P < 0.01). In addition, compared with CT, the FD diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P < 0.01). In the FDCS group, the mitosis rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatum were significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P < 0.01) and was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT and FD groups' rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation and that choline supplementation can modify some, but not all, of these effects. PMID:20392884

  7. Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    PubMed Central

    Ruaño, Gualberto; Windemuth, Andreas; Kocherla, Mohan; Holford, Theodore; Fernandez, Maria Luz; Forsythe, Cassandra E; Wood, Richard J; Kraemer, William J; Volek, Jeff S

    2006-01-01

    Background Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. Methods We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. Results Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. Conclusion A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction. PMID:16700901

  8. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    PubMed Central

    Hohmann, Miriam S. N.; Cardoso, Renato D. R.; Pinho-Ribeiro, Felipe A.; Crespigio, Jefferson; Cunha, Thiago M.; Alves-Filho, José C.; da Silva, Rosiane V.; Pinge-Filho, Phileno; Ferreira, Sergio H.; Cunha, Fernando Q.; Casagrande, Rubia; Verri, Waldiceu A.

    2013-01-01

    5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO−/−) mice and background wild type mice were challenged with APAP (0.3–6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO−/− mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO−/− mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage. PMID:24288682

  9. Dietary phosphorus overload aggravates the phenotype of the dystrophin-deficient mdx mouse.

    PubMed

    Wada, Eiji; Yoshida, Mizuko; Kojima, Yoriko; Nonaka, Ikuya; Ohashi, Kazuya; Nagata, Yosuke; Shiozuka, Masataka; Date, Munehiro; Higashi, Tetsuo; Nishino, Ichizo; Matsuda, Ryoichi

    2014-11-01

    Duchenne muscular dystrophy is a lethal X-linked disease with no effective treatment. Progressive muscle degeneration, increased macrophage infiltration, and ectopic calcification are characteristic features of the mdx mouse, a murine model of Duchenne muscular dystrophy. Because dietary phosphorus/phosphate consumption is increasing and adverse effects of phosphate overloading have been reported in several disease conditions, we examined the effects of dietary phosphorus intake in mdx mice phenotypes. On weaning, control and mdx mice were fed diets containing 0.7, 1.0, or 2.0 g phosphorus per 100 g until they were 90 days old. Dystrophic phenotypes were evaluated in cryosections of quadriceps and tibialis anterior muscles, and maximal forces and voluntary activity were measured. Ectopic calcification was analyzed by electron microscopy to determine the cells initially responsible for calcium deposition in skeletal muscle. Dietary phosphorus overload dramatically exacerbated the dystrophic phenotypes of mdx mice by increasing inflammation associated with infiltration of M1 macrophages. In contrast, minimal muscle necrosis and inflammation were observed in exercised mdx mice fed a low-phosphorus diet, suggesting potential beneficial therapeutic effects of lowering dietary phosphorus intake on disease progression. To our knowledge, this is the first report showing that dietary phosphorus intake directly affects muscle pathological characteristics of mdx mice. Dietary phosphorus overloading promoted dystrophic disease progression in mdx mice, whereas restricting dietary phosphorus intake improved muscle pathological characteristics and function.

  10. Effect of molybdenum-induced copper deficiency on in vivo and in vitro measures of neutrophil chemotaxis both before and following an inflammatory stressor.

    PubMed

    Arthington, J D; Spell, A R; Corah, L R; Blecha, F

    1996-11-01

    Twelve Angus x Hereford heifers (avg wt = 183.6 kg) were allotted by initial liver copper (Cu) concentrations into one of two treatments. Control (n = 6) heifers were fed a basal diet supplemented to provide a dietary Cu level of 10 ppm. Molybdenum (Mo)-induced Cu-deficient heifers (n = 6) were fed an identical basal diet supplemented with sodium molybdate (Cu:Mo ratio = 1:2.5), with dietary sulfur at .3% of the total diet. Dietary treatments were delivered for 120 d, at which time Mo-supplemented heifers were considered Cu-deficient (286 and 49 ppm liver Cu for control and Mo-induced Cu-deficient, respectively). Peripheral blood neutrophils were enumerated both before and after the administration of an inflammatory stressor, a subcutaneous injection (1.5 mL) of Freund's complete adjuvant. In vitro and in vivo measures of neutrophil chemotaxis were evaluated and the expression of two adhesion molecules, CD18 and L-selectin, were analyzed by flow cytometric procedures. Molybdenum-induced Cu deficiency increased (P < .01) the number of peripheral blood neutrophils; however, in vitro neutrophil chemotaxis was not affected. In vivo neutrophil chemotaxis tended (P < .08) to be increased in Mo-induced Cu-deficient heifers (1.55 vs 2.26 x 10(6) cells/ sponge for control and Mo-supplemented, respectively). No differences in CD18 or L-selectin expression were detected between treatments. However, CD18 expression was decreased (P < .05) in both treatments following adjuvant injection. These data suggest that Mo-induced Cu deficiency results in an increase in peripheral blood neutrophil number, without altering chemotactic ability and adhesion molecule expression. PMID:8923191

  11. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation

    PubMed Central

    Progatzky, Fränze; Sangha, Navjyot J.; Yoshida, Nagisa; McBrien, Marie; Cheung, Jackie; Shia, Alice; Scott, James; Marchesi, Julian R.; Lamb, Jonathan R.; Bugeon, Laurence; Dallman, Margaret J.

    2014-01-01

    Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells. PMID:25536194

  12. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation.

    PubMed

    Progatzky, Fränze; Sangha, Navjyot J; Yoshida, Nagisa; McBrien, Marie; Cheung, Jackie; Shia, Alice; Scott, James; Marchesi, Julian R; Lamb, Jonathan R; Bugeon, Laurence; Dallman, Margaret J

    2014-01-01

    Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells. PMID:25536194

  13. Neurologic impairment in children associated with maternal dietary deficiency of cobalamin--Georgia, 2001.

    PubMed

    2003-01-31

    During 2001, neurologic impairment resulting from cobalamin (vitamin B12) deficiency was diagnosed in two children in Georgia. The children were breastfed by mothers who followed vegetarian diets. This report summarizes the two cases and provides guidance for health-care providers on identifying and preventing cobalamin deficiency among breastfed infants of vegetarian mothers.

  14. Serum lipids in rats as related to modifications in dietary fat, fiber, and sodium with magnesium deficiency

    SciTech Connect

    Howe, C.A.; Kubena, K.S. )

    1991-03-11

    Recommendations to modify dietary intake to attenuate risk of cardiovascular disease have been released by numerous governmental and health organizations. Since magnesium is associated with lipid metabolism and normal cardiovascular function, this study was designed to determine the effect of modifications in dietary fat, fiber, and sodium with magnesium deficiency on serum lipids and tissue minerals. The control (C) diet was based upon the AIN-76 diet formulation; the American (A) diet included average fat, fiber, and sodium levels in the US; and the recommended (R) diet was lower in fat and sodium and higher in fiber. Diets contained either 1,000 or 150 (L) mg Mg/kg diet. Male weanling Sprague-Dawley rats were fed one of the diets (C, CL, A, Al, R, RL) for six weeks. Levels of tissue Mg, Ca, Zn, and P were determined. Neither initial nor final body weights varied between groups. Serum levels of triglyceride were higher in the C and Cl groups than in the others. Serum cholesterol was lower in the R and Rl groups than in the Cl and A groups. Animals which were fed the diet modified with regard to fat, fiber, and sodium had lower serum cholesterol levels than did those fed the American diet. Magnesium deficiency was not consistently related to serum lipid levels.

  15. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  16. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    SciTech Connect

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou; Peng, Shuangqing; Wang, Weidong; Li, Rong

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  17. Mitochondrial response to the BCKDK-deficiency: Some clues to understand the positive dietary response in this form of autism.

    PubMed

    Oyarzabal, A; Bravo-Alonso, I; Sánchez-Aragó, M; Rejas, M T; Merinero, B; García-Cazorla, A; Artuch, R; Ugarte, M; Rodríguez-Pombo, P

    2016-04-01

    Mutations on the mitochondrial-expressed Branched Chain α-Keto acid Dehydrogenase Kinase (BCKDK) gene have been recently associated with a novel dietary-treatable form of autism. But, being a mitochondrial metabolism disease, little is known about the impact on mitochondrial performance. Here, we analyze the mitochondrial response to the BCKDK-deficiency in patient's primary fibroblasts by measuring bioenergetics, ultra-structural and dynamic parameters. A two-fold increase in superoxide anion production, together with a reduction in ATP-linked respiration and intracellular ATP levels (down to 60%) detected in mutants fibroblasts point to a general bioenergetics depletion that could affect the mitochondrial dynamics and cell fate. Ultrastructure analysis of BCKDK-deficient fibroblasts shows an increased number of elongated mitochondria, apparently associated with changes in the mediator of inner mitochondria membrane fusion, GTPase OPA1 forms, and in the outer mitochondrial membrane, mitofusin 2/MFN2. Our data support a possible hyperfusion response of BCKDK-deficient mitochondria to stress. Cellular fate also seems to be affected as these fibroblasts show an altered proportion of the cells on G0/G1 and G2/M phases. Knockdown of BCKDK gene in control fibroblasts recapitulates most of these features. Same BCKDK-knockdown in a MSUD patient fibroblasts unmasks the direct involvement of the accelerated BCAAs catabolism in the mitochondrial dysfunction. All these data give us a clue to understand the positive dietary response to an overload of branched-chain amino acids. We hypothesize that a combination of the current therapeutic option with a protocol that considers the oxidative damage and energy expenditure, addressing the patients' individuality, might be useful for the physicians. PMID:26809120

  18. Mitochondrial response to the BCKDK-deficiency: Some clues to understand the positive dietary response in this form of autism.

    PubMed

    Oyarzabal, A; Bravo-Alonso, I; Sánchez-Aragó, M; Rejas, M T; Merinero, B; García-Cazorla, A; Artuch, R; Ugarte, M; Rodríguez-Pombo, P

    2016-04-01

    Mutations on the mitochondrial-expressed Branched Chain α-Keto acid Dehydrogenase Kinase (BCKDK) gene have been recently associated with a novel dietary-treatable form of autism. But, being a mitochondrial metabolism disease, little is known about the impact on mitochondrial performance. Here, we analyze the mitochondrial response to the BCKDK-deficiency in patient's primary fibroblasts by measuring bioenergetics, ultra-structural and dynamic parameters. A two-fold increase in superoxide anion production, together with a reduction in ATP-linked respiration and intracellular ATP levels (down to 60%) detected in mutants fibroblasts point to a general bioenergetics depletion that could affect the mitochondrial dynamics and cell fate. Ultrastructure analysis of BCKDK-deficient fibroblasts shows an increased number of elongated mitochondria, apparently associated with changes in the mediator of inner mitochondria membrane fusion, GTPase OPA1 forms, and in the outer mitochondrial membrane, mitofusin 2/MFN2. Our data support a possible hyperfusion response of BCKDK-deficient mitochondria to stress. Cellular fate also seems to be affected as these fibroblasts show an altered proportion of the cells on G0/G1 and G2/M phases. Knockdown of BCKDK gene in control fibroblasts recapitulates most of these features. Same BCKDK-knockdown in a MSUD patient fibroblasts unmasks the direct involvement of the accelerated BCAAs catabolism in the mitochondrial dysfunction. All these data give us a clue to understand the positive dietary response to an overload of branched-chain amino acids. We hypothesize that a combination of the current therapeutic option with a protocol that considers the oxidative damage and energy expenditure, addressing the patients' individuality, might be useful for the physicians.

  19. Elite premenarcheal rhythmic gymnasts demonstrate energy and dietary intake deficiencies during periods of intense training.

    PubMed

    Michopoulou, Eleni; Avloniti, Alexandra; Kambas, Antonios; Leontsini, Diamanda; Michalopoulou, Maria; Tournis, Symeon; Fatouros, Ioannis G

    2011-11-01

    This study determined dietary intake and energy balance of elite premenarcheal rhythmic gymnasts during their preseason training. Forty rhythmic gymnasts and 40 sedentary age-matched females (10-12 yrs) participated in the study. Anthropometric profile and skeletal ages were determined. Dietary intake and physical activity were assessed to estimate daily energy intake, daily energy expenditure, and resting metabolic rate. Groups demonstrated comparable height, bone age, pubertal development, resting metabolic rate. Gymnasts had lower body mass, BMI, body fat than age-matched controls. Although groups demonstrated comparable daily energy intake, gymnasts exhibited a higher daily energy expenditure resulting in a daily energy deficit. Gymnasts also had higher carbohydrate intake but lower fat and calcium intake. Both groups were below the recommended dietary allowances for fiber, water, calcium, phosphorus and vitamin intake. Gymnasts may need to raise their daily energy intake to avoid the energy deficit during periods of intense training. PMID:22109784

  20. Dietary nickel chloride induces oxidative intestinal damage in broilers.

    PubMed

    Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying

    2013-06-01

    The purpose of this study was to investigate the oxidative damage induced by dietary nickel chloride (NiCl2) in the intestinal mucosa of different parts of the intestine of broilers, including duodenum, jejunum and ileum. A total of 240 one-day-old broilers were divided into four groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600 or 900 mg/kg NiCl2 during a 42-day experimental period. The results showed that the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and the ability to inhibit hydroxy radical and glutathione (GSH) content were significantly (p < 0.05 or p < 0.01) decreased in the 300, 600 and 900 mg/kg groups in comparison with those of the control group. In contrast, malondialdehyde (MDA) content was significantly (p < 0.05 or p < 0.01) higher in the 300, 600 and 900 mg/kg groups than that in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could cause oxidative damage in the intestinal mucosa in broilers, which finally impaired the intestinal functions including absorptive function and mucosal immune function. The oxidative damage might be a main mechanism on the effects of NiCl2 on the intestinal health of broilers. PMID:23702803

  1. Dietary vanadium induces oxidative stress in the intestine of broilers.

    PubMed

    Deng, Yuanxin; Cui, Hengmin; Peng, Xi; Fang, Jing; Wang, Kangping; Cui, Wei; Liu, Xiaodong

    2012-01-01

    The purpose of this study was to examine oxidative stress induced by dietary vanadium in the mucosa of different parts of intestine including duodenum, jejunum, ileum, and cecal tonsil. A total of 420 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium as ammonium metavanadate. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde content was significantly higher (p < 0.05 or p < 0.01) in 30, 45, and 60 mg/kg groups than in control group. In contrast, the activities of superoxide dismutase, catalase, and glutathione peroxidase, and ability to inhibit hydroxyl radical, and glutathione hormone content were significantly decreased (p < 0.05 or p < 0.01) mainly in 45 and 60 mg/kg groups in comparison with those of control group. However, the abovementioned oxidative stress parameters were not significantly changed (p > 0.05) in 5 and 15 mg/kg groups. It was concluded that dietary vanadium in excess of 30 mg/kg could cause obvious oxidative stress in the intestinal mucosa, which could impact the antioxidant function of intestinal tract in broilers.

  2. New Compounds Induce Brassinosteroid Deficient-like Phenotypes in Rice.

    PubMed

    Matsumoto, Tadashi; Yamada, Kazuhiro; Iwasaki, Ikuko; Yoshizawa, Yuko; Oh, Keimei

    2013-01-01

    Brassinosteroids (BRs) are steroidal plant hormones with potent plant growth promoting activity. Because BR-deficient mutants of rice exhibit altered plant architecture and important agronomic traits, we conducted a systemic search for specific inhibitors of BR biosynthesis to manipulate the BR levels in plant tissues. Although previous studies have been conducted with BR biosynthesis inhibitors in dicots, little is known regarding the effects of BR biosynthesis inhibition in monocot plants. In this work, we used potent inhibitors of BR biosynthesis in Arabidopsis, and we performed a hydroponic culture of rice seedlings to evaluate the effects of BR biosynthesis inhibition. Among the test compounds, we found that 1-[[2-(4-Chlorophenyl)-4-(phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (1) is a potent inhibitor that could induce phenotypes in rice seedlings that were similar to those observed in brassinosteroid deficient plants. The IC50 value for the retardation of plant growth in rice seedlings was approximately 1.27 ± 0.43 μM. The IC50 value for reducing the bending angle of the lamina joint was approximately 0.55 ± 0.15 μM. PMID:27137391

  3. Increased folate uptake prevents dietary development of folate deficiency in the rat brain

    SciTech Connect

    McMartin, K.E.; Collins, T.D.; Eisenga, B.H.; Bhandari, S.D. )

    1990-02-26

    Folic acid and folate deficiency have been implicated in disorders of the central nervous system. In a study of the mechanism for the effects of chronic ethanol on folate homeostasis, the uptake of {sup 3}H-folic acid by the rat brain has been studied. Male Sprague-Dawley rats were fed sulfonamide-supplemented folate-sufficient and folate-deficient liquid diets containing either ethanol or isoenergic carbohydrate as a control. After 16 weeks, severe folate depletion occurred in tissues (liver, kidney, spleen, lung intestine, testes), but not in the brain. Tissue retention of {sup 3}H-folic acid was increased four-fold in the brain of folate-deficient rats. A smaller increase in uptake was observed in the other tissues, except for the liver, in which the retention of {sup 3}H-folic acid was slightly decreased. Chronic ethanol feeding decreased hepatic folate uptake, but not that by the increase the uptake of folate from the plasma of folate-deficient rats, thereby inhibiting the development of brain folate deficiency.

  4. Caspase-2 deficiency accelerates chemically induced liver cancer in mice.

    PubMed

    Shalini, S; Nikolic, A; Wilson, C H; Puccini, J; Sladojevic, N; Finnie, J; Dorstyn, L; Kumar, S

    2016-10-01

    Aberrant cell death/survival has a critical role in the development of hepatocellular carcinoma (HCC). Caspase-2, a cell death protease, limits oxidative stress and chromosomal instability. To study its role in reactive oxygen species (ROS) and DNA damage-induced liver cancer, we assessed diethylnitrosamine (DEN)-mediated tumour development in caspase-2-deficient (Casp2(-/-)) mice. Following DEN injection in young animals, tumour development was monitored for 10 months. We found that DEN-treated Casp2(-/-) mice have dramatically elevated tumour burden and accelerated tumour progression with increased incidence of HCC, accompanied by higher oxidative damage and inflammation. Furthermore, following acute DEN injection, liver injury, DNA damage, inflammatory cytokine release and hepatocyte proliferation were enhanced in mice lacking caspase-2. Our study demonstrates for the first time that caspase-2 limits the progression of tumourigenesis induced by an ROS producing and DNA damaging reagent. Our findings suggest that after initial DEN-induced DNA damage, caspase-2 may remove aberrant cells to limit liver damage and disease progression. We propose that Casp2(-/-) mice, which are more susceptible to genomic instability, are limited in their ability to respond to DNA damage and thus carry more damaged cells resulting in accelerated tumourigenesis.

  5. Effects of dietary folate deficiency on developmental increase of myelin lipids in rat brain.

    PubMed

    Hirono, H; Wada, Y

    1978-05-01

    Rats were fed a folic acid deficient purified diet from day 12 of gestation throughout the lactational period. Offsprings were fed the same diet after weaning. Control rats were given 170 microgram of folic acid per day per rat supplemented to the same diet, which was fed ad libitum or by pair-feeding. At 3 and 6 weeks of age, myelin was isolated from rat brains. It was found that in comparison with the controls, myelin yield was significantly decreased as well as the brain weight in the folic acid deficient rats at 6 weeks of age. There were no differences of gross composition of myelin, protein, ratio of cholesterol, glycolipids, phospholipids, and total lipid with or without folate deficiency either at 3 or 6 weeks of age. The hydroxy fatty acid composition of myelin lipids in brain was not changed with folate deficiency at 3 or 6 weeks of age. The developmental increase of the percentages of 22:6, 22:4, and 20:1 in nonhydroxy fatty acids of myelin lipids from the folic acid deficient rats were significantly lower at 6 weeks of age in comparison with the controls. The n-3:n-6 ratio in myelin fatty acids from the folic acid deficient rat brains was abnormally low at 3 weeks of age and was not increased at even 6 weeks of age. The implications of these findings are that folic acid may play an important role in desaturation or chain elongation of polyunsaturated fatty acids in the brain of developing rats. PMID:641593

  6. Vulnerability to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress in rats.

    PubMed

    Ferreira, Charles Francisco; Bernardi, Juliana Rombaldi; Krolow, Rachel; Arcego, Danusa Mar; Fries, Gabriel Rodrigo; de Aguiar, Bianca Wollenhaupt; Senter, Gabrielle; Kapczinski, Flávio Pereira; Silveira, Patrícia Pelufo; Dalmaz, Carla

    2013-06-01

    The exposure to adverse events early in life may affect brain development. Omega-3 polyunsaturated fatty acid (n-3 PUFA) deficiency has been linked to the development of mood and anxiety disorders. The aim of this study was to examine the interaction between variations in the early environment (handling or maternal separation) and the chronic exposure to a nutritional n-3 PUFA deficiency on locomotor activity, sucrose preference, forced swimming test and on serum and hippocampal brain-derived neurotrophic factor (BDNF) levels. Rats were randomized into Non-handled (NH), Neonatal Handled (H) and Maternal Separated (MS) groups. Pups were removed from their dams (incubator at 32°C on postnatal days (PND) 1-10) during 10 min/day (H) or 3h/day (MS). On PND 35, males were subdivided into diets adequate or deficient in n-3 PUFA for 15 weeks. H and MS gained weight differently, and animals receiving the n-3 PUFA deficient diet gained less weight. MS displayed a higher food consumption and higher consumption of sucrose solution during the second hour of exposure to the sucrose preference test. No differences were observed in the swimming test. H group had increased locomotion and showed a higher response to amfepramone. No significant effect was observed on serum BDNF levels. BDNF protein levels were decreased in animals receiving the n-3 PUFA deficient diet. We observed that early life environment and a mild n-3 PUFA deficiency are able to affect several behavioral aspects (food and sucrose consumption and locomotor response), and lead to a differential hippocampal BDNF metabolism in adult life.

  7. Gastrointestinal bleeding secondary to trimethoprim-sulfamethoxazole-induced vitamin K deficiency.

    PubMed

    Fotouhie, Azadeh; Desai, Hem; King, Skye; Parsa, Nour Alhoda

    2016-06-06

    There is a well-known association between vitamin K deficiency and haemorrhagic events including gastrointestinal bleeding. There is also a well-known association between both poor dietary intake of vitamin K and chronic antibiotic use and the development of vitamin K deficiency. Although the medical literature notes that cephalosporin antibiotics have a propensity to cause vitamin K deficiency due to the molecular structure of the medications and their ability to suppress the synthesis of clotting factors, there are other antibiotics that have also been implicated in the development of vitamin K deficiency. There are very few reports of trimethoprim/sulfamethoxazole causing vitamin K deficiency and further leading to bleeding episodes. We present such a case and discuss the risk factors leading to such complications.

  8. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.

    PubMed

    Seminotti, Bianca; Amaral, Alexandre Umpierrez; da Rosa, Mateus Struecker; Fernandes, Carolina Gonçalves; Leipnitz, Guilhian; Olivera-Bravo, Silvia; Barbeito, Luis; Ribeiro, César Augusto J; de Souza, Diogo Onofre Gomes; Woontner, Michael; Goodman, Stephen I; Koeller, David M; Wajner, Moacir

    2013-01-01

    Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice

  9. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  10. Dietary zinc deficiency affects blood linoleic acid: dihomo-gamma-linolenic acid (LA:DGLA) ratio; a reactive physiological marker of zinc status in vivo (Gallus gallus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary Zinc (Zn) deficiency affects approximately 30% of the world’s population. Zinc is a vital micronutrient and is important for the body’s ability to function. To date, accurate biological markers of the Zn subject’s status are still needed. The aim of this study was to evaluate the chicken mod...

  11. Dimethylthiourea inhibits heart weight and hematocrit changes caused by dietary copper deficiency

    SciTech Connect

    Saari, J.T. )

    1991-03-11

    Feeding antioxidants to rats in a copper (Cu)-deficient diet can partially inhibit the cardiac enlargement and anemia caused by Cu deficiency. This study was done to determine whether an antioxidant which bypassed the gastrointestinal tract was also protective and whether an agent more potent than previously used was more effective in this inhibition. Male, weanling rats were fed diets deficient or sufficient in Cu for 4 wks. Dimethylthiourea (DMTU) or saline was injected (ip) 4 times a week; minimum amount of DMTU retained during the experiment was estimated to be 250 mg/kg. Unlike other antioxidants, DMTU completely prevented the increase in heart wt/body wt ratio; like the other agents, it only partially inhibited the anemia of Cu deficiency. DMTU did not affect plasma or liver Cu content of CuD rats; however, heart copper of CuD rats was significantly increased by DMTU. The effects of DMTU on heart size and hematocrit (Hct) may be attributed to its antioxidant function, but the possibility of altered mineral status must also be considered.

  12. Excessive dietary linoleic acid induces proinflammatory markers in rats.

    PubMed

    Marchix, Justine; Choque, Benjamin; Kouba, Maryline; Fautrel, Alain; Catheline, Daniel; Legrand, Philippe

    2015-12-01

    Following the historical dietary recommendations, the substitution of polyunsaturated fatty acids (PUFAs) for saturated fatty acids (SFAs) resulted in a dramatic increase of linoleic acid (LA) in the Western diet. While proatherogenic properties of SFAs have been described, the involvement of LA on the inflammatory process remains controversial. Herein, we evaluated the effects of an excessive LA intake on the cytokine-induced expression of endothelial adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1), through the nuclear factor (NF)-κB pathway, in comparison with a control diet and regarding a "positive" SFA diet. Wistar rats were fed experimental diets - a control diet or diets enriched with LA or SFA - for 11 weeks. Plasma lipid parameters and proinflammatory cytokine production such as interleukin-1β and tumor necrosis factor (TNF)-α were analyzed. Expression of endothelial adhesion molecules and NF-κB was determined by immunohistochemical analysis. No difference was observed in body weight. The enriched diets did not affect triglyceride and total cholesterol levels in plasma. Our results demonstrated that excessive dietary LA intake increased TNF-α levels (P<.05) in plasma. Rats fed the LA-enriched diet showed a significantly higher expression of VCAM-1, ICAM-1 and NF-κB in aortas. In addition, our results demonstrated that an excess of LA is more efficient to activate endothelial molecular process than an excess of SFA. The present study provides further support for the proinflammatory properties of LA and suggests an LA-derivatives pathway involved in the inflammatory process.

  13. Permeabilization of enterocytes induced by absorption of dietary fat.

    PubMed

    Danielsen, Erik Michael; Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2013-05-01

    Absorption of dietary fat in the small intestine involves epithelial exposure to potentially harmful molecules such as bile salts and free fatty acids. We used organ culture of porcine jejunal explants incubated with a pre-digested mixture of fat (plant oil), bile and pancreatin to mimick the physiological process of dietary fat absorption, and short exposures to the fat mixture caused fat droplet accumulation within villus enterocytes. Lucifer yellow (LY), a fluorescent membrane-impermeable polar tracer was included to monitor epithelial integrity. Both in controls and during fat absorption LY penetrated the epithelium and accumulated in the basal lamina and the lamina propria. LY was also seen in the paracellular space, whereas villus enterocytes were generally only weakly labeled except for small amounts taken up by apical endocytosis. In the crypts, however, fat absorption induced cell permeabilization with LY accumulating in the cytosol and nucleus. Morphologically, both apical and basolateral membranes appeared intact, indicating that the leakiness was caused by minor lesions in the membrane. Albeit to a lesser extent, bile alone was capable of permeabilizing crypt cells, implying that the surfactant properties of bile salts are involved in the process. In addition to LY, crypt enterocytes also became permeable for albumin, ovalbumin and insulin. In conclusion, during fat absorption the permeability of the gut epithelium is increased mainly in the crypts. A possible explanation is that cell membranes of immature crypt cells, lacking detergent-resistant lipid raft microdomains, are less resistant to the deleterious effects of bile salts and free fatty acids. PMID:23527550

  14. Molecular insights into dietary induced colic in the horse.

    PubMed

    Shirazi-Beechey, S P

    2008-06-01

    Equine colic, a disorder manifested in abdominal pain, is the most frequent cause of emergency treatment and death in horses. Colic often requires intestinal surgery, subsequent hospitalisation and post operative care, with a strong risk of complications arising from surgery. Therefore strategies that explore approaches for preventing the condition are essential. To this end, a better understanding of the factors and mechanisms that lead to the development of colic and related intestinal diseases in the horse allows the design of preventive procedures. Colic is a multifactorial disorder that appears to be induced by environmental factors and possibly a genetic predisposition. One factor that seems to influence the risk of developing colic is the excessive consumption of diets containing high levels of carbohydrates. Therefore, major efforts have been made by various laboratories and institutions across the world to study the type and digestibility of various feed in order to formulate accurate and safe feed components and proportions. However, relatively little work has been carried out to characterise, in detail, the carbohydrate digestive and absorptive capacity and mechanisms underlying the potential adaptive response of equine gut epithelium to a changing diet. This review focuses on advances made towards understanding the molecular and cellular mechanisms involved in digestion and absorption of dietary carbohydrates in the equine gastrointestinal tract and the implication of these processes for the whole body physiology. It addresses the underlying mechanisms that may govern the adaptive response of equine small intestine to increased dietary hydrolysable carbohydrates. Furthermore, it describes changes that occur in the equine large intestinal microbiology and host tissue biology brought about by alterations in diet and in colic. It is hoped that a better understanding of the molecular and cellular processes that play important roles in the physiology and

  15. Prostaglandin E₂ is critical for the development of niacin-deficiency-induced photosensitivity via ROS production.

    PubMed

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-01-01

    Pellagra is a photosensitivity syndrome characterized by three "D's": diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation. PMID:24131900

  16. Prostaglandin E₂ is critical for the development of niacin-deficiency-induced photosensitivity via ROS production.

    PubMed

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-10-17

    Pellagra is a photosensitivity syndrome characterized by three "D's": diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.

  17. Pre- and postnatal dietary protein deficiency influences anxiety, memory and social behaviour in the African striped mouse Rhabdomys dilectus chakae.

    PubMed

    Pillay, Neville; Rimbach, Rebecca; Rymer, Tasmin

    2016-07-01

    Dietary protein deficiency influences the behavioural phenotypes of mammals. We studied whether protein deficiency during gestation and/or post-weaning heightened anxiety, reduced memory recall and influenced competitive ability in the African striped mouse Rhabdomys dilectus chakae. Mice were subjected to five protein diet treatments, which they received continuously, or were raised on one diet to weaning and switched to an alternate diet post-weaning (Day 16): 1) HP-HP: high protein (24%); first letter pair indicates maternal diet and the second pair indicates offspring diet post-weaning; 2) BP-BP: baseline protein (19%); 3) LP-LP: low protein (10%); 4) HP-LP: switched from high to low protein diet; and 5) LP-HP: switched from low protein to high protein diet. From Day 70, when mice were sexually mature, 20 individuals (10 males, 10 females) per treatment were subjected to three successive experiments, in which we tested their anxiety responses in: 1) an open field arena (time spent in the centre of the open field); 2) novel object recognition (time spent exploring a novel object); and 3) social interactions (excluding BP-BP) in age-matched same-sex dyadic encounters (aggressive, amicable and avoidance behaviours). LP-LP and LP-HP treatment mice spent the least amount of time in the centre of the open field, did not demonstrate object preference compared to the other treatments, and were the most aggressive in dyadic encounters. Our study shows that the systemic effects of protein-deficient diets during early life shapes the behavioural phenotype in R. d. chakae, possibly through early organisation of neuro-biological pathways or competition among littermates. PMID:27080079

  18. Increased adiposity induced by high dietary butter oil increases vertebrae trabecular structural indices in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity has been associated with both improved and impaired bone health, and other dietary factors apparently affect the nature of the association. An experiment was performed to determine whether increased adiposity induced by high dietary butter oil impairs bone structure and whether that effect ...

  19. EFFECTS OF DIETARY FOLATE ON ARSENIC-INDUCED GENE EXPRESSION IN MICE

    EPA Science Inventory

    Effects of Dietary Folate on Arsenic-induced Gene Expression in Mice

    Arsenic, a drinking water contaminant, is a known carcinogen. Human exposure to inorganic arsenic has been linked to tumors of skin, bladder, lung, and to a lesser extent, kidney and liver. Dietary fola...

  20. Parameters of dietary selenium and vitamin E deficiency in growing rabbits.

    PubMed

    Muller, Andreas S; Pallauf, Josef; Most, Erika

    2002-01-01

    4 x 5 growing female rabbits (New Zealand White) with an initial live weight of 610 +/- 62 g were fed a torula yeast based semisynthetic diet low in selenium (<0.03 mg/kg diet) and containing <2 mg alpha-tocopherol per kg (group I). Group II received a vitamin E supplementation of 150 mg alpha-tocopherylacetate per kg diet, whereas for group III 0.40 mg Se as Na-selenite and for group IV both supplements were added. Selenium status and parameters of tissue damage were analyzed after 10 weeks on experiment (live weight 2,355 +/- 145 g). Selenium depletion of the Se deficient rabbits (groups I and II) was indicated by a significantly lower plasma Se content (group I: 38.3 +/- 6.23 microg Se/mL plasma, group II: 42.6 +/- 9.77, group III: 149 +/- 33.4, group IV: 126 +/- 6.45) and a significantly lower liver Se content (group I: 89.4 +/- 18.2 microg/kg fresh matter, group II: 111 +/- 26.2) as compared to the Se supplemented groups III (983 +/- 204) and IV (926 +/- 73.9). After 5 weeks on the experimental diets differences in the development of plasma glutathione peroxidase were observed. As compared to the initial status group (45.2 +/- 4.50) pGPx activity in mU/mg protein was decreased in group I (19.1 +/- 7.08), remained almost stable in the vitamin E supplemented group II (46.3 +/- 11.2) whereas an elevated enzyme activity was measured in the Se supplemented groups III (62.4 +/- 23.9) and IV (106 +/- 19.9). In the rabbit organs investigated 10 weeks of Se deficiency caused a significant loss of Se dependent cellular glutathione peroxidase activity (GPx1) of 94% (liver), 80% (kidney), 50% (heart muscle) and 60% (musculus longissimus dorsi) in comparison to Se supplemented control animals. Damage of cellular lipids and proteins in the liver was due to either Se or vitamin E deficiency. However damage was most severe under conditions of a combined Se and vitamin E deficiency. It can be concluded that the activity of plasma glutathione peroxidase is a sensitive indicator

  1. Mitochondrial and Oxidative Stress Aspects in Hippocampus of Rats Submitted to Dietary n-3 Polyunsaturated Fatty Acid Deficiency After Exposure to Early Stress.

    PubMed

    Ferreira, Charles Francisco; Bernardi, Juliana Rombaldi; da Silva, Diego Carrilho; de Sá Couto-Pereira, Natividade; de Souza Mota, Carina; Krolow, Rachel; Weis, Simone Nardin; Pettenuzzo, Letícia; Kapczinski, Flávio; Silveira, Patrícia Pelufo; Dalmaz, Carla

    2015-09-01

    Chronic dietary long-chain polyunsaturated fatty acids (PUFAs) deficiency may lead to changes in cortex and hippocampus neuronal membrane phospholipids, and may be linked to impaired central nervous system function. Particularly docosahexaenoic acid deficiency appears to be involved in neuropsychiatric disorders. On the other hand, adverse events early in life may also profoundly affect brain development, leading to long-lasting effects on neurophysiology, neurobiology and behavior. This research assessed if neonatal stress and a dietary n-3 PUFAs deficiency could interact to produce hippocampal alterations related to mitochondrial functions in adult rats. There were no effects of diet, neonatal intervention or interactions on superoxide dismutase or catalase enzymatic activities, mitochondrial membrane potential and respiratory chain complexes. Rats fed n-3 PUFAs deficient diet displayed higher levels of glutathione peroxidase and catalase activity, higher free radicals production and higher thiol content compared to rats fed n-3 PUFAs adequate diet. There were interactions among diets and neonatal stress, since glutathione peroxidase, free radicals production and thiol content were increased in groups that were subjected to neonatal interventions fed n-3 PUFAs deficient diet. Additionally, reduced mitochondrial potential was observed in handled animals. Total thiol revealed a neonatal stress effect, since animals subjected to neonatal interventions displayed lower thiol content. In conclusion, we observed that a chronic treatment with deficient n-3 PUFAs diet, from the puberty period on, increased free radicals production and imbalanced antioxidant enzymes activities, and these increases were higher in animals subjected to neonatal interventions.

  2. Persistent optically induced magnetism in oxygen-deficient strontium titanate.

    PubMed

    Rice, W D; Ambwani, P; Bombeck, M; Thompson, J D; Haugstad, G; Leighton, C; Crooker, S A

    2014-05-01

    Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. Although its bulk electronic and optical properties are rich and have been studied for decades, SrTiO3 has recently become a renewed focus of materials research catalysed in part by the discovery of superconductivity and magnetism at interfaces between SrTiO3 and other non-magnetic oxides. Here we illustrate a new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3-δ crystals using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18 K, persists for hours below 10 K, and is tunable by means of the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material.

  3. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK.

    PubMed

    Liu, M; Alimov, A P; Wang, H; Frank, J A; Katz, W; Xu, M; Ke, Z-J; Luo, J

    2014-05-16

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight.

  4. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis

    PubMed Central

    Ye, Lingxiao; Li, Lin; Wang, Lu; Wang, Shoudong; Li, Sen; Du, Juan; Zhang, Shuqun; Shou, Huixia

    2015-01-01

    Iron (Fe) is an essential micronutrient that participates in various biological processes important for plant growth. Ethylene production induced by Fe deficiency plays important roles in plant tolerance to stress induced by Fe deficiency. However, the activation and regulatory mechanisms of 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) genes in this response are not clear. In this study, we demonstrated that Fe deficiency increased the abundance of ACS2, ACS6, ACS7, and ACS11 transcripts in both leaves and roots as well as the abundance of ACS8 transcripts in leaves and ACS9 transcripts in roots. Furthermore, we investigated the role of mitogen-activated protein kinase 3 and 6 (MPK3/MPK6)-regulated ACS2/6 activation in Fe deficiency-induced ethylene production. Our results showed that MPK3/MPK6 transcript abundance and MPK3/MPK6 phosphorylation are elevated under conditions of Fe deficiency. Furthermore, mpk3 and mpk6 mutants show a lesser induction of ethylene production under Fe deficiency and a greater sensitivity to Fe deficiency. Finally, in mpk3, mpk6, and acs2 mutants under conditions of Fe deficiency, induction of transcript expression of the Fe-deficiency response genes FRO2, IRT1, and FIT is partially compromised. Taken together, our results suggest that the MPK3/MPK6 and ACS2 are part of the Fe starvation-induced ethylene production signaling pathway. PMID:26579185

  5. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains.

    PubMed

    Niculescu, Mihai D; Craciunescu, Corneliu N; Zeisel, Steven H

    2006-01-01

    The availability of choline during critical periods of fetal development alters hippocampal development and affects memory function throughout life. Choline deficiency during fetal development reduces proliferation and migration of neuronal precursor cells in the mouse fetal hippocampus and these changes are associated with modifications in the protein levels of some cell cycle regulators and early differentiation markers. We fed C57 BL/6 mouse dams diets deficient or normal in choline content from days 12 to 17 of pregnancy, and then collected fetal brains on embryonic day 17. Using laser-capture micro-dissection we harvested cells from the ventricular and subventricular zones of Ammon's horn and from the prime germinal zone of the dentate gyrus (hippocampus). In the ventricular and subventricular zones from the choline-deficient group, we observed increased protein levels for kinase-associated phosphatase (Kap) and for p15(INK4b) (two cell cycle inhibitors). In the dentate gyrus, we observed increased levels of calretinin (an early marker of neuronal differentiation). In fetal brain from mothers fed a choline-deficient diet, DNA global methylation was decreased in the ventricular and subventricular zones of Ammon's horn. We also observed decreased gene-specific DNA methylation of the gene (Cdkn3) that encodes for Kap, correlating with increased expression of this protein. This was not the case for p15(INK4b) or calretinin (Cdkn2b and Calb2, respectively). These data suggest that choline deficiency-induced changes in gene methylation could mediate the expression of a cell cycle regulator and thereby alter brain development.

  6. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.

