Sample records for dietary protein restriction

  1. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  2. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    PubMed

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Proximal tubule glutamine synthetase expression is necessary for the normal response to dietary protein restriction.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Verlander, Jill W; Weiner, I David

    2017-07-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion changes in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and decreases urinary ammonia excretion, a major component of net acid excretion. Glutamine synthetase (GS) catalyzes the reaction of [Formula: see text] and glutamate, which regenerates the essential amino acid glutamine and decreases net ammonia generation. Because renal proximal tubule GS expression increases during dietary protein restriction, this could contribute to the decreased ammonia excretion. The purpose of the current study was to determine the role of proximal tubule GS in the renal response to protein restriction. We generated mice with proximal tubule-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Cre-negative (Control) and PT-GS-KO mice in metabolic cages were provided 20% protein diet for 2 days and were then changed to low-protein (6%) diet for the next 7 days. Additional PT-GS-KO mice were maintained on 20% protein diet. Dietary protein restriction caused a rapid decrease in urinary ammonia excretion in both genotypes, but PT-GS-KO blunted this adaptive response significantly. This occurred despite no significant genotype-dependent differences in urinary pH or in serum electrolytes. There were no significant differences between Control and PT-GS-KO mice in expression of multiple other proteins involved in renal ammonia handling. We conclude that proximal tubule GS expression is necessary for the appropriate decrease in ammonia excretion during dietary protein restriction.

  4. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  5. Dietary restrictions in dialysis patients: is there anything left to eat?

    PubMed

    Kalantar-Zadeh, Kamyar; Tortorici, Amanda R; Chen, Joline L T; Kamgar, Mohammad; Lau, Wei-Ling; Moradi, Hamid; Rhee, Connie M; Streja, Elani; Kovesdy, Csaba P

    2015-01-01

    A significant number of dietary restrictions are imposed traditionally and uniformly on maintenance dialysis patients, whereas there is very little data to support their benefits. Recent studies indicate that dietary restrictions of phosphorus may lead to worse survival and poorer nutritional status. Restricting dietary potassium may deprive dialysis patients of heart-healthy diets and lead to intake of more atherogenic diets. There is little data about the survival benefits of dietary sodium restriction, and limiting fluid intake may inherently lead to lower protein and calorie consumption, when in fact dialysis patients often need higher protein intake to prevent and correct protein-energy wasting. Restricting dietary carbohydrates in diabetic dialysis patients may not be beneficial in those with burnt-out diabetes. Dietary fat including omega-3 fatty acids may be important caloric sources and should not be restricted. Data to justify other dietary restrictions related to calcium, vitamins, and trace elements are scarce and often contradictory. The restriction of eating during hemodialysis treatment is likely another incorrect practice that may worsen hemodialysis induced hypoglycemia and nutritional derangements. We suggest careful relaxation of most dietary restrictions and adoption of a more balanced and individualized approach, thereby easing some of these overzealous restrictions that have not been proven to offer major advantages to patients and their outcomes and which may in fact worsen patients' quality of life and satisfaction. This manuscript critically reviews the current paradigms and practices of recommended dietary regimens in dialysis patients including those related to dietary protein, carbohydrate, fat, phosphorus, potassium, sodium, and calcium, and discusses the feasibility and implications of adherence to ardent dietary restrictions and future research. © 2015 Wiley Periodicals, Inc.

  6. Dietary Restrictions in Dialysis Patients: Is There Anything Left to Eat?

    PubMed Central

    Kalantar-Zadeh, Kamyar; Brown, Amanda; Chen, Joline L. T.; Kamgar, Mohammad; Lau, Wei-Ling; Moradi, Hamid; Rhee, Connie M.; Streja, Elani; Kovesdy, Csaba P.

    2015-01-01

    A significant number of dietary restrictions are imposed traditionally and uniformly on maintenance dialysis patients, whereas there is very little data to support their benefits. Recent studies indicate that dietary restrictions of phosphorus may lead to worse survival and poorer nutritional status. Restricting dietary potassium may deprive dialysis patients of heart-healthy diets and lead to intake of more atherogenic diets. There is little data about the survival benefits of dietary sodium restriction, and limiting fluid intake may inherently lead to lower protein and calorie consumption, when in fact dialysis patients often need higher protein intake to prevent and correct protein-energy wasting. Restricting dietary carbohydrates in diabetic dialysis patients may not be beneficial in those with burnt-out diabetes. Dietary fat including omega-3 fatty acids may be important caloric sources and should not be restricted. Data to justify other dietary restrictions related to calcium, vitamins and trace elements are scarce and often contradictory. The restriction of eating during hemodialysis treatment is likely another incorrect practice that may worsen hemodialysis induced hypoglycemia and nutritional derangements. We suggest careful relaxation of most dietary restrictions and adoption of a more balanced and individualized approach, thereby easing some of these overzealous restrictions that have not been proven to offer major advantages to patients and their outcomes and which may in fact worsen patients’ quality of life and satisfaction. This manuscript critically reviews the current paradigms and practices of recommended dietary regimens in dialysis patients including those related to dietary protein, carbohydrate, fat, phosphorus, potassium, sodium, and calcium, and discusses the feasibility and implications of adherence to ardent dietary restrictions. PMID:25649719

  7. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone.