    PubMed

    Breusegem, Sophia Y; Takahashi, Hideaki; Giral-Arnal, Hector; Wang, Xiaoxin; Jiang, Tao; Verlander, Jill W; Wilson, Paul; Miyazaki-Anzai, Shinobu; Sutherland, Eileen; Caldas, Yupanqui; Blaine, Judith T; Segawa, Hiroko; Miyamoto, Ken-ichi; Barry, Nicholas P; Levi, Moshe

    2009-08-01

    Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.

  7. Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat.

    PubMed

    Selvais, P L; Labuche, C; Nguyen, X N; Ketelslegers, J M; Denef, J F; Maiter, D M

    1997-01-01

    Dietary zinc-deficiency induces a striking reduction and a cyclic pattern of food intake in rodents. To elucidate the mechanisms for these effects, we studied the hypothalamic content, synthesis, and distribution of galanin (GAL) and neuropeptide Y (NPY) during zinc deficiency and refeeding in the rat. In Wistar rats, three weeks of zinc-deprivation consistently induced a reduction and a cyclic pattern of night- and day-time food intake, as well as of water intake. This was accompanied in zinc-deficient (ZD) rats, and to a lesser extent in pair-fed (PF) rats, by a decrease of hypothalamic GAL mRNA concentration (CTR: 100 +/- 8, ZD: 61 +/- 4, PF: 78 +/- 2 arbitrary densitometric units, ADU, P < 0.01) and an increase of hypothalamic NPY (CTR: 100 +/- 11, ZD: 154 +/- 10, PF: 126 +/- 4 ADU, P < 0.05), without peptide modification. The two neuropeptidergic systems were not affected by the cycles of feeding, with the exception of the NPY-immunoreactivity in the suprachiasmatic nuclei (geniculo-hypothalamic tract), that was inversely correlated to the food intake in both ZD and PF animals. In a second experiment, we showed that zinc-repletion for 4 days suppressed the behaviour induced by a two-week zinc-deprivation, and reversed the increase of NPY mRNA in ZD animals. We finally demonstrated that zinc-deficiency induced a similar behaviour in Zucker rats. However, in these rats whose synthesis of NPY is constitutively up-regulated, no change of NPY synthesis was observed in ZD rats, suggesting that the increase observed in Wistar is adaptative rather than instrumental to the abnormal food intake. In conclusion, we have further characterized the cyclic feeding behaviour of the zinc-deficient Wistar rats, and shown in these animals a decreased activity of the GAL system and an increased activity of the NPY system, likely corresponding to a compensatory response of the two neuropeptidergic systems, as observed in food-deprived animals. As spontaneous food intake of ZD rats

  8. Effects of dietary boron and phytase supplementation on growth performance and mineral profile of broiler chickens fed on diets adequate or deficient in calcium and phosphorus.

    PubMed

    Çinar, M; Küçükyilmaz, K; Bozkurt, M; Çatli, A U; Bintaş, E; Akşit, H; Konak, R; Yamaner, Ç; Seyrek, K

    2015-01-01

    1. Two experiments were designed to determine the effect of dietary boron (B) in broiler chickens. In Experiment 1, a 2 × 4 factorial arrangement of treatments was used to investigate the effect of dietary calcium (Ca) and available phosphorus (aP) (adequate or deficient) and supplemental B (0, 20, 40, and 60 mg/kg diet). In Experiment 2, B, at 20 mg/kg, and phytase (PHY) (500 FTU/kg diet) were incorporated into a basal diet deficient in Ca and aP, either alone or in combination. 2. The parameters that were measured were growth performance indices, serum biochemical activity as well as ash and mineral (i.e. Ca, P, Mg, Fe, Cu and Zn) content of tibia, breast muscle and liver. 3. Results indicated that both supplemental B and dietary Ca and aP had marginal effects on performance indices of chickens grown for 42 d. 4. There were positive correlations (linear effect) between B concentrations of serum, bone, breast muscle and liver and the amount of B consumed. 5. Serum T3 and T4 activities increased linearly with higher B supplementation. 6. Increasing supplemental B had significant implications on breast muscle and liver mineral composition. Lowering dietary Ca and aP level increased Cu content in liver and both Fe and Zn retention in breast muscle. Tibia ash content and mineral composition did not respond to dietary modifications with either Ca-aP or B. 7. The results also suggested that dietary contents of Ca and aP do not affect the response to B regarding tissue mineral profile. Dietary combination with B and PHY did not create a synergism with regard to growth performance and bioavailability of the minerals.

  9. Seminal quality and sperm production in beef bulls with chronic dietary vitamin A deficiency and subsequent re-alimentation.

    PubMed

    Rode, L M; Coulter, G H; Kastelic, J P; Bailey, D R

    1995-05-01

    Sixteen Hereford bulls (16 mo of age, 462 kg average body weight) were used in each of 2 yr to evaluate the effects of hypovitaminosis A on seminal quality and sperm production. Bulls were fed a high-concentrate diet with (+VIT) or without (-VIT) supplemental Vitamin A until the apparent onset of hypovitaminosis A (28 and 32 wk in Year 1 and 2, respectively). Half of the bulls on each treatment were then slaughtered and those remaining were re-alimented with Vitamin A. Plasma retinol concentration in -VIT bulls reached a nadir at approximately 25 wk. In Year 1, the proportion of progressively motile spermatozoa was lower in -VIT bulls after 17 wk but returned to that of the +VIT group after re-alimentation. The proportion of spermatozoa with primary morphological defects appeared to be greater in -VIT bulls compared to +VIT bulls by 26 and 24 wk in Year 1 and 2, respectively. The incidence of these defects declined in -VIT bulls upon re-alimentation, and approached the incidence observed in +VIT bulls by 8 to 12 wk of re-alimentation. Hypovitaminosis A decreased paired testes weight, daily sperm production, and epididymal sperm reserves but did not affect daily gain. Prolonged dietary Vitamin A deficiency impaired semen quality and sperm production in the absence of other clinical symptoms. However, under practical feeding conditions, diets that result in long-term, marginal Vitamin A deficiency or a relatively short-term absence of Vitamin A intake probably would have minimal effects on spermatogenesis.

  10. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats

    PubMed Central

    Embaby, Mohamed A.; Doleib, Nada M.; Taha, Mona M.

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  11. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    PubMed

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  12. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    PubMed

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p < 0.001), in addition to improving immune functions by decreasing total IgE approaching to the normal control level. Also, inflammatory cytokine (IL-6, IL-1β and TNF) levels, as well as total blood count decreased in diabetic rats as compared to the control group. Thus, cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes. PMID:27536197

  13. Optically-Induced Persistent Magnetization in Oxygen Deficient Strontium Titanate

    NASA Astrophysics Data System (ADS)

    Crooker, Scott

    2015-03-01

    Interest in electronics and spintronics based on complex oxide materials has exploded in recent years, fueled by the ability to grow atomically-precise heterostructures of various oxides 1. A foundational material in this burgeoning field is strontium titanate, a (nominally) non-magnetic wide-bandgap semiconductor. Owing to its ubiquity in oxide materials science, studies of SrTiO3's interesting dielectric, lattice, and optical properties represent mature research areas. However, renewed interest in SrTiO3 was recently sparked by observations of unexpected spin and magnetization phenomena at interfaces between SrTiO3 and other nonmagnetic oxides 1. The formation and distribution of oxygen vacancies (VO) in SrTiO3 are widely thought to play an essential but as-yet-incompletely understood role in these emergent phenomena. Here we demonstrate a surprising new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically-induced and persistent magnetization in slightly oxygen-deficient SrTiO3-δ bulk crystals, using magnetic circular dichroism spectroscopy and optically-coupled SQUID studies 2. This magnetization appears below 18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500 nm) light. As such, magnetic patterns can be ``written'' into SrTiO3-δ, and subsequently read out, using light alone. This magnetism occurs only in crystals containing VO, and is consistent with a metastable spin polarization of VO-related defect complexes. These data reveal a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material, which may yield new insights into the recent exciting spin physics observed at oxide interfaces.

  14. Intestinal inflammation caused by magnesium deficiency alters basal and oxidative stress-induced intestinal function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium-deficiency (MgD)induces a systemic pro-inflammatory state. The aim of this study was to determine the effect of MgD on the functional and molecular response to mesenteric ischemia reperfusion. Rats were assigned to 4 groups and placed on magnesium sufficient or deficient diet for 1 or 3 we...

  15. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    EPA Science Inventory

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  16. Common Bean Leaves as a Source of Dietary Iron: Functional Test in an Iron-Deficient Rat Model.

    PubMed

    Martínez-Zavala, Mauricio; Mora-Avilés, María Alejandra; Anaya-Loyola, Miriam Aracely; Guzmán-Maldonado, Horacio; Aguilera-Barreyro, Araceli; Blanco-Labra, Alejandro; García-Gasca, Teresa

    2016-09-01

    Recent findings made by our group indicate that the iron content in Phaseolus vulgaris leaves is at least four times greater than in grains therefore, we evaluated the effect of supplementation with bean leaf (iron content of 275 mg/kg on a dry basis) in iron-deficient rats. Anemia was induced by feeding rats with an iron-deficient diet (IDD) for 11 days and iron-recovery diets were subsequently tested for 14 days using a normal diet, a 10 % bean leaf-supplemented IDD (BLSD) or a ferrous sulfate-supplemented IDD. Decreased levels of leukocytes (64 %), erythrocytes (30 %), lymphocytes (62 %), granulocytes (72 %), hematocrit (34 %), hemoglobin (35 %), and ferritin (34 %) were observed in the iron-deficient rats compared to the control rats. BLSD supplementation showed the highest recovery values relative to those recorded for control rats: leukocytes (40 %), erythrocytes (24 %), lymphocytes (33 %), granulocytes (88 %), hematocrit (17 %), and hemoglobin (18 %), suggesting that common bean leaves could be a good source of bioavailable iron with possible immunomodulatory effects. PMID:27319012

  17. Effect of dietary antioxidants on the cytostatic effect of acrylamide during copper-deficiency in Saccharomyces cerevisiae.

    PubMed

    Kommuguri, Upendra Nadh; Satyaprasad Pallem, Poorna Venkata; Bodiga, Sreedhar; Bodiga, Vijaya Lakshmi

    2014-04-01

    Acrylamide exposure increases oxidative stress and causes cytotoxicity. In order to understand the role of oxidative stress in acrylamide toxicity, we utilized Saccharomyces cerevisiae as a model organism grown in Yeast Peptone Dextrose (YPD) or Copper-Deficient Medium (CDM). Although the growth curves of yeast were comparable in these media, acrylamide treatment resulted in significant growth inhibition and colony formation only in the CDM. Copper-deficiency induced a decrease in the intracellular metallothionein levels, along with reduced Cu, Zn-SOD activity that appeared to increase the sensitivity of the yeast to the cytostatic effect of acrylamide. Increased dichlorofluorescein (DCF) fluorescence, enhanced formation of para-phenyl tertiary butyl nitrone (PBN)-hydroxyethyl adducts and a lowered reduced glutathione (GSH) content were observed under copper-deficient conditions, when challenged with acrylamide. The cytostatic effects and intracellular redox changes in response to acrylamide were ameliorated by antioxidant molecules viz. a viz. curcumin, β-carotene, vanillin and caffeic acid, which effectively decreased the oxidative stress and improved the growth recovery.

  18. Dietary calcium deficiency increases Ca2+ uptake and Ca2+ extrusion mechanisms in chick enterocytes.

    PubMed

    Centeno, Viviana A; Díaz de Barboza, Gabriela E; Marchionatti, Ana M; Alisio, Arturo E; Dallorso, Maria E; Nasif, Renée; Tolosa de Talamoni, Nori G

    2004-10-01

    Ca2+ uptake and Ca2+ extrusion mechanisms were studied in enterocytes with different degree of differentiation from chicks adapted to a low Ca2+ diet as compared to animals fed a normal diet. Chicks adapted to a low Ca2+ diet presented hypocalcemia, hypophosphatemia and increased serum 1,25(OH)2D3 and Ca2+ absorption. Low Ca2+ diet increased the alkaline phosphatase (AP) activity, independently of the cellular maturation, but it did not alter gamma-glutamyl-transpeptidase activity. Ca2+ uptake, Ca2+-ATPase and Na(+)/Ca2+ exchanger activities and expressions were increased by the mineral-deficient diet either in mature or immature enterocytes. Western blots analysis shows that vitamin D receptor (VDR) expression was much higher in crypt cells than in mature cells. Low Ca2+ diet decreased the number of vitamin D receptor units in both kinds of cells. In conclusion, changes in Ca2+ uptake and Ca2+ extrusion mechanisms in the enterocytes by a low Ca2+ diet appear to be a result of enhanced serum levels of 1,25(OH)2D3, which would promote cellular differentiation producing cells more efficient to express vitamin D dependent genes required for Ca2+ absorption. PMID:15528161

  19. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.

    1992-01-01

    When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.

  20. A calcitonin receptor (CALCR) single nucleotide polymorphism is associated with growth performance and bone integrity in response to dietary phosphorus deficiency.

    PubMed

    Alexander, L S; Qu, A; Cutler, S A; Mahajan, A; Rothschild, M F; Cai, W; Dekkers, J C; Stahl, C H

    2010-03-01

    Although concerns over the environmental impact of excess P in the excreta from pig production and governmental regulations have driven research toward reducing dietary supplementation of P to swine diets for over a decade, recent dramatic increases in feed costs have further motivated researchers to identify means to further reduce dietary P supplementation. We have demonstrated that genetic background impacts P utilization in young pigs and have identified genetic polymorphisms in several target genes related to mineral utilization. In this study, we examined the impact of a SNP in the calcitonin receptor gene (CALCR) on P utilization in growing pigs. In Exp. 1, 36 gilts representing the 3 genotypes identified by this CALCR SNP (11, 12, and 22) were fed a P-adequate (PA) or a marginally P-deficient (approximately 20% less available P; PD) diet for 14 wk. As expected, P deficiency reduced plasma P concentration, bone strength, and mineral content (P < 0.05). However, the dietary P deficiency was mild enough to not affect the growth performance of these pigs. A genotype x dietary P interaction (P < 0.05) was observed in measures of bone integrity and mineral content, with the greatest reduction in bone strength and mineral content due to dietary P deficiency being associated with the allele 1. In Exp. 2, 168 pigs from a control line and low residual feed intake (RFI) line were genotyped for the CALCR SNP and fed a PA diet. As expected, pigs from the low RFI line consumed less feed but also gained less BW when compared with the control line (P < 0.05). Although ADFI did not differ between genotypes, pigs having the 11 genotype gained less BW (P < 0.05) than pigs having the 12 or 22 genotypes. Pigs of the 11 and 12 genotypes had bones that tolerated greater load when compared with animals having the 22 genotype (P < 0.05). A similar trend was observed in bone modulus and ash % (P < 0.10). These data are supportive of the association of this CALCR SNP with bone

  1. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  2. Dietary-induced variations in urinary taurine levels of college women.

    PubMed

    Thompson, D E; Vivian, V M

    1977-04-01

    Dietary-induced variations in the urinary taurine excretion of healthy college women were investigated. Data were collected in three metabolic studies in which nutritionally adequate diets of constant composition were fed. Variables included isonitrogenous natural food and semi-purified diets; taurine, cystine and meat supplements; and kind and amount of dietary fat. Observed urinary taurine levels were low and ranges were narrower than those reported by other investigators. The low taurine excretion at the completion of the studies was considered evidence that urinary taurine levels in humans is related to the level of body taurine as well as to the level of dietary taurine. Urinary taurine excretion was shown to be related to dietary taurine intake rather than protein (nitrogen) intake. A relationship between kind of dietary fat and taurine excretion is suggested.

  3. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    PubMed

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens.

  4. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2015-11-01

    Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring.

  5. Alterations of rat hepatoma cell genomes induced by copper deficiency.

    PubMed

    Renault, E; Deschatrette, J

    1997-01-01

    Copper deficiency imposed on a variant rat hepatoma cell line inhibits cell growth and results in genesis of stable well-differentiated, tumorigenic revertants. The treatment caused a substantial increase in DNA content (up to 20%) of G1 and G2/M cells and inhibition of cell proliferation. This phenomenon was correlated with an enhancement of DNA replication. The excess DNA was unstable and rapidly lost with reinitiation of cell growth and mitosis. Minute and double-minute extrachromosomal material was detected by metaphase analysis, suggesting widespread DNA amplification in copper-deficient conditions. Although transitory, these genetic events were associated with genesis of drug-resistant cells and induction of tumorigenicity of the variant hepatoma cells. The data reveal a novel aspect of the consequences of trace element deficiency.

  6. Intra-amniotic administration and dietary inulin affect the iron status and intestinal functionality of iron-deficient broiler chickens.

    PubMed

    Tako, E; Glahn, R P

    2012-06-01

    transporter) and ferroportin in addition to liver ferritin amounts were higher (P < 0.05) in the inulin group versus controls. Results indicate that intra-amniotic administration and dietary inulin improved the iron status of iron-deficient broilers.

  7. [A case of a 16.5-year-old boy with myelosis funicularis caused by secondary vitamin B12 deficiency associated with dietary deficiencies - case report].

    PubMed

    Kostka, Ewa; Krzesiek, Elzbieta; Iwańczak, Barbara

    2013-03-01

    Vitamin B12 deficiency can manifest with many illness symptoms, among which dominate those of the hematology, digestive and nervous system. The illness symptoms of vitamin B12 deficiency are often atypical and the early cause diagnosis might be difficult. Hereby it is described a case of a 16.5-year-old boy with myelosis funicularis caused by vitamin B12 deficiency. PMID:23700828

  8. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation1234

    PubMed Central

    Patel, Sanjeet G; Guthikonda, Anuradha P; Reid, Marvin; Balasubramanyam, Ashok; Taffet, George E; Jahoor, Farook

    2011-01-01

    Background: Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. Objective: We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. Design: Eight elderly and 8 younger subjects received stable-isotope infusions of [2H2]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F2-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. Results: Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P < 0.01), cysteine (26.2 ± 1.4 compared with 19.8 ± 1.3 μmol/L; P < 0.05), and glutathione (2.08 ± 0.12 compared with 1.12 ± 0.18 mmol/L RBCs; P < 0.05); lower glutathione fractional (83.14 ± 6.43% compared with 45.80 ± 5.69%/d; P < 0.01) and absolute (1.73 ± 0.16 compared with 0.55 ± 0.12 mmol/L RBCs per day; P < 0.01) synthesis rates; and higher plasma oxidative stress (304 ± 16 compared with 346 ± 20 Carratelli units; P < 0.05) and plasma F2-isoprostanes (97.7 ± 8.3 compared with 136.3 ± 11.3 pg/mL; P < 0.05). Precursor supplementation in elderly subjects led to a 94.6% higher glutathione concentration, a 78.8% higher fractional synthesis rate, a 230.9% higher absolute synthesis rate, and significantly lower plasma oxidative stress and F2-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. Conclusions: Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and

  9. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  10. Dietary herring improves plasma lipid profiles and reduces atherosclerosis in obese low-density lipoprotein receptor-deficient mice.

    PubMed

    Gabrielsson, Britt G; Wikström, Johannes; Jakubowicz, Robert; Marmon, Sofia K; Carlsson, Nils-Gunnar; Jansson, Nina; Gan, Li-Ming; Undeland, Ingrid; Lönn, Malin; Holmäng, Agneta; Sandberg, Ann-Sofie

    2012-03-01

    Diet is a significant modifiable risk factor for cardiovascular disease and high fish intake has been associated with vascular health in population studies. However, intervention studies have been inconclusive. In this study, male low-density lipoprotein receptor-deficient mice were given 16-week high fat/high sucrose diets, supplemented with either minced herring fillets or minced beef. The diets were matched in total fat and cholesterol content; taurine content and fatty acid composition was analysed. Body weights were recorded throughout the study; plasma lipids were analysed at week 8 and 16. Body composition and adipocyte size were evaluated at study end. Atherosclerosis was evaluated at week 12 (ultrasound) and at termination (en face histology). Herring-fed mice had a higher proportion of long-chain n-3 polyunsaturated fatty acids in the hepatic triacylglycerides (TAG) and phospholipid fractions. The herring-fed mice had increased body weight (P=0.007), and reduced epididymal adipocyte size (P=0.009), despite similar food intake and body composition as the beef-fed mice. The herring-fed mice had lower plasma TAG and very-low-density lipoprotein (VLDL)-cholesterol concentrations throughout the study (TAG; P=0.0012 and 0.004, VLDL-cholesterol; P=0.006 and 0.041, week 8 and 16, respectively). At week 16, the herring-fed had higher plasma concentrations of HDL-cholesterol (P=0.004) and less atherosclerotic lesions in the aortic arch (P=0.007) compared with the beef-fed mice. In conclusion, dietary herring in comparison to beef markedly improved vascular health in this mouse model, suggesting that herring provides an added value beyond its content of macronutrients.

  11. Raman studies of gluten proteins aggregation induced by dietary fibres.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition.

  12. Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension.

    PubMed

    Sun, Zhongjie

    2006-06-01

    Chronic cold exposure causes hypertension and diuresis. The aim of this study was to determine whether vasopressin (AVP) plays a role in cold-induced hypertension and diuresis. Two groups of Long-Evans (LE) and two groups of homozygous AVP-deficient Brattleboro (VD) rats were used. Blood pressure (BP) was not different among the four groups during a 2-wk control period at room temperature (25 degrees C, warm). After the control period, one LE group and one VD group were exposed to cold (5 degrees C); the remaining groups were kept at room temperature. BP and body weight were measured weekly during exposure to cold. Food intake, water intake, urine output, and urine osmolality were measured during weeks 1, 3, and 5 of cold exposure. At the end of week 5, all animals were killed and blood was collected for measurement of plasma AVP. Kidneys were removed for measurement of renal medulla V2 receptor mRNA and aquaporin-2 (AQP-2) protein expression. BP of LE and VD rats increased significantly by week 2 of cold exposure and reached a high level by week 5. BP elevations developed at approximately the same rate and to the same degree in LE and VD rats. AVP deficiency significantly increased urine output and solute-free water clearance and decreased urine osmolality. Chronic cold exposure increased urine output and solute-free water clearance and decreased urine osmolality in LE rats, indicating that cold exposure caused diuresis in LE rats. Cold exposure failed to affect these parameters in VD rats, suggesting that the AVP system is responsible for cold-induced diuresis. Cold exposure did not alter plasma AVP in LE rats. Renal medulla V2 receptor mRNA and AQP-2 protein expression levels were decreased significantly in the cold-exposed LE rats, suggesting that cold exposure inhibited renal V2 receptors and AVP-inducible AQP-2 water channels. We conclude that 1) AVP may not be involved in the pathogenesis of cold-induced hypertension, 2) the AVP system plays a critical role

  13. Chronic Pseudomonas aeruginosa infection-induced chronic bronchitis and emphysematous changes in CCSP-deficient mice

    PubMed Central

    Matsumoto, Takemasa; Fujita, Masaki; Hirano, Ryosuke; Uchino, Junji; Tajiri, Yukari; Fukuyama, Satoru; Morimoto, Yasuo; Watanabe, Kentaro

    2016-01-01

    The club cell secretory protein (CCSP) is a regulator of lung inflammation following acute respiratory infection or lung injury. Recently, the relationship between CCSP and COPD has been reported. Since COPD results from an abnormal inflammatory response, we hypothesized that CCSP could have a protective role against chronic inflammation-induced lung damage. To address this issue, the pathophysiology of chronic lung inflammation induced by Pseudomonas aeruginosa in CCSP-deficient mice was determined. A tube of 5 mm in length was soaked in a fluid containing P. aeruginosa (PAO01 strain) for 1 week and inserted into the trachea of CCSP-deficient mice. One week later, P. aeruginosa was administered into the trachea. Five weeks after insertion of tube, the mice were sacrificed. Bronchoalveolar lavage fluids were collected to determine the bacterial growth, and the lung histology and physiology were also examined. P. aeruginosa was continuously detected in bronchoalveolar lavage fluids during the study. Neutrophils were increased in the bronchoalveolar lavage fluids from the CCSP-deficient mice in comparison to wild-type mice. A histological study demonstrated chronic inflammation around bronchus, serious bronchial stenosis, and alveolar enlargement in the CCSP-deficient mice. The lung physiology study demonstrated an increase in the lung compliance of the CCSP-deficient mice. Chronic P. aeruginosa inflammation resulted in chronic bronchitis and emphysematous changes in the CCSP-deficient mice. CCSP could play an important role in protecting the host from the chronic inflammation-induced lung damage. PMID:27703342

  14. [Pathology of placenta of rats induced by fatty acid deficiency].

    PubMed

    Glocker, T M

    2000-01-01

    Lipids are important cell components, both from the structural and the functional point of view. Besides, they intervene in transporting functions, cell recognition and immunity. Essential Fatty Acids (EFA) are important for the functional and structural maintenance of animal organisms. In our laboratory, it was demonstrated that one group of pregnant rats fed on an EFA deficient diet, and other group of rats fed on the same diet but with 5% of corn oil (rich in linoleic acid) showed alterations on the development of the metrial gland. In the present work, 57 female rats of a Wistar strain were fed since weaning with one of the following diets: EFAD: deficient in essential fatty acids, COD: EFAD + 5% corn oil (linoleic acid sufficient but alpha-linoleic acid deficient); SAD: EFAD + 5% soy oil (both EFA sufficient) and CD: commercial diet. After 3 months the animals were sacrificed on the 13 th. day of gestation. Uteru's horns were dissected and the implantation sities were fixed on formol and embebbed in parafin. The observations were carried out with H/E coloured cross-sections and the corialantoidea placenta, the cities of implantations and the sitios of reabsortions were studied. The metrial gland of DAGE and DAM rats presented structural modifications compared to DC rats. The most relevant findings were: indifferentiation of the granulated metrial gland cells and an increase in the amount of connective tissue. In DAS rats, on the contrary, the aspect of the metrial gland was similar to the observed in the DC group. In the DAGE and the DAM groups Labyrinthium was enlarged with vascular septum group. Mean while DAS was similar to group DC (thin and vascular). Differences in the cities of implantations and reabsortions were not detected. The present results suggest that alpha-linolenico acid is essential for the rat placenta to reach normal development.

  15. Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats.

    PubMed

    Manjunatha, H; Srinivasan, K

    2007-12-01

    Health beneficial hypolipidemic and antioxidant influences of dietary spice principles--curcumin, capsaicin alone and in combination included in the diet for 8 weeks were evaluated in induced hypercholesterolemic rats, in order to verify if there is any additive or synergistic effect of these two bioactive compounds. Dietary curcumin (0.2%), capsaicin (0.015%) or their combination significantly countered the hypercholesterolemia brought about by high cholesterol feeding. Hepatic cholesterol was lowered by dietary spice principles only in normal rats. Liver triglyceride levels were lowered in both normal and hypercholesterolemic rats by capsaicin. Curcumin and capsaicin lowered hepatic and blood lipid peroxides in hypercholesterolemic rats, while the effect in blood was additive with their combination. Hepatic ascorbic acid was enhanced by dietary spice principles in normal rats; glutathione was enhanced by their combination only in hypercholesterolemic rats. Activities of serum glutathione reductase, glutathione transferase and catalase and hepatic glutathione reductase in normal rats and serum glutathione peroxidase in hypercholesterolemic rats were enhanced by dietary spice principles. While dietary curcumin and capsaicin normalized the changes in the levels of antioxidant molecules and activities of antioxidant enzymes to a significant extent, this effect was not generally additive when given in combination, and was higher than the individual effects only in a few instances.

  16. Metformin administration induces hepatotoxic effects in paraoxonase-1-deficient mice.

    PubMed

    García-Heredia, Anabel; Riera-Borrull, Marta; Fort-Gallifa, Isabel; Luciano-Mateo, Fedra; Cabré, Noemí; Hernández-Aguilera, Anna; Joven, Jorge; Camps, Jordi

    2016-04-01

    Metformin is the first-line pharmacological treatment of diabetes. In these patients, metformin reduces body weight and decreases the risk of diabetes-related complications such as cardiovascular disease. However, whether metformin elicits beneficial effects on liver histology is a controversial issue and, as yet, there is no consensus. Paraoxonase-1 (PON1), an enzyme synthesized mainly by the liver, degrades lipid peroxides and reduces oxidative stress. PON1 activities are decreased in chronic liver diseases. We evaluated the effects of metformin in the liver of PON1-deficient mice which, untreated, present a mild degree of liver steatosis. Metformin administration aggravated inflammation in animals given a standard mouse chow and in those fed a high-fat diet. Also, it was associated with a higher degree of steatosis in animals fed a standard chow diet. This report is a cautionary note regarding the prescription of metformin for the treatment of diabetes in patients with concomitant liver impairment.

  17. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses pre-established hypertrophic cardiomyopathy in the presence of pressure overload induced by ascending aor...

  18. Delayed auditory conduction in diabetes: is metformin-induced vitamin B12 deficiency responsible?

    PubMed Central

    Khattar, Deepti; Khaliq, Farah; Vaney, Neelam; Madhu, Sri Venkata

    2016-01-01

    Summary The present study aims to evaluate the functional integrity of the auditory pathway in patients with diabetes taking metformin. A further aim is to assess its association with vitamin B12 deficiency induced by metformin. Thirty diabetics taking metformin and 30 age-matched non-diabetic controls were enrolled. Stimulus-related potentials and vitamin B12 levels were evaluated in all the subjects. The diabetics showed deficient vitamin B12 levels and delayed wave III latency and III–V interpeak latency in the right ear and delayed Na and Pa wave latencies in the left ear compared with the controls. The dose and duration of metformin showed no association with the stimulus-related potentials. Therefore, although vitamin B12 levels were deficient and auditory conduction impairment was present in the diabetics on metformin, this impairment cannot be attributed to the vitamin B12 deficiency. PMID:27358222

  19. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 2: Cobalamin C deficiency (cblC).¶

    PubMed Central

    Manoli, Irini; Myles, Jennifer G.; Sloan, Jennifer L.; Carrillo-Carrasco, Nuria; Morava, Eva; Strauss, Kevin A.; Morton, Holmes; Venditti, Charles P.

    2015-01-01

    PURPOSE Cobalamin C (cblC) deficiency impairs the biosynthesis of adenosyl- and methylcobalamin resulting in methylmalonic acidemia combined with hyperhomocysteinemia and hypomethioninemia. However, some patients with cblC deficiency are treated with medical foods, devoid of methionine and high in leucine content, that are formulated for patients with isolated propionate oxidative defects. We examined the effects of imbalanced branched-chain amino acid intake on growth outcomes in cblC patients. METHODS Dietary intake was correlated with biochemical, anthropometric, body composition measurements and other disease parameters in a cohort of 28 early-onset cblC patients. RESULTS Protein restricted diets were followed by 21% of the patients, while 32% received medical foods. Patients on protein-restricted diets had lower height-for-age Z-score (P=0.034), while patients consuming medical foods had lower head-circumference Z-scores (P=0.037), plasma methionine concentrations (P=0.001) and predicted methionine influx through the blood brain barrier Z-score (−1.29 vs. −0.0617, P=0.007). The combination of age of diagnosis, a history of seizures and the leucine/valine dietary intake ratio best predicted head circumference Z-score based on multiple regression modeling (R2= 0.945). CONCLUSIONS Patients with cblC deficiency treated with medical foods designed for isolated methylmalonic acidemia are at risk for iatrogenic methionine deficiency that could adversely affect brain growth and development. TRIAL REGISTRATION This clinical study is registered in www.clinicaltrials.gov with the ID: NCT00078078. Study URL: http://clinicaltrials.gov/ct2/show/NCT00078078 PMID:26270766

  20. Phosphate Deficiency Induces the Jasmonate Pathway and Enhances Resistance to Insect Herbivory1[OPEN

    PubMed Central

    Glauser, Gaétan

    2016-01-01

    During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1. The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops. PMID:27016448

  1. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  2. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  3. Selenium deficiency induced by zinc deprivation in a crustacean

    SciTech Connect

    Keating, K.I.; Caffrey, P.B. )

    1989-08-01

    For intact daphnids reared in circumstances of controlled trace element exposure, one consequence of insufficient zinc (Zn) is an increased demand on the animal's pool of available selenium (Se). This demand is manifested by the type of cuticle deterioration associated with Se deficiency and by a depression of reproduction. In the presence of 25 parts per billion (ppb) Zn, 1 ppb Se eliminates these symptoms. In the absence of detectable Zn, 5 ppb Se eliminates overt cuticle damage and substantially increases reproduction. A shortening of life span resulting from Zn deprivation is not ameliorated by Se addition. The authors suggest that the interplay between Zn and Se concentrations reflects an underlying interplay between interdependent, but distinct, metabolic pathways; i.e., (for Se) glutathione peroxidase and (for Zn) Cu,Zn-superoxide dismutase--each offering protection against free radical damage. Because they are not necessarily localized in a given tissue, the key to recognition of such subtle, complex trace nutrient interactions has been use of intact animals in circumstances of control previously attainable only in tissue cultures.

  4. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    SciTech Connect

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali; Hemati, Simin

    2015-07-01

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data. Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.

  5. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  6. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants.

    PubMed

    Vigani, Gianpiero

    2012-01-01

    In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield and quality of crops. Plants have evolved multifaceted strategies, such as reductase activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the environment and distribute it within the plant. Because of its fundamental role in plant productivity, several issues concerning Fe homeostasis in plants are currently intensively studied. The activation of Fe uptake reactions requires an overall adaptation of the primary metabolism because these activities need the constant supply of energetic substrates (i.e., NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have been conducted, but research focused on mitochondrial implications in adaptive responses to nutritional stress has only begun in recent years. Mitochondria are the energetic centre of the root cell, and they are strongly affected by Fe deficiency. Nevertheless, they display a high level of functional flexibility, which allows them to maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant homeostasis, and it might be of interest to concentrate future research on understanding how mitochondria orchestrate the reprogramming of root cell metabolism under Fe deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on mitochondrial metabolism and morphology. Moreover, I present a detailed view of the possible roles of mitochondria in the development of plant responses to Fe deficiency, integrating old findings with new and discussing new hypotheses for future investigations.

  7. Allergens induce enhanced bronchoconstriction and leukotriene production in C5 deficient mice

    PubMed Central

    McKinley, Laura; Kim, Jiyoun; Bolgos, Gerald L; Siddiqui, Javed; Remick, Daniel G

    2006-01-01

    Background Previous genetic analysis has shown that a deletion in the complement component 5 gene-coding region renders mice more susceptible to allergen-induced airway hyperresponsiveness (AHR) due to reduced IL-12 production. We investigated the role of complement in a murine model of asthma-like pulmonary inflammation. Methods In order to evaluate the role of complement B10 mice either sufficient or deficient in C5 were studied. Both groups of mice immunized and challenged with a house dust extract (HDE) containing high levels of cockroach allergens. Airways hyper-reactivity was determined with whole-body plesthysmography. Bronchoalveolar lavage (BAL) was performed to determine pulmonary cellular recruitment and measure inflammatory mediators. Lung homogenates were assayed for mediators and plasma levels of IgE determined. Pulmonary histology was also evaluated. Results C5-deficient mice showed enhanced AHR to methylcholine challenge, 474% and 91% increase above baseline Penh in C5-deficient and C5-sufficient mice respectively, p < 0.001. IL-12 levels in the lung homogenate (LH) were only slightly reduced and BAL IL-12 was comparable in C5-sufficient and C5-deficient mice. However, C5-deficient mice had significantly higher cysteinyl-leukotriene levels in the BAL fluid, 1913 +/- 246 pg/ml in C5d and 756 +/- 232 pg/ml in C5-sufficient, p = 0.003. Conclusion These data demonstrate that C5-deficient mice show enhanced AHR due to increased production of cysteinyl-leukotrienes. PMID:17044927

  8. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation.

    PubMed

    Grin'kina, Natalia M; Karnabi, Eddy E; Damania, Dushyant; Wadgaonkar, Sunil; Muslimov, Ilham A; Wadgaonkar, Raj

    2012-01-01

    The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: • Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. • Sphingosine kinase 1 deletion worsens the effect of the LPS. • Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.

  9. Complement component 6 deficiency increases susceptibility to dextran sulfate sodium-induced murine colitis.

    PubMed

    Ding, Peipei; Li, Ling; Huang, Tianbao; Yang, Chaoqun; Xu, Enjie; Wang, Na; Zhang, Long; Gu, Hongyu; Yao, Xudong; Zhou, Xuhui; Hu, Weiguo

    2016-11-01

    As a potent effector of innate immunity, the complement system has been shown to be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the role of the membrane attack complex (MAC) in the development of IBD is still largely unknown. Here, we used C6-deficient mice in which MAC formation was blocked due to the absence of C6 to develop an acute colitis model by the administration of dextran sulfate sodium (DSS). The results showed that DSS-induced colitis was aggravated in C6-deficient mice compared with wild-type (WT) mice, as represented by the markedly greater weight loss, higher disease activity index (DAI), shortened colon length, more severe histological injury with increased epithelial ulcerations, and massively increased infiltration of leukocytes accompanied by much higher myeloperoxidase (MPO) levels in local inflammatory colonic sites. In addition, the DSS-induced colitis in C6-deficient mice could be significantly ameliorated by the exogenous C6 from WT sera. Furthermore, the significantly enhanced production of pro-inflammatory mediators, including IL-1β, IL-6, CXCL-1, CCL-3, TGF-β1 and IL-17F, was also observed in C6-deficient mice. Unexpectedly, the aggravated colitis in C6-deficient mice may be not due to the increase of lipopolysaccharide (LPS) levels in serum. Overall, we demonstrated that MAC exerts a protective role in acute colitis, strongly highlighting the host defense function of the complement system. PMID:27316715

  10. Epigenetic mechanisms of dietary restriction induced aging in Drosophila.

    PubMed

    Lian, Ting; Gaur, Uma; Yang, Deying; Li, Diyan; Li, Ying; Yang, Mingyao

    2015-12-01

    Aging is a long-standing problem that people are always interested in. Thus, it is critical to understand the underlying molecular mechanisms in aging and explore the most efficient method to extend life expectancy. To achieve this goal, a wide range of systems including cells, rodent models, budding yeast, worms and flies have been employed for decades. In recent years, the effect of dietary restriction (DR) on lifespan is in the prime focus. Although we have confirmed that reduced insulin and/or insulin-like growth factor (IGF) and the target of rapamycin (TOR) signaling can increase Drosophila lifespan; the precise molecular mechanisms and nutritional response landscape of diet-mediated aging is ambiguous. Epigenetic events have been considered as the major contributors to lifespan extension with response to DR. The role of DNA methylation in aging is well acknowledged in mammals and rodents where it has been shown to impact aging by regulating the transcription, though the mechanism of regulation is not limited to only transcription. In Drosophila, the contribution of methylation during DR in aging is definitely less explored. In this review, we will update the advances in mechanisms of DR, with a particular focus on methylation as an upcoming target for aging studies and discuss Drosophila as a powerful model to understand mechanisms of aging with response to diet.

  11. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    PubMed

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  12. Prostaglandin E2 is critical for the development of niacin-deficiency-induced photosensitivity via ROS production

    NASA Astrophysics Data System (ADS)

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-10-01

    Pellagra is a photosensitivity syndrome characterized by three ``D's'': diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.

  13. Endoplasmic Reticulum Stress-Related Genes in Yellow Catfish Pelteobagrus fulvidraco: Molecular Characterization, Tissue Expression, and Expression Responses to Dietary Copper Deficiency and Excess.

    PubMed

    Song, Yu-Feng; Luo, Zhi; Huang, Chao; Chen, Qi-Liang; Pan, Ya-Xiong; Xu, Yi-Huan

    2015-10-01

    Two endoplasmic reticulum (ER) molecular chaperones [glucose-regulated protein 78 (grp78) and calreticulin (crt)] and three ER stress sensors [PKR-like ER kinase (perk), inositol requiring enzyme (ire)-1α, and activating transcription factor (atf)-6α] cDNAs were first characterized from yellow catfish, Pelteobagrus fulvidraco. The predicted amino acid sequences for the yellow catfish grp78, crt, perk, ire-1α, and atf-6α revealed that the proteins contained all of the structural features that were characteristic of the five genes in other species, including the KDEL motif, signal peptide, sensor domain, and effector domain. mRNAs of the five genes mentioned above were expressed in various tissues, but their mRNA levels varied among tissues. Dietary Cu excess, but not Cu deficiency, activated the chaperones (grp78 and crt) and folding sensors in ER, and the UPR signaling pathways (i.e., perk-eif2α and the ire1-xbp1) in a tissue-specific manner. For the first time, our study cloned grp78, crt, perk, ire-1α, and atf-6α genes in yellow catfish and demonstrated their differential expression among tissues. Moreover, the present study also indicated differential regulation of these ER stress-related genes by dietary Cu deficiency and excess, which will be beneficial for us to evaluate effects of dietary Cu levels in fish at the molecular level, based on the upstream pathway of lipid metabolism (the ER) and thus provide novel insights regarding the nutrition of Cu in fish. PMID:26276384

  14. Endoplasmic Reticulum Stress–Related Genes in Yellow Catfish Pelteobagrus fulvidraco: Molecular Characterization, Tissue Expression, and Expression Responses to Dietary Copper Deficiency and Excess

    PubMed Central

    Song, Yu-Feng; Luo, Zhi; Huang, Chao; Chen, Qi-Liang; Pan, Ya–Xiong; Xu, Yi-Huan

    2015-01-01

    Two endoplasmic reticulum (ER) molecular chaperones [glucose-regulated protein 78 (grp78) and calreticulin (crt)] and three ER stress sensors [PKR-like ER kinase (perk), inositol requiring enzyme (ire)-1α, and activating transcription factor (atf)-6α] cDNAs were first characterized from yellow catfish, Pelteobagrus fulvidraco. The predicted amino acid sequences for the yellow catfish grp78, crt, perk, ire-1α, and atf-6α revealed that the proteins contained all of the structural features that were characteristic of the five genes in other species, including the KDEL motif, signal peptide, sensor domain, and effector domain. mRNAs of the five genes mentioned above were expressed in various tissues, but their mRNA levels varied among tissues. Dietary Cu excess, but not Cu deficiency, activated the chaperones (grp78 and crt) and folding sensors in ER, and the UPR signaling pathways (i.e., perk–eif2α and the ire1–xbp1) in a tissue-specific manner. For the first time, our study cloned grp78, crt, perk, ire-1α, and atf-6α genes in yellow catfish and demonstrated their differential expression among tissues. Moreover, the present study also indicated differential regulation of these ER stress–related genes by dietary Cu deficiency and excess, which will be beneficial for us to evaluate effects of dietary Cu levels in fish at the molecular level, based on the upstream pathway of lipid metabolism (the ER) and thus provide novel insights regarding the nutrition of Cu in fish. PMID:26276384

  15. Dietary protein deficiency affects n-3 and n-6 polyunsaturated fatty acids hepatic storage and very low density lipoprotein transport in rats on different diets.

    PubMed

    Bouziane, M; Prost, J; Belleville, J

    1994-04-01

    Fatty livers and the similarity between the skin lesions in kwashiorkor and those described in experimental essential fatty acid (EFA) deficiency have led to the hypothesis that protein and EFA deficiencies may both occur in chronic malnutrition. The relationship between serum very low density lipoprotein (VLDL) and hepatic lipid composition was studied after 28 d of protein depletion to determine the interactions between dietary protein levels and EFA availability. Rats were fed purified diets containing 20 or 2% casein and 5% fat as either soybean oil rich in EFA, or salmon oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, or hydrogenated coconut oil poor in EFA. Animals were divided into six groups, SOC (20% casein + 5% soybean oil), SOd (2% casein + 5% soybean oil), COC (20% casein + 5% hydrogenated coconut oil), COd (2% casein + 5% hydrogenated coconut oil), SAC (20% casein + 5% salmon oil) and SAd (2% casein + 5% salmon oil). After 28 d, liver steatosis and reduced VLDL-phospholipid contents (P < 0.001) were observed in protein-deficient rats. In protein deficiency, triacylglycerol and phospholipid fatty acid compositions in both liver and VLDL showed a decreased polyunsaturated-to-saturated fatty acid ratio. This ratio was higher with the salmon oil diets and lower with the hydrogenated coconut oil diets. Furthermore, independent of the oil in the diet, protein deficiency decreased linoleic and arachidonic acids in VLDL phospholipids. Conversely, despite decreased proportions of EPA at low protein levels, DHA levels remained higher in rats fed salmon oil diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses

    PubMed Central

    Buckhout, Thomas J; Yang, Thomas JW; Schmidt, Wolfgang

    2009-01-01

    Background Iron (Fe) is an essential nutrient in plants and animals, and Fe deficiency results in decreased vitality and performance. Due to limited bio-availability of Fe, plants have evolved sophisticated adaptive alterations in development, biochemistry and metabolism that are mainly regulated at the transcriptional level. We have investigated the early transcriptional response to Fe deficiency in roots of the model plant Arabidopsis, using a hydroponic system that permitted removal of Fe from the nutrient solution within seconds and transferring large numbers of plants with little or no mechanical damage to the root systems. We feel that this experimental approach offers significant advantages over previous and recent DNA microarray investigations of the Fe-deficiency response by increasing the resolution of the temporal response and by decreasing non-Fe deficiency-induced transcriptional changes, which are common in microarray analyses. Results The expression of sixty genes were changed after 6 h of Fe deficiency and 65% of these were found to overlap with a group of seventy-nine genes that were altered after 24 h. A disproportionally high number of transcripts encoding ion transport proteins were found, which function to increase the Fe concentration and decrease the zinc (Zn) concentration in the cytosol. Analysis of global changes in gene expression revealed that changes in Fe availability were associated with the differential expression of genes that encode transporters with presumed function in uptake and distribution of transition metals other than Fe. It appeared that under conditions of Fe deficiency, the capacity for Zn uptake increased, most probably the result of low specificity of the Fe transporter IRT1 that was induced upon Fe deficiency. The transcriptional regulation of several Zn transports under Fe deficiency led presumably to the homeostatic regulation of the cytosolic concentration of Zn and of other transition metal ions such as Mn to

  17. Caspase 1 deficiency reduces inflammation-induced brain transcription

    PubMed Central

    Mastronardi, Claudio; Whelan, Fiona; Yildiz, Ozlem A.; Hannestad, Jonas; Elashoff, David; McCann, Samuel M.; Licinio, Julio; Wong, Ma-Li

    2007-01-01

    The systemic inflammatory response syndrome (SIRS) is a life-threatening medical condition characterized by a severe and generalized inflammatory state that can lead to multiple organ failure and shock. The CNS regulates many features of SIRS such as fever, cardiovascular, and neuroendocrine responses. Central and systemic manifestations of SIRS can be induced by LPS or IL-1β administration. The crucial role of IL-1β in inflammation has been further highlighted by studies of mice lacking caspase 1 (casp1, also known as IL-1β convertase), a protease that cleaves pro-IL-1β into mature IL-1β. Indeed, casp1 knockout (casp1−/−) mice survive lethal doses of LPS. The key role of IL-1β in sickness behavior and its de novo expression in the CNS during inflammation led us to test the hypothesis that IL-1β plays a major role modulating the brain transcriptome during SIRS. We show a gene–environment effect caused by LPS administration in casp1−/− mice. During SIRS, the expression of several genes, such as chemokines, GTPases, the metalloprotease ADAMTS1, IL-1RA, the inducible nitric oxide synthase, and cyclooxygenase-2, was differentially increased in casp1−/− mice. Our findings may contribute to the understanding of the molecular changes that take place within the CNS during sepsis and SIRS and the development of new therapies for these serious conditions. Our results indicate that those genes may also play a role in several neuropsychiatric conditions in which inflammation has been implicated and indicate that casp1 might be a potential therapeutic target for such disorders. PMID:17409187

  18. KLHDC10 Deficiency Protects Mice against TNFα-Induced Systemic Inflammation

    PubMed Central

    Yamaguchi, Namiko; Sekine, Shiori; Naguro, Isao; Sekine, Yusuke; Ichijo, Hidenori

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is a form of fatal acute inflammation for which there is no effective treatment. Here, we revealed that the ablation of Kelch domain containing 10 (KLHDC10), which we had originally identified as an activator of Apoptosis Signal-regulating Kinase 1 (ASK1), protects mice against TNFα-induced SIRS. The disease development of SIRS is mainly divided into two stages. The early stage is characterized by TNFα-induced systemic necroptosis, a regulated form of necrosis mediated by Receptor-interacting protein (RIP) 1/3 kinases. The later stage presents with an over-production of inflammatory cytokines induced by damage-associated molecular patterns (DAMPs), which are immunogenic cellular contents released from cells that underwent necroptosis. Analysis of TNFα-challenged mice revealed that KLHDC10-deficient mice show a reduction in the inflammatory response, but not in early systemic necroptosis. In vitro analysis suggested that the reduced inflammatory response observed in KLHDC10-deficient mice might be caused, in part, by enhanced necroptosis of inflammatory cells encountering DAMPs. Interestingly, the enhancement of necroptosis induced by KLHDC10 deficiency was selectively observed in inflammatory cells. Our results suggest that KLHDC10 is a cell-type specific regulator of necroptosis that ultimately contributes to the development of TNFα-induced SIRS. PMID:27631783

  19. Is Metformin-Induced Vitamin B12 Deficiency Responsible for Cognitive Decline in Type 2 Diabetes?

    PubMed Central

    Khattar, Deepti; Khaliq, Farah; Vaney, Neelam; Madhu, S. V.

    2016-01-01

    Introduction: Diabetes mellitus has its deleterious effects on various aspects of cognition such as memory function, executive function, and information-processing speed. The present study aims to assess cognition in diabetes patients and also tries to find its association with Vitamin B12 deficiency induced by metformin. Materials and Methods: Thirty diabetics taking metformin and thirty nondiabetic controls were enrolled. Event-related potentials (ERPs) and serum Vitamin B12 levels were evaluated in them. Results: Vitamin B12 levels were found to be deficient, and latencies of waves P200 and P300 were prolonged in the diabetics as compared to the controls. The dose and duration of metformin had no association with the ERPs. Conclusions: Although the Vitamin B12 levels were deficient in diabetics on metformin, this is not the reason behind the cognitive impairment found in them. PMID:27570337

  20. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency.

    PubMed

    Oh, Shin J; Park, Kyung-Seok; Ryan, Hewitt F; Danon, Moris J; Lu, Jiesheng; Naini, Ali B; DiMauro, Salvatore

    2006-11-01

    We report two patients in whom phosphoglycerate mutase (PGAM) deficiency was associated with the triad of exercise-induced cramps, recurrent myoglobinuria, and tubular aggregates in the muscle biopsy. Serum creatine kinase (CK) levels were elevated between attacks of myoglobinuria. Forearm ischemic exercise tests produced subnormal increases of venous lactate. Muscle biopsies showed subsarcolemmal tubular aggregates in type 2 fibers. Muscle PGAM activities were markedly decreased (3% of the normal mean) and molecular genetic studies showed that both patients were homozygous for a described missense mutation (W78X). A review of 15 cases with tubular aggregates in the muscle biopsies from our laboratory and 15 cases with PGAM deficiency described in the literature showed that this clinicopathological triad is highly suggestive of PGAM deficiency. PMID:16881065

  1. DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis

    PubMed Central

    Yuen, Jason J.; Lee, Seung-Ah; Jiang, Hongfeng; Brun, Pierre-Jacques

    2015-01-01

    Background Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final step of triglyceride synthesis, transferring an acyl group from acyl-CoA to diacylglycerol. DGAT1 also catalyzes the acyl-CoA-dependent formation of retinyl esters in vitro and in mouse intestine and skin. Although DGAT1 is expressed in both hepatocytes and hepatic stellate cells (HSCs), we reported genetic and nutritional studies that established that DGAT1 does not contribute to retinyl ester formation in the liver. Methods We now have explored in more depth the role(s) of DGAT1 in hepatic retinoid metabolism and storage. Results Our data show that DGAT1 affects the cellular distribution between hepatocytes and HSCs of stored and newly absorbed dietary retinol. For livers of Dgat1-deficient mice, a greater percentage of stored retinyl ester is present in HSCs at the expense of hepatocytes. This is also true for newly absorbed oral [3H]retinol. These differences are associated with significantly increased expression, by 2.8-fold, of cellular retinol-binding protein, type I (RBP1) in freshly isolated HSCs from Dgat1-deficient mice, raising the possibility that RBP1, which contributes to retinol uptake into cells and retinyl ester synthesis, accounts for the differences. We further show that the retinyl ester-containing lipid droplets in HSCs are affected in Dgat1-null mice, being fewer in number but, on average, larger than in wild type (WT) HSCs. Finally, we demonstrate that DGAT1 affects experimentally induced HSC activation in vivo but that this effect is independent of altered retinoic acid availability or effects on gene expression. Conclusions Our studies establish that DGAT1 has a role in hepatic retinoid storage and metabolism, but this does not involve direct actions of DGAT1 in retinyl ester synthesis. PMID:26151058

  2. Combined Tlr2 and Tlr4 Deficiency Increases Radiation-Induced Pulmonary Fibrosis in Mice

    SciTech Connect

    Paun, Alexandra; Fox, Jessica; Balloy, Viviane; Chignard, Michel; Qureshi, Salman T.; Haston, Christina K.

    2010-07-15

    Purpose: To determine whether Toll-like receptor 2 or 4 genotype alters the lung response to irradiation in C57BL/6 mice using a model developing a phenotype that resembles radiotherapy-induced fibrosis in both histological characteristics and onset post-treatment. Methods and Materials: The pulmonary phenotype of C57BL/6 mice deficient in each or both of these genes was assessed after an 18-Gy single dose to the thoracic cavity by survival time postirradiation, bronchoalveolar lavage cell differential, histological evidence of alveolitis and fibrosis, and gene expression levels, and compared with that of wild-type mice. Results: The lung phenotype of Tlr4-deficient and Tlr2-deficient mice did not differ from that of wild-type mice in terms of survival time postirradiation, or by histological evidence of alveolitis or fibrosis. In contrast, mice deficient in both receptors developed respiratory distress at an earlier time than did wild-type mice and presented an enhanced fibrotic response (13.5% vs. 5.8% of the lung by image analysis of histological sections, p < 0.001). No differences in bronchoalveolar cell differential counts, nor in numbers of apoptotic cells in the lung as detected through active caspase-3 staining, were evident among the irradiated mice grouped by Tlr genotype. Gene expression analysis of lung tissue revealed that Tlr2,4-deficient mice have increased levels of hyaluronidase 2 compared with both wild-type mice and mice lacking either Tlr2 or Tlr4. Conclusion: We conclude that a combined deficiency in both Tlr2 and Tlr4, but not Tlr2 or Tlr4 alone, leads to enhanced radiation-induced fibrosis in the C57BL/6 mouse model.

  3. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    SciTech Connect

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  4. DIETARY VITAMIN E DEFICIENCY AS A MODIFIER OF THE ASSOCIATIONS OF RESPIRATORY OUTCOMES WITH AIR POLLUTION IN ADOLESCENTS

    EPA Science Inventory

    Introduction: We investigated whether low dietary intake of the lipophilic antioxidant vitamin E may act as a modifier of chronic air pollution's associations with respiratory outcomes among adolescents due to an increased respiratory response to the oxidative effects of air pol...

  5. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy.

    PubMed

    Hu, Nan; Yang, Lifang; Dong, Maolong; Ren, Jun; Zhang, Yingmei

    2015-10-01

    Second hand smoke is an independent risk factor for cardiovascular disease. Adiponectin (APN), an adipose-derived adipokine, has been shown to offer cardioprotective effect through an AMPK-dependent manner. This study was designed to evaluate the impact of adiponectin deficiency on second hand smoke-induced cardiac pathology and underlying mechanisms using a mouse model of side-stream smoke exposure. Adult wild-type (WT) and adiponectin knockout (APNKO) mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined using western blot. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining was used to evaluate reactive oxygen species (ROS) generation. Masson trichrome staining was employed to measure interstitial fibrosis. Our data revealed that adiponectin deficiency provoked smoke exposure-induced cardiomyopathy (compromised fractional shortening, disrupted cardiomyocyte function and intracellular Ca2+ homeostasis, apoptosis and ROS generation). In addition, these detrimental effects of side-stream smoke were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by adiponectin deficiency. Blocking autophagolysosome formation using bafilomycin A1 (BafA1) negated the cardioprotective effect of rapamycin against smoke extract. Induction of autophagy using rapamycin and AMPKα activation using AICAR rescued against smoke extract-induced myopathic anomalies in APNKO mice. Our data suggest that adiponectin serves as an indispensable cardioprotective factor against side-stream smoke exposure-induced myopathic changes possibly through facilitating autophagolysosome formation. PMID:26276084

  6. Protease Activated Receptor-1 Deficiency Diminishes Bleomycin-Induced Skin Fibrosis

    PubMed Central

    Duitman, JanWillem; Ruela-de-Sousa, Roberta R; Shi, Kun; de Boer, Onno J; Borensztajn, Keren S; Florquin, Sandrine; Peppelenbosch, Maikel P; Spek, C Arnold

    2014-01-01

    Accumulating evidence shows that protease-activated receptor-1 (PAR-1) plays an important role in the development of fibrosis, including lung fibrosis. However, whether PAR-1 also plays a role in the development of skin fibrosis remains elusive. The aim of this study was to determine the role of PAR-1 in the development of skin fibrosis. To explore possible mechanisms by which PAR-1 could play a role, human dermal fibroblasts and keratinocytes were stimulated with specific PAR-1 agonists or antagonists. To investigate the role of PAR-1 in skin fibrosis, we subjected wild-type and PAR-1-deficient mice to a model of bleomycin-induced skin fibrosis. PAR-1 activation leads to increased proliferation and extra cellular matrix (ECM) production, but not migration of human dermal fibroblasts (HDF) in vitro. Moreover, transforming growth factor (TGF)-β production was increased in keratinocytes upon PAR-1 activation, but not in HDF. The loss of PAR-1 in vivo significantly attenuated bleomycin-induced skin fibrosis. The bleomycin-induced increase in dermal thickness and ECM production was reduced significantly in PAR-1-deficient mice compared with wild-type mice. Moreover, TGF-β expression and the number of proliferating fibroblasts were reduced in PAR-1-deficient mice although the difference did not reach statistical significance. This study demonstrates that PAR-1 contributes to the development of skin fibrosis and we suggest that PAR-1 potentiates the fibrotic response mainly by inducing fibroblast proliferation and ECM production. PMID:24842054

  7. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure.

    PubMed

    Razvi, Shehla S; Richards, Jeremy B; Malik, Farhan; Cromar, Kevin R; Price, Roger E; Bell, Cynthia S; Weng, Tingting; Atkins, Constance L; Spencer, Chantal Y; Cockerill, Katherine J; Alexander, Amy L; Blackburn, Michael R; Alcorn, Joseph L; Haque, Ikram U; Johnston, Richard A

    2015-11-15

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  8. Th17/Treg Imbalance Induced by Dietary Salt Variation Indicates Inflammation of Target Organs in Humans

    PubMed Central

    Luo, Tao; Ji, Wen-jie; Yuan, Fei; Guo, Zhao-zeng; Li, Yun-xiao; Dong, Yan; Ma, Yong-qiang; Zhou, Xin; Li, Yu-ming

    2016-01-01

    The functions of T helper 17 (Th17) and regulatory T (Treg) cells are tightly orchestrated through independent differentiation pathways that are involved in the secretion of pro- and anti-inflammatory cytokines induced by high-salt dietary. However, the role of imbalanced Th17/Treg ratio implicated in inflammation and target organ damage remains elusive. Here, by flow cytometry analysis, we demonstrated that switching to a high-salt diet resulted in decreased Th17 cells and reciprocally increased Treg cells, leading to a decreased Th17/Treg ratio. Meanwhile, Th17-related pathway was down-regulated after one day of high salt loading, with the increase in high salt loading as shown by microarray and RT-PCR. Subsequently, blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) observed hypoxia in the renal medulla (increased R2* signal) during high-salt loading, which was regressed to its baseline level in a step-down fashion during low-salt feeding. The flow-mediated vasodilatation (FMD) of the branchial artery was significantly higher on the first day of high salt loading. Collectively, these observations indicate that a short-term increase in dietary salt intake could induce reciprocal switches in Th17/Treg ratio and related cytokines, which might be the underlying cellular mechanism of high-salt dietary induced end organ inflammation and potential atherosclerotic risk. PMID:27353721

  9. Effect of dietary nucleotides on degree of fibrosis and steatosis induced by oral intake of thioacetamide.

    PubMed

    Torres, M I; Fernandez, M I; Gil, A; Rios, A

    1997-06-01

    The administration of thioacetamide in rats induces nodular cirrhosis of the liver, characterized by fibrous septae, parenchymal nodules, proliferation of the bile ducts, and excessive deposition of connective tissue elements. Nodular cirrhosis is also associated with changes in lipid metabolism, as shown by the accumulation of lipid droplets in the hepatocyte cytoplasm. Adequate nutritional support during cirrhosis is important to sustain liver function and promote recovery after the lesions have been induced. Supplementation with nucleotides may increase cellular proliferation and thus optimize hepatic recovery. The aim of this study was to investigate the effects of dietary nucleotide supplementation on the degree of fibrosis and steatosis in rats with liver cirrhosis induced by four months of oral intake of thioacetamide. The use of dietary nucleotides after thioacetamide administration was found to decrease the percentage area of fibrous septae. In animals with liver cirrhosis fed the nucleotide-supplemented diet for two weeks, the total area of fibrosis was reduced. Withdrawal of the hepatotoxic agent led to a decrease in the degree of steatosis in cirrhotic animals, which was significant in rats given the nucleotide-supplemented diet during a two-week recovery period. In conclusion, dietary nucleotides may be an important factor in the histological recovery of damaged liver in experimental cirrhosis.

  10. Exercise-Induced Oxidative Stress and Dietary Antioxidants

    PubMed Central

    Yavari, Abbas; Javadi, Maryam; Mirmiran, Parvin; Bahadoran, Zahra

    2015-01-01

    Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes. PMID:25883776

  11. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  12. C5a Receptor Signaling Prevents Folate Deficiency-Induced Neural Tube Defects in Mice

    PubMed Central

    Denny, Kerina J; Coulthard, Liam G; Jeanes, Angela; Lisgo, Steven; Simmons, David G; Callaway, Leonie K; Wlodarczyk, Bogdan; Finnell, Richard H; Woodruff, Trent M; Taylor, Stephen M

    2013-01-01

    The complement system is involved in a range of diverse developmental processes including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. Herein we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wildtype mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development. PMID:23420882

  13. Dietary trans fats enhance doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Mong, Mei-chin; Hsia, Te-chun; Yin, Mei-chin

    2013-10-01

    This study investigated the combined effects of trans fat diet (TFD) and doxorubicin upon cardiac oxidative, inflammatory, and coagulatory stress. TFD increased trans fatty acid deposit in heart (P < 0.05), and decreased protein C and antithrombin-III activities in circulation (P < 0.05). TFD plus doxorubicin treatment elevated activities of plasminogen activator inhibitor-1, lactate dehydrogenase, and creatine phosphokinase (P < 0.05). This combination also raised xanthine oxidase activity, and enhanced cardiac levels of reactive oxygen species, interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 than TFD or doxorubicin treatment alone (P < 0.05). TFD alone increased cardiac nuclear factor kappa B (NF-κB) activity (P < 0.05), but failed to affect expression of NF-κB and mitogen-activated protein kinase (MAPK) (P > 0.05). Doxorubicin treatment alone augmented cardiac activity, mRNA expression, and protein production of NF-κB and MAPK (P < 0.05). TFD plus doxorubicin treatment further upregulated cardiac expression of NF-κB p65, p-p38, and p-ERK1/2 (P < 0.05). These findings suggest that TFD exacerbates doxorubicin-induced cardiotoxicity.

  14. Dietary zinc deficiency affects blood linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus).

    PubMed

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P; Tako, Elad

    2014-03-20

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn⁺ (zinc adequate control, 42.3 μg/g zinc), and Zn⁻ (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn⁺ control versus Zn⁻ group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn⁺ control group (p < 0.05), and hepatic Δ⁶ desaturase was significantly higher in the Zn⁺ group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn⁻ group compared to the Zn⁺ group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation.

  15. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus)

    PubMed Central

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad

    2014-01-01

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588

  16. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice

    PubMed Central

    Rachakonda, Vikrant; Jadeja, Ravirajsinh N.; Urrunaga, Nathalie H.; Shah, Nirish; Ahmad, Daniel; Cheng, Kunrong; Twaddell, William S.; Raufman, Jean-Pierre; Khurana, Sandeep

    2015-01-01

    Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit. PMID:26374068

  17. Effect of copper deficiency on cocaine-induced seizures in rats

    SciTech Connect

    Kishore, V. )

    1991-03-11

    The objective of the present study was to study the effects of nutritional copper (Cu) deficiency on cocaine-induced seizures in rats. Following results were obtained when cocaine was given to 10 each of Cu-deficient (CUD) and Cu-sufficient (CUS) rats after 45 days on respective diets. For CUD and CUS groups of rats, respectively, (a) incidence of seizures was 60% and 40%; (b) time of onset for seizures was 8.42 {plus minus} 0.72 and 7.63 {plus minus} 1.00; (c) seizure severity was 2.5 {plus minus} 0.75 and 1.1 {plus minus} 0.45; and (d) 24 h mortality was 40% and none. Thus, except for time of onset, all other parameters for cocaine-induced seizures were significantly higher in CUD rats. These results clearly demonstrate that Cu deficiency enhances seizure-inducing effects of cocaine in rats. It is likely that the enhancement observed is due to a decrease in the hepatic metabolism of cocaine in CUD rats. This possibility is currently being investigated.

  18. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  19. Deficiency of adiponectin protects against ovariectomy-induced osteoporosis in mice.

    PubMed

    Wang, Fang; Wang, Pei-xia; Wu, Xiao-lin; Dang, Su-ying; Chen, Yan; Ni, Ying-yin; Gao, Li-hong; Lu, Shun-yuan; Kuang, Ying; Huang, Lei; Fei, Jian; Wang, Zhu-gang; Pang, Xiao-fen

    2013-01-01

    Adipokine adiponectin (APN) has been recently reported to play a role in regulating bone mineral density (BMD). To explore the mechanism by which APN affects BMD, we investigated BMD and biomechanical strength properties of the femur and vertebra in sham-operated (Sham) and ovariectomized (OVX) APN knockout (KO) mice as compared to their operated wild-type (WT) littermates. The results show that APN deficiency has no effect on BMD but induces increased ALP activity and osteoclast cell number. While OVX indeed leads to significant bone loss in both femora and vertebras of WT mice with comparable osteogenic activity and a significant increase in osteoclast cell number when compared to that of sham control. However, no differences in BMD, ALP activity and osteoclast cell number were found between Sham and OVX mice deficient for APN. Further studies using bone marrow derived mesenchymal stem cells (MSCs) demonstrate an enhanced osteogenic differentiation and extracellular matrix calcification in APN KO mice. The possible mechanism for APN deletion induced acceleration of osteogenesis could involve increased proliferation of MSCs and higher expression of Runx2 and Osterix genes. These findings indicate that APN deficiency can protect against OVX-induced osteoporosis in mice, suggesting a potential role of APN in regulating the balance of bone formation and bone resorption, especially in the development of post-menopausal osteoporosis. PMID:23844209

  20. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice

    PubMed Central

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C. Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  1. Involvement of oxidative stress in hydroquinone-induced cytotoxicity in catalase-deficient Escherichia coli mutants.

    PubMed

    Horita, Masako; Wang, Da-Hong; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Kira, Shohei

    2005-10-01

    Hydroquinone is a benzene-derived metabolite. To clarify whether the reactive oxygen species (ROS) are involved in hydroquinone-induced cytotoxicity, we constructed transformants of Escherichia coli (E. coli) strains that express mammalian catalase gene derived from catalase mutant mice (Cs(b), Cs(c)) and the wild-type (Cs(a)) using a catalase-deficient E. coli UM255 as a recipient. Specific catalase activities of these tester strains were in order of Cs(a) > Cs(c) > Cs(b) > UM255, and their susceptibility to hydrogen peroxide (H2O2) showed UM255 > Cs(b) > Cs(c) > Cs(a). We found that hydroquinone exposure reduced the survival of catalase-deficient E. coli mutants in a dose-dependent manner significantly, especially in the strains with lower catalase activities. Hydroquinone toxicity was also confirmed using zone of inhibition test, in which UM255 was the most susceptible, showing the largest zone of growth inhibition, followed by Cs(b), Cs(c) and Cs(a). Furthermore, we found that hydroquinone-induced cell damage was inhibited by the pretreatment of catalase, ascorbic acid, dimethyl sulfoxide (DMSO), and ethylenediaminetetraacetic acid (EDTA), and augmented by superoxide dismutase (both CuZnSOD and MnSOD). The present results suggest that H2O2 is probably involved in hydroquinone-induced cytotoxicity in catalase-deficient E. coli mutants and catalase plays an important role in protection of the cells against hydroquinone toxicity.

  2. [Correction of isoproterenol-induced myocardial injury with magnesium salts in magnesium-deficient rats].

    PubMed

    Kharitonova, M V; Zheltova, A A; Spasov, A A; Smirnov, A V; Pan'shin, N G; Iezhitsa, I N

    2013-01-01

    The effect of Mg L-asparaginate (Mg-L-Asp), Mg chloride (MgCl2) and Mg sulfate (MgSO4) on the severity of isoproterenol-induced myocardial injury in Mg-deficient rats has been evaluated. To induce Mg deficiency, twenty-eight rats were placed on a low Mg diet (Mg content < 15 mg/kg) and demineralized water for 10 weeks. Twelve control rats were fed a basal control diet (Mg content = 500 mg/kg) and water (with Mg content 20 mg/l) for equal duration. On day 49 of low Mg diet, Mg-deficient rats were randomly divided into four groups: 1) group that continued to receive low Mg diet; 2) low Mg diet plus oral MgSO4; 3) low Mg diet plus oral Mg-L-Asp and 4) low Mg diet plus oral MgCl2 (50 mg of Mg per kg of body weight). Isoproterenol was injected subcutaneously (30 mg/kg BW, twice, at an interval of 24 hours) on the day 70 of the study, when plasma and erythrocyte Mg level in rats fed a low Mg diet were significantly decreased by 47% and 45% compared to intact animals. Twenty-four hours after second injection of isoproterenol, tests for activities of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were run and histopathological study was carried out. Administration of isoproterenol to rats resulted in significantly elevated plasma CK, LDH and AST, however analyses in Mg deficient group demonstrated more dramatically increased activity of CK and AST compared to control rats (3,06 and 4,67 fold in Mg-deficient group vs. 1,91 and 3,92 fold in intact group). Increased leakage of cardiac injury markers was concomitant to increased volume of fuchsinophilic cardiomyocytes (54.2 +/- 1.7% in Mg-deficient group and 38.9 +/- 1.9% in intact group, p < 0.05). However, pretreatment with of MgCl2, MgSO4 and Mg-L-Asp during 21 days favorably decreased sensitivity of myocardium to isoproterenol-induced ischemic injury. All evaluated salts significantly decreased myocyte marker enzymes as well as protected myocardium against isoproterenol-induced

  3. Dietary cholesterol and its effect on tau protein: a study in apolipoprotein E-deficient and P301L human tau mice.

    PubMed

    Glöckner, Frauke; Meske, Volker; Lütjohann, Dieter; Ohm, Thomas G

    2011-04-01

    Apolipoprotein E (ApoE) is the major cholesterol transporter in the brain. There is epidemiological and experimental evidence for involvement of cholesterol metabolism in the development and progression of Alzheimer disease. A dietary effect on tau phosphorylation or aggregation, or a role of apoE in tau metabolism, has been studied experimentally, but the data are ambiguous. To elucidate the relationship between cholesterol and tau, we studied mice expressing P301L mutant human tau but not apoE (htau-ApoE) and P301L mice with wild-type ApoE (htau- ApoE); both genotypes develop neuron cytoskeletal changes similar to those found in Alzheimer disease. Mice were kept on a cholesterol-enriched diet or control diet for 15 weeks. The numbers of neurons with hyperphosphorylated and conformationally changed tau in the cerebral cortex were assessed by immunohistochemistry, and sterol levels were determined. Highly elevated dietary serum cholesterol levels enhanced ongoing tau pathology in htau-ApoE mice; this effect correlated with elevated brain cholesterol metabolite 27-hydroxycholesterol levels. Apolipoprotein E deficiency promoted significant increases of tau phosphorylation and conformational changes in mice on a control diet. In htau-ApoE mice on the high cholesterol regimen, brain oxysterol levels were less than in htau-ApoE mice, and the numbers of neurons with pathologically altered tau were similar to those in htau-ApoE mice on the high-cholesterol diet.

  4. Dietary selenium as a modulator of PCB 126-induced hepatotoxicity in male Sprague-Dawley rats.

    PubMed

    Lai, Ian K; Chai, Yingtao; Simmons, Donald; Watson, Walter H; Tan, Rommel; Haschek, Wanda M; Wang, Kai; Wang, Bingxuan; Ludewig, Gabriele; Robertson, Larry W

    2011-11-01

    Homeostasis of selenium (Se), a critical antioxidant incorporated into amino acids and enzymes, is disrupted by exposure to aryl hydrocarbon receptor (AhR) agonists. Here we examined the importance of dietary Se in preventing the toxicity of the most toxic polychlorinated biphenyl congener, 3,3',4,4',5-pentachlorobiphenyl (PCB 126), a potent AhR agonist. Male Sprague-Dawley rats were fed a modified AIN-93 diet with differing dietary Se levels (0.02, 0.2, and 2 ppm). Following 3 weeks of acclimatization, rats from each dietary group were given a single ip injection of corn oil (vehicle), 0.2, 1, or 5 μmol/kg body weight PCB 126, followed 2 weeks later by euthanasia. PCB exposure caused dose-dependent increases in liver weight and at the highest PCB 126 dose decreases in whole body weight gains. Hepatic cytochrome P-450 (CYP1A1) activity was significantly increased even at the lowest dose of PCB 126, indicating potent AhR activation. PCB exposure diminished hepatic Se levels in a dose-dependent manner, and this was accompanied by diminished Se-dependent glutathione peroxidase activity. Both these effects were partially mitigated by Se supplementation. Conversely, thioredoxin (Trx) reductase activity and Trx oxidation state, although significantly diminished in the lowest dietary Se groups, were not affected by PCB exposure. In addition, PCB 126-induced changes in hepatic copper, iron, manganese, and zinc were observed. These results demonstrate that supplemental dietary Se was not able to completely prevent the toxicity caused by PCB 126 but was able to increase moderately the levels of several key antioxidants, thereby maintaining them roughly at normal levels. PMID:21865291

  5. Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice

    PubMed Central

    Hess, Mark W.; de Baaij, Jeroen H. F.; Gommers, Lisanne M. M.; Hoenderop, Joost G. J.; Bindels, René J. M.

    2015-01-01

    Background Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the colon, which may explain the reduced absorption of and Mg2+ and Ca2+. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed, therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH. Methods Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently, Mg2+ and Ca2+ homeostasis was assessed by means of serum, urine and fecal electrolyte measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were examined in the large intestine and kidney by real-time PCR. Results Treatment with omeprazole significantly reduced serum Mg2+ and Ca2+ levels. However, concomitant addition of dietary inulin fibers normalized serum Ca2+ but not serum Mg2+ concentrations. Inulin abolished enhanced expression of Trpv6 and S100g in the colon by omeprazole. Additionally, intestinal and renal mRNA levels of the Trpm6 gene were reduced after inulin intake. Conclusions This study suggests that dietary inulin counteracts reduced intestinal Ca2+ absorption upon PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg2+ sufficiently to recover serum Mg2+. The clinical potential of dietary inulin treatment should be the subject of future studies. PMID:26397986

  6. Fish oil supplementation maintains adequate plasma arachidonate in cats, but similar amounts of vegetable oils lead to dietary arachidonate deficiency from nutrient dilution.

    PubMed

    Angell, Rebecca J; McClure, Melena K; Bigley, Karen E; Bauer, John E

    2012-05-01

    Because fatty acid (FA) metabolism of cats is unique, effects of dietary fish and vegetable oil supplementation on plasma lipids, lipoproteins, lecithin/cholesterol acyl transferase activities, and plasma phospholipid and esterified cholesterol (EC) FAs were investigated. Cats were fed a commercial diet supplemented with 8 g oil/100 g diet for 4 weeks using either high-oleic-acid sunflower oil (diet H), Menhaden fish oil (diet M), or safflower oil (diet S). When supplemented, diet M contained sufficient arachidonate (AA), but diets H and S were deficient. We hypothesized that diet M would modify plasma lipid metabolism, increase FA long-chain n-3 (LCn-3) FA content but not deplete AA levels. Also, diet S would show linoleic acid (LA) accumulation without conversion to AA, and both vegetable oil supplements would dilute dietary AA content when fed to meet cats' energy needs. Plasma samples on weeks 0, 2, and 4 showed no alterations in total cholesterol or nonesterified FA concentrations. Unesterified cholesterol decreased and EC increased in all groups, whereas lecithin/cholesterol acyl transferase activities were unchanged. Diet M showed significant triacylglycerol lowering and decreased pre-β-lipoprotein cholesterol. Plasma phospholipid FA profiles revealed significant enrichment of 18:1n-9 with diet H, LA and 20:2n-6 with diet S, and FA LCn-3FA with diet M. Depletion of AA was observed with diets H and S but not with diet M. Diet M EC FA profiles revealed specificities for LA and 20:5n-3 but not 22:5n-3 or 22:6n-3. Oversupplementation of some commercial diets with vegetable oils causes AA depletion in young cats due to dietary dilution. Findings are consistent with the current recommendations for at least 0.2 g AA/kg diet and that fish oil supplements provide both preformed LCn-3 polyunsaturated FA and AA.

  7. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    PubMed

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. PMID:26233864

  8. Inhibitory effect of dietary iron deficiency on the induction of putative preneoplastic foci in rat liver initiated with diethylnitrosamine and promoted by phenobarbital.

    PubMed Central

    Yoshiji, H.; Nakae, D.; Kinugasa, T.; Matsuzaki, M.; Denda, A.; Tsujii, T.; Konishi, Y.

    1991-01-01

    The effects of dietary iron deficiency on induction of putative preneoplastic, gamma-glutamyltransferase (GGT)-positive hepatocyte focal lesions in the liver of rats treated with diethylnitrosamine (DEN) followed by phenobarbital (PB) were investigated. Male Fischer 344 rats of 4 weeks old were placed on an iron deficient (ID) diet containing less than 5 p.p.m. of iron or an iron supplemented (IS) diet containing 180 p.p.m. of iron throughout experimental period of 12 weeks. Both groups of rats were administered 200 mg kg-1 body weight of DEN by a single intraperitoneal injection at Week 4 followed by PB mixed into each diet at a concentration of 0.05% from Week 6 to the final sacrifice at Week 12 when induction of GGT-positive foci was quantitatively analysed. On the ID and IS diets, respective numbers of GGT-positive foci were 6.3 and 14.2 cm-2. The sizes of foci were not altered by the iron content of the diet. The present results indicate that iron plays a role in the development of preneoplastic foci in the livers of rats initiated with DEN and promoted by PB especially in the initiation phase. PMID:1681886

  9. Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency.

    PubMed

    Ksouri, Riadh; Debez, Ahmed; Mahmoudi, Henda; Ouerghi, Zeineb; Gharsalli, Mohamed; Lachaâl, Mokhtar

    2007-05-01

    Morpho-physiological responses to bicarbonate-induced Fe deficiency were investigated in five Vitis vinifera L. Tunisian varieties (Khamri, Blanc3, Arich Dressé, Beldi, and Balta4). One-month-old woody cuttings were cultivated for 85days on a free calcareous soil irrigated with tap water containing increasing bicarbonate levels (0, 4, 8, 12, and 16mM NaHCO(3)). After this screening, a second experiment compared root biochemical responses of two contrasting genotypes (tolerant-sensitive) dealing with bicarbonate-induced iron deprivation (20microM Fe+/-10mM HCO(3)(-)) for 75days. Using morpho-physiological criteria, grapevine tolerance to HCO(3)(-)-induced Fe shortage appeared to be genotype-dependent: Balta4 and Beldi varieties showed the highest leaf-chlorosis score (especially at the extreme HCO(3)(-) levels), in contrast to Khamri variety. Growth parameters (shoot height, total leaf area, leaf number, and biomass production) as well as juvenile leaf chlorophyll content were also differently affected depending on both genotype and bicarbonate dose. At 16mM HCO(3)(-), Khamri was the less sensitive variety, contrasting with Balta4. On the other hand, chlorophyll content correlated positively with HCl-extractible Fe content of the juvenile leaves, suggesting that the grapevine response to iron deficiency may partly depend on to the plant ability to adequately supply young leaves with this element. Root biochemical responses revealed a relatively higher root acidification capacity in Khamri (tolerant) under Fe-deficiency while no significant changes occurred in Balta4 (sensitive). In addition, Fe(III)-reductase and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were strongly stimulated by Fe-deficiency in Khamri, while remaining constant in Balta4. These findings suggest that biochemical parameters may constitute reliable criteria for the selection of tolerant grapevine genotypes to iron chlorosis. PMID:17468003

  10. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells.