    PubMed

    Speakman, J R; Mitchell, S E; Mazidi, M

    2016-12-15

    Almost exactly 100years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be

  8. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Dietary Intake Following Experimentally Restricted Sleep in Adolescents

    PubMed Central

    Beebe, Dean W.; Simon, Stacey; Summer, Suzanne; Hemmer, Stephanie; Strotman, Daniel; Dolan, Lawrence M.

    2013-01-01

    Study Objective: To examine the relationship between sleep and dietary intake in adolescents using an experimental sleep restriction protocol. Design: Randomized crossover sleep restriction-extension paradigm. Setting: Sleep obtained and monitored at home, diet measured during an office visit. Participants: Forty-one typically developing adolescents age 14-16 years. Interventions: The 3-week protocol consisting of a baseline week designed to stabilize the circadian rhythm, followed randomly by 5 consecutive nights of sleep restriction (6.5 hours in bed Monday-Friday) versus healthy sleep duration (10 hours in bed), a 2-night washout period, and a 5-night crossover period. Measurements: Sleep was monitored via actigraphy and teens completed validated 24-hour diet recall interviews following each experimental condition. Results: Paired-sample t-tests examined differences between conditions for consumption of key macronutrients and choices from dietary categories. Compared with the healthy sleep condition, sleep-restricted adolescents' diets were characterized by higher glycemic index and glycemic load and a trend toward more calories and carbohydrates, with no differences in fat or protein consumption. Exploratory analyses revealed the consumption of significantly more desserts and sweets during sleep restriction than healthy sleep. Conclusions: Chronic sleep restriction during adolescence appears to cause increased consumption of foods with a high glycemic index, particularly desserts/sweets. The chronic sleep restriction common in adolescence may cause changes in dietary behaviors that increase risk of obesity and associated morbidity. Citation: Beebe DW; Simon S; Summer S; Hemmer S; Strotman D; Dolan LM. Dietary intake following experimentally restricted sleep in adolescents. SLEEP 2013;36(6):827-834. PMID:23729925

  10. Re-examining the phosphorus-protein dilemma: Does phosphorus restriction compromise protein status?

    PubMed Central

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary-Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2015-01-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis (HD) patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in HD patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Further, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives; (2) food preparation method; and (3) bioavailability of phosphorus; which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally-equivalent foods that are lower in bioavailable phosphorus. PMID:26873260

  11. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes.

    PubMed

    Helms, Eric R; Zinn, Caryn; Rowlands, David S; Brown, Scott R

    2014-04-01

    Caloric restriction occurs when athletes attempt to reduce body fat or make weight. There is evidence that protein needs increase when athletes restrict calories or have low body fat. The aims of this review were to evaluate the effects of dietary protein on body composition in energy-restricted resistance-trained athletes and to provide protein recommendations for these athletes. Database searches were performed from earliest record to July 2013 using the terms protein, and intake, or diet, and weight, or train, or restrict, or energy, or strength, and athlete. Studies (N = 6) needed to use adult (≥ 18 yrs), energy-restricted, resistance-trained (> 6 months) humans of lower body fat (males ≤ 23% and females ≤ 35%) performing resistance training. Protein intake, fat free mass (FFM) and body fat had to be reported. Body fat percentage decreased (0.5-6.6%) in all study groups (N = 13) and FFM decreased (0.3-2.7kg) in nine of 13. Six groups gained, did not lose, or lost nonsignificant amounts of FFM. Five out of these six groups were among the highest in body fat, lowest in caloric restriction, or underwent novel resistance training stimuli. However, the one group that was not high in body fat that underwent substantial caloric restriction, without novel training stimuli, consumed the highest protein intake out of all the groups in this review (2.5-2.6g/kg). Protein needs for energy-restricted resistance-trained athletes are likely 2.3-3.1g/kg of FFM scaled upwards with severity of caloric restriction and leanness.

  12. Dietary protein restriction for renal patients: don't forget protein-free foods.

    PubMed

    D'Alessandro, Claudia; Rossi, Andrea; Innocenti, Maurizio; Ricchiuti, Guido; Bozzoli, Laura; Sbragia, Giulietta; Meola, Mario; Cupisti, Adamasco

    2013-09-01

    The treatment of chronic kidney disease (CKD) consists of pharmacological, nutritional, and psychological-social approaches. The dietary therapy of CKD, namely a low-protein low-phosphorus diet, plays a crucial role in contributing to delay the onset of end-stage renal disease (ESRD) and to protect cardiovascular and nutritional status. The protein-free food products represent a very important tool for the implementation of a low-protein diet to ensure adequate energy supply, reducing the production of nitrogenous waste products. This survey included 100 consecutive CKD patients who were asked their opinion about the use of protein-free foods. Ninety-eight patients (98%) reported a regular daily intake of protein-free pasta (as macaroni, spaghetti, etc.), which was the preferred product consumed. Actually, the taste and texture of protein-free pasta were considered as "good" or "very good" by 70% of patients. Conversely, 43% of CKD patients perceived the taste and texture of protein-free bread as "bad" or "very bad", and 30% found it "acceptable". Therefore, the main concern for the implementation of low-protein diets is the use and palatability of the protein-free products, bread in particular. The use of these products may help in reducing protein, phosphorus, and sodium intake while supplying an adequate energy intake, which represents the basis for a nutritionally safe and successful dietary treatment of advanced CKD patients. Manufacturers and food technology should make more efforts to finding new solutions to improve the taste and texture of protein-free products. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats

    USDA-ARS?s Scientific Manuscript database

    High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...

  14. The clinical efficacy of dietary fat restriction in treatment of dogs with intestinal lymphangiectasia.

    PubMed

    Okanishi, H; Yoshioka, R; Kagawa, Y; Watari, T

    2014-01-01

    Intestinal lymphangiectasia (IL), a type of protein-losing enteropathy (PLE), is a dilatation of lymphatic vessels within the gastrointestinal tract. Dietary fat restriction previously has been proposed as an effective treatment for dogs with PLE, but limited objective clinical data are available on the efficacy of this treatment. To investigate the clinical efficacy of dietary fat restriction in dogs with IL that were unresponsive to prednisolone treatment or showed relapse of clinical signs and hypoalbuminemia when the prednisolone dosage was decreased. Twenty-four dogs with IL. Retrospective study. Body weight, clinical activity score, and hematologic and biochemical variables were compared before and 1 and 2 months after treatment. Furthermore, the data were compared between the group fed only an ultra low-fat (ULF) diet and the group fed ULF and a low-fat (LF) diet. Nineteen of 24 (79%) dogs responded satisfactorily to dietary fat restriction, and the prednisolone dosage could be decreased. Clinical activity score was significantly decreased after dietary treatment compared with before treatment. In addition, albumin (ALB), total protein (TP), and blood urea nitrogen (BUN) concentration were significantly increased after dietary fat restriction. At 2 months posttreatment, the ALB concentrations in the ULF group were significantly higher than that of the ULF + LF group. Dietary fat restriction appears to be an effective treatment in dogs with IL that are unresponsive to prednisolone treatment or that have recurrent clinical signs and hypoalbuminemia when the dosage of prednisolone is decreased. © 2014 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  15. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    PubMed

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  16. Protein restriction does not affect body temperature pattern in female mice.

    PubMed

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  17. A novel dietary restriction method for group-housed rats: weight gain and clinical chemistry characterization.

    PubMed

    Kasanen, I H E; Inhilä, K J; Nevalainen, J I; Väisänen, S B; Mertanen, A M O; Mering, S M; Nevalainen, T O

    2009-04-01

    Laboratory rodents are usually fed ad libitum. Moderate dietary restriction decreases mortality and morbidity compared with ad libitum feeding. There are, however, problems in achieving dietary restriction. Traditional methods of restricted feeding may interfere with the diurnal rhythms of the animals and are not compatible with group-housing of rodents. We have invented a novel method, the diet board, for restricting the feed intake of laboratory rats. The use of the diet board moderately decreased weight gain of rats when compared with ad libitum-fed animals. The diet board retarded skeletal growth only minimally, whereas major differences were found in body fat depositions. Serum free fatty acid, triglyceride and cholesterol values were lower in diet-restricted rats, while the opposite was true for serum creatine kinase. There were no differences in total protein, albumin or alanine aminotransferase. Moreover, differences in interindividual variances in parameters were not detected between the groups; hence this study could not combine the diet board with reduction potential. The diet board provides mild to moderate dietary restriction for group-housed rats and is unlikely to interfere with the diurnal eating rhythm. The diet board can also be seen as a cage furniture item, dividing the open cage space and increasing the structural complexity of the environment. In conclusion, the diet board appears to possess refinement potential when compared with traditional methods of dietary restriction.