    PubMed

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-09-25

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.

  11. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells*

    PubMed Central

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-01-01

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak. PMID:26253170

  12. Effect of expectoration on inflammation in induced sputum in alpha-1-antitrypsin deficiency.

    PubMed

    Gompertz, Simon; Hill, Adam T; Bayley, Darren L; Stockley, Robert A

    2006-06-01

    It is unclear how chronic expectoration influences airway inflammation in patients with chronic lung disease. The aim of this study was to investigate factors influencing inflammation in induced sputum samples, including, in particular, chronic sputum production. Myeloperoxidase, interleukin-8, leukotriene B4 (LTB4), neutrophil elastase, secretory leukoprotease inhibitor (SLPI) and protein leakage were compared in induced sputum samples from 48 patients (36 with chronic expectoration) with COPD (with and without alpha-1-antitrypsin deficiency; AATD), 9 individuals with AATD but without lung disease and 14 healthy controls. There were no differences in inflammation in induced sputum samples from healthy control subjects and from AATD deficient patients with normal lung function but without chronic expectoration (P>0.05). Inflammation in induced sputum from AATD patients with airflow obstruction and chronic sputum expectoration was significantly greater than for similar patients who did not expectorate: Interleukin-8 (P<0.01), elastase activity (P=0.01), and protein leakage (P<0.01). The presence of spontaneous sputum expectoration in AATD patients with airflow obstruction was associated with increased neutrophilic airway inflammation in induced sputum samples. The presence of chronic expectoration in some patients will clearly complicate interpretation of studies employing sputum induction where this feature has not been identified.

  13. Occurrence of cleft-palate and alteration of Tgf-β(3) expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency.

    PubMed

    Maldonado, Estela; Murillo, Jorge; Barrio, Carmen; del Río, Aurora; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Partearroyo, Teresa; Paradas, Irene; Maestro, Carmen; Martínez-Sanz, Elena; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción

    2011-01-01

    Folic acid (FA) is essential for numerous bodily functions. Its decrease during pregnancy has been associated with an increased risk of congenital malformations in the progeny. The relationship between FA deficiency and the appearance of cleft palate (CP) is controversial, and little information exists on a possible effect of FA on palate development. We investigated the effect of a 2-8 weeks' induced FA deficiency in female mice on the development of CP in their progeny as well as the mechanisms leading to palatal fusion, i.e. cell proliferation, cell death, and palatal-shelf adhesion and fusion. We showed that an 8 weeks' maternal FA deficiency caused complete CP in the fetuses although a 2 weeks' maternal FA deficiency was enough to alter all the mechanisms analyzed. Since transforming growth factor-β(3) (TGF-β(3)) is crucial for palatal fusion and since most of the mechanisms impaired by FA deficiency were also observed in the palates of Tgf-β(3)null mutant mice, we investigated the presence of TGF-β(3) mRNA, its protein and phospho-SMAD2 in FA-deficient (FAD) mouse palates. Our results evidenced a large reduction in Tgf-β(3) expression in palates of embryos of dams fed an FAD diet for 8 weeks; Tgf-β(3) expression was less reduced in palates of embryos of dams fed an FAD diet for 2 weeks. Addition of TGF-β(3) to palatal-shelf cultures of embryos of dams fed an FAD diet for 2 weeks normalized all the altered mechanisms. Thus, an insufficient folate status may be a risk factor for the development of CP in mice, and exogenous TGF-β(3) compensates this deficit in vitro.

  14. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure.

    PubMed

    Li, Xuan; Yin, Daqiang; Yin, Jiaoyang; Chen, Qiqing; Wang, Rui

    2014-10-01

    The antagonism between selenium (Se) and mercury (Hg) has been widely recognized, however, the protective role of Se against methylmercury (MeHg) induced immunotoxicity and the underlying mechanism is still unclear. In the current study, MeHg exposure (0.01 mM via drinking water) significantly inhibited the lymphoproliferation and NK cells functions of the female Balb/c mice, while dietary Se supplementation (as Se-rich yeast) partly or fully recovered the observed immunotoxicity, indicating the protective role of Se against MeHg-induced immune suppression in mice. Besides, MeHg exposure promoted the generation of the reactive oxygen species (ROS), reduced the levels of nonenzymic and enzymic antioxidants in target organs, while dietary Se administration significantly diminished the MeHg-induced oxidative stress and subsequent cellular dysfunctions (lipid peroxidation and protein oxidation). Two possible mechanisms of Se's protective effects were further revealed. Firstly, the reduction of mercury concentrations (less than 25%, modulated by Se supplementation) in the target organs might contribute, but not fully explain the alleviated immune suppression. Secondly and more importantly, Se could help to maintain/or elevate the activities of several key antioxidants, therefore protect the immune cells against MeHg-induced oxidative damage.

  15. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated plasma homocysteine (Hcy) levels have been recognized as an independent risk factor for cardiovascular and cerebrovascular diseases. However, the causative mechanisms have not been delineated. Scavenger receptors such as scavenger receptor-AI/II (SR-A), CD36, and lectin-like oxidized LDL ...

  16. Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms.

    PubMed

    Corniola, Rikki S; Tassabehji, Nadine M; Hare, Joan; Sharma, Girdhari; Levenson, Cathy W

    2008-10-27

    The potential importance of stem cells in the adult central nervous system (CNS) that cannot only divide, but also participate in neurogenesis, is now widely appreciated. While we know that the trace element zinc is needed for brain development, the role of this essential nutrient in adult stem cell proliferation and neurogenesis has not been investigated. Adult male rats fed a zinc-restricted diet had approximately 50% fewer Ki67-positive stem cells in the subgranular zone (SGZ) and granular cell layer of the dentate gyrus compared to both zinc-adequate and pair-fed controls (p<0.05). Zinc-deficient rats also had a significant increase the number of TUNEL-labeled cells in the SGZ compared to pair-fed rats (p<0.05). To explore the mechanisms responsible for the effects of zinc deficiency, cultured human Ntera-2 (NT2) neuronal precursor cells were deprived of zinc using the chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Consistent with the effects of deficiency in vivo, TPEN treatment resulted in a significant decrease in cellular proliferation, as measured by bromodeoxyuridine (BrdU) uptake, and an increase in caspase3/7-dependent apoptosis. These changes were accompanied by increases in nuclear p53. Oligonucleotide arrays, coupled with use of a dominant-negative p53 construct in NT2 cells, identified 14 differentially regulated p53 target genes. In the early phases zinc deficiency, p53 targets responsible for cell cycle arrest were induced. Continuation of deficiency resulted in the induction of a variety of pro-apoptotic genes such as transforming growth factor-beta (TGF-beta) and retinoblastoma-1 (Rb-1), as well as cellular protection genes such as glutathione peroxidase (GPx). These data suggest that zinc plays a role in neurogenesis by regulating p53-dependent molecular mechanisms that control neuronal precursor cell proliferation and survival.

  17. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

    PubMed

    Esteban-Pretel, Guillermo; Marín, M Pilar; Cabezuelo, Francisco; Moreno, Verónica; Renau-Piqueras, Jaime; Timoneda, Joaquín; Barber, Teresa

    2010-04-01

    Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.

  18. Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

    PubMed

    Dubois, Vanessa; Laurent, Michaël R; Jardi, Ferran; Antonio, Leen; Lemaire, Katleen; Goyvaerts, Lotte; Deldicque, Louise; Carmeliet, Geert; Decallonne, Brigitte; Vanderschueren, Dirk; Claessens, Frank

    2016-02-01

    Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

  19. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity

    PubMed Central

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity. PMID:26530337

  20. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    PubMed

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.

  1. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    PubMed

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity. PMID:26530337

  2. Low molybdenum state induced by tungsten as a model of molybdenum deficiency in rats.

    PubMed

    Yoshida, Munehiro; Nakagawa, Mikihito; Hosomi, Ryota; Nishiyama, Toshimasa; Fukunaga, Kenji

    2015-05-01

    Organ molybdenum (Mo) concentration and the activity of hepatic sulfite oxidase and xanthine oxidase were compared in tungsten-administered rats as well as rats fed with a low Mo diet to evaluate the use of tungsten-administered rats as a model of Mo deficiency. Twenty-four male 6-week-old Wistar rats were divided into four groups according to diet (AIN93G diet (control diet) or the control diet minus ammonium molybdate (low Mo diet)) and drinking water (deionized water or deionized water containing 200 μg/mL tungsten in the form of sodium tungstate). Mo content in the control and low Mo diets were 196 and 42 ng/g, respectively. Intake of the low Mo diet significantly reduced the Mo content of several organs and serum. Decrease in hepatic sulfite oxidase activity was also induced by the low Mo diet. The administration of tungsten induced marked decreases in organ Mo content and the activity of hepatic sulfite oxidase and xanthine oxidase. These decreases induced by tungsten administration were more pronounced than those induced by just a low Mo diet. Serum uric acid was also reduced by tungsten administration irrespective of Mo intake. Although a comparatively high accumulation of tungsten (3 to 9 μg/g) was observed in the kidneys and liver, adverse effects of tungsten accumulation on liver and kidney function were not observed in serum biochemical tests. These results indicate that tungsten-administered animals may be used as a model of Mo deficiency.

  3. Urokinase plasminogen activator receptor-deficient mice demonstrate reduced hyperoxia-induced lung injury.

    PubMed

    van Zoelen, Marieke A D; Florquin, Sandrine; de Beer, Regina; Pater, Jennie M; Verstege, Marleen I; Meijers, Joost C M; van der Poll, Tom

    2009-06-01

    Patients with respiratory failure often require supplemental oxygen therapy and mechanical ventilation. Although both supportive measures are necessary to guarantee adequate oxygen uptake, they can also cause or worsen lung inflammation and injury. Hyperoxia-induced lung injury is characterized by neutrophil infiltration into the lungs. The urokinase plasminogen activator receptor (uPAR) has been deemed important for leukocyte trafficking. To determine the expression and function of neutrophil uPAR during hyperoxia-induced lung injury, uPAR expression was determined on pulmonary neutrophils of mice exposed to hyperoxia. Hyperoxia exposure (O2>80%) for 4 days elicited a pulmonary inflammatory response as reflected by a profound rise in the number of neutrophils that were recovered from bronchoalveolar lavage fluid and lung cell suspensions, as well as increased bronchoalveolar keratinocyte-derived chemokine, interleukin-6, total protein, and alkaline phosphatase levels. In addition, hyperoxia induced the migration of uPAR-positive granulocytes into lungs from wild-type mice compared with healthy control mice (exposed to room air). uPAR deficiency was associated with diminished neutrophil influx into both lung tissues and bronchoalveolar spaces, which was accompanied by a strong reduction in lung injury. Furthermore, in uPAR(-/-) mice, activation of coagulation was diminished. These data suggest that uPAR plays a detrimental role in hyperoxia-induced lung injury and that uPAR deficiency is associated with diminished neutrophil influx into both lung tissues and bronchoalveolar spaces, accompanied by decreased pulmonary injury. PMID:19435793

  4. Thrombospondin 1 Deficiency Ameliorates the Development of Adriamycin-Induced Proteinuric Kidney Disease

    PubMed Central

    Maimaitiyiming, Hasiyeti; Zhou, Qi; Wang, Shuxia

    2016-01-01

    Accumulating evidence suggests that thrombospondin 1 (TSP1) is an important player in diabetic nephropathy. However, the role of TSP1 in podocyte injury and the development of non-diabetic proteinuric kidney disease is largely unknown. In the current study, by using a well-established podocyte injury model (adriamycin-induced nephropathy mouse model), we examined the contribution of TSP1 to the development of proteinuric kidney disease. We found that TSP1 was up-regulated in the glomeruli, notably in podocytes, in adriamycin injected mice before the onset of proteinuria. ADR treatment also stimulated TSP1 expression in cultured human podocytes in vitro. Moreover, increased TSP1 mediated ADR-induced podocyte apoptosis and actin cytoskeleton disorganization. This TSP1’s effect was through a CD36-dependent mechanism and involved in the stimulation of p38MAPK pathway. Importantly, in vivo data demonstrated that TSP1 deficiency protected mice from ADR induced podocyte loss and foot process effacement. ADR induced proteinuria, glomerulosclerosis, renal macrophage infiltration and inflammation was also attenuated in TSP1 deficient mice. Taken together, these studies provide new evidence that TSP1 contributes to the development of non-diabetic proteinuric kidney disease by stimulating podocyte injury and the progression of renal inflammation. PMID:27196103

  5. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  6. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency.

    PubMed

    Mukhopadhyay, C K; Mazumder, B; Fox, P L

    2000-07-14

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  7. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  8. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice.

    PubMed

    Yiannikouris, Frederique; Gupte, Manisha; Putnam, Kelly; Thatcher, Sean; Charnigo, Richard; Rateri, Debra L; Daugherty, Alan; Cassis, Lisa A

    2012-12-01

    Previous studies demonstrated that diet-induced obesity increased plasma angiotensin II concentrations and elevated systolic blood pressures in male mice. Adipocytes express angiotensinogen and secrete angiotensin peptides. We hypothesize that adipocyte-derived angiotensin II mediates obesity-induced increases in systolic blood pressure in male high fat-fed C57BL/6 mice. Systolic blood pressure was measured by radiotelemetry during week 16 of low-fat or high-fat feeding in Agt(fl/fl) and adipocyte angiotensinogen-deficient mice (Agt(aP2)). Adipocyte angiotensinogen deficiency had no effect on diet-induced obesity. Basal 24-hour systolic blood pressure was not different in low fat-fed Agt(fl/fl) compared with Agt(aP2) mice (124 ± 3 versus 128 ± 3 mm Hg, respectively). In Agt(fl/fl) mice, high-fat feeding significantly increased systolic blood pressure (24 hours; 134 ± 2 mm Hg; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit an increase in systolic blood pressure (126 ± 2 mm Hg). Plasma angiotensin II concentrations were increased by high-fat feeding in Agt(fl/fl) mice (low fat, 32 ± 14; high fat, 219 ± 58 pg/mL; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit elevated plasma angiotensin II concentrations (high fat, 18 ± 7 pg/mL). Similarly, adipose tissue concentrations of angiotensin II were significantly decreased in low fat- and high fat-fed Agt(aP2) mice compared with controls. In conclusion, adipocyte angiotensinogen deficiency prevented high fat-induced elevations in plasma angiotensin II concentrations and systolic blood pressure. These results suggest that adipose tissue serves as a major source of angiotensin II in the development of obesity hypertension.

  9. Dietary antioxidants and ozone-induced bronchial hyperresponsiveness in adults with asthma.

    PubMed

    Trenga, C A; Koenig, J Q; Williams, P V

    2001-01-01

    Ozone exposure aggravates asthma, as has been demonstrated in both controlled exposures and epidemiologic studies. In the current double-blind crossover study, the authors evaluated the effects of dietary antioxidants (i.e., 400 IU vitamin E/500 mg vitamin C) on ozone-induced bronchial hyperresponsiveness in adult subjects with asthma. Seventeen subjects were exposed to 0.12 ppm of ozone or to air for 45 min during intermittent moderate exercise. Bronchial hyperresponsiveness was assessed with 10-min sulfur dioxide (i.e., 0.10 ppm and 0.25 ppm) inhalation challenges. Subjects who were given dietary antioxidants responded less severely to sulfur dioxide challenge than subjects given a placebo (i.e., forced expiratory volume in the 1st sec: -1.2% vs. 4.4%, respectively; peak flow: +2.2% vs. -3.0%, respectively; and mid-forced expiratory flow: +2.0% vs. -4.3%, respectively). Effects were more pronounced when subjects were grouped by response to sulfur dioxide at the screening visit. The results suggest that dietary supplementation with vitamins E and C benefits asthmatic adults who are exposed to air pollutants. PMID:11480500

  10. Chronic effects of dietary vitamin D deficiency without increased calcium supplementation on the progression of experimental polycystic kidney disease.

    PubMed

    Rangan, Gopala K; Schwensen, Kristina G; Foster, Sheryl L; Korgaonkar, Mayuresh S; Peduto, Anthony; Harris, David C

    2013-08-15

    Increasing evidence indicates that vitamin D deficiency exacerbates chronic kidney injury, but its effects on renal enlargement in polycystic kidney disease (PKD) are not known. In this study, male Lewis polycystic kidney disease (LPK) rats received a normal diet (ND; AIN-93G) supplemented with or without cholecalciferol (vitamin D-deficient diet, VDD; both 0.5% calcium), commenced at either postnatal week 3 (until weeks 10-20; study 1) or from week 10 (until week 20; study 2). Levels of 25-hydroxy vitamin D were reduced in groups receiving the VDD (12 ± 1 nmol/l vs. 116 ± 5 in ND; P < 0.001). In study 1, food intake and weight gain increased by ∼25% in LPK rats receiving the VDD ad libitum, and at week 20 this was associated with a mild reduction in the corrected serum calcium (SCa(2+), 7.4%) and TKW:BW ratio (8.8%), and exacerbation of proteinuria (87%) and hypertension (19%; all P < 0.05 vs. ND). When LPK rats were pair-fed for weeks 3-10, there was a further reduction in the SCa(2+) (25%) and TKW:BW ratio (22%) in the VDD group (P < 0.05 vs. ND). In study 2, the VDD did not alter food intake and body weight, reduced SCa(2+) (7.7%), worsened proteinuria (41.9%), interstitial monocyte accumulation (26.4%), renal dysfunction (21.4%), and cardiac enlargement (13.2%, all P < 0.05), but there was a trend for a reduction in the TKW:BW ratio (13%, P = 0.09). These data suggest that chronic vitamin D deficiency has adverse long-term actions on proteinuria, interstitial inflammation, renal function, and cardiovascular disease in PKD, and these negate its mild inhibitory effect on kidney enlargement.

  11. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    SciTech Connect

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  12. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration

    PubMed Central

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration. PMID:26042773

  13. Dietary supplement enriched in antioxidants and omega-3 protects from progressive light-induced retinal degeneration.

    PubMed

    Ramchani-Ben Othman, Khaoula; Cercy, Christine; Amri, Mohamed; Doly, Michel; Ranchon-Cole, Isabelle

    2015-01-01

    In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration.

  14. Dietary inclusion of local salt substitutes induces oxidative stress and renal dysfunction in rats.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O; Araoye, Obafemi O; Oyeleye, Sunday I

    2014-01-01

    Our earlier report has shown that salt substitutes (Obu-Otoyo) contain some toxic heavy metals. This study, therefore, investigated the effect of the dietary inclusion of salt substitutes (Obu-Otoyo), namely, salt "A" and "B", on biomarkers of oxidative stress and renal function in rats. Salt "A", which has a gray color, is the product of a process in which ash is produced by burning palm kernel shaft soaked in water overnight and extracting the residue to produce the salt substitute while Salt "B", which has a white color, is a rock salt mined from a local site at Ilobu town, Osun-State, Nigeria. Salt substitutes were fed to normal rats as dietary inclusion at 0.5% and 1.0% for 21 days. The dietary inclusion of the salt substitutes caused a significant (p<0.05) increase in plasma activities of creatinine, urea, uric acid, and blood urea nitrogen compared with the control. Meanwhile, the dietary inclusion of the salt substitutes caused a significant (p<0.05) decrease in renal superoxide dismutase, catalase, reduced glutathione level, glutathione-S-transferase, and glutathione peroxidase activities with a concomitant increase in the malondialdehyde level compared with the control. Furthermore, there was a significant (p<0.05) increase in the concentrations of heavy metals, such as Pb, Co, Cu, Fe, Zn and Cr, in kidney of rats fed with the salt substitute Obu-Otoyo. Therefore, this finding indicates that Obu-Otoyo induces nephrotoxicity in rats. The nephrotoxicity of Obu-Otoyo could be attributed to the induction of oxidative stress as a result of the presence of some heavy metals, suggesting possible health hazards in subjects who consume it. PMID:24829193

  15. Dietary inclusion of local salt substitutes induces oxidative stress and renal dysfunction in rats.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O; Araoye, Obafemi O; Oyeleye, Sunday I

    2014-01-01

    Our earlier report has shown that salt substitutes (Obu-Otoyo) contain some toxic heavy metals. This study, therefore, investigated the effect of the dietary inclusion of salt substitutes (Obu-Otoyo), namely, salt "A" and "B", on biomarkers of oxidative stress and renal function in rats. Salt "A", which has a gray color, is the product of a process in which ash is produced by burning palm kernel shaft soaked in water overnight and extracting the residue to produce the salt substitute while Salt "B", which has a white color, is a rock salt mined from a local site at Ilobu town, Osun-State, Nigeria. Salt substitutes were fed to normal rats as dietary inclusion at 0.5% and 1.0% for 21 days. The dietary inclusion of the salt substitutes caused a significant (p<0.05) increase in plasma activities of creatinine, urea, uric acid, and blood urea nitrogen compared with the control. Meanwhile, the dietary inclusion of the salt substitutes caused a significant (p<0.05) decrease in renal superoxide dismutase, catalase, reduced glutathione level, glutathione-S-transferase, and glutathione peroxidase activities with a concomitant increase in the malondialdehyde level compared with the control. Furthermore, there was a significant (p<0.05) increase in the concentrations of heavy metals, such as Pb, Co, Cu, Fe, Zn and Cr, in kidney of rats fed with the salt substitute Obu-Otoyo. Therefore, this finding indicates that Obu-Otoyo induces nephrotoxicity in rats. The nephrotoxicity of Obu-Otoyo could be attributed to the induction of oxidative stress as a result of the presence of some heavy metals, suggesting possible health hazards in subjects who consume it.

  16. Opioid-Induced Androgen Deficiency (OPIAD): Diagnosis, Management, and Literature Review.

    PubMed

    O'Rourke, Timothy K; Wosnitzer, Matthew S

    2016-10-01

    Opioid-induced androgen deficiency (OPIAD) was initially recognized as a possible consequence of opioid use roughly four decades ago. Long-acting opioid use carries risks of addiction, tolerance, and systemic side effects including hypogonadotropic hypogonadism with consequent testosterone depletion leading to multiple central and peripheral effects. Hypogonadism is induced through direct inhibitory action of opioids on receptors within the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes as well as testosterone production within the testes. Few studies have systematically investigated hormonal changes induced by long-term opioid administration or the effects of testosterone replacement therapy (TRT) in patients with OPIAD. Clomiphene citrate, a selective estrogen receptor modulator (SERM), is a testosterone enhancement treatment which upregulates endogenous hypothalamic function. This review will focus on the pathophysiology, diagnosis, and management of OPIAD, including summary of literature evaluating OPIAD treatment with TRT, and areas of future investigation. PMID:27586511

  17. Inhibition and deficiency of the immunoproteasome subunit LMP7 attenuates LCMV-induced meningitis.

    PubMed

    Mundt, Sarah; Engelhardt, Britta; Kirk, Christopher J; Groettrup, Marcus; Basler, Michael

    2016-01-01

    In addition to antigen processing, immunoproteasomes were recently shown to exert functions influencing cytokine production by monocytes and T cells, T-helper cell differentiation, and T-cell survival. Moreover, selective inhibition of the immunoproteasome subunit LMP7 ameliorated symptoms of autoimmune diseases including CD4(+) T-cell mediated EAE. In this study, we show that LMP7 also plays a crucial role in the pathogenesis of lymphocytic choriomeningitis virus (LCMV)-induced meningitis mediated by CTLs. Mice lacking functional LMP7 display delayed and reduced clinical signs of disease accompanied by a strongly decreased inflammatory infiltration into the brain. Interestingly, we found that selective inhibition and genetic deficiency of LMP7 affect the pathogenesis of LCMV-induced meningitis in a distinct manner. Our findings support the important role of LMP7 in inflammatory disorders and suggest immunoproteasome inhibition as a novel strategy against inflammation-induced neuropathology in the CNS. PMID:26464284

  18. Dietary Supplementation with Fresh Pineapple Juice Decreases Inflammation and Colonic Neoplasia in IL-10-deficient Mice with Colitis

    PubMed Central

    Hale, Laura P.; Chichlowski, Maciej; Trinh, Chau T.; Greer, Paula K.

    2010-01-01

    Background Bromelain, a mixture of proteolytic enzymes typically derived from pineapple stem, decreases production of pro-inflammatory cytokines and leukocyte homing to sites of inflammation. We previously showed that short-term oral treatment with bromelain purified from pineapple stem decreased the severity of colonic inflammation in C57BL/6 Il10−/− mice with chronic colitis. Since fresh pineapple fruit contains similar bromelain enzymes but at different proportions, this study aimed to determine whether long-term dietary supplementation with pineapple (supplied as juice) could decrease colon inflammation and neoplasia in Il10−/− mice with chronic colitis as compared with bromelain derived from stem. Results Experimental mice readily consumed fresh pineapple juice at a level that generated mean stool proteolytic activities equivalent to 16 mg bromelain purified from stem, while control mice received boiled juice with inactive enzymes. Survival was increased in the group supplemented with fresh rather than boiled juice (p = 0.01). Mice that received fresh juice also had decreased histologic colon inflammation scores and a lower incidence of inflammation-associated colonic neoplasia (35% vs. 66%; p< 0.02), with fewer neoplastic lesions/colon (p = 0.05). Flow cytometric analysis of murine splenocytes exposed to fresh pineapple juice in vitro demonstrated proteolytic removal of cell surface molecules that can affect leukocyte trafficking and activation. Conclusions These results demonstrate that long-term dietary supplementation with fresh or unpasteurized frozen pineapple juice with proteolytically active bromelain enzymes is safe and decreases inflammation severity and the incidence and multiplicity of inflammation-associated colonic neoplasia in this commonly used murine model of inflammatory bowel disease. PMID:20848493

  19. The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum.

    PubMed

    Henley, E C; Taylor, J R N; Obukosia, S D

    2010-01-01

    Child malnutrition is increasing in Africa. Protein deficiency is an important cause since protein is essential for both growth and maintenance of muscle mass. Sorghum is a major staple food in Africa on account of its hardiness as a crop. However, sorghum protein is very deficient in the indispensable amino acid lysine and on cooking has poor protein digestibility. This results in sorghum having a very low Protein Digestibility Corrected Amino Acid Score (PDCAAS). The Africa Biofortified Sorghum project, a Grand Challenges in Global Heath project, is undertaking research to biofortify sorghum in terms of protein and micronutrient quality using genetic engineering. Lysine and protein digestibility have been improved by suppression of synthesis of the kafirin storage proteins. Transgenic biofortified sorghum has double the PDCAAS of conventional sorghum. This improvement should enable a young child to meet most of its protein and energy requirements from biofortified sorghum porridge. This together with the improvement in micronutrients could provide the basis of a sustainable and broadly comprehensive solution to child malnutrition in many African countries.

  20. Abnormality of epiphyseal plate induced by selenium deficiency diet in two generation DA rats.

    PubMed

    Min, Zixin; Zhao, Wenxiang; Zhong, Nannan; Guo, Yuanxu; Sun, Mengyao; Wang, Quancheng; Zhang, Rui; Yan, Jidong; Tian, Lifang; Zhang, Fujun; Han, Yan; Ning, Qilan; Meng, Liesu; Sun, Jian; Lu, Shemin

    2015-08-01

    This study aimed to observe the effects of Se deficiency on epiphyseal plates of two generation DA rats fed with artificial total synthetic low Se diet. All F0 and F1 DA rats were fed with synthetic low Se diet (SeD group) and low Se diet supplied with Se (SeS group). The levels of selenium and enzyme activities of GPx were detected in plasma of the rats. General growth of bone and articular cartilage was measured macroscopically and microscopically. The epiphyseal plate of femur heads or tibia were obtained to histological and immunohistochemical examinations. The cartilage from left knee joints and femur heads was used to detect the gene expression of collagens, ADAMTSs and several selenoproteins by RT-qPCR. Two generation SeD rats showed Se insufficiency status. The thicknesses of the femur and tibial epiphyseal plates in both F0 and F1 SeD rats were significantly less than that of SeS rats. In F1 generation, SeD rats showed much fewer proliferative chondrocyte layers than SeS ones. Importantly, two generation SeD rats both showed significantly more serious pathological changes of epiphyseal plates. In two generation rats, gene expressions of COL II, GPx1 and GPx4 were significantly down-regulated in SeD rats than SeS ones; meanwhile ADAMTS-4 showed an up-regulated expression in cartilage. Dietary Se deficiency can apparently cause epiphyseal plate lesion and decrease cartilage type II collagen production and GPx1 activity in two generation DA rats fed with the artificial total synthesis low Se diet.

  1. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource

    PubMed Central

    Zhu, Xuexia; Wang, Jun; Chen, Qinwen; Chen, Ge; Huang, Yuan; Yang, Zhou

    2016-01-01

    The green alga Scenedesmus obliquus can form inducible defensive morphs under grazing threat. Costs and trade-offs of inducible defense are expected to accompany the benefits of defensive morphs, but are hard to detect under nutrient-sufficient experimental conditions. To test the existence of costs associated with inducible defense, we cultured S. obliquus along resource availability gradients in the presence or absence of infochemical cues from Daphnia, and measured the strength of defensive colony formation and fitness characters. Under the lowest phosphorous concentration, the expression of inducible defensive colony resulted in decreased growth rate, which provides direct evidence for physiological costs. Along the gradient reduction of phosphorous concentration or light intensity, inducible defense in S. obliquus showed a decreasing trend. However, the photosynthetic efficiency of S. obliquus was barely affected by its defense responses, suggesting that the negative correlations between resource availability and colony formation of this alga may be due to resource-based trade-offs in the allocation of limited resources. Thus, our results indicated that expression of inducible defense of S. obliquus was impaired under insufficient phosphorus or light. Furthermore, under severe phosphate deficiency, obvious physiological costs of inducible defense could be detected even though defensive colony formation also decreased significantly. PMID:26932369

  2. Myeloid Mineralocorticoid Receptor Deficiency Inhibits Aortic Constriction-Induced Cardiac Hypertrophy in Mice

    PubMed Central

    Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M.

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation. PMID:25354087

  3. ALDH2 Deficiency Promotes Ethanol-Induced Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamljit K.; Samak, Geetha; Shukla, Pradeep K.; Mir, Hina; Gangwar, Ruchika; Manda, Bhargavi; Isse, Toyohi; Kawamoto, Toshihiro; Salaspuro, Mikko; Kaihovaara, Pertti; Dietrich, Paula; Dragatsis, Ioannis; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Background Acetaldehyde, the toxic ethanol metabolite, disrupts intestinal epithelial barrier function. Aldehyde dehydrogenase (ALDH) detoxifies acetaldehyde into acetate. Sub populations of Asians and Native Americans show polymorphism with loss of function mutations in ALDH2. We evaluated the effect of ALDH2 deficiency on ethanol-induced disruption of intestinal epithelial tight junctions and adherens junctions, gut barrier dysfunction and liver injury. Methods Wild type and ALDH2 deficient mice were fed (1–6%) in Lieber-DeCarli diet for 4 weeks. Gut permeability in vivo measured by plasma-to-luminal flux of FITC-inulin, tight junction and adherens junction integrity analyzed by confocal microscopy and liver injury was assessed by analysis of plasma transaminase activity, histopathology and liver triglyceride. Results Ethanol feeding elevated colonic mucosal acetaldehyde, which was significantly greater in ALDH2 deficient mice. ALDH2−/− mice showed a drastic reduction in the ethanol diet intake. Therefore, this study was continued only in wild type and ALDH2+/− mice. Ethanol feeding elevated mucosal inulin permeability in distal colon, but not in proximal colon, ileum or jejunum of wild type mice. In ALDH2+/− mice, ethanol-induced inulin permeability in distal colon was not only higher than that in wild type mice, but inulin permeability was also elevated in the proximal colon, ileum and jejunum. Greater inulin permeability in distal colon of ALDH2+/− mice was associated with a more severe redistribution of tight junction and adherens junction proteins from the intercellular junctions. In ALDH2+/− mice, but not in wild type mice, ethanol feeding caused a loss of junctional distribution of tight junction and adherens junction proteins in the ileum. Histopathology, plasma transaminases and liver triglyceride analyses showed that ethanol-induced liver damage was significantly greater in ALDH2+/− mice compared to wild type mice. Conclusion These data

  4. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance

    PubMed Central

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Balschi, James A.; Javadov, Sabzali; McGowan, Francis X.; Strauss, Arnold W.

    2013-01-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD−/−) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD−/− mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions. PMID:24285112

  5. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance.

    PubMed

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Balschi, James A; Javadov, Sabzali; McGowan, Francis X; Strauss, Arnold W; Khuchua, Zaza

    2014-02-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD(-/-)) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD(-/-) mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions.

  6. Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency.

    PubMed

    Jelali, N; Donnini, S; Dell'Orto, M; Abdelly, C; Gharsalli, M; Zocchi, G

    2014-05-01

    The contribution of antioxidant defence systems in different tolerance to direct and bicarbonate-induced Fe deficiency was evaluated in two pea cultivars (Kelvedon, tolerant and Lincoln, susceptible). Fe deficiency enhanced lipid peroxidation and H2 O2 concentration in roots of both cultivars, particularly in the sensitive one grown under bicarbonate supply. The results obtained on antioxidant activities (SOD, CAT, POD) suggest that H2 O2 accumulation could be due to an overproduction of this ROS and, at the same time, to a poor capacity to detoxify it. Moreover, under bicarbonate supply the activity of POD isoforms was reduced only in the sensitive cultivar, while in the tolerant one a new isoform was detected, suggesting that POD activity might be an important contributor to pea tolerance to Fe deficiency. The presence of bicarbonate also resulted in stimulation of GR, MDHAR and DHAR activities, part of the ASC-GSH pathway, which was higher in the tolerant cultivar than in the sensitive one. Overall, while in the absence of Fe only slight differences were reported between the two cultivars, the adaptation of Kelvedon to the presence of bicarbonate seems to be related to its greater ability to enhance the antioxidant response at the root level.

  7. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration

    PubMed Central

    Lee, Jerry S. H.; Hale, Christopher M.; Panorchan, Porntula; Khatau, Shyam B.; George, Jerry P.; Tseng, Yiider; Stewart, Colin L.; Hodzic, Didier; Wirtz, Denis

    2007-01-01

    Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna−/− MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna−/− MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna+/+ MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna−/− MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C. PMID:17631533

  8. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury.

    PubMed

    Martens, Lauren Herl; Zhang, Jiasheng; Barmada, Sami J; Zhou, Ping; Kamiya, Sherry; Sun, Binggui; Min, Sang-Won; Gan, Li; Finkbeiner, Steven; Huang, Eric J; Farese, Robert V

    2012-11-01

    Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn⁻/⁻) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn⁻/⁻ neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn⁻/⁻ mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn⁻/⁻ microglia treated with LPS/IFN-γ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation.

  9. Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats.

    PubMed

    Ghafoorunissa; Ibrahim, Ahamed; Rajkumar, Laxmi; Acharya, Vani

    2005-11-01

    This study was designed to determine the effect of substituting (n-3) long-chain PUFAs (LCPUFAs) for linoleic acid and hence decreasing the (n-6):(n-3) fatty acid ratio on sucrose-induced insulin resistance in rats. Weanling male Wistar rats were fed casein-based diets containing 100 g/kg fat for 12 wk. Insulin resistance was induced by replacing starch (ST) with sucrose (SU). The dietary fats were formulated with groundnut oil, palmolein, and fish oil to provide the following ratios of (n-6):(n-3) fatty acids: 210 (ST-210, SU-210), 50 (SU-50), 10 (SU-10), and 5 (SU-5). Compared with starch (ST-210), sucrose feeding (SU-210) significantly increased the plasma insulin and triglyceride concentrations and the plasma insulin area under the curve (AUC) in response to an oral glucose load. Adipocytes isolated from rats fed SU-210 had greater lipolytic rate, lower insulin stimulated glucose transport, and lower insulin-mediated antilipolysis than those from rats fed ST-210. Decreasing the dietary (n-6):(n-3) ratio in sucrose-fed rats (SU-10 and SU-5) normalized the plasma insulin concentration and the AUC of insulin after a glucose load. The sucrose-induced increase in plasma triglyceride concentration was normalized in rats fed SU-50, SU-10 and SU-5. Further, sucrose-induced alterations in adipocyte lipolysis and antilipolysis were partially reversed and glucose transport improved in rats fed diets SU-5 and SU-10. In diaphragm phospholipids, decreasing the (n-6):(n-3) ratio in the diet increased the concentration of (n-3) LCPUFAs with concomitant decreases in the concentration of (n-6) LCPUFAs. These results suggest that (n-3) LCPUFAs at a level of 2.6 g/kg diet [0.56% energy (n-3) LCPUFAs, (n-6):(n-3) ratio = 10] may prevent sucrose-induced insulin resistance by improving peripheral insulin sensitivity.

  10. Individualized long-term outcomes in blood phenylalanine concentrations and dietary phenylalanine tolerance in 11 patients with primary phenylalanine hydroxylase (PAH) deficiency treated with Sapropterin-dihydrochloride.

    PubMed

    Stockler-Ipsiroglu, Sylvia; Yuskiv, Nataliya; Salvarinova, Ramona; Apatean, Delia; Ho, Gloria; Cheng, Barbara; Giezen, Alette; Lillquist, Yolanda; Ueda, Keiko

    2015-03-01

    We analyzed long-term sustainability of improved blood Phenylalanine (Phe) control and changes to dietary Phe tolerance in 11 patients (1 month to 16 years), with various forms of primary PAH deficiency (classic, moderate, severe phenylketonuria [PKU], mild hyperphenylalaninemia [HPA]), who were treated with 15-20mg/kg/d Sapropterin-dihydrochloride during a period of 13-44 months. 7/11 patients had a sustainable, significant reduction of baseline blood Phe concentrations and 6 of them also had an increase in mg/kg/day Phe tolerance. In 2 patients with mild HPA, blood Phe concentrations remained in the physiologic range even after a 22 and 36% increase in mg/kg/day Phe tolerance and an achieved Phe intake at 105% and 268% of the dietary reference intake (DRI) for protein. 2 of these responders had classic PKU. 1 patient with mild HPA who started treatment at 2 months of life, had a significant and sustainable reduction in pretreatment blood Phe concentrations, but no increase in the mg/kg/day Phe tolerance. An increase in Phe tolerance could only be demonstrated when expressing the patient's daily Phe tolerance with the DRI for protein showing an increase from 58% at baseline to 78% of normal DRI at the end of the observation. Long-term follow-up of patients with an initial response to treatment with Sapropterin is essential to determine clinically meaningful outcomes. Phenylalanine tolerance should be expressed in mg/kg/day and/or % of normal DRI to differentiate medical therapy related from physiologic growth related increase in daily Phe intake.

  11. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  12. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.

    PubMed

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  13. Protective role of curcumin against nicotine-induced genotoxicity on rat liver under restricted dietary protein.