  18. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    PubMed

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new

  19. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    PubMed

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    PubMed

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  1. Self-Reported Dietary Restrictions and Dietary Patterns in Polish Girls: A Short Research Report (GEBaHealth Study)

    PubMed Central

    Galinski, Grzegorz; Lonnie, Marta; Kowalkowska, Joanna; Wadolowska, Lidia; Czarnocinska, Jolanta; Jezewska-Zychowicz, Marzena; Babicz-Zielinska, Ewa

    2016-01-01

    Dietary restraint is a commonly reported practice observed among young females. The practice remains controversial and can be interpreted as a beneficial self-regulating behavior or the opposite, an eating disorder that may have a detrimental effect on health. The aim of this short report was to investigate if dietary restrictions are associated with dietary patterns in a representative sample of Polish girls. Analyses were carried out on data from the Girls’ Eating Behavior and Health (GEBaHealth) study. The sample included 1107 girls, ranging in age from 13 to 21 years old. Restrictions regarding food quantities and selected food groups were assessed using a standardized interview. Dietary patterns were identified with Principal Component Analysis (PCA), based on dietary data collected with Food Frequency Questionnaires (FFQs). Logistic regression analysis was used to study the associations between self-reported restrictions and each dietary pattern. In the total sample, 30.5% of girls reported following some food restrictions. The most common restrictions regarded consumption of sugar and/or sweets (23.7%), high-fat foods (22.4%), and fats (21.3%). Girls who declared following any restrictions, restrictions in food quantity and restrictions in the consumption of sugar and/or sweets, high-fat foods, fats, cereals and/or bread and/or potatoes were more likely to adhere to the “fruit and vegetables” (considered pro-healthy) dietary pattern (adjusted odds ratios (ORs): 1.55, 95% CI: 1.14–2.12; 1.61, 95% CI: 1.17–2.21; 1.81, 95% CI: 1.30–2.52; 1.46, 95% CI: 1.04–2.06; 1.96, 95% CI: 1.38–2.80 and 3.25, 95% CI: 1.97–5.37, respectively), and less likely to adhere to the “fast foods and sweets” (unhealthy) and “traditional Polish” (rather unhealthy) patterns, compared to girls who declared no restrictions. Declared restrictions in the consumption of foods high in sugar, fat, and starch were observed in girls in the “fruit and vegetables

  2. Self-Reported Dietary Restrictions and Dietary Patterns in Polish Girls: A Short Research Report (GEBaHealth Study).

    PubMed

    Galinski, Grzegorz; Lonnie, Marta; Kowalkowska, Joanna; Wadolowska, Lidia; Czarnocinska, Jolanta; Jezewska-Zychowicz, Marzena; Babicz-Zielinska, Ewa

    2016-12-19

    Dietary restraint is a commonly reported practice observed among young females. The practice remains controversial and can be interpreted as a beneficial self-regulating behavior or the opposite, an eating disorder that may have a detrimental effect on health. The aim of this short report was to investigate if dietary restrictions are associated with dietary patterns in a representative sample of Polish girls. Analyses were carried out on data from the Girls' Eating Behavior and Health (GEBaHealth) study. The sample included 1107 girls, ranging in age from 13 to 21 years old. Restrictions regarding food quantities and selected food groups were assessed using a standardized interview. Dietary patterns were identified with Principal Component Analysis (PCA), based on dietary data collected with Food Frequency Questionnaires (FFQs). Logistic regression analysis was used to study the associations between self-reported restrictions and each dietary pattern. In the total sample, 30.5% of girls reported following some food restrictions. The most common restrictions regarded consumption of sugar and/or sweets (23.7%), high-fat foods (22.4%), and fats (21.3%). Girls who declared following any restrictions, restrictions in food quantity and restrictions in the consumption of sugar and/or sweets, high-fat foods, fats, cereals and/or bread and/or potatoes were more likely to adhere to the "fruit and vegetables" (considered pro-healthy) dietary pattern (adjusted odds ratios (ORs): 1.55, 95% CI: 1.14-2.12; 1.61, 95% CI: 1.17-2.21; 1.81, 95% CI: 1.30-2.52; 1.46, 95% CI: 1.04-2.06; 1.96, 95% CI: 1.38-2.80 and 3.25, 95% CI: 1.97-5.37, respectively), and less likely to adhere to the "fast foods and sweets" (unhealthy) and "traditional Polish" (rather unhealthy) patterns, compared to girls who declared no restrictions. Declared restrictions in the consumption of foods high in sugar, fat, and starch were observed in girls in the "fruit and vegetables" pattern and were uncommon in

  3. Association of dietary iron restriction with left ventricular remodeling after myocardial infarction in mice.

    PubMed

    Eguchi, Akiyo; Naito, Yoshiro; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Sawada, Hisashi; Nishimura, Koichi; Oboshi, Makiko; Fujii, Kenichi; Mano, Toshiaki; Masuyama, Tohru; Hirotani, Shinichi

    2016-02-01

    Several epidemiologic studies have reported that body iron status and dietary iron intake are related to an increased risk of acute myocardial infarction (MI). However, it is completely unknown whether dietary iron reduction impacts the development of left ventricular (LV) remodeling after MI. Here, we investigate the effect of dietary iron restriction on the development of LV remodeling after MI in an experimental model. MI was induced in C57BL/6 J mice (9-11 weeks of age) by the permanent ligation of the left anterior descending coronary artery (LAD). At 2 weeks after LAD ligation, mice were randomly divided into two groups and were given a normal diet or an iron-restricted diet for 4 weeks. Sham operation without LAD ligation was also performed as controls. MI mice exhibited increased LV dilatation and impaired LV systolic function that was associated with cardiomyocyte hypertrophy and interstitial fibrosis in the remote area, as compared with the controls at 6 weeks after MI. In contrast, dietary iron restriction attenuated LV dilatation and impaired LV systolic function coupled to cardiomyocyte hypertrophy and interstitial fibrosis in the remote area. Importantly, cardiac expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1 was increased in the remote area of MI mice compared with the controls. Dietary iron restriction attenuated the development of LV remodeling after MI in mice. Cellular iron transport might play a role in the pathophysiological mechanism of LV remodeling after MI.

  4. Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans.

    PubMed

    Park, Sang-Kyu; Link, Christopher D; Johnson, Thomas E

    2010-02-01

    Recent studies have shown that the rate of aging can be modulated by diverse interventions. Dietary restriction is the most widely used intervention to promote longevity; however, the mechanisms underlying the effect of dietary restriction remain elusive. In a previous study, we identified two novel genes, nlp-7 and cup-4, required for normal longevity in Caenorhabditis elegans. nlp-7 is one of a set of neuropeptide-like protein genes; cup-4 encodes an ion-channel involved in endocytosis by coelomocytes. Here, we assess whether nlp-7 and cup-4 mediate longevity increases by dietary restriction. RNAi of nlp-7 or cup-4 significantly reduces the life span of the eat-2 mutant, a genetic model of dietary restriction, but has no effect on the life span of long-lived mutants resulting from reduced insulin/IGF-1 signaling or dysfunction of the mitochondrial electron transport chain. The life-span extension observed in wild-type N2 worms by dietary restriction using bacterial dilution is prevented significantly in nlp-7 and cup-4 mutants. RNAi knockdown of genes encoding candidate receptors of NLP-7 and genes involved in endocytosis by coelomocytes also specifically shorten the life span of the eat-2 mutant. We conclude that two novel pathways, NLP-7 signaling and endocytosis by coelomocytes, are required for life extension under dietary restriction in C. elegans.

  5. Effect of moderate dietary restriction on visceral organ weight, hepatic oxygen consumption, and metabolic proteins associated with energy balance in mature pregnant beef cows.

    PubMed

    Wood, K M; Awda, B J; Fitzsimmons, C; Miller, S P; McBride, B W; Swanson, K C

    2013-09-01

    Twenty-two nonlactating multiparous pregnant beef cows (639 ± 68 kg) were used to investigate the effect of dietary restriction on the abundance of selected proteins regulating cellular energy metabolism. Cows were fed at either 85% (n = 11; LOW) or 140% (n = 11; HIGH) of total NE requirements. The diet consisted of a haylage-based total mixed ration containing 20% wheat straw. Cows were slaughtered by block (predicted date of parturition), beginning 83 d after the initiation of dietary treatments and every week thereafter for 6 wk, such that each block was slaughtered at approximately 250 d of gestation. Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papilli (ventral sac), pancreas, and small intestinal muscosa were collected at slaughter and snap frozen in liquid N2. Western blots were conducted to quantify abundance of proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1 α (PGC-1α), and 5´-adenosine monophosphate-activated protein kinase (AMPK) and the activated form phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Statistical analysis was conducted using Proc Mixed in SAS and included the fixed effects of dietary treatment, cow age, block, and the random effect of pen. Dietary treatments resulted in cows fed HIGH having greater (P ≤ 0.04) ADG and final BW than cows fed LOW. Abundance of ubiquitin in muscle was greater (P = 0.009) in cows fed LOW, and PCG-1 α in liver was greater (P = 0.03) in cows fed HIGH. Hepatic O2 consumption was greater in HIGH (P ≤ 0.04). Feed intake can influence the abundance of important metabolic proteins and suggest that protein degradation may increase in muscle from moderately nutrient restricted cows and that energy metabolism in liver increases in cows fed above NE requirements.