    PubMed

    Bandyopadhyaya, Gargi; Sinha, Surajit; Chattopadhyay, Braja Dulal; Chakraborty, Anindita

    2008-07-01

    Nicotine, the well known addictive chemical of tobacco and active medication for several diseases, has proven to be a potential genotoxic compound. Although it is absorbed through lungs with smoking and mainly metabolized in liver, its effect on liver injuries is not clear. This study was designed to evaluate the genotoxicity of nicotine and corresponding the protective role of curcumin against nicotine on liver of female populations particularly who used tobacco but deprived of healthy diet. The effects were investigated by measurement of total DNA concentration of liver tissues and Comet assay of liver tissue DNA damage of female rats maintained under normal and restricted protein diets. Total DNA contents in the liver tissues were observed to decrease more significantly (P<0.001) by nicotine in both dietary conditions. Significant (P<0.01) increase of total DNA content in normal dietary condition and more significant (P<0.001) increase of total DNA content in protein restricted condition of the liver tissues were observed due to curcumin supplementations. Highly significant (P<0.001) DNA damages (37% in normal diet and 56% in protein restricted diet) of the liver tissues were observed due to nicotine treatment. Curcumin reduced the nicotine-induced DNA damage percentage of the liver tissues more significantly (P<0.001) in protein restricted condition. Curcumin proved its potential to function against genotoxic effect by reducing the DNA damage activity of nicotine and minimized the percentage of DNA damage (50-60%) in protein restricted dietary condition. The degree of nicotine-induced genotoxicity therefore can be effectively compensated by the protective effect of curcumin in protein stress condition. PMID:18508046

  14. FOXO1 Mediates Vitamin D Deficiency-induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Chen, Songcang; Villalta, Armando; Agrawal, Devendra K.

    2015-01-01

    Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. While sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2. PMID:26462119

  15. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  16. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice.

    PubMed

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2010-12-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F₂-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plasminogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic

  17. N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination.

    PubMed

    Beattie, K L

    1975-02-01

    Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicated that neither of these phenomena are caused by the smae repair mechanism that removes UV-induced pyrimidine dimers from the DNA. The recombination-deficient mutant recI is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (I) NC-induced mutagenesis is lower in the recI strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the recI strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about I/4 to I/3 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the recI strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 recI was followed at the permissive (36 degrees) and nonpermissive (41 degrees) temperatures, it became apparent that in the recI strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process. The recI strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuties present in DNA synthesized after treatment. The results are consistent with the idea that

  18. Effect of insulin deficiency on the rewarding properties of methamphetamine in streptozotocin-induced diabetic rats.

    PubMed

    Bayat, Amir-Hossein; Haghparast, Abbas

    2015-01-01

    The reward is a positive behavioural response to the pleasant stimuli that can be induced by drugs, such as psychostimulants. Furthermore, diabetes mellitus is a chronic disease that many people throughout the world suffer from. Methamphetamine (METH), as a psychostimulant, engages the dopaminergic system in the reward circuitry and the synapses of dopaminergic terminals can be modified by insulin. In this study, in order to assess the effect of insulin deficiency on reward, streptozotocin (STZ)-induced diabetic animals were used as an appropriate model. One hundred and thirty-two adult male rats were divided into nine groups (three non-diabetic and six diabetic groups) to determine the most effective dose of METH (0.25, 0.5, 1 and 2mg/kg ip), and insulin replacement (10U/kg; ip) during the acquisition period in a conditioned place preference (CPP) paradigm. The diabetes model was induced by a single injection of STZ (60mg/kg; ip). The conditioning score was considered to be the difference in time spent in drug- and saline-paired compartments. The results demonstrated that the most effective doses of METH were 1 and 2mg/kg in non-diabetic animals. Although the place preference was not shown in non-diabetic animals at the dose of 0.5mg/kg, this dose significantly induced place preference to METH in STZ-diabetic rats. Additionally, insulin replacement could reverse the METH-induced CPP in diabetic animals. Our findings suggest that the positive effect of insulin deficiency on METH rewarding properties is dependent on insulin level in part, and the replacement of the insulin in diabetic rats as a treatment can improve the rewarding properties of METH.

  19. Osteoprotective Effect of Cordycepin on Estrogen Deficiency-Induced Osteoporosis In Vitro and In Vivo

    PubMed Central

    Zhang, Da-wei; Deng, Hualiang; Qi, Wei; Zhao, Guang-yue; Cao, Xiao-rui

    2015-01-01

    The purpose of this study was to verify the effect of cordycepin on ovariectomized osteopenic rats. Fifty Wistar female rats used were divided into 5 groups: (1) sham-operation rats (control), (2) ovariectomized (OVX) rats with osteopenia, and (3) OVX'd rats with osteopenia treated with cordycepin (5 mg, 10 mg, and 20 mg) for 8 weeks. After the rats were treated orally with cordycepin, serum alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), serum osteocalcin (OC), homocysteine (HCY) , C-terminal crosslinked telopeptides of collagen type I (CTX) level, and oxidative stress were examined, respectively. The femoral neck was used for mechanical compression testing. At the same time, we further investigated the effect of cordycepin in vitro assay. The beneficial effects of cordycepin on improvement of osteoporosis in rats were attributable mainly to decrease ALP activity, TRAP activity, and CTX level. At the same time, cordycepin also increases the OC level in ovariectomized osteopenic rats. The histological examination clearly showed that dietary cordycepin can prevent bone loss caused by estrogen deficiency. These experimental results suggest that complement cordycepin is protective after ovariectomized osteopenic in specific way. PMID:25874211

  20. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    PubMed

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P < 0.05) before ablation, perhaps accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  1. Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice.

    PubMed

    Hosick, Peter A; AlAmodi, Abdulhadi A; Hankins, Michael W; Stec, David E

    2016-01-01

    Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease from initial body weight over the 30 week treatment period while treatment with iCORM and saline were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can reverse dietary induced obesity and normalize insulin resistance independent of changes in food intake or activity. These findings are likely though a mechanism which increases metabolism. PMID:27144091

  2. Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice.

    PubMed

    Hosick, Peter A; AlAmodi, Abdulhadi A; Hankins, Michael W; Stec, David E

    2016-01-01

    Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease from initial body weight over the 30 week treatment period while treatment with iCORM and saline were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can reverse dietary induced obesity and normalize insulin resistance independent of changes in food intake or activity. These findings are likely though a mechanism which increases metabolism.

  3. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses.

    PubMed

    Le, Cham Thi Tuyet; Brumbarova, Tzvetina; Ivanov, Rumen; Stoof, Claudia; Weber, Eva; Mohrbacher, Julia; Fink-Straube, Claudia; Bauer, Petra

    2016-01-01

    Plants grown under iron (Fe)-deficient conditions induce a set of genes that enhance the efficiency of Fe uptake by the roots. In Arabidopsis (Arabidopsis thaliana), the central regulator of this response is the basic helix-loop-helix transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that stimulate and possibly inhibit Fe uptake. In the search of signaling components regulating FIT function, we identified ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12), an abiotic stress-induced transcription factor. ZAT12 interacted with FIT, dependent on the presence of the ethylene-responsive element-binding factor-associated amphiphilic repression motif. ZAT12 protein was found expressed in the root early differentiation zone, where its abundance was modulated in a root layer-specific manner. In the absence of ZAT12, FIT expression was upregulated, suggesting a negative effect of ZAT12 on Fe uptake. Consistently, zat12 loss-of-function mutants had higher Fe content than the wild type at sufficient Fe. We found that under Fe deficiency, hydrogen peroxide (H2O2) levels were enhanced in a FIT-dependent manner. FIT protein, in turn, was stabilized by H2O2 but only in the presence of ZAT12, showing that H2O2 serves as a signal for Fe deficiency responses. We propose that oxidative stress-induced ZAT12 functions as a negative regulator of Fe acquisition. A model where H2O2 mediates the negative regulation of plant responses to prolonged stress might be applicable to a variety of stress conditions. PMID:26556796

  4. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses.

    PubMed

    Le, Cham Thi Tuyet; Brumbarova, Tzvetina; Ivanov, Rumen; Stoof, Claudia; Weber, Eva; Mohrbacher, Julia; Fink-Straube, Claudia; Bauer, Petra

    2016-01-01

    Plants grown under iron (Fe)-deficient conditions induce a set of genes that enhance the efficiency of Fe uptake by the roots. In Arabidopsis (Arabidopsis thaliana), the central regulator of this response is the basic helix-loop-helix transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that stimulate and possibly inhibit Fe uptake. In the search of signaling components regulating FIT function, we identified ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12), an abiotic stress-induced transcription factor. ZAT12 interacted with FIT, dependent on the presence of the ethylene-responsive element-binding factor-associated amphiphilic repression motif. ZAT12 protein was found expressed in the root early differentiation zone, where its abundance was modulated in a root layer-specific manner. In the absence of ZAT12, FIT expression was upregulated, suggesting a negative effect of ZAT12 on Fe uptake. Consistently, zat12 loss-of-function mutants had higher Fe content than the wild type at sufficient Fe. We found that under Fe deficiency, hydrogen peroxide (H2O2) levels were enhanced in a FIT-dependent manner. FIT protein, in turn, was stabilized by H2O2 but only in the presence of ZAT12, showing that H2O2 serves as a signal for Fe deficiency responses. We propose that oxidative stress-induced ZAT12 functions as a negative regulator of Fe acquisition. A model where H2O2 mediates the negative regulation of plant responses to prolonged stress might be applicable to a variety of stress conditions.

  5. Vitamin A deficiency among preschool children in a rural area of Egypt: the results of dietary assessment and biochemical assay.

    PubMed

    el-Arab, Ali Ezz; Khalil, Fatma; Hussein, Laila

    2002-11-01

    Vitamin A status was evaluated among a cohort of preschool children (mean age 43 months) pertinent to a traditional society in rural Egypt. The Helen Keller International food frequency questionnaire, the 7-day 24-h dietary recall method and serum vitamin A concentrations were the criteria used for the evaluation. Mean values of 280 and 382 retinol equivalents (RE) were the daily estimates of vitamin A intakes among male and female children, respectively. Animal foods made up 39 and 54% of the total vitamin A intake among male and female children, respectively. The aforementioned estimates of total vitamin A intakes were 58 and 81%, respectively, of the FAO/WHO requirements (35 RE/kg). Children from high socio-economic class had significantly higher (P < 0.05) mean vitamin A intake compared with the respective mean intake obtained with poor children. Serum vitamin A concentrations correlated significantly with the respective vitamin A intakes. A 10-week vitamin A intervention trial using either pharmaceutical vitamin A preparations or a food-based strategy consisting of carrot jam led to significant improvement in the growth velocity of the beneficiaries compared with the control group.

  6. Effects of an essential fatty acid deficiency, pair-feeding and level of dietary corn oil on the hypothalamic-pituitary-gonadal axis and other physiological parameters in the male chicken.

    PubMed

    Engster, H M; Carew, L B; Cunningham, F J

    1978-06-01

    Two studies were conducted to observe the effects of an essential fatty acid (EFA) deficiency, added dietary corn oil and pair-feeding on growth, reproduction and other physiological parameters in the mature cockerel. A purified, linoleic acid (LA)-deficient diet (0.01% LA), or additions of 5% (3.01% LA) or 15% (9.04% LA) corn oil, were fed ad libitum from hatching through 24 weeks of age. Reductions in growth, feed consumption, and comb, and testes size, incomplete spermatogenesis, increased tissue eicosatrienoic acid (20: 3 omega 9) and changes in weights of selected internal organs were observed in deficient cockerels. Total pituitary gonadotropic activity was measured by two bioassay procedures and blood luteinizing hormone was measured by radioimmunoassay. By maturity both of these parameters were significantly reduced in deficient chickens. When these chickens were fed diets with 5% or 15% corn oil under pair-feeding or ad libitum conditions from 20 to 24 weeks, the reduced growth, comb and testes size and gonadotropin metabolism appeared to be caused by depressions in appetite and energy intake rather than EFA per se. The degenerate testicular histology of the 20-week old deficient cockerels, while responding fully to the ad libitum intake of the diets containing corn oil, showed only partial rehabilitation of spermatogenesis when diets with either 5% or 15% corn oil were pair-fed. In general, increasing the level of dietary fat from 5% to 15% did not cause many physiological changes.

  7. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice

    PubMed Central

    Liu, Xiaotuan; Rossmeisl, Martin; McClaine, Jennifer; Kozak, Leslie P.

    2003-01-01

    The availability of mice lacking the mitochondrial uncoupling protein UCP1, has provided an opportunity to analyze the relationship between the capacity for energy expenditure and the development of obesity in response to a high-fat, high-sucrose diet. Congenic UCP1-deficient mice on a C57BL/6J genetic background show a temperature-dependent resistance to diet-induced obesity when compared with wild-type mice. This resistance, which occurs at 20°C, is quickly reversed when the ambient temperature is increased to 27°C. At 20°C, total oxygen consumption and physical activity of mutant and wild-type mice are indistinguishable; however, body temperature is higher in UCP1-deficient mice by 0.1–0.3°C, and respiratory quotient is slightly reduced. A reduced respiratory quotient, together with elevated β-hydroxybutyrate and reduced plasma fatty acid levels, suggests that the mutants oxidize a greater proportion of fat than wild-type mice, and that this possibly accounts for the resistance to diet-induced obesity. Although shivering is one alternative mechanism of thermogenesis that is probably used in UCP1-deficient mice, whether there are others remains to be determined. Nevertheless, our study underscores the paradox that elimination of the major thermogenic mechanism in the animal reduces rather than increases metabolic efficiency. We propose that in the absence of nonshivering thermogenesis, alternative, calorically more costly pathways of metabolism must be used to maintain body temperature. PMID:12569166

  8. Effects of testosterone replacement in men with opioid-induced androgen deficiency: a randomized controlled trial.

    PubMed

    Basaria, Shehzad; Travison, Thomas G; Alford, Daniel; Knapp, Philip E; Teeter, Kjersten; Cahalan, Christine; Eder, Richard; Lakshman, Kishore; Bachman, Eric; Mensing, George; Martel, Marc O; Le, Dillon; Stroh, Helene; Bhasin, Shalender; Wasan, Ajay D; Edwards, Robert R

    2015-02-01

    Symptomatic androgen deficiency is common in patients taking opioid analgesics, as these drugs potently suppress the hypothalamic-pituitary-gonadal axis. However, the efficacy of testosterone replacement in this setting remains unclear. The objective of this trial was to evaluate the efficacy of testosterone replacement on pain perception and other androgen-dependent outcomes in men with opioid-induced androgen deficiency. We conducted a randomized, double-blind, parallel placebo-controlled trial at an outpatient academic research center. Participants were men aged 18 to 64 years on opioid analgesics for chronic noncancer pain, and total testosterone levels were <350 ng/dL. Participants were randomly assigned to 14 weeks of daily transdermal gel that contained 5 g of testosterone or placebo. Primary outcomes were changes in self-reported clinical pain and objectively assessed pain sensitivity. Sexual function, quality of life, and body composition were also assessed. The mean age was 49 years. The median total and free testosterone levels at baseline were 243 ng/dL and 47 pg/mL and 251 ng/dL and 43 pg/mL in the testosterone and placebo arm, respectively. Of the 84 randomized participants, 65 had follow-up data on efficacy outcomes. Compared with men assigned to the placebo arm, those assigned to testosterone replacement experienced greater improvements in pressure and mechanical hyperalgesia, sexual desire, and role limitation due to emotional problems. Testosterone administration was also associated with an improvement in body composition. There were no between-group differences in changes in self-reported pain. In conclusion, in men with opioid-induced androgen deficiency, testosterone administration improved pain sensitivity, sexual desire, body composition, and aspects of quality of life.

  9. Vitamin A Deficiency Promotes Inflammation by Induction of Type 2 Cytokines in Experimental Ovalbumin-Induced Asthma Murine Model.

    PubMed

    Cui, Weiwei; Zhang, Peng; Gu, Jingmin; Tian, Yuan; Gao, Xiuzhu; Liu, Yaqing; Jin, Zheng; Yan, Dongmei; Zhu, Xun; Li, Dong

    2016-10-01

    Vitamin A (VA) deficiency is one of the most common malnutrition conditions. Recent reports showed that VA plays an important role in the immune balance; lack of VA could result in enhanced type 2 immune response characterized by increased type 2 cytokine production and type 2 innate lymphoid cell infiltration and activation. Type 2 immune response plays protective role in anti-infection but plays pathological role in asthmatic disease. In order to investigate the role of VA in the asthmatic disease, we used ovalbumin-induced asthma murine model and observed the pathological changes between mouse-received VA-deficient and VA-sufficient diets. We also measured the type 2 cytokine expressions to reveal the potential mechanism. Our results showed that VA deficiency exacerbates ovalbumin-induced lung inflammation and type 2 cytokine productions. Thus, VA deficiency, or malnutrition in further extent, may contribute to the increasing prevalence of asthma. PMID:27525423

  10. Inhomogeneous width of oxygen-deficient centers induced by electron irradiation of silica

    SciTech Connect

    D'Amico, Michele; Leone, Maurizio; Messina, Fabrizio; Cannas, Marco; Boscaino, Roberto

    2009-02-01

    We report a study of the luminescence activity of oxygen-deficient centers stabilized in as-grown synthetic silica, as compared with the same defects induced by {beta} irradiation at increasing doses, ranging from 1.2x10{sup 3} to 5x10{sup 6} kGy. We experimentally observe a progressive broadening of the luminescence band with increasing total electron dose released on samples. By analyzing our data within a theoretical model capable of separating homogeneous and inhomogeneous contribution to the total luminescence linewidth, we observe that the increasing of the width is entirely ascribable to the inhomogeneous component which increases, in the most irradiated sample, of 60% with respect to the value in the as-grown sample. This effect can be due either to the progressive creation of new defects statistically exploring different sites of the matrix, or to a progressive structural transformation of silica host which affects the optical properties of induced point defects.

  11. Diet-Induced Obesity and Reduced Skin Cancer Susceptibility in Matrix Metalloproteinase 19-Deficient Mice

    PubMed Central

    Pendás, Alberto M.; Folgueras, Alicia R.; Llano, Elena; Caterina, John; Frerard, Françoise; Rodríguez, Francisco; Astudillo, Aurora; Noël, Agnès; Birkedal-Hansen, Henning; López-Otín, Carlos

    2004-01-01

    Matrix metalloproteinase 19 (MMP-19) is a member of the MMP family of endopeptidases that, in contrast to most MMPs, is widely expressed in human tissues under normal quiescent conditions. MMP-19 has been found to be associated with ovulation and angiogenic processes and is deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. To gain further insights into the in vivo functions of this protease, we have generated mutant mice deficient in Mmp19. These mice are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice develop a diet-induced obesity due to adipocyte hypertrophy and exhibit decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with adipogenesis, as well as in pathological processes such as tumor progression. PMID:15169894

  12. Mice heterozygous for cathepsin D deficiency exhibit mania-related behavior and stress-induced depression.

    PubMed

    Zhou, Rui; Lu, Yi; Han, Yong; Li, Xia; Lou, Huifang; Zhu, Liya; Zhen, Xuechu; Duan, Shumin

    2015-12-01

    Mutations in cathepsin D (CTSD), an aspartic protease in the endosomal-lysosomal system, underlie congenital neuronal ceroid-lipofuscinosis (cNCL, also known as CLN10), a devastating neurodegenerative disease. CLN10 patients die within the first few days of life, and in the few patients who live into adulthood psychopathological symptoms have not been reported. Extensive neuropathology and altered neurotransmission have been reported in CTSD-deficient mice; however signs of neuropsychiatric behavior in these mice are not well characterized due to the severe movement disorder and premature death of the animal. In the present study, we show that heterozygous CTSD-deficient (CTSD HET) mice display an overall behavioral profile that is similar to human mania, including hyperlocomotion, d-amphetamine-induced hyperactivity, sleep-disturbance, and reduced anxiety-like behavior. However, under stressful conditions CTSD HET mice manifest depressive-like behavior, including anhedonia, behavioral despair, and enhanced learned helplessness. Chronic administration of lithium chloride or valproic acid, two clinically effective mood stabilizers, reverses the majority of these behavioral abnormalities. In addition, CTSD HET mice display stress-induced hypersecretion of corticosterone. These findings suggest an important role for CTSD in the regulation of mood stabilization.

  13. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding

    PubMed Central

    Ordonio, Reynante L.; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-01-01

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants— both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes. PMID:24924234

  14. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding.

    PubMed

    Ordonio, Reynante L; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-06-13

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants--both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes.

  15. Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis.

    PubMed

    Coughlan, Melinda T; Higgins, Gavin C; Nguyen, Tuong-Vi; Penfold, Sally A; Thallas-Bonke, Vicki; Tan, Sih Min; Ramm, Georg; Van Bergen, Nicole J; Henstridge, Darren C; Sourris, Karly C; Harcourt, Brooke E; Trounce, Ian A; Robb, Portia M; Laskowski, Adrienne; McGee, Sean L; Genders, Amanda J; Walder, Ken; Drew, Brian G; Gregorevic, Paul; Qian, Hongwei; Thomas, Merlin C; Jerums, George; Macisaac, Richard J; Skene, Alison; Power, David A; Ekinci, Elif I; Wijeyeratne, Xiaonan W; Gallo, Linda A; Herman-Edelstein, Michal; Ryan, Michael T; Cooper, Mark E; Thorburn, David R; Forbes, Josephine M

    2016-04-01

    Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease. PMID:26822084

  16. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice.

    PubMed

    Delbridge, Alex R D; Pang, Swee Heng Milon; Vandenberg, Cassandra J; Grabow, Stephanie; Aubrey, Brandon J; Tai, Lin; Herold, Marco J; Strasser, Andreas

    2016-09-19

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53(-/-) mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  17. Mice Abundant in Muricholic Bile Acids Show Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose Metabolism

    PubMed Central

    Bonde, Ylva; Eggertsen, Gösta; Rudling, Mats

    2016-01-01

    High endogenous production of, or treatment with muricholic bile acids, strongly reduces the absorption of cholesterol. Mice abundant in muricholic bile acids may therefore display an increased resistance against dietary induced weight gain, steatosis, and glucose intolerance due to an anticipated general reduction in lipid absorption. To test this hypothesis, mice deficient in steroid 12-alpha hydroxylase (Cyp8b1-/-) and therefore abundant in muricholic acids were monitored for 11 weeks while fed a high fat diet. Food intake and body and liver weights were determined, and lipids in liver, serum and feces were measured. Further, responses during oral glucose and intraperitoneal insulin tolerance tests were evaluated. On the high fat diet, Cyp8b1-/- mice displayed less weight gain compared to wildtype littermates (Cyp8b1+/+). In addition, liver enlargement with steatosis and increases in serum LDL-cholesterol were strongly attenuated in Cyp8b1-/- mice on high fat diet. Fecal excretion of cholesterol was increased and there was a strong trend for doubled fecal excretion of free fatty acids, while excretion of triglycerides was unaltered, indicating dampened lipid absorption. On high fat diet, Cyp8b1-/- mice also presented lower serum glucose levels in response to oral glucose gavage or to intraperitoneal insulin injection compared to Cyp8b1+/+. In conclusion, following exposure to a high fat diet, Cyp8b1-/- mice are more resistant against weight gain, steatosis, and to glucose intolerance than Cyp8b1+/+ mice. Reduced lipid absorption may in part explain these findings. Overall, the results suggest that muricholic bile acids may be beneficial against the metabolic syndrome. PMID:26824238

  18. Plasma S-adenosylhomocysteine is a better biomarker of atherosclerosis than homocysteine in apolipoprotein E-deficient mice fed high dietary methionine.

    PubMed

    Liu, Chi; Wang, Qing; Guo, Honghui; Xia, Min; Yuan, Qin; Hu, Yan; Zhu, Huilian; Hou, Mengjun; Ma, Jing; Tang, Zhihong; Ling, Wenhua

    2008-02-01

    Homocysteine (Hcy) and S-adenosylhomocysteine (AdoHcy) are critical intermediates of methionine metabolism. To investigate which, if either, of these compounds is more closely related to atherosclerosis, we fed 5 groups of apolipoprotein E (apoE)-deficient mice different diets for 8 wk to induce changes in their plasma Hcy and AdoHcy concentrations. These included an AIN-93G control diet (C), this C diet supplemented with methionine (M), the M diet deficient in folates, vitamin B-6, and vitamin B-12 (M-V), this M diet supplemented with these B vitamins (M+V), and a C diet deficient in B vitamins (C-V). Compared with controls, mice fed the C-V diet had a moderate elevation in their plasma total Hcy (tHcy) levels; however, their plasma AdoHcy concentration and atherosclerotic lesion areas were not different. In contrast, the mice fed the M+V diet had larger atherosclerotic lesion areas and elevated plasma AdoHcy concentrations but their plasma tHcy concentration did not differ from that of the group C mice. The plasma AdoHcy concentration and aortic sinus lesion areas were positively correlated (r = 0.866; P < 0.001). We observed a negative correlation between the plasma AdoHcy concentration and both the DNA methyltransferase activity (r = -0.792; P < 0.001) and global DNA methylation status (r = -0.824; P < 0.001) in the aortic tissue. Hence, our study suggests that plasma AdoHcy is a better biomarker of atherosclerosis than Hcy and may accelerate the development of atherosclerotic lesions in apoE-deficient mice that have been fed a high methionine diet. The mechanisms underlying this effect may be related to the AdoHcy-mediated inhibition of DNA methylation in the aortic tissue. PMID:18203897

  19. TNF-related apoptosis-inducing ligand deficiency enhances survival in murine colon ascendens stent peritonitis

    PubMed Central

    Beyer, Katharina; Stollhof, Laura; Poetschke, Christian; von Bernstorff, Wolfram; Partecke, Lars Ivo; Diedrich, Stephan; Maier, Stefan; Bröker, Barbara M; Heidecke, Claus-Dieter

    2016-01-01

    Background Apart from inducing apoptosis in tumor cells, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) influences inflammatory reactions. Murine colon ascendens stent peritonitis (CASP) represents a model of diffuse peritonitis. Recently, it has been demonstrated that administration of exogenous TRAIL not only induces apoptosis in neutrophils but also enhances survival in this model. The aim of this study was to examine the impact of genetic TRAIL deficiency on the course of CASP. Methods Peritonitis was induced in 6- to 8-week-old female TRAIL−/− mice as well as in wild-type mice. The sepsis severity score and survival of mice were monitored. Bacterial loads in blood as well as in the lymphoid organs were examined. Additionally, the number of apoptotic cells within the lymphoid organs was determined. Results As early as 8 hours postinduction of CASP, TRAIL−/− mice were significantly more affected by sepsis than wild-type mice, as measured by the sepsis severity score. However, during the further course of sepsis, TRAIL deficiency led to significantly decreased sepsis severity scores, resulting in an enhanced overall survival in TRAIL−/− mice. The better survival of TRAIL−/− mice was accompanied by a decreased bacterial load within the blood. In marked contrast, the number of apoptotic cells within the lymphoid organs was highly increased in TRAIL−/− mice 20 hours after induction of CASP. Conclusion Hence, exogenous and endogenous TRAIL is protective during the early phase of sepsis, while endogenous TRAIL appears to be detrimental in the later course of this disease. PMID:27366100

  20. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    PubMed

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner.

  1. Low molybdenum state induced by tungsten as a model of molybdenum deficiency in rats.

    PubMed

    Yoshida, Munehiro; Nakagawa, Mikihito; Hosomi, Ryota; Nishiyama, Toshimasa; Fukunaga, Kenji

    2015-05-01

    Organ molybdenum (Mo) concentration and the activity of hepatic sulfite oxidase and xanthine oxidase were compared in tungsten-administered rats as well as rats fed with a low Mo diet to evaluate the use of tungsten-administered rats as a model of Mo deficiency. Twenty-four male 6-week-old Wistar rats were divided into four groups according to diet (AIN93G diet (control diet) or the control diet minus ammonium molybdate (low Mo diet)) and drinking water (deionized water or deionized water containing 200 μg/mL tungsten in the form of sodium tungstate). Mo content in the control and low Mo diets were 196 and 42 ng/g, respectively. Intake of the low Mo diet significantly reduced the Mo content of several organs and serum. Decrease in hepatic sulfite oxidase activity was also induced by the low Mo diet. The administration of tungsten induced marked decreases in organ Mo content and the activity of hepatic sulfite oxidase and xanthine oxidase. These decreases induced by tungsten administration were more pronounced than those induced by just a low Mo diet. Serum uric acid was also reduced by tungsten administration irrespective of Mo intake. Although a comparatively high accumulation of tungsten (3 to 9 μg/g) was observed in the kidneys and liver, adverse effects of tungsten accumulation on liver and kidney function were not observed in serum biochemical tests. These results indicate that tungsten-administered animals may be used as a model of Mo deficiency. PMID:25627419

  2. Dietary resistant maltodextrin ameliorates testicular function and spermatogenesis in streptozotocin-nicotinamide-induced diabetic rats.

    PubMed

    Liu, C-Y; Hsu, Y-J; Chien, Y-W E; Cha, T-L; Tsao, C-W

    2016-05-01

    This study investigated the effect of resistant maltodextrin (RMD) on reproduction in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic male rats. Forty male rats were induced with diabetes by a single intraperitoneal injection of STZ (50 mg kg(-1)) and nicotinamide (100 mg kg(-1)). Five groups were analysed in total: normal, diabetic rats without RMD, diabetic rats with RMD 1.2 g per 100 g diet (1×), with RMD 2.4 g per 100 g (2×), and with RMD 6.0 g per 100 g (5×). The groups of diabetic rats with the RMD supplement, compared to those without supplement, showed improved plasma glucose control, attenuated insulin resistance and recovery of testosterone level and spermatogenesis stage. The STZ-nicotinamide-induced diabetes mellitus (DM) caused a significant reduction in serum testosterone, testis androgen receptor (AR), steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) protein, but a statistical recovery in each of these was observed in the 5× group. TUNEL-positive cells were observed in the diabetic without RMD group, and RMD treatment reduced apoptotic germ cells. The expression of Bax/Bcl2 was induced in the diabetic group and also significantly reduced in the 5× group. Dietary RMD may improve metabolic control in STZ-nicotinamide-induced diabetic rats and attenuate hyperglycaemia-related impaired male reproduction and testicular function.

  3. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.

    PubMed

    Ono, S; Hirano, H

    1984-04-01

    We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.

  4. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia.

    PubMed

    Chau, Jennifer Y; Tiffany, Caitlin M; Nimishakavi, Shilpa; Lawrence, Jessica A; Pakpour, Nazzy; Mooney, Jason P; Lokken, Kristen L; Caughey, George H; Tsolis, Renee M; Luckhart, Shirley

    2013-10-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  5. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia.

    PubMed

    Chau, Jennifer Y; Tiffany, Caitlin M; Nimishakavi, Shilpa; Lawrence, Jessica A; Pakpour, Nazzy; Mooney, Jason P; Lokken, Kristen L; Caughey, George H; Tsolis, Renee M; Luckhart, Shirley

    2013-10-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.

  6. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    PubMed Central

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  7. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease.

    PubMed

    Simopoulos, Artemis P

    2013-08-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  8. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation.

    PubMed

    Bluett, R J; Gamble-George, J C; Hermanson, D J; Hartley, N D; Marnett, L J; Patel, S

    2014-07-08

    Stress is a major risk factor for the development of mood and anxiety disorders; elucidation of novel approaches to mitigate the deleterious effects of stress could have broad clinical applications. Pharmacological augmentation of central endogenous cannabinoid (eCB) signaling may be an effective therapeutic strategy to mitigate the adverse behavioral and physiological consequences of stress. Here we show that acute foot-shock stress induces a transient anxiety state measured 24 h later using the light-dark box assay and novelty-induced hypophagia test. Acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), reverses the stress-induced anxiety state in a cannabinoid receptor-dependent manner. FAAH inhibition does not significantly affect anxiety-like behaviors in non-stressed mice. Moreover, whole brain anandamide levels are reduced 24 h after acute foot-shock stress and are negatively correlated with anxiety-like behavioral measures in the light-dark box test. These data indicate that central anandamide levels predict acute stress-induced anxiety, and that reversal of stress-induced anandamide deficiency is a key mechanism subserving the therapeutic effects of FAAH inhibition. These studies provide further support that eCB-augmentation is a viable pharmacological strategy for the treatment of stress-related neuropsychiatric disorders.

  9. Effects of dietary n-3, n-6 and n-9 polyunsaturated fatty acids on benzo(a)pyrene-induced forestomach tumorigenesis in C57BL6J mice.

    PubMed

    Silva, R A; Muñoz, S E; Guzmán, C A; Eynard, A R; Evnard, A R

    1995-10-01

    The modulating effect of dietary polyunsaturated fatty acids (PUFAs) on benzo(a)pyrene-induced forestomach tumorigenesis was assayed in mice fed with corn oil (CO), olein (O), Zizyphus mistol seed oil (MO), cod liver oil (CLO), and mixed fat (Stock diet). The fatty acid composition of liver lipids correlated well with the fatty acid composition of each diet. Only mice fed the O diet showed biochemical and clinical evidences of essential fatty acid deficiency (EFAD). Only 3 animals developed well-differentiated invading squamous cell carcinomas in the O group. The papilloma incidence was reduced in MO and CLO with respect to the O group. Forestomach papillomatosis was increased in mice fed an n-9 enriched diet in comparison to stock and CO groups. In comparison with stock mice, the frequency of multiple epidermoidal hyperplasia (MEH) was significantly decreased in the CLO group. Animals fed n-3 enriched diets (MO and CLO) showed significant antipromoting effect. These findings indicate that dietary fat can modulate tumorigenesis initiated in mouse forestomach by benzo(a)pyrene. In addition, the lack of action of an n-6 fatty acid-enriched diet in our experimental model suggests that the effect of PUFAs on tumorigenesis has target-tissue specificity. Mistol seed oil might be of potential value as a natural vegetable antipromoter nutrient.

  10. Edge-induced narrowing of dietary diversity in leaf-cutting ants.

    PubMed

    Falcão, P F; Pinto, S R R; Wirth, R; Leal, I R

    2011-06-01

    Much of the ecological alteration faced by human-modified Neotropical forests can be assigned to edge effects, including the proliferation of some voracious herbivores such as leaf-cutting ants. However, the underlying mechanisms/impacts of tropical forest edge on herbivores performance and their foraging behaviour (e.g. dietary diversity) have rarely been investigated. The goal of this study was, therefore, to determine whether and how the annual diet (i.e. species richness, diversity and the relative proportion of pioneer versus non-pioneer species of plant materials) of Atta cephalotes colonies differs in the forest edge versus the interior zone of a large remnant of Atlantic forest in northeastern Brazil. Among the key results was a strong habitat effect on dietary diversity (explaining ca. 40-50% of the variation), which, in edge colonies, decreased approximately by one fourth compared to interior colonies (inverse of Simpson's index: 3.7±0.84 versus 4.99±0.95). There was a predominance of leaf fragments collected from pioneer species in the diet in both habitat (86% in edge and 80.4% in interior). Edge colonies collected proportionally more fragments from pioneer species than colonies located in the forest interior. Our results are the first to demonstrate an edge-mediated relaxation of dietary restrictions in leaf-cutting ants. These findings render robust support to previous evidence indicating the reduction of bottom-up forces as a key factor explaining both edge-induced hyper-abundance and increased herbivory of leaf-cutting ants in human-modified Neotropical landscapes.

  11. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment.

    PubMed

    Slocum, Nikki; Durrant, Jessica R; Bailey, David; Yoon, Lawrence; Jordan, Holly; Barton, Joanna; Brown, Roger H; Clifton, Lisa; Milliken, Tula; Harrington, Wallace; Kimbrough, Carie; Faber, Catherine A; Cariello, Neal; Elangbam, Chandikumar S

    2013-07-01

    Drug-induced weight loss in humans has been associated with undesirable side effects not present in weight loss from lifestyle interventions (caloric restriction or exercise). To investigate the mechanistic differences of weight loss by drug-induced and lifestyle interventions, we examined the gene expression (mRNA) in brown adipose tissue (BAT) and conducted histopathologic assessments in diet-induced obese (DIO) mice given ephedrine (18 mg/kg/day orally), treadmill exercise (10 m/min, 1-h/day), and dietary restriction (DR: 26% dietary restriction) for 7 days. Exercise and DR mice lost more body weight than controls and both ephedrine and exercise reduced percent body fat. All treatments reduced BAT and liver lipid accumulation (i.e., cytoplasmic lipids in brown adipocytes and hepatocytes) and increased oxygen consumption (VO2 ml/kg/h) compared with controls. Mitochondrial biogenesis/function-related genes (TFAM, NRF1 and GABPA) were up-regulated in the BAT of all groups. UCP-1 was up-regulated in exercise and ephedrine groups, whereas MFSD2A was up-regulated in ephedrine and DR groups. PGC-1α up-regulation was observed in exercise and DR groups but not in ephedrine group. In all experimental groups, except for ephedrine, fatty acid transport and metabolism genes were up-regulated, but the magnitude of change was higher in the DR group. PRKAA1 was up-regulated in all groups but not significantly in the ephedrine group. ADRß3 was slightly up-regulated in the DR group only, whereas ESRRA remained unchanged in all groups. Although our data suggest a common pathway of BAT activation elicited by ephedrine treatment, exercise or DR, mRNA changes were indicative of additional nutrient-sensing pathways in exercise and DR.

  12. Recovery of bone strength in young pigs from an induced short-term dietary calcium deficit followed by a calcium replete diet.

    PubMed

    Aiyangar, Ameet K; Au, Anthony G; Crenshaw, Thomas D; Ploeg, Heidi-Lynn

    2010-12-01

    This study investigated whether the deficits in bone strength of pre-pubertal pigs, induced by short-term deficits in dietary calcium can be recovered if followed by a calcium-fortified diet. Young pigs were divided into two groups based on diet: a marginal Ca diet (70% of established Ca requirements) or an excess Ca diet (150% of established Ca requirements) for 4 weeks. Each group was then randomly sub-divided into two groups and fed diets with either marginal or excess dietary Ca for 6 weeks in a cross-over design, resulting in four treatment groups: H150-H150, H150-L70, L70-H150, and L70-L70. Animals were DXA scanned at 2-week intervals during the 10-week period to obtain whole body bone mineral content (BMC) and density (BMD). After animals were euthanized, right femurs were collected for this study. Traits such as bone mineral density, mass, volume, area moment of inertia (MI) and the section modulus (SM) were computed from computed tomography (CT) data and failure load was measured from four-point bending tests. DXA results showed significant reduction in BMC (61.6%) and BMD (37.5%) in the (L70-L70) group compared to the (H150-H150) group. DXA results additionally showed that deficiencies induced by the 4-week marginal Ca diet in the (L70-H150) group were not recovered with a subsequent excess Ca diet. While mechanical test results also showed significant reduction (75%) in strength in the L70-L70 group, compared to the H150-H150 group, they revealed no differences between the failure loads of the (L70-H150) group and the (H150-H150) group. Similar results were also found for bone mineral mass and volume, indicating that recovery from a short-term dietary Ca deficiency is possible at the pre-pubertal stage. Furthermore, bone mineral content and bone volume calculated from CT data correlated highly with failure load (R(2)=0.78 and 0.84, respectively), while density, MI and SM only showed weak-to-moderate correlations (R(2)=0.40-0.56), implying that bone

  13. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    PubMed

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  14. Dietary excess vanadium induces lesions and changes of cell cycle of spleen in broilers.

    PubMed

    Cui, Wei; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Liu, Xiaodong; Wu, Bangyuan

    2011-11-01

    The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on spleen growth and lesions by determining morphological changes and cell cycle of spleen. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, 60 ppm of vanadium supplied as ammonium metavanadate. When compared with that of control group, the relative weight of spleen was significantly raised in 5- and 15-ppm groups, but depressed in 45- and 60-ppm groups. The gross lesions of spleen showed obvious atrophy with decreased volume and pale color in 45- and 60-ppm groups. Histopathologically, lymphocytes in splenic corpuscle and periarterial lymphatic sheath were variously decreased in number in 30-, 45-, and 60-ppm groups. The percentage of static phase (G0/G1) was significantly decreased, and the percentage of synthesis period (S) phase and the proliferating index (PI) were significantly increased in 5- and 15-ppm groups. The percentage of G0/G1 phase was significantly increased, and the percentage of mitotic phase (G2+M), S phase, and PI significantly decreased in 45- and 60-ppm groups. These results suggested that dietary excess vanadium (45 and 60 ppm) could inhibit growth of spleen and induce lesions in spleen in chicken.