  6. Eclampsia despite strict dietary sodium restriction.

    PubMed

    Delemarre, F M; Steegers, E A; Berendes, J N; de Jong PA

    2001-01-01

    The classic indication for prescribing dietary sodium restriction in pregnancy has been the prevention of eclampsia. We describe a case of intrapartum eclampsia in a 24-year-old nulliparous woman. A strongly sodium restricted diet was prescribed because of pre-eclampsia. Compliance to the diet was checked with 24-hour urinary sodium excretion. This report, describing the first case of eclampsia despite neglectable urinary sodium excretion, adds to the view that sodium restriction in pregnancy is obsolete. Copyright 2001 S. Karger AG, Basel.

  7. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.

    PubMed

    Robinson, Jason L; McBreairty, Laura E; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-09-01

    Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source.

    PubMed

    Mangravite, Lara M; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S; Bergeron, Nathalie; Krauss, Ronald M

    2011-12-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.

  9. Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast.

    PubMed

    Campos, Sergio E; Avelar-Rivas, J Abraham; Garay, Erika; Juárez-Reyes, Alejandro; DeLuna, Alexander

    2018-06-01

    Dietary restriction is arguably the most promising nonpharmacological intervention to extend human life and health span. Yet, only few genetic regulators mediating the cellular response to dietary restriction are known, and the question remains which other regulatory factors are involved. Here, we measured at the genomewide level the chronological lifespan of Saccharomyces cerevisiae gene deletion strains under two nitrogen source regimens, glutamine (nonrestricted) and γ-aminobutyric acid (restricted). We identified 473 mutants with diminished or enhanced extension of lifespan. Functional analysis of such dietary restriction genes revealed novel processes underlying longevity by the nitrogen source quality, which also allowed us to generate a prioritized catalogue of transcription factors orchestrating the dietary restriction response. Importantly, deletions of transcription factors Msn2, Msn4, Snf6, Tec1, and Ste12 resulted in diminished lifespan extension and defects in cell cycle arrest upon nutrient starvation, suggesting that regulation of the cell cycle is a major mechanism of chronological longevity. We further show that STE12 overexpression is enough to extend lifespan, linking the pheromone/invasive growth pathway with cell survivorship. Our global picture of the genetic players of longevity by dietary restriction highlights intricate regulatory cross-talks in aging cells. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes.

    PubMed

    Laeger, Thomas; Castaño-Martinez, Teresa; Werno, Martin W; Japtok, Lukasz; Baumeier, Christian; Jonas, Wenke; Kleuser, Burkhard; Schürmann, Annette

    2018-06-01

    Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.

  11. Dietary protein and skeletal health: a review of recent human research.

    PubMed

    Kerstetter, Jane E; Kenny, Anne M; Insogna, Karl L

    2011-02-01

    Both dietary calcium and vitamin D are undoubtedly beneficial to skeletal health. In contrast, despite intense investigation, the impact of dietary protein on calcium metabolism and bone balance remains controversial. A widely held view is that high intakes of animal protein result in increased bone resorption, reduced bone mineral density, and increased fractures because of its ability to generate a high fixed metabolic acid load. The purpose of this review is to present the recent or most important epidemiological and clinical trials in humans that evaluated dietary protein's impact on skeletal health. Many epidemiological studies have found a significant positive relationship between protein intake and bone mass or density. Similarly, isotopic studies in humans have also demonstrated greater calcium retention and absorption by individuals consuming high-protein diets, particularly when the calcium content of the diet was limiting. High-protein intake may positively impact bone health by several mechanisms, including calcium absorption, stimulation of the secretion of insulin-like growth factor-1, and enhancement of lean body mass. The concept that an increase in dietary protein induces a large enough shift in systemic pH to increase osteoclastic bone resorption seems untenable. Recent epidemiological, isotopic and meta-analysis studies suggest that dietary protein works synergistically with calcium to improve calcium retention and bone metabolism. The recommendation to intentionally restrict dietary protein to improve bone health is unwarranted, and potentially even dangerous to those individuals who consume inadequate protein.