  15. DIETARY PHYTOCHEMICALS INDUCE p53- AND CASPASE-INDEPENDENT CELL DEATH IN HUMAN NEUROBLASTOMA CELLS

    PubMed Central

    Sukumari-Ramesh, Sangeetha; Bentley, J. Nicole; Laird, Melissa D.; Singh, Nagendra; Vender, John R.; Dhandapani, Krishnan M

    2013-01-01

    Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as assessed by both genetic (shRNA) and pharmacological approaches. Notably, cell death induced by both curcumin and andrographolide was associated with decreased NFκB activity and a reduction in Bcl-2 and Bcl-xL expression. Finally, curcumin and andrographolide increased cytotoxicity following co-treatment with either cisplatin or doxorubicin, two chemotherapeutic agents widely used in the clinical management of NB. Coupled with the documented safety in humans, dietary compounds may represent a potential adjunct therapy for NB. PMID:21704149

  16. Treatment of proteins with dietary polyphenols lowers the formation of AGEs and AGE-induced toxicity.

    PubMed

    Zhang, Xinchen; Hu, Shuting; Chen, Feng; Wang, Mingfu

    2014-10-01

    Advanced glycation endproducts (AGEs) are a group of harmful compounds produced either endogenously or during thermal food processing. Once absorbed by humans via food intake, AGEs can cause oxidative cell damage and contribute to pathological development of various diseases. The AGE-inhibitory activity of dietary polyphenols in vitro has been extensively reported before, but the current study is pioneering in examining the antiglycation activity of five selected dietary polyphenols (phloretin, naringenin, epicatechin, chlorogenic acid, and rosmarinic acid) during the thermal protein glycation process. When added into the glucose-casein glycation model heated at 120 °C for 2 h, these polyphenols were capable of inhibiting the formation of both total fluorescent AGEs and nonfluorescent carboxymethyllysine (CML). The thermal stability and transformation of polyphenols are likely important factors affecting their antioxidant activity and inhibitory efficacy of reactive carbonyl species formation. Treatment with epicatechin would lower not only AGE formation but also AGE-induced cytotoxicity and oxidative stress to human retinal pigment epithelial (ARPE-19) cells. PMID:25208810

  17. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils.

    PubMed

    Tateno, N; Matsumoto, N; Motowaki, T; Suzuki, K; Aratani, Y

    2013-05-01

    Myeloperoxidase (MPO), a major constituent of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride anion. We have previously reported that MPO-deficient (MPO(-/-)) neutrophils produce greater amount of macrophage inflammatory protein-2 (MIP-2) in vitro than do wild type when stimulated with zymosan. In this study, we investigated the molecular mechanisms governing the up-regulation of MIP-2 production in the mutant neutrophils. Interestingly, we found that zymosan-induced production of MIP-2 was blocked by pre-treatment with U0126, an inhibitor of mitogen-activated protein kinase/extracellular-signal-regulated kinase (ERK), and with BAY11-7082, an inhibitor of nuclear factor (NF)-κB. Western blot analysis indicated that U0126 also inhibited the phosphorylation of p65 subunit of NF-κB (p65), indicating that MIP-2 was produced via the ERK/NF-κB pathway. Intriguingly, we found that ERK1/2, p65, and alpha subunit of inhibitor of κB (IκBα) in the MPO(-/-) neutrophils were phosphorylated more strongly than in the wild type when stimulated with zymosan. Exogenous H2O2 treatment in addition to zymosan stimulation enhanced the phosphorylation of ERK1/2 without affecting the zymosan-induced MIP-2 production. In contrast, exogenous HOCl inhibited the production of MIP-2 as well as IκBα phosphorylation without affecting ERK activity. The zymosan-induced production of MIP-2 in the wild-type neutrophils was enhanced by pre-treatment of the MPO inhibitor 4-aminobenzoic acid hydrazide. Collectively, these results strongly suggest that both lack of HOCl and accumulation of H2O2 due to MPO deficiency contribute to the up-regulation of MIP-2 production in mouse neutrophils stimulated with zymosan.

  18. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    SciTech Connect

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  19. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils.

    PubMed

    Tateno, N; Matsumoto, N; Motowaki, T; Suzuki, K; Aratani, Y

    2013-05-01

    Myeloperoxidase (MPO), a major constituent of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride anion. We have previously reported that MPO-deficient (MPO(-/-)) neutrophils produce greater amount of macrophage inflammatory protein-2 (MIP-2) in vitro than do wild type when stimulated with zymosan. In this study, we investigated the molecular mechanisms governing the up-regulation of MIP-2 production in the mutant neutrophils. Interestingly, we found that zymosan-induced production of MIP-2 was blocked by pre-treatment with U0126, an inhibitor of mitogen-activated protein kinase/extracellular-signal-regulated kinase (ERK), and with BAY11-7082, an inhibitor of nuclear factor (NF)-κB. Western blot analysis indicated that U0126 also inhibited the phosphorylation of p65 subunit of NF-κB (p65), indicating that MIP-2 was produced via the ERK/NF-κB pathway. Intriguingly, we found that ERK1/2, p65, and alpha subunit of inhibitor of κB (IκBα) in the MPO(-/-) neutrophils were phosphorylated more strongly than in the wild type when stimulated with zymosan. Exogenous H2O2 treatment in addition to zymosan stimulation enhanced the phosphorylation of ERK1/2 without affecting the zymosan-induced MIP-2 production. In contrast, exogenous HOCl inhibited the production of MIP-2 as well as IκBα phosphorylation without affecting ERK activity. The zymosan-induced production of MIP-2 in the wild-type neutrophils was enhanced by pre-treatment of the MPO inhibitor 4-aminobenzoic acid hydrazide. Collectively, these results strongly suggest that both lack of HOCl and accumulation of H2O2 due to MPO deficiency contribute to the up-regulation of MIP-2 production in mouse neutrophils stimulated with zymosan. PMID:23438680

  20. Methionine sulfoxide reductase A deficiency exacerbates progression of kidney fibrosis induced by unilateral ureteral obstruction.

    PubMed

    Kim, Jee In; Noh, Mi Ra; Kim, Ki Young; Jang, Hee-Seong; Kim, Hwa-Young; Park, Kwon Moo

    2015-12-01

    Methionine sulfoxide reductase A (MsrA), which stereospecifically catalyzes the reduction of methionine-S-sulfoxide, is an important reactive oxygen species (ROS) scavenger. Tissue fibrosis is a maladaptive repair process following injury, associated with oxidative stress. In this study, we investigated the role of MsrA in unilateral ureteral obstruction (UUO)-induced kidney fibrosis and its underlying mechanisms by using MsrA gene-deleted mice (MsrA(-/-)). MsrA deletion increased collagen deposition in the interstitium and the expression of collagen III and α-smooth muscle actin in the UUO kidneys, indicating that MsrA deficiency exacerbated the progression of UUO-induced kidney fibrosis. UUO reduced the kidney expression of MsrA, MsrB1, and MsrB2, thereby decreasing MsrA and MsrB activity. UUO increased hydrogen peroxide and lipid peroxidation levels and the ratio of oxidized glutathione (GSSG) to total glutathione (GSH) in the kidneys. The UUO-induced elevations in the levels of these oxidative stress markers and leukocyte markers were much higher in the MsrA(-/-) than in the MsrA(+/+) kidneys, the latter suggesting that the exacerbated kidney fibrosis in MsrA(-/-) mice was associated with enhanced inflammatory responses. Collectively, our data suggest that MsrA plays a protective role in the progression of UUO-induced kidney fibrosis via suppression of fibrotic responses caused by oxidative stress and inflammation.

  1. Mitochondrial Contagion Induced by Parkin Deficiency in Drosophila Hearts and Its Containment by Suppressing Mitofusin

    PubMed Central

    Bhandari, Poonam; Song, Moshi; Chen, Yun; Burelle, Yan; Dorn, Gerald W.

    2015-01-01

    Rationale Dysfunctional Parkin-mediated mitophagic culling of senescent or damaged mitochondria is a major pathological process underlying Parkinson disease and a potential genetic mechanism of cardiomyopathy. Despite epidemiological associations between Parkinson disease and heart failure, the role of Parkin and mitophagic quality control in maintaining normal cardiac homeostasis is poorly understood. Objective We used germline mutants and cardiac-specific RNA interference to interrogate Parkin regulation of cardiomyocyte mitochondria and examine functional crosstalk between mitophagy and mitochondrial dynamics in Drosophila heart tubes. Methods and Results Transcriptional profiling of Parkin knockout mouse hearts revealed compensatory upregulation of multiple related E3 ubiquitin ligases. Because Drosophila lack most of these redundant genes, we examined heart tubes of parkin knockout flies and observed accumulation of enlarged hollow donut mitochondria with dilated cardiomyopathy, which could be rescued by cardiomyocyte-specific Parkin expression. Identical abnormalities were induced by cardiomyocyte-specific Parkin suppression using 2 different inhibitory RNAs. Parkin-deficient cardiomyocyte mitochondria exhibited dysmorphology, depolarization, and reactive oxygen species generation without calcium cycling abnormalities, pointing to a primary mitochondrial defect. Suppressing cardiomyocyte mitochondrial fusion in Parkin-deficient fly heart tubes completely prevented the cardiomyopathy and corrected mitochondrial dysfunction without normalizing mitochondrial dysmorphology, demonstrating a central role for mitochondrial fusion in the cardiomyopathy provoked by impaired mitophagy. Conclusions Parkin deficiency and resulting mitophagic disruption produces cardiomyopathy in part by contamination of the cardiomyocyte mitochondrial pool through fusion between improperly retained dysfunctional/senescent and normal mitochondria. Limiting mitochondrial contagion by

  2. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior.

  3. Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency.

    PubMed

    Xu, Yongjun; Sheng, Hui; Tang, Zhiping; Lu, Jianqiang; Ni, Xin

    2015-07-15

    Estrogen deficiency is involved in the development of depression. However, the mechanism underlying estrogen modulates depression-like behavior remains largely unknown. Inflammation and indoleamine-2,3-dioxygenase (IDO) have been shown to play pivotal roles in various depression models. The objective of the present study was to investigate whether estrogen deficiency-induced depression-like behavior is associated with inflammation and IDO activation in brain. The results showed that ovariectomy resulted in depression-like behavior in female rats and caused a decrease in 5-HT content and an increase in levels of IDO, IFN-γ, IL-6, toll like receptor (TLR)-4 and phosphorylated NF-κB (p65 subunit) in hippocampus but not in prefrontal cortex (PFC). 17β-Estradiol (E2) treatment ameliorated depression-like behavior and restored above neurochemical alternations in hippocampus in ovariectomized rats. Partial correlation analysis showed that the levels of phosphorylated p65, IFN-γ and IL-6 in hippocampus correlated to serum E2 level. Our study suggests that estrogen inhibits inflammation and activates of IDO and maintains 5-HT level in hippocampus, thereby ameliorating depression-like behavior.

  4. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  5. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells

    PubMed Central

    Schiavone, Davide; Guilbaud, Guillaume; Murat, Pierre; Papadopoulou, Charikleia; Sarkies, Peter; Prioleau, Marie-Noëlle; Balasubramanian, Shankar; Sale, Julian E

    2014-01-01

    REV1-deficient chicken DT40 cells are compromised in replicating G quadruplex (G4)-forming DNA. This results in localised, stochastic loss of parental chromatin marks and changes in gene expression. We previously proposed that this epigenetic instability arises from G4-induced replication fork stalls disrupting the accurate propagation of chromatin structure through replication. Here, we test this model by showing that a single G4 motif is responsible for the epigenetic instability of the BU-1 locus in REV1-deficient cells, despite its location 3.5 kb from the transcription start site (TSS). The effect of the G4 is dependent on it residing on the leading strand template, but is independent of its in vitro thermal stability. Moving the motif to more than 4 kb from the TSS stabilises expression of the gene. However, loss of histone modifications (H3K4me3 and H3K9/14ac) around the transcription start site correlates with the position of the G4 motif, expression being lost only when the promoter is affected. This supports the idea that processive replication is required to maintain the histone modification pattern and full transcription of this model locus. PMID:25190518

  6. Reduced inotropic heart response in selenium-deficient mice relates with inducible nitric oxide synthase.

    PubMed

    Gomez, Ricardo M; Levander, Orville A; Sterin-Borda, Leonor

    2003-02-01

    Atria from mice fed a selenium-deficient (Se(-)) diet have a diminished beta-adrenoceptor-inotropic cardiac response to isoproterenol or norepinephrine compared with atria from mice fed the same diet supplemented with 0.2 mg/kg Se as sodium selenite (Se(+)). This diminished response could be reversed by feeding Se(-) mice the Se(+) diet for 1 wk or by pretreatment with nitric oxide synthase (NOS) inhibitors such as N(G)-monomethyl-l-arginine or aminopyridine. Elevated serum concentrations of nitrite/nitrate as well as a threefold increase in the atrial NOS activity were seen in the Se(-) versus Se(+) mice. Western blotting and indirect immunofluorescence indicated an enhanced expression of inducible NOS in hearts from Se(-) mice. Increased expression and activity of NOS and increased nitrite/nitrate levels from Se(-) mice correlated with an impaired response to beta-adrenoceptor inotropic cardiac stimulation. Elevated nitric oxide levels may account for some of the pathophysiological effects of Se deficiency on the heart. PMID:12529255

  7. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells

    PubMed Central

    Kaushik Tiwari, Meetu; Adaku, Nneoma; Peart, Natoya; Rogers, Faye A.

    2016-01-01

    Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity. Nucleotide excision repair (NER) proteins have been found to play a prominent role in the recognition and repair of triplex structures. We demonstrate using triplex-forming oligonucleotides that chromosomal triplexes perturb DNA replication fork progression, eventually resulting in fork collapse and the induction of double strand breaks (DSBs). We find that cells deficient in the NER damage recognition proteins, XPA and XPC, accumulate more DSBs in response to chromosomal triplex formation than NER-proficient cells. Furthermore, we demonstrate that XPC-deficient cells are particularly prone to replication-associated DSBs in the presence of triplexes. In the absence of XPA or XPC, deleterious consequences of triplex-induced genomic instability may be averted by activating apoptosis via dual phosphorylation of the H2AX protein. Our results reveal that damage recognition by XPC and XPA is critical to maintaining replication fork integrity and preventing replication fork collapse in the presence of triplex structures. PMID:27298253

  8. Radiation-induced effects in the electron-beam irradiation of dietary flavonoids

    NASA Astrophysics Data System (ADS)

    Tamba, M.; Torreggiani, A.

    2004-09-01

    The harmful effects of oxidative processes in living organisms can be reduced by the dietary intake of flavonoids, a class of phenolic compounds ubiquitous in plants and widely found in a number of fruits, vegetables and beverages. Many fruits and vegetables are treated by irradiation to solve preservation problems and a radical-induced degradation of nutrients, including polyphenols, may occur. The free radical chemistry of two abundant flavonoids in food, catechin and quercetin, have been investigated by using pulse radiolysis technique. The central role of the phenoxyl-type radical and the strong influence of the state of protonation of the compounds on the pathway of formation and decay of the corresponding oxidized radicals has been evidenced from the spectral properties and chemical reactivity of the radicals derived from the attack of several oxidizing species ( ṡOH, N 3ṡ SO 4-ṡ).

  9. Increased dietary protein attenuates C-reactive protein and creatine kinase responses to exercise-induced energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined if dietary protein (P) modulates responses of C-reactive protein (CRP) and creatine kinase (CK), biomarkers of inflammation and muscle damage, during exercise-induced energy deficit (DEF). Thirteen healthy men (22 +/- 1 y, VO2peak 60 +/- 2 ml.kg-1.min-1) balanced energy expenditure (EE...

  10. Reducing dietary loading decreases mouse temporomandibular joint degradation induced by anterior crossbite prosthesis

    PubMed Central

    Liu, Y.-D.; Liao, L.-F.; Zhang, H.-Y.; Lu, L.; Jiao, K.; Zhang, M.; Zhang, J.; He, J.-J.; Wu, Y.-P.; Chen, D.; Wang, M.-Q.

    2014-01-01

    Objective Dietary loading has been reported to have an effect on temporomandibular joint (TMJ) remodeling via periodontal-muscular reflex. We therefore examined whether reducing dietary loading decreased TMJ degradation induced by the unilateral anterior crossbite prosthesis as we recently reported. Methods Forty 6-week-old female C57BL/6J mice were randomly divided into two experimental and two control groups. One experimental and one control group received small-size diet and the other two groups received large-size diet. Unilateral anterior crossbite prosthesis was created in the two experimental groups. The TMJ samples were collected 3 weeks after experimental operation. Histological changes in condylar cartilage and subchondral bone were assessed by Hematoxylin & Eosin, toluidine blue, Safranin O and tartrate-resistant acid phosphatase staining. Real-time polymerase chain reaction (PCR) and/or immunohistochemistry were performed to evaluate the expression levels of Collagen II, Aggrecan, a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) and RANKL/RANK/OPG in TMJ condylar cartilage and/or subchondral bone. Results Thinner and degraded cartilage, reduced cartilage cellular density, decreased expression levels of Collagen II and Aggrecan, loss of subchondral bone and enhanced osteoclast activity were observed in TMJs of both experimental groups. However, the cartilage degradation phenotype was less severe and cartilage ADAMTS-5 mRNA was lower while OPG/RANKL ratio in cartilage and subchondral bone was higher in the small-size than large-size diet experimental group. No differences of histomorphology and the tested molecules were found between the two control groups. Conclusions The current findings suggest that a lower level of functional loading by providing small-size diet could reduce TMJ degradation induced by the biomechanical stimulation from abnormal occlusion. PMID:24316289

  11. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function.

    PubMed

    Reed, Spenser; Neuman, Hadar; Moscovich, Sharon; Glahn, Raymond P; Koren, Omry; Tako, Elad

    2015-12-01

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under conditions of Zn deficiency have yet to be studied. Using the broiler chicken (Gallus gallus) model, the aim of this study was to characterize distinct cecal microbiota shifts induced by chronic dietary Zn depletion. We demonstrate that Zn deficiency induces significant taxonomic alterations and decreases overall species richness and diversity, establishing a microbial profile resembling that of various other pathological states. Through metagenomic analysis, we show that predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways responsible for macro- and micronutrient uptake are significantly depleted under Zn deficiency; along with concomitant decreases in beneficial short chain fatty acids, such depletions may further preclude optimal host Zn availability. We also identify several candidate microbes that may play a significant role in modulating the bioavailability and utilization of dietary Zn during prolonged deficiency. Our results are the first to characterize a unique and dysbiotic cecal microbiota during Zn deficiency, and provide evidence for such microbial perturbations as potential effectors of the Zn deficient phenotype. PMID:26633470

  12. Nitrous oxide-induced B₁₂ deficiency myelopathy: Perspectives on the clinical biochemistry of vitamin B₁₂.

    PubMed

    Hathout, Leith; El-Saden, Suzie

    2011-02-15

    Beginning with a case report of nitrous oxide (N₂O)-induced B₁₂ deficiency myelopathy, this article reviews the clinical biochemistry of vitamin B₁₂, and examines the pathogenetic mechanisms by which B₁₂ deficiency leads to neurologic damage, and how this damage is potentiated by N₂O exposure. The article systematically examines the available experimental data relating to the two main coenzyme mechanisms that are usually suggested in clinical articles, particularly the deficient methylation hypothesis. The article demonstrates that neither of these mechanisms is fully consistent with the available data. The article then presents a novel mechanism based on new data from the neuroimmunology basic science literature which suggests that the pathogenesis of B₁₂ deficiency myelopathy may not be related to its role as a coenzyme, but rather to newly discovered functions of B₁₂ in regulating cytokines and growth factors.

  13. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    PubMed

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.

  14. Mixed chimerism and transplant tolerance are not effectively induced in C3a-deficient mice.

    PubMed

    Baśkiewicz-Hałasa, Magdalena; Rogińska, Dorota; Piecyk, Katarzyna; Hałasa, Maciej; Lejkowska, Renata; Pius-Sadowska, Ewa; Machaliński, Bogusław

    2015-01-01

    Mixed chimerism, a phenomenon involved in the development of specific alloantigen tolerance, could be achieved through the transplantation of hematopoietic stem cells into properly prepared recipients. Because the C3a complement component modulates hematopoietic cell trafficking after transplantation, in the present study, we investigated the influence of the C3a deficiency on mixed chimerism and alloantigen tolerance induction. To induce mixed chimerism, C57BL/6J (wild-type strain; H-2K(b); I-E(-)) and B6.129S4-C3(tm1Crr)/J (C3a-deficient) mice were exposed to 3 G total body irradiation (day -1). Subsequently, these mice were treated with CD8-blocking (day -2) and CD40L-blocking (days 0 and 4) antibodies, followed by transplantation with 20 × 10(6) Balb/c (H-2K(d); I-E(+)) bone marrow cells (day 0). The degree of mixed chimerism in peripheral blood leukocytes was measured several times during the 20-week experiment. The tolerance to Balb/c mouse antigens was assessed based on the number of lymphocytes expressing Vβ5 and Vβ11 T-cell receptor and on skin-graft (day 0) acceptance. Applying our experimental model, mixed chimerism and alloantigen tolerance were effectively induced in C57BL/6J (wild-type) mice, but not in C3a(-/-) animals. The present study is, to our knowledge, the first to demonstrate that C3a is vital for achieving stable mixed chimerism and related to this induction of transplant tolerance.

  15. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation.

    PubMed

    Tamaru, Shun; Mishina, Hideto; Watanabe, Yosuke; Watanabe, Kazuhiro; Fujioka, Daisuke; Takahashi, Soichiro; Suzuki, Koji; Nakamura, Takamitsu; Obata, Jun-Ei; Kawabata, Kenichi; Yokota, Yasunori; Murakami, Makoto; Hanasaki, Kohji; Kugiyama, Kiyotaka

    2013-08-01

    Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.

  16. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD). PMID:25592072

  17. Cnr2 deficiency confers resistance to inflammation-induced preterm birth in mice.

    PubMed

    Sun, Xiaofei; Cappelletti, Monica; Li, Yingju; Karp, Christopher L; Divanovic, Senad; Dey, Sudhansu K

    2014-10-01

    Infection-induced inflammation, frequently associated with increased production of proinflammatory cytokines, is considered a significant contributor to preterm birth. A G protein-coupled cannabinoid receptor 2 (CB2), encoded by Cnr2, is expressed in various immune cells and was shown to modulate immune responses. We show here that Cnr2, but not Cnr1, deficient mice are resistant to lipopolysaccharide (LPS)-driven preterm birth and suppression of serum progesterone levels. After LPS challenge, Cnr2(-/-) mice exhibited increased serum levels of IL-10 with decreased IL-6 levels. These changes were associated with reduced LPS-induced Ptgs2 expression at the maternal-conceptus interface on day 16 of pregnancy. LPS stimulation of Cnr2(-/-) dendritic cells in vitro resulted in increased IL-10 with reduced IL-6 production and correlated with increased cAMP accumulation. Collectively, our results suggest that increased IL-10 production occurring via augmented cAMP accumulation represents a potential mechanism for the resistance of Cnr2(-/-) mice to LPS-induced preterm birth. These results may have clinical relevance, because currently, there are limited options to prevent preterm birth. PMID:25051450

  18. dNTP deficiency induced by HU via inhibiting ribonucleotide reductase affects neural tube development.

    PubMed

    Guan, Zhen; Wang, Xiuwei; Dong, Yanting; Xu, Lin; Zhu, Zhiqiang; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-02-01

    Exposure to environmental toxic chemicals in utero during the neural tube development period can cause developmental disorders. To evaluate the disruption of neural tube development programming, the murine neural tube defects (NTDs) model was induced by interrupting folate metabolism using methotrexate in our previous study. The present study aimed to examine the effects of dNTP deficiency induced by hydroxyurea (HU), a specific ribonucleotide reductase (RNR) inhibitor, during murine neural tube development. Pregnant C57BL/6J mice were intraperitoneally injected with various doses of HU on gestation day (GD) 7.5, and the embryos were checked on GD 11.5. RNR activity and deoxynucleoside triphosphate (dNTP) levels were measured in the optimal dose. Additionally, DNA damage was examined by comet analysis and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. Cellular behaviors in NTDs embryos were evaluated with phosphorylation of histone H3 (PH-3) and caspase-3 using immunohistochemistry and western blot analysis. The results showed that NTDs were observed mostly with HU treatment at an optimal dose of 225 mg/kg b/w. RNR activity was inhibited and dNTP levels were decreased in HU-treated embryos with NTDs. Additionally, increased DNA damage, decreased proliferation, and increased caspase-3 were significant in NTDs embryos compared to the controls. Results indicated that HU induced murine NTDs model by disturbing dNTP metabolism and further led to the abnormal cell balance between proliferation and apoptosis.

  19. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity.

    PubMed

    Hartmann, Phillipp; Seebauer, Caroline T; Mazagova, Magdalena; Horvath, Angela; Wang, Lirui; Llorente, Cristina; Varki, Nissi M; Brandl, Katharina; Ho, Samuel B; Schnabl, Bernd

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) and obesity are characterized by altered gut microbiota, inflammation, and gut barrier dysfunction. Here, we investigated the role of mucin-2 (Muc2) as the major component of the intestinal mucus layer in the development of fatty liver disease and obesity. We studied experimental fatty liver disease and obesity induced by feeding wild-type and Muc2-knockout mice a high-fat diet (HFD) for 16 wk. Muc2 deficiency protected mice from HFD-induced fatty liver disease and obesity. Compared with wild-type mice, after a 16-wk HFD, Muc2-knockout mice exhibited better glucose homeostasis, reduced inflammation, and upregulated expression of genes involved in lipolysis and fatty acid β-oxidation in white adipose tissue. Compared with wild-type mice that were fed the HFD as well, Muc2-knockout mice also displayed higher intestinal and plasma levels of IL-22 and higher intestinal levels of the IL-22 target genes Reg3b and Reg3g. Our findings indicate that absence of the intestinal mucus layer activates the mucosal immune system. Higher IL-22 levels protect mice from diet-induced features of the metabolic syndrome.

  20. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD).

  1. Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model

    PubMed Central

    Harijith, Anantha; Pendyala, Srikanth; Reddy, Narsa M.; Bai, Tao; Usatyuk, Peter V.; Berdyshev, Evgeny; Gorshkova, Irina; Huang, Long Shuang; Mohan, Vijay; Garzon, Steve; Kanteti, Prasad; Reddy, Sekhar P.; Raj, J. Usha; Natarajan, Viswanathan

    2014-01-01

    Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1−/− (Sphk1−/−), sphingosine kinase 2−/− (Sphk2−/−), and S1P lyase+/− (Sgpl1+/−) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1−/−, but not Sphk2−/− or Sgpl1+/−, mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling–regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia. PMID:23933064

  2. Orchidectomy-induced alterations in volumetric bone density, cortical porosity and strength of femur are attenuated by dietary conjugated linoleic acid in aged guinea pigs.

    PubMed

    DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A

    2015-04-01

    Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with

  3. Dietary squid ink polysaccharide induces goblet cells to protect small intestine from chemotherapy induced injury.

    PubMed

    Zuo, Tao; Cao, Lu; Xue, Changhu; Tang, Qing-Juan

    2015-03-01

    Gastrointestinal mucositis induced by chemotherapy is associated with alterations of intestinal barrier function due to the potential damage induced by anti-cancer drugs on the epithelial cells. Goblet cells, an important epithelial lining in the intestine, contribute to innate immunity by secreting mucin glycoproteins. Employing a mouse model of chemotherapy induced intestinal mucosal immunity injury by cyclophosphamide, we demonstrated for the first time that polysaccharide from the ink of Ommastrephes bartramii (OBP) enhanced Cyto18, which is a mucin expression in goblet cells. The up-regulation of mucins by OBP relied on the augmented quantity of goblet cells, but not on the changes in the ultrastructure of endoplasmic reticulum (ER). Our results may have important implications for enhanced immunopotentiation function of functional OBP on intestinal mucosal immunity against intestinal disorders involving inflammation and infection.

  4. [The structure and phosphorus or potassium deficiency induced expression of a calmodulin-like protein gene in Arabidopsis].

    PubMed

    Duan, Rui-Jun; Yi, Ke-Ke; Wu, Ping

    2005-10-01

    According to our previous microarray analysis, we found a putative calmodulin gene related to Pi deficiency and designated AtPsiCaM (Arabidopsis Pi-starvation-induced CaM). Results of structural analysis indicate that AtPsiCaM has three conserved EF-hands motif and belongs to calmodulin-like proteins family (Figs. 1-3). Northern blot analysis revealed that this gene could be induced by potassium and phosphate deficiency and not by potassium deficiency or high salinity (Fig. 4). The results of RT-PCR and GUS histochemical staining assays of the AtPsiCaM promoter::GUS transgenic plants showed that this gene can be expressed in all tissues to different expression levels (Figs. 5, 6). PMID:16222095

  5. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    PubMed

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers.

  6. Dietary wheat germ agglutinin modulates ovalbumin-induced immune responses in Brown Norway rats.

    PubMed

    Watzl, B; Neudecker, C; Hänsch, G M; Rechkemmer, G; Pool-Zobel, B L

    2001-04-01

    The trend towards an increased consumption of minimally processed plant food results in a higher intake of non-nutritive compounds such as lectins. Lectins are typically globular proteins that are resistant to digestion in the gastrointestinal tract. They affect the integrity of the intestinal epithelium and the absorption of dietary antigens, and induce the release of allergic mediators from mast cells in vitro. Based on this information we have studied whether dietary wheat germ agglutinin (WGA) could be involved in triggering food allergies. Brown Norway rats were immunized intraperitoneally using ovalbumin (OVA; 10 microg/rat) and 10 d later treated for five consecutive days with WGA (10 mg/rat per d) administered intragastrically. Rats were then orally challenged with OVA (100 microg/rat) 1 h after the last WGA application, and blood was collected 4 h later. Immunological responses (anti-OVA immunoglobulins E and G, rat mast cell protease II, interferon-gamma and lymphocyte proliferation) were measured and lymphocyte subpopulations were determined. In immunized rats WGA treatment resulted in increased serum rat mast cell protease II concentrations (pre-challenge 0.26 (SE 0.08) microg/ml, post-challenge 0.49 (SE 0.09) microg/ml; P < 0.01) 4 h after the OVA challenge. After 5 d serum concentrations of anti-OVA immunoglobulin E were significantly increased only in the immunized controls (absorbance at 405 nm on days 14 and 19 was 0.09 (SE 0.008) and 0.24 (SE 0.046) respectively; P = 0.02), while in WGA-treated rats no significant increase was seen (0.08 (SE 0.004) and 0.15 (SE 0.037 respectively; P = 0.14). CD4+ : CD8+ T lymphocytes in the spleen was significantly increased at this time (OVA 1.1 (SD 0.2), 1.4 (sd 0.1), P < 0.05). The treatment did not impair the proliferation and interferon-gamma production of mesenteric lymphocytes. In conclusion, these data suggest that high dietary intake of lectins such as WGA may affect the allergic response towards oral

  7. Therapeutic role of dietary fibre.

    PubMed Central

    Hunt, R.; Fedorak, R.; Frohlich, J.; McLennan, C.; Pavilanis, A.

    1993-01-01

    The current status of dietary fibre and fibre supplements in health and disease is reported, and the components of dietary fibre and its respective mechanical and metabolic effects with emphasis on its therapeutic potential are reviewed. Practical management guidelines are provided to help physicians encourage patients identified as having fibre deficiency to increase dietary fibre intake to the recommended level. PMID:8388284

  8. Cell-mediated immunity in nutritional deficiency.

    PubMed

    McMurray, D N

    1984-01-01

    Dietary deficiencies of specific nutrients profoundly alter cell-mediated immune responses in man and experimental animals. Both moderate and severe deficiencies are associated with significant changes in immunocompetence. Diets with inadequate levels of protein, calories, vitamin A, pyridoxine, biotin and zinc result in loss of thymic cellularity. Secondary to thymic atrophy, the production of thymic hormones critical for the differentiation of T lymphocytes is reduced, especially in protein-calorie malnutrition and zinc deficiency. Confirmation of a T cell maturational defect in nutritional deprivation comes from the observations of decreased total (T3 and rosette-forming) T cells in the peripheral blood of children with kwashiorkor and marasmus, with preferential loss of helper/inducer (T4) T cell subsets. Reduced number and in vitro function of T cells have also been reported in experimental deficiencies of iron, zinc, copper, and vitamins A and E. Loss of cutaneous hypersensitivity to mitogens and antigens is a consistent sequela of dietary deficiencies of protein, vitamins A and C, pyridoxine, iron and zinc. Cell-mediated immunity directed against allogeneic histocompatibility antigens (e.g. mixed leukocyte cultures, graft versus host, skin graft rejection) may actually be enhanced by experimental protein and polyunsaturated fat deficiencies. Alternatively, pyridoxine, ascorbate and biotin deficiencies resulted in delayed rejection of skin allografts. Cytotoxic T lymphocyte (CTL) activity is impaired in zinc-, iron- and copper-deficient mice, as well as in scorbutic guinea pigs. Natural killer (NK) cell function may be either enhanced or depressed, depending upon the nutrient and its effects on interferon production. Several authors have demonstrated normal or enhanced macrophage activity in a variety of experimental deficiencies. The extrapolation of these observations to infectious disease resistance is not straightforward, and depends upon the nature of

  9. Animal Models for Elucidation of the Mechanisms of Neuropsychiatric Disorders Induced by Sleep and Dietary Habits.

    PubMed

    Yaoita, Fukie

    2016-01-01

    Numerous changes in human lifestyle in modern life increase the risk of disease. Especially, modern sleep and dietary habits are crucial factors affecting lifestyle disease. In terms of sleep, decreases in total sleep time and in rapid eye movement sleep time have been observed in attention-deficit/hyperactivity disorder (ADHD) patients. From a dietary perspective, mastication during eating has several good effects on systemic, mental, and physical functions of the body. However, few animal experiments have addressed the influence of this decline in sleep duration or of long-term powdered diet feeding on parameters reflecting systemic health. In our studies, we examined both the influence of intermittent sleep deprivation (SD) treatment and long-term powdered diet feeding on emotional behavior in mice, and focused on the mechanisms underlying these impaired behaviors. Our findings were as follows: SD treatment induced hypernoradrenergic and hypodopaminergic states within the frontal cortex. Furthermore, hyperactivity and an explosive number of jumps were observed. Both the hypernoradrenergic state and the jumps were improved by treatment with ADHD therapeutic drugs. On the other hand, long-term powdered diet feeding increased social interaction behaviors. The feeding affected the dopaminergic function of the frontal cortex. In addition, the long-term powdered diet fed mice presented systemic illness signs, such as elevations of blood glucose, and hypertension. This review, describing the SD mice and long-term powdered diet fed mice can be a useful model for elucidation of the mechanism of neuropsychiatric disorders or the discovery of new therapeutic targets in combatting effects of the modern lifestyle. PMID:27252067

  10. Animal Models for Elucidation of the Mechanisms of Neuropsychiatric Disorders Induced by Sleep and Dietary Habits.

    PubMed

    Yaoita, Fukie

    2016-01-01

    Numerous changes in human lifestyle in modern life increase the risk of disease. Especially, modern sleep and dietary habits are crucial factors affecting lifestyle disease. In terms of sleep, decreases in total sleep time and in rapid eye movement sleep time have been observed in attention-deficit/hyperactivity disorder (ADHD) patients. From a dietary perspective, mastication during eating has several good effects on systemic, mental, and physical functions of the body. However, few animal experiments have addressed the influence of this decline in sleep duration or of long-term powdered diet feeding on parameters reflecting systemic health. In our studies, we examined both the influence of intermittent sleep deprivation (SD) treatment and long-term powdered diet feeding on emotional behavior in mice, and focused on the mechanisms underlying these impaired behaviors. Our findings were as follows: SD treatment induced hypernoradrenergic and hypodopaminergic states within the frontal cortex. Furthermore, hyperactivity and an explosive number of jumps were observed. Both the hypernoradrenergic state and the jumps were improved by treatment with ADHD therapeutic drugs. On the other hand, long-term powdered diet feeding increased social interaction behaviors. The feeding affected the dopaminergic function of the frontal cortex. In addition, the long-term powdered diet fed mice presented systemic illness signs, such as elevations of blood glucose, and hypertension. This review, describing the SD mice and long-term powdered diet fed mice can be a useful model for elucidation of the mechanism of neuropsychiatric disorders or the discovery of new therapeutic targets in combatting effects of the modern lifestyle.

  11. Restoration of depressed prostanoid-induced ileal contraction in spontaneously hypertensive rats by dietary fish oil.

    PubMed

    Patten, Glen S; Adams, Michael J; Dallimore, Julie A; Rogers, Paul F; Topping, David L; Abeywardena, Mahinda Y

    2005-01-01

    We have reported that dietary fish oil (FO) rich in n-3 PUFA modulates gut contractility. It was further demonstrated that the gut of spontaneously hypertensive rats (SHR) has a depressed contractility response to prostaglandins (PG) compared with normotensive Wistar-Kyoto (WKY) rats. We investigated whether feeding diets supplemented with n-3 PUFA increased gut contractility and restored the depressed prostanoid response in SHR gut. Thirteen-week-old SHR were fed diets containing fat at 5 g/100 g as coconut oil (CO), lard, canola oil containing 10% (w/w) n-3 FA as alpha-linolenic acid (1 8:3n-3), or FO (as HiDHA, 22:6n-3) for 12 wk. A control WKY group was fed 5 g/100 g CO in the diet. As confirmed, the SHR CO group had a significantly lower gut response to PGE2 and PGF2alpha compared with the WKY CO group. Feeding FO increased the maximal contraction response to acetylcholine in the ileum compared with all diets and in the colon compared with lard, and restored the depressed response to PGE2 and PGF2alpha in the ileum but not the colon of SHR. FO feeding also led to a significant increase in gut total phospholipid n-3 PUFA as DHA (22:6n-3) with lower n-6 PUFA as arachidonic acid (20:4n-6). Canola feeding led to a small increase in ileal EPA (20:5n-3) and DHA and in colonic DHA without affecting contractility. However, there was no change in ileal membrane muscarinic binding properties due to FO feeding. This report confirms that dietary FO increases muscarinic- and eicosanoid receptor-induced contractility in ileum and that the depressed prostanoid response in SHR ileum, but not colon, is restored by tissue incorporation of DHA as the active nutrient.

  12. Dietary high vanadium causes oxidative damage-induced renal and hepatic toxicity in broilers.

    PubMed

    Liu, Juan; Cui, Hengmin; Liu, Xiaodong; Peng, Xi; Deng, Junliang; Zuo, Zhicai; Cui, Wei; Deng, Yuanxin; Wang, Kangping

    2012-02-01

    The purpose of this study was to investigate the renal and hepatic oxidative damage and toxicity caused by dietary high vanadium in broilers. A total of 420 one-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet (vanadium 0.073 mg/kg), and five high vanadium diets (vanadium 5 mg/kg, high vanadium group I; 15 mg/kg, high vanadium group II; 30 mg/kg, high vanadium group III; 45 mg/kg, high vanadium group IV; and 60 mg/kg, high vanadium group V) throughout the experimental period of 42 days. The results showed that the renal and hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, ability to inhibit hydroxy radical, and malondialdehyde (MDA), glutathione, and vanadium contents were not significantly changed in high vanadium group I and II when compared with those of the control groups. However, the SOD and GSH-Px activities, ability to inhibit hydroxy radical, and GSH content were significantly decreased, and the MDA and vanadium contents were markedly increased in high vanadium groups III, IV, and V. At the same time, the lesions were also observed in the kidney and liver of high vanadium groups III, IV, and V. The renal tubular epithelial cells showed granular degeneration and vacuolar degeneration, and hepatocytes showed granular degeneration, vacuolar degeneration, and fatty degeneration. It was concluded that dietary vanadium in the range of 30-60 mg/kg could cause oxidative damage and vanadium accumulation, which induced renal and hepatic toxicity and lesions. The renal and hepatic function was finally impaired in boilers.

  13. [Cyclooxygenase inhibitors in some dietary vegetables inhibit platelet aggregation function induced by arachidonic acid].