  12. Nutrition knowledge, attitudes and dietary restriction behaviour of Taiwanese elderly.

    PubMed

    Lin, Wei; Lee, Ya-Wen

    2005-01-01

    The purpose of this study is to understand knowledge about and general attitudes towards nutrition, dietary restriction attitudes, and dietary restriction behavior in the Taiwanese elderly, and the relationship of these various components to each other. Data from the Elderly Nutrition and Health Survey in Taiwan (1999-2000) were used for analysis and included 1937 elderly persons aged over 65. The results indicated that the elderly had poor nutrition knowledge, especially about the relationship between nutrition and disease. Elderly nutrition attitudes were fair; they tended to disagree with misconceptions about "healthy" or functional foods and also had quite positive general eating attitudes. However, the Taiwanese elderly hold quite strong attitudes influenced by Chinese traditional or food-texture-related dietary restrictions. Elderly people frequently avoid eating foods considered unhealthy by modern medical science (e.g. high fat/cholesterol foods) as well as foods forbidden by Chinese traditional medicine (e.g. "heating" foods, "cooling" foods). Most of the elderly regularly eat three meals a day, however, they seldom pay attention to dietary and nutrition information. The most important sources of nutrition information are offspring or family members, TV, and medical practitioners. In general, elderly men with a higher educational level and living in less remote areas had better nutrition knowledge, held more positive nutrition attitudes, and kept to dietary restrictions less frequently. Elderly people's nutrition knowledge was positively related to their health-care attitudes, general eating attitudes, high- fat or high-cholesterol food restriction behavior, fermented or pickled food restriction behavior, attention to nutrition information, and regularity of meals. However, nutrition knowledge was inversely related to Chinese traditional or food-texture-related dietary restriction behaviors. The results of this study suggest that education of elderly

  13. Protein-restricted diets plus keto/amino acids--a valid therapeutic approach for chronic kidney disease patients.

    PubMed

    Aparicio, Michel; Bellizzi, Vincenzo; Chauveau, Philippe; Cupisti, Adamasco; Ecder, Tevfik; Fouque, Denis; Garneata, Liliana; Lin, Shanyan; Mitch, William E; Teplan, Vladimír; Zakar, Gábor; Yu, Xueqing

    2012-03-01

    Chronic kidney disease (CKD) is increasingly common, and there is an increasing awareness that every strategy should be used to avoid complications of CKD. Restriction of dietary protein intake has been a relevant part of the management of CKD for more than 100 years, but even today, the principal goal of protein-restricted regimens is to decrease the accumulation of nitrogen waste products, hydrogen ions, phosphates, and inorganic ions while maintaining an adequate nutritional status to avoid secondary problems such as metabolic acidosis, bone disease, and insulin resistance, as well as proteinuria and deterioration of renal function. This supplement focuses on recent experimental and clinical findings related to an optimized dietary management of predialysis, dialysis, and transplanted patients as an important aspect of patient care. Nutritional treatment strategies are linked toward ameliorating metabolic and endocrine disturbances, improving/maintaining nutritional status, as well as delaying the renal replacement initiation and improving outcomes in CKD patients. A final consensus states that dietary manipulations should be considered as one of the main approaches in the management program of CKD patients and that a reasonable number of patients with moderate or severe CKD benefit from dietary protein/phosphorus restriction. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Null effect of dietary restriction on prostate carcinogenesis in the Wistar-Unilever rat.

    PubMed

    McCormick, David L; Johnson, William D; Haryu, Todd M; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2007-01-01

    Chronic dietary restriction inhibits carcinogenesis in several sites in laboratory animals. To determine the effects of dietary restriction on prostate carcinogenesis, prostate cancers were induced in male Wistar-Unilever rats by a sequential regimen of cyproterone acetate (50 mg/day; 21 days); testosterone propionate (100 mg/kg/day; 3 days); N-methyl-N-nitrosourea [MNU; 30 mg/kg; single dose]; and testosterone (subcutaneous implants of 2 pellets containing 40 mg each). Dietary restriction (0% [ad libitum control], 15%, or 30%) was initiated 2 wk post-MNU, and continued until study termination at 12 mo. Dietary restriction induced a rapid suppression of body weight gain but conferred no protection against prostate carcinogenesis. 74% of carcinogen-treated ad libitum controls developed accessory sex gland cancers, versus cancer incidences of 64% and 72% in groups restricted by 15% and 30%, respectively. Similarly, 44% of dietary controls developed cancers limited to the dorsolateral/prostate, versus incidences of 45% and 53% in groups restricted by 15% and 30%. The results of the present study do not support the hypothesis that prostate carcinogenesis can be prevented by reducing caloric intake. Reducing mean body weight by up to 25% through chronic dietary restriction has no effect on the induction of prostate cancers in the Wistar-Unilever rat model.

  15. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs.

    PubMed

    Li, Yinghui; Li, Fengna; Wu, Li; Wei, Hongkui; Liu, Yingying; Li, Tiejun; Tan, Bie; Kong, Xiangfeng; Yao, Kang; Chen, Shuai; Wu, Fei; Duan, Yehui; Yin, Yulong

    2016-01-01

    To investigate the effects of dietary crude protein (CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs (62.30 ± 0.88 kg) were allotted to 3 groups and fed with the recommended adequate protein (AP, 16 % CP) diet, moderately restricted protein (MP, 13 % CP) diet and low protein (LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle (LDM), psoas major muscle (PMM) and biceps femoris muscle (BFM) were collected and analyzed. Results showed that growing-finishing pigs fed the MP or AP diet improved (P < 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase (P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated (P < 0.05) muscular mRNA expression of all the selected key genes, except that myosin heavy chain (MyHC) IIb, MyHC IIx, while mRNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1 (mTORC1) pathway was stimulated (P < 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet. The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and mTORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.

  16. Dietary protein for athletes: from requirements to metabolic advantage.

    PubMed

    Phillips, Stuart M

    2006-12-01

    The Dietary Reference Intakes (DRI) specify that the requirement for dietary protein for all individuals aged 19 y and older is 0.8 g protein.kg-1.d-1. This Recommended Dietary Allowance (RDA) is cited as adequate for all persons. This amount of protein would be considered by many athletes as the amount to be consumed in a single meal, particularly for strength-training athletes. There does exist, however, published data to suggest that individuals habitually performing resistance and (or) endurance exercise require more protein than their sedentary counterparts. The RDA values for protein are clearly set at "...the level of protein judged to be adequate... to meet the known nutrient needs for practically all healthy people...". The RDA covers protein losses with margins for inter-individual variability and protein quality; the notion of consumption of excess protein above these levels to cover increased needs owing to physical activity is not, however, given any credence. Notwithstanding, diet programs (i.e., energy restriction) espousing the virtue of high protein enjoy continued popularity. A number of well-controlled studies are now published in which "higher" protein diets have been shown to be effective in promoting weight reduction, particularly fat loss. The term "higher" refers to a diet that has people consuming more than the general populations' average intake of approximately 15% of energy from protein, e.g., as much as 30%-35%, which is within an Acceptable Macronutrient Distribution Range (AMDR) as laid out in the DRIs. Of relevance to athletes and those in clinical practice is the fact that higher protein diets have quite consistently been shown to result in greater weight loss, greater fat loss, and preservation of lean mass as compared with "lower" protein diets. A framework for understanding dietary protein intake within the context of weight loss and athletic performance is laid out.

  17. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity

    PubMed Central

    Hall, Kevin D.; Bemis, Thomas; Brychta, Robert; Chen, Kong Y.; Courville, Amber; Crayner, Emma J.; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D.; Miller, Bernard V.; Prado, Carla M.; Siervo, Mario; Skarulis, Monica C.; Walter, Mary; Walter, Peter J.; Yannai, Laura

    2015-01-01

    Summary Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5 day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53±6 g/d of body fat, fat oxidation was unchanged by fat restriction leading to 89±6 g/d of fat loss and was significantly greater than carbohydrate restriction (p=0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with isocaloric diets varying in carbohydrate and fat. PMID:26278052

  18. Dietary and fluid restriction perceptions of patients undergoing haemodialysis: an exploratory study.

    PubMed

    Hong, Leting Isabella; Wang, Wenru; Chan, Ee Yuee; Mohamed, Fatimah; Chen, Hui-Chen

    2017-11-01

    To explore the perspectives of patients undergoing haemodialysis in Singapore on an imposed dietary and fluid restriction regime. Adherence to prescribed dietary and fluid restriction constructs the fundamental basis of self-care with improved morbidity and mortality. However, most patients have struggled to adhere in this aspect. Existing studies have presented limited understanding on the facilitators and barriers of dietary and fluid adherence among haemodialysis patients. An exploratory qualitative study. A purposive sample of 14 patients undergoing haemodialysis was recruited from a renal unit of a tertiary hospital in Singapore. Data were collected through face-to-face individual interviews and subsequently analysed by thematic analysis. Four themes emerged: (1) Pessimism, (2) Existing struggles, (3) Perceived quality of support, and (4) Immensity of self-discipline. The imposed dietary and fluid restriction is a constant struggle and a cause of suffering among haemodialysis patients in Singapore. Nonetheless, they are generally submissive to their fluid restrictions for the sake of survival or to meet the expectations of their loved ones. The imposed dietary restrictions are generally neglected. The findings from this study can provide useful information in reviewing existing educational strategies, policies and nursing care. This is especially important because most patients exhibit high reliance