    PubMed

    Wang, Xin-Hua; Shao, Dong-Hua; Liang, Guo-Wei; Zhang, Ru; Xin, Qin; Zhang, Tao; Cao, Qing-Yun

    2011-10-01

    The study was purposed to investigate whether the cyclooxygenase inhibitors from some dietary vegetables can inhibit platelet aggregation function by the arachidonic acid (AA). The vegetable juice was mixed with platelet rich plasma (PRP), and asprin was used as positive control. The maximum ratio of platelet aggregation induced by AA was measured on the aggregometer; heme and cyclooxygenase-1 (COX(1)) or cyclooxygenase-2 (COX(2)) were added to test tubes containing COX reaction buffer, the mixture was vortex-mixed and exposed to aspirin or vegetable juice, followed by addition of AA and then hydrochloric acid (1 mol/L) was added to stop the COX reaction, followed by chemical reduction with stannous chloride solution. The concentration of COX inhibitors was detected by the enzyme immunoassay kit; vegetable juice (aspirin as positive control) was mixed with whole blood, which was followed by the addition of AA, and then the reaction was stopped by adding indomethacin, centrifuged, then the supernatant was collected, and the plasma thromboxane B(2) (TXB(2)) was measured by radioimmunoassay. The results showed that spinach juice, garlic bolt juice, blanched garlic leave juice and Chinese leek juice could inhibit by 80% human platelet aggregation induced by AA. 4 kinds of vegetables were all found a certain amount of cyclooxygenase inhibitors, which COX(1) and COX(2) inhibitor concentrations of spinach were higher than that of aspirin; 4 vegetable juice could significantly reduce the human plasma concentrations of TXB(2) induced by AA (p < 0.05). It is concluded that 4 kinds of raw vegetables containing cyclooxygenase inhibitors inhibit the production of TXA(2) and thus hinder platelet aggregation. Raw spinach, garlic bolt, blanched garlic and chinese leek inhibit significantly AA-induced human platelet aggregation in vitro. 4 kinds of vegetables may have a good potential perspective of anti-platelet aggregation therapy or prevention of thrombosis.

  14. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome.

    PubMed

    Du, Qianming; Wang, Qing; Fan, Huimin; Wang, Jianing; Liu, Xiuting; Wang, Hong; Wang, Yajing; Hu, Rong

    2016-04-01

    Prolonged ingestion of a cholesterol-enriched diet induces chronic, auto-inflammatory responses resulting in significant health problems including colorectal cancer. Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and colitis-associated cancer (CAC). However, in vitro and in vivo information regarding the inflammation-inducing and tumor-promoting effect of cholesterol is lacking. Here we show that the cholesterol promoted colon carcinogenesis in azoxymethane (AOM)-treated mice through activating the NLRP3 inflammasome. High cholesterol diet (HCD) significantly increased inflammatory responses and tumor burden. Cholesterol crystals, detected in the colon of mice fed with HCD, also promoted NLRP3 inflammasome activation in macrophages, as indicated by elevated expression of cleaved caspase-1, formation of NLRP3-ASC-caspase-1 complex assembly, and higher IL-1β secretion. Importantly, cholesterol was found to inhibit the activity of AMPKα in macrophages, leading to a significant production of mitochondrial ROS, which in turn activated the NLRP3 inflammasome. Moreover, crystal uptake and cathepsin B accounted for cholesterol crystal-induced inactivation of AMPKα. Finally, HCD-induced increase in IL-1β secretion, macrophage infiltration and tumor burden was diminished by the deletion of NLRP3 in AOM-treated mice. Taken together, our findings demonstrate that the pro-inflammatory and cancer-promoting effects of HCD are mediated by the activation of NLRP3 inflammasome. Our study extended our knowledge on how dietary choices can influence processes involved in chronic inflammatory disorders and colorectal cancer. PMID:26921636

  15. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats.

    PubMed

    Srinivasan, Kritika; Naula, Diana P; Mijares, Dindo Q; Janal, Malvin N; LeGeros, Racquel Z; Zhang, Yu

    2016-07-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-computed tomography (µCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1622-1632, 2016. PMID:26914814

  16. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  17. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction.

    PubMed

    Gomez, A; Gomez, J; Lopez Torres, M; Naudi, A; Mota-Martorell, N; Pamplona, R; Barja, G

    2015-06-01

    It has been described that dietary cysteine reverses many of the beneficial changes induced by methionine restriction in aging rodents. In this investigation male Wistar rats were subjected to diets low in methionine, supplemented with cysteine, or simultaneously low in methionine and supplemented with cysteine. The results obtained in liver showed that cysteine supplementation reverses the decrease in mitochondrial ROS generation induced by methionine restriction at complex I. Methionine restriction also decreased various markers of oxidative and non-oxidative stress on mitochondrial proteins which were not reversed by cysteine. Instead, cysteine supplementation also lowered protein damage in association with decreases in mTOR activation. The results of the present study add the decrease in mitochondrial ROS production to the various beneficial changes induced by methionine restriction that are reversed by cysteine dietary supplementation.

  18. Effects of dietary supplements on space radiation-induced oxidative stress in Sprague-Dawley rats.

    PubMed

    Guan, Jun; Wan, X Steven; Zhou, Zhaozong; Ware, Jeffrey; Donahue, Jeremiah J; Biaglow, John E; Kennedy, Ann R

    2004-11-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high-mass, high-atomic-number (Z), and high-energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by gamma rays, protons and HZE-particle radiation. The results demonstrate that the plasma level of total antioxidants in Sprague-Dawley rats was significantly decreased (P < 0.01) in a dose-dependent manner within 4 h after exposure to gamma rays. Exposure to protons and HZE-particle radiation also significantly decreased the serum or plasma level of total antioxidants in the irradiated animals. Diet supplementation with L-selenomethionine alone or a combination of selected antioxidant agents was shown to partially or completely prevent the decrease in the serum or plasma levels of total antioxidants in animals exposed to gamma rays, protons or HZE particles. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense and that this adverse biological effect can be prevented at least partially by dietary supplementation with L-selenomethionine and antioxidants.

  19. Dietary Uptake of Wedelia chinensis Extract Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Chen, Yung-Hsiang; Huang, Wen-Ching; Huang, Li-Ting; Lin, Wen-Ching; Arulselvan, Palanisamy; Liao, Jiunn-Wang; Lin, Shu-Hui; Hsiao, Pei-Wen; Kuo, Sheng-Chu; Yang, Ning-Sun

    2013-01-01

    Scope Traditional medicinal herbs are increasingly used as alternative therapies in patients with inflammatory diseases. Here we evaluated the effect of Wedelia chinensis, a medicinal herb commonly used in Asia, on the prevention of dextran sulfate sodium (DSS)-induced acute colitis in mice. General safety and the effect of different extraction methods on the bioactivity of W. chinensis were also explored. Methods and Results C57BL/6 mice were administrated hot water extract of fresh W. chinensis (WCHF) orally for one week followed by drinking water containing 2% DSS for nine days. WCHF significantly attenuated the symptoms of colitis including diarrhea, rectal bleeding and loss of body weight; it also reduced the shortening of colon length and histopathological damage caused by colonic inflammation. Among four W. chinensis extracts prepared using different extraction techniques, WCHF showed the highest anti-colitis efficacy. Analyses of specific T-cell regulatory cytokines (TNF-α, IL-4, IFN-γ, IL-17, TGF-β, IL-12) revealed that WCHF treatment can suppress the Th1 and Th17, but not Th2, responses in colon tissues and dendritic cells of DSS-induced colitis mice. A 28-day subacute toxicity study showed that daily oral administration of WCHF (100, 500, 1000 mg/kg body weight) was not toxic to mice. Conclusion Together, our findings suggest that specific extracts of W. chinensis have nutritional potential for future development into nutraceuticals or dietary supplements for treatment of inflammatory bowel disease. PMID:23734189

  20. Dietary fatty acid modulation of mucosally-induced tolerogenic immune responses.

    PubMed

    Harbige, L S; Fisher, B A

    2001-11-01

    Immunological unresponsiveness or hyporesponsiveness (tolerance) can be induced by feeding protein antigens to naive animals. Using a classical oral ovalbumin gut-induced tolerance protocol in BALB/c mice we investigated the effects of dietary n-6 and n-3 polyunsaturated fatty acids (PUFA) on high-and low-dose oral tolerance (and in non-tolerised animals, i.e. effects of antigen challenge alone) in relation to lymphoproliferative, cytokine and antibody responses. Fish oil rich in long-chain n-3 fatty acids decreased both T-helper (Th) 1- and Th2-like responses. In contrast, borage (Borago officinalis) oil rich in n-6 PUFA, of which gamma-linolenic acid is rapidly metabolised to longer-chain n-6 PUFA, increased Thl-like responses and decreased Th2-like responses, and possibly enhanced suppressor cell or Th3-like activity. These findings are in general agreement with other studies on the effects of long chain n-3 PUFA on immune system functions, and characterise important differences between long-chain n-3 and n-6 PUFA, defining more precisely and broadly the immunological regulatory mechanisms involved. They are also discussed in relation to autoimmune disease. PMID:12069397

  1. Effects of dietary supplements on space radiation-induced oxidative stress in Sprague-Dawley rats.

    PubMed

    Guan, Jun; Wan, X Steven; Zhou, Zhaozong; Ware, Jeffrey; Donahue, Jeremiah J; Biaglow, John E; Kennedy, Ann R

    2004-11-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high-mass, high-atomic-number (Z), and high-energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by gamma rays, protons and HZE-particle radiation. The results demonstrate that the plasma level of total antioxidants in Sprague-Dawley rats was significantly decreased (P < 0.01) in a dose-dependent manner within 4 h after exposure to gamma rays. Exposure to protons and HZE-particle radiation also significantly decreased the serum or plasma level of total antioxidants in the irradiated animals. Diet supplementation with L-selenomethionine alone or a combination of selected antioxidant agents was shown to partially or completely prevent the decrease in the serum or plasma levels of total antioxidants in animals exposed to gamma rays, protons or HZE particles. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense and that this adverse biological effect can be prevented at least partially by dietary supplementation with L-selenomethionine and antioxidants. PMID:15624312

  2. Influence of dietary menhaden oil on 7,12-dimethylbenzanthracene induced mammary tumorigenesis in rats

    SciTech Connect

    O'Connor, T.P.; Peterson, F.; Campbell, T.C.

    1986-03-05

    The effect of dietary menhaden oil on 7,12-dimethylbenzanthracene (DMBA) induced mammary tumorigenesis was examined in female Sprague-Dawley rats. Rats were obtained at age 28 days and acclimated until age 50 days when they received a single i.g. dose of 5 mg DMBA dissolved in 1 ml corn oil. Rats were then randomly assigned to one of four treatment groups with 25 rats per group. One group was fed a diet based on fish protein (freeze-dried cod) and corn oil (F/C). The second group received a diet based on fish protein and menhaden oil (F/M). The third group received a casein based diet with corn oil as the lipid source (C/C). The fourth group was fed a casein based diet with menhaden oil as the lipid source (C/M). Both the protein and lipid sources were fed at a level of 20% by weight of the diets. Rats were palpated weekly to check for mammary tumor development and the experiment was terminated 24 weeks after DMBA administration. Rats fed menhaden oil as a lipid source (F/M and C/M groups) developed significantly fewer mammary tumors than animals on the corn oil based diets (F/C and C/C groups, respectively). Thus, menhaden oil, rich in omega-3 fatty acids, significantly inhibited the development of DMBA induced mammary tumors in this experiment.

  3. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  4. Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms.

    PubMed

    Sherafat, Mohammad Amin; Ronaghi, Abdolaziz; Ahmad-Molaei, Leila; Nejadhoseynian, Mohammad; Ghasemi, Rasoul; Hosseini, Arman; Naderi, Nima; Motamedi, Fereshteh

    2013-06-01

    Hippocampus learning disturbance is a major symptom of patients with seizure, hence hippocampal dysfunction has essential role in worsening the disease. Hippocampal formation includes neurons and myelinated fibers that are necessary for acquisition and consolidation of memory, long-term potentiation and learning activity. The exact mechanism by which seizure can decrease memory and learning activity of hippocampus remains unknown. In the present study, electrical kindling-induced learning deficit in rats was evaluated by Morris water maze (MWM) test. The hippocampus was removed and changes in neurons and myelin sheaths around hippocampal fibers were investigated using histological and immunohistochemical methods. Demyelination was assessed by luxol fast blue staining, and immunohistological staining of myelin-binding protein (MBP). The TUNEL assay was used for evaluation of neuronal apoptosis and the glial fibriliary acetic protein (GFAP) was used for assessment of inflammatory reaction. The results indicated that electrical kindling of hippocampus could induce deficiency in spatial learning and memory as compared to control group. In addition, electrical kindling caused damage to the myelin sheath around hippocampal fibers and produced vast demyelination. Furthermore, an increase in the number of apoptotic cells in hippocampal slices was observed. In addition, inflammatory response was higher in kindled animals as compared to the control group. The results suggested that the decrease in learning and memory in kindled animals is likely due to demyelination and augmentation in apoptosis rate accompanied by inflammatory reaction in hippocampal neurons of kindled rats.

  5. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

    PubMed Central

    Bregman, D B; Halaban, R; van Gool, A J; Henning, K A; Friedberg, E C; Warren, S L

    1996-01-01

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876179

  6. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

    PubMed

    Bregman, D B; Halaban, R; van Gool, A J; Henning, K A; Friedberg, E C; Warren, S L

    1996-10-15

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription. PMID:8876179

  7. Altered Energy Homeostasis and Resistance to Diet-Induced Obesity in KRAP-Deficient Mice

    PubMed Central

    Fujimoto, Takahiro; Miyasaka, Kyoko; Koyanagi, Midori; Tsunoda, Toshiyuki; Baba, Iwai; Doi, Keiko; Ohta, Minoru; Kato, Norihiro; Sasazuki, Takehiko; Shirasawa, Senji

    2009-01-01

    Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/−) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP−/− mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAP−/− mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP−/− mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAP−/− mice, which could in part account for the metabolic phenotype in KRAP−/− mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases. PMID:19156225

  8. Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria

    PubMed Central

    Spaccapelo, Roberta; Janse, Chris J.; Caterbi, Sara; Franke-Fayard, Blandine; Bonilla, J. Alfredo; Syphard, Luke M.; Di Cristina, Manlio; Dottorini, Tania; Savarino, Andrea; Cassone, Antonio; Bistoni, Francesco; Waters, Andrew P.; Dame, John B.; Crisanti, Andrea

    2010-01-01

    Plasmodium parasites lacking plasmepsin 4 (PM4), an aspartic protease that functions in the lysosomal compartment and contributes to hemoglobin digestion, have only a modest decrease in the asexual blood-stage growth rate; however, PM4 deficiency in the rodent malaria parasite Plasmodium berghei results in significantly less virulence than that for the parental parasite. P. berghei Δpm4 parasites failed to induce experimental cerebral malaria (ECM) in ECM-susceptible mice, and ECM-resistant mice were able to clear infections. Furthermore, after a single infection, all convalescent mice were protected against subsequent parasite challenge for at least 1 year. Real-time in vivo parasite imaging and splenectomy experiments demonstrated that protective immunity acted through antibody-mediated parasite clearance in the spleen. This work demonstrates, for the first time, that a single Plasmodium gene disruption can generate virulence-attenuated parasites that do not induce cerebral complications and, moreover, are able to stimulate strong protective immunity against subsequent challenge with wild-type parasites. Parasite blood-stage attenuation should help identify protective immune responses against malaria, unravel parasite-derived factors involved in malarial pathologies, such as cerebral malaria, and potentially pave the way for blood-stage whole organism vaccines. PMID:20019192

  9. Antiosteoclastic activity of milk thistle extract after ovariectomy to suppress estrogen deficiency-induced osteoporosis.

    PubMed

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor- κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.

  10. Recreational nitrous oxide abuse-induced vitamin B12 deficiency in a patient presenting with hyperpigmentation of the skin.

    PubMed

    Chiang, Tsung-Ta; Hung, Chih-Tsung; Wang, Wei-Ming; Lee, Jiunn-Tay; Yang, Fu-Chi

    2013-05-01

    Vitamin B12 deficiency causes skin hyperpigmentation, subacute combined degeneration of the spinal cord, and megaloblastic anemia. Although vitamin B12 deficiency rarely occurs in well-nourished, healthy, young people, nitrous oxide (N2O) intoxication is an important cause of vitamin B12 deficiency in this cohort. N2O, a colorless gas used as an anesthetic since the late 19th century because of its euphoric and analgesic qualities, is now used as a recreational drug and is available via the Internet and at clubs. Here, we describe the case of a 29-year-old woman presenting with skin hyperpigmentation as her only initial symptom after N2O abuse for approximately 2 years. N2O intoxication-induced vitamin B12 deficiency was diagnosed based on the skin pigmentation that had manifested over the dorsa of her fingers, toes, and trunk, coupled with myeloneuropathy of the posterior and lateral columns, a low serum vitamin B12 level, an elevated serum homocysteine level, and the N2O exposure revealed while establishing the patient's history. Symptoms improved significantly with vitamin B12 treatment. We recommend that dermatologists consider N2O intoxication-induced vitamin B12 deficiency as a potential cause of skin hyperpigmentation and myeloneuropathy of the posterior and lateral columns in young, otherwise healthy patients. Failure to recognize this presentation may result in inappropriate treatment, thus affecting patients' clinical outcomes. PMID:23898268

  11. Influence of Corticosteroids and Vitamin E Deficiency on Onset and Cytopathology of Radiation-Induced Cataract

    NASA Astrophysics Data System (ADS)

    Junk, A. K.; Worgul, B. V.

    Cataracts characteristic of those arising from radiation exposure have been reported among the astronaut and cosmonaut corps. This being the case it is critical to appreciate how radiogenic cataracts relate to those arising from other exogenous causes such as therapeutics, which may, one day, have to be administered on an extended mission. Because they produce precisely the same clinical picture, corticosteroids are examples of a class of drugs that potentially can exacerbate damage to the lens from radiation. On the other hand, Vitamin E, a free radical scavenger, has been shown to ameliorate oxidative damage as caused by ionizing radiation and evidence is accumulating that it may constitute protection from radiogenic damage. An experimental study was conducted to understand if corticosteroids with and in the absence of Vitamin E deficiency modulate the onset of cataract induced by ionizing radiation. The right eyes of 72 28-day-old Brown-Norway rats were irradiated with 6 Gy of 240 kV X-rays, the shielded left eyes served as controls. Half of the animals were maintained on a Vitamin E free diet after irradiation, the others were kept on regular chow. In each nutritional group 18 rats additionally received dexamethasone. The initial daily dose of 10 mg/kg body weight injected subcutaneously was reduced to 0.5 mg/kg over the course of 6 months. Cataract onset and development were followed by weekly slit-lamp exam. After 6 month the lenses were harvested for microscopic analyses. Irradiated eyes in all treatment subgroups showed early cataract onset [5 wks versus 11 wks in controls (p<0.0001)]. Corticosteroids accounted for accelerated cataract development in both irradiated (p<0.0005) and non-irradiated eyes (p<0.0001) relative to respective control eyes. Vitamin E deficiency did not affect cataract incidence in combination with radiation or steroids alone. Unexpectedly, when compared to irradiated controls, cataract development was inhibited in the group that

  12. Influence of corticosteroids and vitamin E deficiency on onset of radiation-induced cataract

    NASA Astrophysics Data System (ADS)

    Junk, A. K.; Worgul, B. W.

    Cataracts characteristic of those arising from radiation exposure have been reported among the astronaut and cosmonaut corps. This being the case it is critical to appreciate how radiogenic cataracts relate to those arising from other exogenous causes such as therapeutics, which may, one day, have to be administered on an extended mission. Because they produce precisely the same clinical picture, corticosteroids are examples of a class of drugs that potentially can exacerbate damage to the lens from radiation. On the other hand, Vitamin E, a free radical scavenger, has been shown to ameliorate oxidative damage as caused by ionizing radiation and evidence is accumulating that it may constitute protection from radiogenic damage. An experimental study was conducted to understand if corticosteroids with, and in the absence of Vitamin E deficiency modulate the onset of cataract induced by ionizing radiation. The right eyes of seventy-two 28-day-old Brown-Norway rats were irradiated with 6 Gy of 240 kV X-rays, the shielded left eyes served as controls. Half of the animals were maintained on a Vitamin E free diet after irradiation, the others were kept on standard chow. Fifty per cent of the animals in each nutritional group received dexamethasone. The initial daily dose of 10 mg/kg body weight injected subcutaneously was reduced to 0.5 mg/kg over the course of six months. Cataract onset and development were followed by weekly slit-lamp exam. After six month the lenses were harvested for microscopic analyses. Irradiated eyes in all treatment subgroups showed early cataract onset [5 wks vs. 11 wks in controls ( p < 0.0001)]. Corticosteroids accounted for accelerated cataract development in both irradiated ( p < 0.0005) and non-irradiated eyes ( p < 0.0001) relative to respective control eyes. Vitamin E deficiency did not affect cataract incidence in combination with radiation or steroids alone. Unexpectedly, when compared to irradiated controls, cataract development was

  13. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice.

    PubMed

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8-10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  14. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice

    PubMed Central

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R.

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  15. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    PubMed

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs. PMID:27194103

  16. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    PubMed

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs.

  17. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  18. Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases.

    PubMed

    Kao, Tseng-Ting; Chu, Chia-Yi; Lee, Gang-Hui; Hsiao, Tsun-Hsien; Cheng, Nai-Wei; Chang, Nan-Shan; Chen, Bing-Hung; Fu, Tzu-Fun

    2014-11-01

    Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-γ-glutamyl hydrolase (γGH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life.

  19. Abrogation of hybrid resistance to bone marrow engraftment by graft versus host induced immune deficiency

    SciTech Connect

    Hakim, F.T.; Shearer, G.M.

    1986-03-01

    Lethally irradiated F/sub 1/ mice, heterozygous at the hematopoietic histocompatibility (Hh) locus at H-2D/sup b/, reject bone marrow grafts from homozygous H-2/sup b/ parents. This hybrid resistance (HR) is reduced by prior injection of H-2/sup b/ parental spleen cells. Since injection of parental spleen cells produces a profound suppression of F/sub 1/ immune functions, the authors investigated whether parental-induced abrogation of HR was due to graft-vs-host induced immune deficiency (GVHID). HR was assessed by quantifying engraftment in irradiated mice using /sup 125/I-IUdR spleen uptake; GVHID by measuring generation of cytotoxic T lymphocytes (CTL) from unirradiated mice. They observed correlation in time course, spleen dose dependence and T cell dependence between GVHID and loss of HR. The injection of B10 recombinant congenic spleens into (B10 x B10.A) F/sub 1/ mice, prior to grafting with B10 marrow, demonstrated that only those disparities in major histocompatibility antigens which generated GVHID would result in loss of HR. Spleens from (B10 x B10.A(2R))F/sub 1/ mice (Class I disparity only) did not induce GVHID or affect HR, while (B10 x B10.A(5R)F/sub 1/ spleens (Class I and II disparity) abrogated CTL generation and HR completely. GVHID produced by a Class II only disparity, as in (B10 x B10.A(5R))F/sub 1/ spleens injected into (B6/sup bm12 x B10.A(5R))F/sub 1/ mice, was also sufficient to markedly reduce HR to B10 bone marrow. Modulation of hematopoietic graft rejection by GVHID may affect marrow engraftment in man.

  20. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    PubMed

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer.

  1. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  2. Epigenetic Alterations in Ultraviolet Radiation-Induced Skin Carcinogenesis: Interaction of Bioactive Dietary Components on Epigenetic Targets†

    PubMed Central

    Katiyar, Santosh K.; Singh, Tripti; Prasad, Ram; Sun, Qian; Vaid, Mudit

    2011-01-01

    The importance of epigenetic alterations in the development of various diseases including the cancers has been realized. As epigenetic changes are reversible heritable changes, these can be utilized as an effective strategy for the prevention of cancers. DNA methylation is the most characterized epigenetic mechanism that can be inherited without changing the DNA sequence. Although limited, but available data suggest that silencing of tumor suppressor genes in ultraviolet (UV) radiation-exposed epidermis leads to photocarcinogenesis and is associated with a network of epigenetic modifications including alterations in DNA methylation, DNA methyltransferases and histone acetylations. Various bioactive dietary components have been shown to protect skin from UV radiation-induced skin tumors in animal models. The role of bioactive dietary components, such as, (−)-epicatechins from green tea and proanthocyanidins from grape seeds, has been assessed in chemoprevention of UV-induced skin carcinogenesis and underlying epigenetic mechanism in vitro and in vivo animal models. These bioactive components have the ability to block UV-induced DNA hypermethylation and histone modifications in the skin required for the silencing of tumor suppressor genes (e.g., Cip1/p21, p16INK4a). These information are of importance for understanding the role of epigenetic modulation in UV-induced skin tumor and the chemopreventive mechanism of bioactive dietary components. PMID:22017262

  3. Flesh Quality Loss in Response to Dietary Isoleucine Deficiency and Excess in Fish: A Link to Impaired Nrf2-Dependent Antioxidant Defense in Muscle

    PubMed Central

    Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Kuang, Sheng-Yao; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg) for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets) and excess (18.5 g/kg diets) groups, 9.3–15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6–15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs) deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3–12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6–15.2, 9.3–12.5, 9.3–12.5 and 9.3–15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6–15.2 and 6.6–12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD) and glutathione peroxidase (GPx), and glutathione content were enhanced by 6.6–9.3, 6.6–12.5 and 6.6–15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6–12.5 g/kg diets) and GPx (12.5 g/kg diets), as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) (6.6–12.5 g/kg diets), target of rapamycin (6.6–12.5 g/kg diets), ribosomal S6 protein kinase 1 (9.3–12.5 g/kg diets) and casein kinase 2 (6.6–12.5 g/kg diets), were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet

  4. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane.

    PubMed

    Rohaina, Che Man; Then, Kong Yong; Ng, Angela Min Hwei; Wan Abdul Halim, Wan Haslina; Zahidin, Aida Zairani Mohd; Saim, Aminuddin; Idrus, Ruszymah B H

    2014-03-01

    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model.

  5. High dietary calcium intake does not counteract disuse-induced bone loss

    NASA Astrophysics Data System (ADS)

    Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.

    Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p

  6. Deficiency of prolactin-inducible protein leads to impaired Th1 immune response and susceptibility to Leishmania major in mice.

    PubMed

    Li, Jintao; Liu, Dong; Mou, Zhirong; Ihedioha, Olivia C; Blanchard, Anne; Jia, Ping; Myal, Yvonne; Uzonna, Jude E

    2015-04-01

    Although the strategic production of prolactin-inducible protein (PIP) at several ports of pathogen entry into the body suggests it might play a role in host defense, no study has directly implicated it in immunity against any infectious agent. Here, we show for the first time that PIP deficiency is associated with reduced numbers of CD4(+) T cells in peripheral lymphoid tissues and impaired CD4(+) Th1-cell differentiation in vitro. In vivo, CD4(+) T cells from OVA-immunized, PIP-deficient mice showed significantly impaired proliferation and IFN-γ production following in vitro restimulation. Furthermore, PIP-deficient mice were highly susceptible to Leishmani major infection and failed to control lesion progression and parasite proliferation. This susceptibility was associated with impaired NO production and leishmanicidal activity of PIP KO macrophages following IFN-γ and LPS stimulation. Collectively, our findings implicate PIP as an important regulator of CD4(+) Th1-cell-mediated immunity.

  7. Deficiency of the Two-Pore-Domain Potassium (K2P) Channel TREK-1 Promotes Hyperoxia-Induced Lung Injury

    PubMed Central

    Schwingshackl, Andreas; Teng, Bin; Makena, Patrudu; Ghosh, Manik; Sinclair, Scott E.; Luellen, Charlean; Balasz, Louisa; Rovnaghi, Cynthia; Bryan, Robert M.; Lloyd, Eric E.; Fitzpatrick, Elizabeth; Saravia, Jordy S.; Cormier, Stephania A.; Waters, Christopher M.

    2014-01-01

    Objective We previously reported the expression of the 2-pore domain K+ channel TREK-1 in lung epithelial cells and proposed a role for this channel in the regulation of alveolar epithelial cytokine secretion. In this study we focused on investigating the role of TREK-1 in vivo in the development of hyperoxia-induced lung injury. Design Laboratory animal experiments. Setting University research laboratory. Subjects Wild type and TREK-1 deficient mice. Interventions Mice were anesthetized and exposed to 1) room air, no mechanical ventilation, 2) 95% hyperoxia for 24 hours, 3) 95% hyperoxia for 24 hours followed by mechanical ventilation for 4 hours. Measurements and Main Results Hyperoxia exposure accentuated lung injury in TREK-1 deficient mice but not controls, resulting in increased in Lung Injury Scores (LIS), broncho-alveolar lavage (BAL) fluid cell numbers and cellular apoptosis, and a decrease in quasi-static lung compliance. Exposure to a combination of hyperoxia and injurious mechanical ventilation resulted in further morphological lung damage, increased LIS and BAL fluid cell numbers in control but not TREK-1 deficient mice. At baseline and after hyperoxia exposure BAL cytokine levels were unchanged in TREK-1 deficient mice compared to controls. Exposure to hyperoxia and mechanical ventilation resulted in an increase in BAL IL-6, MCP-1 and TNF-α levels in both mouse types, but the increase in IL-6 and MCP-1 levels was less prominent in TREK-1 deficient mice than in controls. Lung tissue MIP-2, KC and IL-1β gene expression was not altered by hyperoxia in TREK-1 deficient mice compared to controls. Furthermore, we show for the first time TREK-1 expression on alveolar macrophages and unimpaired TNF-α secretion from TREK-1 deficient macrophages. Conclusion TREK-1 deficiency resulted in increased sensitivity of lungs to hyperoxia but this effect is less prominent if overwhelming injury is induced by the combination of hyperoxia and injurious mechanical

  8. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  9. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver.

    PubMed

    Yu, Zhen; Wang, Rong; Fok, Wilson C; Coles, Alexander; Salmon, Adam B; Pérez, Viviana I

    2015-04-01

    Dietary restriction (DR) is the gold standard intervention used to delay aging, and much recent research has focused on the identification of possible DR mimetics. Energy sensing pathways, including insulin/IGF1 signaling, sirtuins, and mammalian Target of Rapamycin (mTOR), have been proposed as pathways involved in the antiaging actions of DR, and compounds that affect these pathways have been suggested to act as DR mimetics, including metformin (insulin/IGF1 signaling), resveratrol (sirtuins), and rapamycin (mTOR). Rapamycin is a promising DR mimetic because it significantly increases both health span and life span in mice. Unfortunately, rapamycin also leads to some negative effects, foremost among which is the induction of insulin resistance, potentially limiting its translation into humans. To begin clarifying the mechanism(s) involved in insulin resistance induced by rapamycin, we compared several aspects of liver metabolism in mice treated with DR or rapamycin for 6 months. Our data suggest that although both DR and rapamycin inhibit lipogenesis, activate lipolysis, and increased serum levels of nonesterified fatty acids, only DR further activates β-oxidation of the fatty acids leading to the production of ketone bodies. PMID:24755936

  10. Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila

    PubMed Central

    Hirabayashi, Susumu; Cagan, Ross L

    2015-01-01

    Cancer cells demand excessive nutrients to support their proliferation but how cancer cells sense and promote growth in the nutrient favorable conditions remain incompletely understood. Epidemiological studies have indicated that obesity is a risk factor for various types of cancers. Feeding Drosophila a high dietary sugar was previously demonstrated to not only direct metabolic defects including obesity and organismal insulin resistance, but also transform Ras/Src-activated cells into aggressive tumors. Here we demonstrate that Ras/Src-activated cells are sensitive to perturbations in the Hippo signaling pathway. We provide evidence that nutritional cues activate Salt-inducible kinase, leading to Hippo pathway downregulation in Ras/Src-activated cells. The result is Yorkie-dependent increase in Wingless signaling, a key mediator that promotes diet-enhanced Ras/Src-tumorigenesis in an otherwise insulin-resistant environment. Through this mechanism, Ras/Src-activated cells are positioned to efficiently respond to nutritional signals and ensure tumor growth upon nutrient rich condition including obesity. DOI: http://dx.doi.org/10.7554/eLife.08501.001 PMID:26573956

  11. Effect of a dietary fiber (beet fiber) on dimethylhydrazine-induced colon cancer in Wistar rats.

    PubMed

    Thorup, I; Meyer, O; Kristiansen, E

    1992-01-01

    The modifying effect of a dietary fiber, Fibeta (beet fiber), on experimentally induced colorectal cancer was studied in Wistar rats. The rats were fed a powdered semisynthetic casein-based diet in which the carbohydrate pool was substituted with Fibeta as the sole source of fiber. Dimethylhydrazine dihydrochloride (DMH-2HCl) was used as initiator in a dose of 20 mg/kg body wt and given by gavage once a week for 10 weeks. Throughout the experiment the rats were offered the diets with different levels of fiber in a preinitiation period of 8 weeks, during the initiation, or in a 30-week postinitiation period. The study was terminated after one year. A protective effect of the fiber was not found at any stage of the colorectal carcinogenic process. Even though differences (not statistically significant) in tumor incidences were seen, these did not reflect any effect of the high or low fiber intake during the study. Analysis for volatile fatty acids in cecal content showed that continuous feeding with a fiber-rich diet resulted in significant increase in most of the volatile fatty acids. The relative change was highest for butyric acid. These findings do not support the hypothesis that butyric acid has a protective effect on colorectal cancer. The tumor yield in the present study was low compared with that reported in the literature, and possible causes for this are discussed.

  12. Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium.

    PubMed

    Li, Jin-Long; Gao, Rui; Li, Shu; Wang, Jin-Tao; Tang, Zhao-Xin; Xu, Shi-Wen

    2010-08-01

    Cadmium (Cd) is an ubiquitous environmental pollutant that has been associated with male reproductive toxicity in animal models. However, little is known about the reproductive toxicity of Cd in birds. To investigate the toxicity of Cd on male reproduction in birds and the protective effects of selenium (Se) against subchronic exposure to dietary Cd, 100-day-old cocks received either Se (as 10 mg Na(2)SeO(3) per kg of diet), Cd (as 150 mg CdCl(2) per kg of diet) or Cd + Se in their diets for 60 days. Histological and ultrastructural changes in the testis, the concentrations of Cd and Se, amount of lipid peroxidation (LPO), the activities of the antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx), and apoptosis and serum testosterone levels were determined. Exposure to Cd significantly lowered SOD and GPx activity, Se content in the testicular tissue, and serum testosterone levels. It increased the amount of LPO, the numbers of apoptotic cells and Cd concentration and caused obvious histopathological changes in the testes. Concurrent treatment with Se reduced the Cd-induced histopathological changes in the testis, oxidative stress, endocrine disorder and apoptosis, suggesting that the toxic effects of cadmium on the testes is ameliorated by Se. Se supplementation also modified the distribution of Cd in the testis. PMID:20372978

  13. Suppression of N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis by dietary feeding of 1'-acetoxychavicol acetate.

    PubMed

    Kawabata, K; Tanaka, T; Yamamoto, T; Ushida, J; Hara, A; Murakami, A; Koshimizu, K; Ohigashi, H; Stoner, G D; Mori, H

    2000-02-01

    The modifying effects of 1'-acetoxychavicol acetate (ACA) on N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis were investigated in male F344 rats. At 5 weeks of age, all test animals, except those given the test chemical alone, and the control rats received s.c. injections of NMBA (0.5 mg/kg body weight/injection, three times per week) for 5 weeks. At the termination of the study (20 weeks), 75% of rats treated with NMBA alone had esophageal neoplasms (papillomas). However, the groups given a dose of 500 ppm ACA during the initiation phase developed a significantly reduced incidence of tumors (29%; P<0.01). Exposure to ACA (500 ppm) during the post-initiation phase also decreased the frequency of the tumors (38%; P<0.05). A reduction of the incidence of preneoplastic lesions (hyperplasia or dysplasia) was obtained when ACA was administered in the initiation phase (P<0.01). Cell proliferation in the esophageal epithelium, determined by assay of proliferating cell nuclear antigen (PCNA), was lowered by ACA (P<0.05). Blood polyamine contents in rats given NMBA and the test compound were also smaller than those of rats given the carcinogen (P<0.05). These findings suggest that dietary ACA is effective in inhibiting the development of esophageal tumors by NMBA when given during the initiation or post-initiation phase, and such inhibition is related to suppression of cell proliferation in the esophageal epithelium.

  14. Ultraviolet-B induced hyperplasia and squamous cell carcinomas in the cornea of XPA-deficient mice.

    PubMed

    De Vries, A; Gorgels, T G; Berg, R J; Jansen, G H; Van Steeg, H

    1998-07-01

    In Xeroderma Pigmentosum (XP) patients, due to a defective repair of UV-induced DNA damage, neoplastic changes occur in sunlight-exposed areas of the skin and eyes. There are seven complementation groups in XP (XP-A to XP-G). Recently, we have generated XPA-deficient mice (group-A XP) by gene targeting in embryonic stem cells. In order to evaluate UV-B sensitivity, XPA-deficient mice (n = 20), wild type (n = 7) and heterozygous mice (n = 13) were exposed to low daily doses of UV-B for 14 weeks at a cumulative dose of 22 kj m-2 (250-400 nm). For a period of 32 weeks, the mice were checked twice a week for the development of pathology. The UV-B treatment induced eye abnormalities in the XPA-deficient mice. Initially, photophobia was noticed, followed by a loss of transparency of the cornea, eventually affecting nearly all XPA-deficient mice (19 out of 20). In 12 out of 19 mice, the pathology progressed to give eye protrusion. Histology of these eyes showed hyperplasia and squamous cell carcinomas of the corneal epithelium. No eye-lesions were found in control (wild-type and heterozygous) mice that were exposed to the same UV-B dose. The corneal abnormalities found in the XPA-deficient mice appear to be similar to those found in human XP patients. These results confirm the role of the functional XPA gene in protecting the cornea from pathology by UV-B irradiation. In addition, they suggest that the XPA-deficient mouse is a suitable animal model for the study of XPA ocular disorders. PMID:9702178

  15. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression.

    PubMed

    Krasovska, Olena S; Stasyk, Olena G; Nahorny, Viktor O; Stasyk, Oleh V; Granovski, Nikolai; Kordium, Vitaliy A; Vozianov, Oleksandr F; Sibirny, Andriy A

    2007-07-01

    The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system. PMID:17163508

  16. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency.

    PubMed

    Roy, Marc; Leclerc, Daniel; Wu, Qing; Gupta, Sapna; Kruger, Warren D; Rozen, Rima

    2008-10-01

    Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr(+/+) and Mthfr(+/-) mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr(+/+) and Mthfr(+/-) pregnant mice were injected with VPA on gestational day 8.5; resorption rates and occurrence of neural tube defects (NTDs) were examined on gestational day 14.5. We also examined the effects of VPA on MTHFR expression in HepG2 cells and on MTHFR activity and homocysteine levels in mice. Mthfr(+/+) mice had increased resorption rates (36%) after VPA treatment, compared to saline treatment (10%), whereas resorption rates were similar in Mthfr(+/-) mice with the two treatments (25-27%). NTDs were only observed in one group (VPA-treated Mthfr(+/+)). In HepG2 cells, VPA increased MTHFR promoter activity and MTHFR mRNA and protein (2.5- and 3.7-fold, respectively). Consistent with cellular MTHFR upregulation by VPA, brain MTHFR enzyme activity was increased and plasma homocysteine was decreased in VPA-treated pregnant mice compared to saline-treated animals. These results underscore the importance of folate interconversion in VPA-induced teratogenicity, since VPA increases MTHFR expression and has lower teratogenic potential in MTHFR deficiency. PMID:18615588

  17. Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency.

    PubMed

    Zhang, Xinli; Ting, Kang; Pathmanathan, Dharmini; Ko, Theodore; Chen, Weiwei; Chen, Feng; Lee, Haofu; James, Aaron W; Siu, Ronald K; Shen, Jia; Culiat, Cymbeline T; Soo, Chia

    2012-01-01

    Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9⁺ chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development.

  18. Dose dependency of time of onset of radiation-induced growth hormone deficiency

    SciTech Connect

    Clayton, P.E.; Shalet, S.M. )

    1991-02-01

    Growth hormone (GH) secretion during insulin-induced hypoglycemia was assessed on 133 occasions in 82 survivors of childhood malignant disease. All had received cranial irradiation with a dose range to the hypothalamic-pituitary axis of 27 to 47.5 Gy (estimated by a schedule of 16 fractions over 3 weeks) and had been tested on one or more occasions between 0.2 and 18.9 years after treatment. Results of one third of the GH tests were defined as normal (GH peak response, greater than 15 mU/L) within the first 5 years, in comparison with 16% after 5 years. Stepwise multiple linear regression analysis showed that dose (p = 0.007) and time from irradiation (p = 0.03), but not age at therapy, had a significant influence on peak GH responses. The late incidence of GH deficiency was similar over the whole dose range (4 of 26 GH test results normal for less than 30 Gy and 4 of 25 normal for greater than or equal to 30 Gy after 5 years), but the speed of onset over the first years was dependent on dose. We conclude that the requirement for GH replacement therapy and the timing of its introduction will be influenced by the dose of irradiation received by the hypothalamic-pituitary axis.

  19. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    PubMed Central

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  20. Erythrocyte alterations in praseodymium-induced lecithin:cholesterol acyltransferase (LCAT) deficiency in the rat: comparison with familial LCAT deficiency in man.

    PubMed

    Godin, D V; Frohlich, J

    1981-03-01

    The intravenous administration of praseodymium nitrate (PrN) to rats was associated with parallel decreases in plasma lecithin: cholesterol acyltransferase (LCAT) activity and erythrocyte osmotic fragility at low doses (20 and 40 mg/kg) while higher doses (80 mg/kg) resulted in increases in both. Erythrocyte membranes from rats with PrN-induced LCAT deficiency exhibited small increases in cholesterol content, but not other alterations (e.g., in phospholipid profiles and sulfhydryl group latency) which characterize erythrocytes in familial LCAT deficiency in man. The administration of PrN caused a time- and dose-dependent accumulation of praseodymium in liver with hepatic levels being substantially greater in animals given the high (protective) as compared with the low (toxic) doses of PrN. Hepatic levels of glutathione were not altered by PrN administration, but hexobarbital sleeping time was markedly prolonged in animals receiving a toxic dose of PrN. It is suggested that dose-dependent alterations in the subcellular distribution of praseodymium may explain the paradoxical pathophysiological effects of high and low doses of PrN.

  1. Deficiency of the Tumor Promoter Gene wip1 Induces Insulin Resistance

    PubMed Central

    Armata, Heather L.; Chamberland, Sally; Watts, Lauren; Ko, Hwi Jin; Lee, Yongjin; Jung, Dae Young; Kim, Jason K.

    2015-01-01

    Diabetes is a growing health care issue, and prediabetes has been established as a risk factor for type 2 diabetes. Prediabetes is characterized by deregulated glucose control, and elucidating pathways which govern this process is critical. We have identified the wild-type (WT) p53-inducible phosphatase (WIP1) phosphatase as a regulator of glucose homeostasis. Initial characterization of insulin signaling in WIP1 knockout (WIP1KO) murine embryo fibroblasts demonstrated reduced insulin-mediated Ak mouse transforming activation. In order to assess the role of WIP1 in glucose homeostasis, we performed metabolic analysis on mice on a low-fat chow diet (LFD) and high fat diet (HFD). We observed increased expression of proinflammatory cytokines in WIP1KO murine embryo fibroblasts, and WIP1KO mice fed a LFD and a HFD. WIP1KO mice exhibited glucose intolerance and insulin intolerance on a LFD and HFD. However, the effects of WIP1 deficiency cause different metabolic defects in mice on a LFD and a HFD. WIP1KO mice on a LFD develop hepatic insulin resistance, whereas this is not observed in HFD-fed mice. Mouse body weights and food consumption increase slightly over time in LFD-fed WT and WIP1KO mice. Leptin levels are increased in LFD-fed WIP1KO mice, compared with WT. In contrast, HFD-fed WIP1KO mice are resistant to HFD-induced obesity, have decreased levels of food consumption, and decreased leptin levels compared with HFD-WT mice. WIP1 has been shown to regulate the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, loss of which leads to increased inflammation. We propose that this increased inflammation triggers insulin resistance in WIP1KO mice on LFD and HFD. PMID:25379953

  2. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    PubMed

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells.

  3. Effects of folic acid deficiency and MTHFR C677T polymorphism on spontaneous and radiation-induced micronuclei in human lymphocytes.

    PubMed

    Leopardi, Paola; Marcon, Francesca; Caiola, Stefania; Cafolla, Arturo; Siniscalchi, Ester; Zijno, Andrea; Crebelli, Riccardo

    2006-09-01

    Folic acid plays a key role in the maintenance of genomic stability, providing methyl groups for the conversion of uracil to thymine and for DNA methylation. Besides dietary habits, folic acid metabolism is influenced by genetic polymorphism. The C677T polymorphism of the methylene-tetrahydrofolate reductase (MTHFR) gene is associated with a reduction of catalytic activity and is suggested to modify cancer risk differently depending on folate status. In this work the effect of folic acid deficiency on genome stability and radiosensitivity has been investigated in cultured lymphocytes of 12 subjects with different MTHFR genotype (four for each genotype). Cells were grown for 9 days with 12, 24 and 120 nM folic acid and analyzed in a comprehensive micronucleus test coupled with centromere characterization by CREST immunostaining. In other experiments, cells were grown with various folic acid concentrations, irradiated with 0.5 Gy of gamma rays and analyzed in the micronucleus test. The results obtained indicate that folic acid deficiency induces to a comparable extent chromosome loss and breakage, irrespective of the MTHFR genotype. The effect of folic acid was highly significant (P < 0.001) and explained >50% of variance of both types of micronuclei. Also nucleoplasmic bridges and buds were significantly increased under low folate supply; the increase in bridges was mainly observed in TT cells, highlighting a significant effect of the MTHFR genotype (P = 0.006) on this biomarker. Folic acid concentration significantly affected radiation-induced micronuclei (P < 0.001): the increased incidence of radiation-induced micronuclei with low folic acid was mainly accounted for by carriers of the variant MTHFR allele (both homozygotes and heterozygotes), but the overall effect of genotype did not attain statistical significance. Treatment with ionizing radiations also increased the frequency of nucleoplasmic bridges. The effect of folic acid level on this end-point was

  4. Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Ogunsuyi, Opeyemi B; Akinyemi, Ayodele J

    2012-10-01

    This study sought to investigate the modulatory effects of dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on antioxidant status and renal damage induced by gentamycin in rats. Renal damage was induced in albino rats pretreated with dietary inclusion of ginger and turmeric (2% and 4%) by intraperitoneal (i.p.) administration of gentamycin (100 mg/kg body weight) for three days. Assays for renal damage biomarkers (plasma creatinine, plasma urea, blood urea nitrogen and plasma uric acid), malondialdehyde (MDA) content and reduced glutathione (GSH) content as well as renal antioxidant enzymes (catalase, glutathione-S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were carried out. The study revealed significant (p < 0.05) increases in renal damage biomarkers following gentamycin administration with severe alteration in kidney antioxidant status. However, pretreatment with ginger and turmeric rhizome (2% and 4%) prior to gentamycin administration significantly (p < 0.05) protected the kidney and attenuated oxidative stress by modulating renal damage and antioxidant indices. This finding therefore suggests that dietary inclusion of ginger and turmeric rhizomes may protect against gentamycin-induced nephrotoxicity and oxidative stress.

  5. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice

    PubMed Central

    Willecke, Florian; Yuan, Chujun; Oka, Kazuhiro; Chan, Lawrence; Hu, Yunying; Barnhart, Shelley; Bornfeldt, Karin E.; Goldberg, Ira J.; Fisher, Edward A.

    2015-01-01

    We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ)-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states. PMID:26046657

  6. NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity

    PubMed Central

    Kobayashi, Motoi; Usui, Fumitake; Karasawa, Tadayoshi; Kawashima, Akira; Kimura, Hiroaki; Mizushina, Yoshiko; Shirasuna, Koumei; Mizukami, Hiroaki; Kasahara, Tadashi; Hasebe, Naoyuki; Takahashi, Masafumi

    2016-01-01

    NLRP3 inflammasomes recognize non-microbial danger signals and induce release of proinflammatory cytokine interleukin (IL)-1β, leading to sterile inflammation in cardiovascular disease. Because sterile inflammation is involved in doxorubicin (Dox)-induced cardiotoxicity, we investigated the role of NLRP3 inflammasomes in Dox-induced cardiotoxicity. Cardiac dysfunction and injury were induced by low-dose Dox (15 mg/kg) administration in NLRP3-deficient (NLRP3−/−) mice but not in wild-type (WT) and IL-1β−/− mice, indicating that NLRP3 deficiency enhanced the susceptibility to Dox-induced cardiotoxicity independent of IL-1β. Although the hearts of WT and NLRP3−/− mice showed no significant difference in inflammatory cell infiltration, macrophages were the predominant inflammatory cells in the hearts, and cardiac IL-10 production was decreased in Dox-treated NLRP3−/− mice. Bone marrow transplantation experiments showed that bone marrow-derived cells contributed to the exacerbation of Dox-induced cardiotoxicity in NLRP3−/− mice. In vitro experiments revealed that NLRP3 deficiency decreased IL-10 production in macrophages. Furthermore, adeno-associated virus-mediated IL-10 overexpression restored the exacerbation of cardiotoxicity in the NLRP3−/− mice. These results demonstrated that NLRP3 regulates macrophage IL-10 production and contributes to the pathophysiology of Dox-induced cardiotoxicity, which is independent of IL-1β. Our findings identify a novel role of NLRP3 and provided new insights into the mechanisms underlying Dox-induced cardiotoxicity. PMID:27225830

  7. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium

  8. Elevated Slit2 Activity Impairs VEGF-induced Angiogenesis and Tumor Neovascularization in EphA2-deficient Endothelium

    PubMed Central

    Youngblood, Victoria; Wang, Shan; Song, Wenqiang; Walter, Debra; Hwang, Yoonha; Chen, Jin; Brantley-Sieders, Dana M.

    2015-01-01

    Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate pro-angiogenic molecules while simultaneously suppressing angiostatic pathways in order to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit pro- and anti-angiogenic signals is a key step in developing new, molecularly targeted anti-angiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for vascular endothelial growth factor (VEGF)-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. PMID:25504371

  9. ARYL HYDROCARBON RECEPTOR DEFICIENCY PROTECTS MICE FROM DIET-INDUCED ADIPOSITY AND METABOLIC DISORDERS THROUGH INCREASED ENERGY EXPENDITURE

    PubMed Central

    Zhang, Zhi-Ming; Jaeger, Cassie D.; Krager, Stacey L.; Bottum, Kathleen M.; Liu, Jianghua; Liao, Duan-Fang; Tischkau, Shelley A.

    2015-01-01

    BACKGROUND/OBJECTIVES Epidemics of obesity and diabetes are escalating. High-calorie/high-fat food is a major cause for these global health issues, but molecular mechanisms underlying high-fat, diet-induced obesity are still not well understood. The aryl hydrocarbon receptor (AhR), a transcription factor that acts as a xenobiotic sensor, mediates environmental toxicant-induced obesity, insulin resistance and development of diabetes. AhR also influences lipid metabolism and diet-induced obesity. The effects of AhR deficiency on diet-induced obesity, hepatic steatosis and insulin resistance were examined. METHODS : Male wild type (WT), AhR null (AhR−/−) and AhR heterozygote (AhR+/−) mice were fed a normal chow diet (NCD, 10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat) for up to 14 weeks. Adiposity, adipose and liver morphology, insulin signaling, metabolic parameters and gene profiles were assessed. RESULTS AhR deficiency protected against HFD-induced obesity, hepatic steatosis, insulin resistance and inflammation. Moreover, AhR deficiency preserved insulin signaling in major metabolic tissues. These protective effects result from a higher energy expenditure in AhR-deficient mice compared to WT. Levels of transcript for both the thermogenic gene, uncoupling protein 1 (Ucp1), in brown adipose tissue and mitochondrial β-oxidation genes in muscle were significantly higher in AhR−/− and AhR+/− mice compared to WT. CONCLUSIONS This work documents a physiologically relevant function for AhR in regulation of body weight, hepatic fat deposition, insulin sensitivity and energy expenditure under HFD exposure, suggesting that AhR signaling may be developed as a potential therapeutic target for treatment of obesity and metabolic disorders. PMID:25907315

  10. Developmental vitamin D (DVD) deficiency alters pup-retrieval but not isolation-induced pup ultrasonic vocalizations in the rat.

    PubMed

    Burne, Thomas H J; O'Loan, Jonathan; Splatt, Karisha; Alexander, Suzanne; McGrath, John J; Eyles, Darryl W

    2011-02-01

    Evidence from animal experiments now demonstrates that prenatal vitamin D levels influence brain development. The aims of this study were to examine isolation-induced pup ultrasonic vocalizations and maternal-infant interactions using a pup-retrieval test in developmental vitamin D (DVD) deficient and control rats. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. In two separate experiments we recorded ultrasonic vocalizations at 46KHz in isolated pups and we performed a pup-retrieval test on the day of birth. There was no significant effect of maternal diet on the calling rate of isolation-induced ultrasonic vocalizations by pups. We found that DVD-deficient dams retrieved their pups sooner than control dams and engaged in more pup directed activities (sniffing and carrying pups) and had a longer latency for self-grooming and rearing than control dams. We also assessed vitamin D related measures from a terminal blood sample immediately after the pup-retrieval test and found that DVD-deficient dams and pups had significantly lower levels of 25 OH D₃, 1,25 (OH)₂D₃ and phosphate, elevated levels of parathyroid hormone (PTH) but there was no significant effect of maternal diet on calcium levels. We speculate that the altered maternal-pup interactions identified in the DVD model may impact on early periods of brain development and behaviour. PMID:21059363

  11. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.

    PubMed

    Diekman, Eugene F; van Weeghel, Michel; Wanders, Ronald J A; Visser, Gepke; Houten, Sander M

    2014-07-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited disorder of mitochondrial long-chain fatty acid β-oxidation (FAO). Patients with VLCAD deficiency may present with hypoglycemia, hepatomegaly, cardiomyopathy, and myopathy. Although several mouse models have been developed to aid in the study of the pathogenesis of long-chain FAO defects, the muscular phenotype is underexposed. To address the muscular phenotype, we used a newly developed mouse model on a mixed genetic background with a more severe defect in FAO (LCAD(-/-); VLCAD(+/-)) in addition to a validated mouse model (LCAD(-/-); VLCAD(+/+)) and compared them with wild-type (WT) mice. We found that both mouse models show a 20% reduction in energy expenditure (EE) and a 3-fold decrease in locomotor activity in the unfed state. In addition, we found a 1.7°C drop in body temperature in unfed LCAD(-/-); VLCAD(+/+) mice compared with WT body temperature. We conclude that food withdrawal-induced inactivity, hypothermia, and reduction in EE are novel phenotypes associated with FAO deficiency in mice. Unexpectedly, inactivity was not explained by rhabdomyolysis, but rather reflected the overall reduced capacity of these mice to generate heat. We suggest that mice are partly protected against the negative consequence of an FAO defect.-Diekman, E. F., van Weeghel, M., Wanders, R. J. A., Visser, G., Houten, S. M. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.

  12. High β-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice

    PubMed Central

    Masson, Elodie; Koren, Shlomit; Razik, Fathima; Goldberg, Howard; Kwan, Edwin P.; Sheu, Laura; Gaisano, Herbert Y.; Fantus, I. George

    2010-01-01

    Thioredoxin-interacting protein (TxNIP) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. Diabetic mice exhibit increased expression of TxNIP in pancreatic islets, and recent studies suggest that TxNIP is a proapoptotic factor in β-cells that may contribute to the development of diabetes. Here, we examined the role of TxNIP deficiency in vivo in the development of insulin-deficient diabetes and whether it impacted on pancreatic β-cell mass and/or insulin secretion. TxNIP-deficient (Hcb-19/TxNIP−/−) mice had lower baseline glycemia, higher circulating insulin concentrations, and higher total pancreatic insulin content and β-cell mass than control mice (C3H). Hcb-19/TxNIP−/− did not develop hyperglycemia when injected with standard multiple low doses of streptozotocin (STZ), in contrast to C3H controls. Surprisingly, although β-cell mass remained higher in Hcb-19/TxNIP−/− mice compared with C3H after STZ exposure, the relative decrease induced by STZ was as great or even greater in the TxNIP-deficient animals. Consistently, cultured pancreatic INS-1 cells transfected with small-interfering RNA against TxNIP were more sensitive to cell death induced by direct exposure to STZ or to the combination of inflammatory cytokines interleukin-1β, interferon-γ, and tumor necrosis factor-α. Furthermore, when corrected for insulin content, isolated pancreatic islets from TxNIP−/− mice exhibited reduced glucose-induced insulin secretion. These data indicate that TxNIP functions as a regulator of β-cell mass and influences insulin secretion. In conclusion, the relative resistance of TxNIP-deficient mice to STZ-induced diabetes appears to be because of an increase in β-cell mass. However, TxNIP deficiency is associated with sensitization to STZ- and cytokine-induced β-cell death, indicating complex regulatory roles of TxNIP under different physiological and pathological conditions. PMID

  13. Progesterone inhibits vascular remodeling and attenuates monocrotaline-induced pulmonary hypertension in estrogen-deficient rats.

    PubMed

    Tofovic, P S; Zhang, X; Petrusevska, G

    2009-07-01

    (Full text is available at http://www.manu.edu.mk/prilozi). Pulmonary arterial hypertension (PH) is predominantly a disease of young females. Yet, little is known regarding the effects of female sex hormones in PH. Female rats develop less severe PH compared to male rats, and ovariectomy (OVX) exacerbates PH. Although OVX rats treated with estradiol develop less severe disease, the role of progesterone in OVX-induced exacerbation of disease has not been examined. Progesterone was shown to dilate pulmonary vessels and to inhibit proliferation of endothelial and vascular smooth muscle cells. Therefore, we hypothesized that progesterone may confer protective effects in experimental PH. A total of 30 female rats were ovariectomized and OVX rats were randomly administered either saline (OVX-Control group, n = 7), monocrotaline (60mg/kg i.p.; OVX-MCT group; n = 12), or MCT plus progesterone (30microg/kg/h via osmotic minipumps; OVX-MCT+P group; n = 11). After 32 days animals were instrumented for in situ (open chest) measurements of right ventricle (RV) peak systolic (RVSP) and end diastolic (RVEDP) pressures, and tissue samples were obtained for morphometric and histological analysis. Administration of MCT elevated RVSP (22.2 +/- 1.1 vs. 46.7 +/- 2.4 mmHg) and RVEDP (1.51 +/- 0.86 vs. 11.9+/-2.2 mmHg), increased RV/left ventricle + septum (RV/LV+S) ratio (0.256 +/- 0.010 vs. 0.582 +/- 0.033, OVX vs. OVX-MCT), and induced media hypertrophy of small size pulmonary arteries. In ovariectomized pulmonary hypertensive rats, treatment with progesterone attenuated the severity of disease (OVX-MCT+P group: RVSP = 36.6 +/- 2.3 mmHg; RV/LV+S = 0.468 +/- 0.025; RVEDP = 7.5 +/-1.5 mmHg), attenuated vascular remodeling (media % index: 28.2 +/- 1.1 vs. 34.2 +/- 1.3), and reduced mortality (9% vs. 25%; OVX-MCT+P vs. OVX-MCT). This study provides the first evidence that in estrogen-deficient rats, progesterone has protective effects in MCT-induced PH. Further evaluation of the role of

  14. TLR4 Deficiency Protects against Hepatic Fibrosis and Diethylnitrosamine-Induced Pre-Carcinogenic Liver Injury in Fibrotic Liver

    PubMed Central

    Weber, Susanne Nicole; Bohner, Annika; Dapito, Dianne H.; Schwabe, Robert F.; Lammert, Frank

    2016-01-01

    Background The development of hepatocellular carcinoma (HCC) is a common consequence of advanced liver fibrosis but the interactions between fibrogenesis and carcinogenesis are still poorly understood. Recently it has been shown that HCC promotion depends on Toll-like receptor (TLR) 4. Pre-cancerogenous events can be modelled in mice by the administration of a single dose of diethylnitrosamine (DEN), with HCC formation depending amongst others on interleukin (IL) 6 production. Mice lacking the hepatocanalicular phosphatidylcholine transporter ABCB4 develop liver fibrosis spontaneously, resemble patients with sclerosing cholangitis due to mutations of the orthologous human gene, and represent a valid model to study tumour formation in pre-injured cholestatic liver. The aim of this study was to investigate DEN-induced liver injury in TLR4-deficient mice with biliary fibrosis. Methods ABCB4-deficient mice on the FVB/NJ genetic background were crossed to two distinct genetic backgrounds (TLR4-sufficient C3H/HeN and TLR4-deficient C3H/HeJ) for more than 10 generations. The two congenic knockout and the two corresponding wild-type mouse lines were treated with a single dose of DEN for 48 hours. Phenotypic differences were assessed by measuring hepatic collagen contents, inflammatory markers (ALT, CRP, IL6) as well as hepatic apoptosis (TUNEL) and proliferation (Ki67) rates. Results Hepatic collagen accumulation is significantly reduced in ABCB4-/-:TLR4-/-double-deficient mice. After DEN challenge, apoptosis, proliferation and inflammatory markers are decreased in TLR4-deficient in comparison to TLR4-sufficient mice. When combining ABCB4 and TLR4 deficiency with DEN treatment, hepatic IL6 expression and proliferation rates are lowest in fibrotic livers from the double-deficient line. Consistent with these effects, selective digestive tract decontamination in ABCB4-/- mice also led to reduced tumor size and number after DEN. Conclusion This study demonstrates that liver

  15. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    PubMed Central

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Vázquez, Saul; Contreras-Moreira, Bruno; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor

    2015-01-01

    The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well-maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as with Fe-deficiency

  16. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4 deficient mice

    PubMed Central

    Ji, Yewei; Sun, Shengyi; Goodrich, Julia K.; Kim, Hana; Poole, Angela C.; Duhamel, Gerald E.; Ley, Ruth E.; Qi, Ling

    2014-01-01

    SUMMARY Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here we show that chronic intake of a high-fat diet (HFD), not a low-fat diet (LFD), leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors (TLR) 2 and 4 (DKO hereafter). Diet-induced pulmonary lesions are blocked by antibiotics treatment and transmissible to wildtype mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut microbiota-caused conditions are often life-threatening. PMID:24953658

  17. Group IVA phospholipase A(2) deficiency prevents CCl4-induced hepatic cell death through the enhancement of autophagy.

    PubMed

    Ishihara, Keiichi; Kanai, Shiho; Tanaka, Kikuko; Kawashita, Eri; Akiba, Satoshi

    2016-02-26

    Group IVA phospholipase A2 (IVA-PLA2), which generates arachidonate, plays a role in inflammation. IVA-PLA2-deficiency reduced hepatotoxicity and hepatocyte cell death in mice that received a single dose of carbon tetrachloride (CCl4) without any inhibitory effects on CCl4-induced lipid peroxidation. An immunoblot analysis of extracts from wild-type mouse- and IVA-PLA2 KO mouse-derived primary hepatocytes that transiently expressed microtubule-associated protein 1 light chain 3B (LC3) revealed a higher amount of LC3-II, a typical index of autophagosome formation, in IVA-PLA2-deficient cells, suggesting the enhancement of constitutive autophagy. IVA-PLA2 may promote CCl4-induced cell death through the suppression of constitutive autophagy in hepatocytes.

  18. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4-deficient mice.

    PubMed

    Ji, Yewei; Sun, Shengyi; Goodrich, Julia K; Kim, Hana; Poole, Angela C; Duhamel, Gerald E; Ley, Ruth E; Qi, Ling

    2014-07-10

    Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  19. Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis.

    PubMed

    Yin, Lili; Wang, Yi; Yuan, Mudan; Zhang, Xinzhong; Xu, Xuefeng; Han, Zhenhai

    2014-02-01

    Iron deficiency often results in nutritional disorder in fruit trees. Transcription factors play an important role in the regulation of iron uptake. In this study, we isolated an iron deficiency response transcription factor gene, MxFIT, from an iron-efficient apple genotype of Malus xiaojinensis. MxFIT encoded a basic helix-loop-helix protein and contained a 966 bp open reading frame. MxFIT protein was targeted to the nucleus in onion epidermal cells and showed strong transcriptional activation in yeast cells. Spatiotemporal expression analysis revealed that MxFIT was up-regulated in roots under iron deficiency at both mRNA and protein levels, while almost no expression was detected in leaves irrespective of iron supply. Ectopic expression of MxFIT resulted in enhanced iron deficiency responses in Arabidopsis under iron deficiency and stronger resistance to iron deficiency. Thus, MxFIT might be involved in iron uptake and plays an important role in iron deficiency response.

  20. Induced genetic deficiency of the nucleolar organizer in rat kangaroo cells (PTK1) by ultraviolet laser microirradiation.

    PubMed

    Liang, H; Berns, M W

    1983-03-01

    An ultraviolet laser microbeam was used to irradiate one of the two nucleolar organizer regions of PTK1 cells in early prophase. The directed nucleolar deficiency induced by ultraviolet laser irradiation was maintained in the daughter cells through subsequent cell generations. However, the frequent occurrence of spontaneous cell fusion in low density cells following the cloning procedure facilitated a recovery of cells to two or more nucleoli.

  1. Programmed cell death of T lymphocytes during acute viral infection: a mechanism for virus-induced immune deficiency.

    PubMed Central

    Razvi, E S; Welsh, R M

    1993-01-01

    Acute viral infections induce immune deficiencies, as shown by unresponsiveness to mitogens and unrelated antigens. T lymphocytes isolated from mice acutely infected with lymphocytic choriomeningitis virus (LCMV) were found in this study to undergo activation-induced apoptosis upon signalling through the T-cell receptor (TcR)-CD3 complex. Kinetic studies demonstrated that this sensitivity to apoptosis directly correlated with the induction of immune deficiency, as measured by impaired proliferation in response to anti-CD3 antibody or to concanavalin A. Cell cycling in interleukin-2 (IL-2) alone stimulated proliferation of LCMV-induced T cells without inducing apoptosis, but preculturing of T cells from acutely infected mice in IL-2 accelerated apoptosis upon subsequent TcR-CD3 cross-linking. T lymphocytes isolated from mice after the acute infection were less responsive to IL-2, but those T cells, presumably memory T cells, responding to IL-2 were primed in each case to die a rapid apoptotic death upon TcR-CD3 cross-linking. These results indicate that virus infection-induced unresponsiveness to T-cell mitogens is due to apoptosis of the activated lymphocytes and suggest that the sensitization of memory cells by IL-2 induced during infection will cause them to die upon antigen recognition, thereby impairing specific responses to nonviral antigens. Images PMID:8371341

  2. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4

    PubMed Central

    Abston, Eric D.; Coronado, Michael J.; Bucek, Adriana; Onyimba, Jennifer A.; Brandt, Jessica E.; Frisancho, J. Augusto; Kim, Eunyong; Bedja, Djahida; Sung, Yoon-kyu; Radtke, Andrea J.; Gabrielson, Kathleen L.; Mitzner, Wayne

    2013-01-01

    Recent findings indicate that TLR3 polymorphisms increase susceptibility to enteroviral myocarditis and inflammatory dilated cardiomyopathy (iDCM) in patients. TLR3 signaling has been found to inhibit coxsackievirus B3 (CVB3) replication and acute myocarditis in mouse models, but its role in the progression from myocarditis to iDCM has not been previously investigated. In this study we found that TLR3 deficiency increased acute (P = 5.9 × 10−9) and chronic (P = 6.0 × 10−7) myocarditis compared with WT B6.129, a mouse strain that is resistant to chronic myocarditis and iDCM. Using left ventricular in vivo hemodynamic assessment, we found that TLR3-deficient mice developed progressively worse chronic cardiomyopathy. TLR3 deficiency significantly increased viral replication in the heart during acute myocarditis from day 3 through day 12 after infection, but infectious virus was not detected in the heart during chronic disease. TLR3 deficiency increased cytokines associated with a T helper (Th)2 response, including IL-4 (P = 0.03), IL-10 (P = 0.008), IL-13 (P = 0.002), and TGF-β1 (P = 0.005), and induced a shift to an immunoregulatory phenotype in the heart. However, IL-4-deficient mice had improved heart function during acute CVB3 myocarditis by echocardiography and in vivo hemodynamic assessment compared with wild-type mice, indicating that IL-4 impairs cardiac function during myocarditis. IL-4 deficiency increased regulatory T-cell and macrophage populations, including FoxP3+ T cells (P = 0.005) and Tim-3+ macrophages (P = 0.004). Thus, TLR3 prevents the progression from myocarditis to iDCM following CVB3 infection by reducing acute viral replication and IL-4 levels in the heart. PMID:23255589

  3. Dietary histidine increases mouse skin urocanic acid levels and enhances UVB-induced immune suppression of contact hypersensitivity.

    PubMed

    Reilly, S K; De Fabo, E C

    1991-04-01

    Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine. PMID:1857737

  4. Role of cholecystokinin in dietary fat-promoted azaserine-induced pancreatic carcinogenesis in rats.

    PubMed Central

    Appel, M. J.; Meijers, M.; Van Garderen-Hoetmer, A.; Lamers, C. B.; Rovati, L. C.; Sprij-Mooij, D.; Jansen, J. B.; Woutersen, R. A.

    1992-01-01

    The role of cholecystokinin in dietary fat-promoted pancreatic carcinogenesis was investigated in azaserine-treated rats, using lorglumide, a highly specific cholecystokinin-receptor antagonist. The animals were killed 8 months after the start of treatment. Cholecystokinin, but not dietary unsaturated fat, increased pancreatic weight. Rats treated with cholecystokinin developed more acidophilic atypical acinar cell nodules, adenomas and adenocarcinomas than control animals. Rats maintained on the high-fat diet developed significantly more adenomas and adenocarcinomas than controls given a diet low in unsaturated fat. Lorglumide largely inhibited the enhancing effect of cholecystokinin, but not of dietary fat, on pancreatic carcinogenesis indicating that it is unlikely that the promoting effect of dietary unsaturated fat on pancreatic carcinogenesis is mediated via cholecystokinin. PMID:1637675

  5. Induced pluripotent stem cells model personalized variations in liver disease due to α1-antitrypsin deficiency

    PubMed Central

    Tafaleng, Edgar N.; Chakraborty, Souvik; Han, Bing; Hale, Pamela; Wu, Wanquan; Soto-Gutierrez, Alejandro; Feghali-Bostwick, Carol A.; Wilson, Andrew A.; Kotton, Darrell N.; Nagaya, Masaki; Strom, Stephen C.; Chowdhury, Jayanta R.; Stolz, Donna B.; Perlmutter, David H.; Fox, Ira J.

    2015-01-01

    In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, “proteotoxic” mechanism. While some ATD patients develop severe liver disease that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPScs) from ATD individuals with or without severe liver disease could model these personalized variations in hepatic disease phenotypes. Patient-specific iPScs were generated from ATD patients and controls and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule compared to the wild type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from severe liver disease patients compared to those from no liver disease patients. Transmission electron microscopy showed dilated rER in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with severe liver disease. Conclusion These results provide definitive validation that iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that “proteostasis” mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPScs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies. PMID:25690322

  6. Apoptosis Inducing Factor Deficiency Causes Reduced Mitofusion 1 Expression and Patterned Purkinje Cell Degeneration

    PubMed Central

    Chung, Seung-Hyuk; Calafiore, Marco; Plane, Jennifer M.; Pleasure, David E.; Deng, Wenbin

    2010-01-01

    Alteration in mitochondrial dynamics has been implicated in many neurodegenerative diseases. Mitochondrial apoptosis inducing factor (AIF) plays a key role in multiple cellular and disease processes. Using immunoblotting and flow cytometry analysis with Harlequin mutant mice that have a proviral insertion in the AIF gene, we first revealed that mitofusion 1 (Mfn1), a key mitochondrial fusion protein, is significantly diminished in Purkinje cells of the Harlequin cerebellum. Next, we investigated the cerebellar pathology of Harlequin mice in an age-dependent fashion, and identified a striking process of progressive and patterned Purkinje cell degeneration. Using immunohistochemistry with zebrin II, the most studied compartmentalization marker in the cerebellum, we found that zebrin II-negative Purkinje cells first started to degenerate at 7 months of age. By 11 months of age, almost half of the Purkinje cells were degenerated. Subsequently, most of the Purkinje cells disappeared in the Harlequin cerebellum. The surviving Purkinje cells were concentrated in cerebellar lobules IX and X, where these cells were positive for heat shock protein 25 and resistant to degeneration. We further showed that the patterned Purkinje cell degeneration was dependent on caspase but not poly(ADP-ribose) polymerase-1 (PARP-1) activation, and confirmed the marked decrease of Mfn1 in the Harlequin cerebellum. Our results identified a previously unrecognized role of AIF in Purkinje cell degeneration, and revealed that AIF deficiency leads to altered mitochondrial fusion and caspase-dependent cerebellar Purkinje cell loss in Harlequin mice. This study is the first to link AIF and mitochondrial fusion, both of which might play important roles in neurodegeneration. PMID:20974255

  7. Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.

    PubMed

    Sajesh, Babu V; McManus, Kirk J

    2015-09-29

    Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585

  8. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells

    PubMed Central

    Yusa, Kosuke; Rashid, S. Tamir; Strick-Marchand, Helene; Varela, Ignacio; Liu, Pei-Qi; Paschon, David E.; Miranda, Elena; Ordóñez, Adriana; Hannan, Nick; Rouhani, Foad Jafari; Darche, Sylvie; Alexander, Graeme; Marciniak, Stefan J.; Fusaki, Noemi; Hasegawa, Mamoru; Holmes, Michael C.; Di Santo, James P.; Lomas, David A.; Bradley, Allan; Vallier, Ludovic

    2011-01-01

    Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders1,2,3,4. However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications3,5. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome6. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)7 and piggyBac8,9 technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α1-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies. PMID:21993621

  9. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring.

    PubMed

    Wei, W; Wang, Y; Wang, Y; Dong, J; Min, H; Song, B; Teng, W; Xi, Q; Chen, J

    2013-09-01

    Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring. PMID:23763342

  10. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring.

    PubMed

    Wei, W; Wang, Y; Wang, Y; Dong, J; Min, H; Song, B; Teng, W; Xi, Q; Chen, J

    2013-09-01

    Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring.

  11. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life

    PubMed Central

    Sims-Robinson, Catrina; Bakeman, Anna; Bruno, Elizabeth; Jackson, Samuel; Glasser, Rebecca; Murphy, Geoffrey G.; Feldman, Eva L.

    2016-01-01

    A high-fat diet (HFD), one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control), a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16). HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible. PMID:27676071

  12. Synergistic Combination of Gemcitabine and Dietary Molecule Induces Apoptosis in Pancreatic Cancer Cells and Down Regulates PKM2 Expression

    PubMed Central

    Pandita, Archana; Kumar, Bhupender; Manvati, Siddharth; Vaishnavi, Samantha; Singh, Shashank K.; Bamezai, Rameshwar N. K.

    2014-01-01

    Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB) with dietary molecules, Betuilnic acid (BA) and Thymoquinone (TQ), stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI) revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK) M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment. PMID:25197966

  13. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    PubMed Central

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p < 0.001) during the study period. Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p < 0.05). Conclusions The proportion of liver injury cases attributed to HDS in DILIN has increased significantly. Liver injury from non-bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  14. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  15. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  16. Attenuation of high sucrose diet–induced insulin resistance in tryptophan 2,3-dioxygenase deficient Drosophila melanogaster vermilion mutants

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2015-01-01

    Exposure to high sugar diet (HSD) serves as an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. Peripheral IR induced by HSD delays emergence of pupae from larvae and decreases body weight of Drosophila imago. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (TRP) – kynurenine (KYN) pathway was suggested as one of the mechanisms of IR development. Rate-limiting enzyme of TRP – KYN pathway in Drosophila is TRP 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. In insects TDO is encoded by vermilion gene. TDO is not active in vermilion mutants. In order to evaluate the possible impact of deficient formation of KYN from TRP on the inducement of IR by HSD, we compared the effect of HSD in wild type (Oregon) and vermilion mutants of Drosophila melanogaster by assessing the time of white pupae emergence from larva and body weight of imago. Delay of emergence of pupae from larvae induced by high sucrose diet was less pronounced in vermilion (1.4 days) than in Oregon flies (3.3 days) in comparison with flies maintained on standard diet. Exposure to high sucrose diet decreased body weight of Oregon (but not vermilion) imago. Attenuation of high sucrose diet–induced IR/T2D in vermilion flies might depend on deficiency of TRP – KYN pathway. Besides IR/T2D, HSD induces obesity in Drosophila. Future studies of HSD-induced obesity and IR/T2D in TDO deficient vermilion mutants of Drosophila might help to understand the mechanisms of high association between IR/T2D and obesity. Modulation of TRP – KYN metabolism might be utilized for prevention and treatment of IR/T2D. PMID:26191458

  17. Neglect-induced pseudo-thrombotic thrombocytopenic purpura due to vitamin B12 deficiency.

    PubMed

    Asano, Takeshi; Narazaki, Hidehiko; Kaizu, Kiyohiko; Matsukawa, Shouhei; Takema-Tochikubo, Yuki; Fujii, Shuichi; Saitoh, Nobuyuki; Mashiko, Kunihiko; Fujino, Osamu

    2015-10-01

    Although thrombotic thrombocytopenic purpura (TTP) is rare, early diagnosis and treatment are important for decreasing the mortality rate. Acquired vitamin B12 deficiency is frequently overlooked because of its rarity in developed countries, particularly in children and adolescents. The hematological changes in vitamin B12 deficiency present as megaloblastic anemia, increased lactate dehydrogenase, vasoconstriction, increased platelet aggregation, and abnormal activation of the coagulation followed by microangiopathy as well as neutropenia and thrombocytopenia. We report herein the case of a 15-year-old girl who had been neglected, which might have caused pseudo-TTP through malnutrition, particularly vitamin B12 deficiency. When we encounter cases of TTP in children, clinicians must be aware of the possibility of malnutrition, particularly with vitamin B12 deficiency, even in developed countries, and investigate the cause of malnutrition including neglect. PMID:26387768

  18. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    PubMed Central

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  19. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice

    SciTech Connect

    Rogers, Lynette K. . E-mail: rogersl@ccri.net; Bates, Carlton M.; Welty, Stephen E.; Smith, Charles V.

    2006-12-15

    Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1{sup a1Neu} (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126 {+-} 36 U/l at 2 h after 5 {mu}mol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 {mu}mol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 {mu}mol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4 {+-} 0.4 vs 0.2 {+-} 0.0 {mu}mol/g tissue at 0 and 50 {mu}mol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 {mu}mol/kg (105.5 {+-} 44.1 vs 27.9 {+-} 4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 {mu}mol/kg (Neu vs C3H, 32.8 {+-} 4.1 vs 17.9 {+-} 0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo.

  20. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    PubMed

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  1. Withdrawal of dietary phytoestrogens in adult male rats affects hypothalamic regulation of food intake, induces obesity and alters glucose metabolism.

    PubMed

    Andreoli, María Florencia; Stoker, Cora; Rossetti, María Florencia; Alzamendi, Ana; Castrogiovanni, Daniel; Luque, Enrique H; Ramos, Jorge Guillermo

    2015-02-01

    The absence of phytoestrogens in the diet during pregnancy has been reported to result in obesity later in adulthood. We investigated whether phytoestrogen withdrawal in adult life could alter the hypothalamic signals that regulate food intake and affect body weight and glucose homeostasis. Male Wistar rats fed from conception to adulthood with a high phytoestrogen diet were submitted to phytoestrogen withdrawal by feeding a low phytoestrogen diet, or a high phytoestrogen-high fat diet. Withdrawal of dietary phytoestrogens increased body weight, adiposity and energy intake through an orexigenic hypothalamic response characterized by upregulation of AGRP and downregulation of POMC. This was associated with elevated leptin and T4, reduced TSH, testosterone and estradiol, and diminished hypothalamic ERα expression, concomitant with alterations in glucose tolerance. Removing dietary phytoestrogens caused manifestations of obesity and diabetes that were more pronounced than those induced by the high phytoestrogen-high fat diet intake.

  2. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine.

    PubMed

    Troen, Aron M; Chao, Wei-Hsun; Crivello, Natalia A; D'Anci, Kristen E; Shukitt-Hale, Barbara; Smith, Don E; Selhub, Jacob; Rosenberg, Irwin H

    2008-12-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction.

  3. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism.

    PubMed

    Martínez-Vega, Raquel; Garrido, Francisco; Partearroyo, Teresa; Cediel, Rafael; Zeisel, Steven H; Martínez-Álvarez, Concepción; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A

    2015-02-01

    Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.

  4. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model

    PubMed Central

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A.; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J.

    2015-01-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans. PMID:25792727

  5. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model.

    PubMed

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J

    2015-07-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox re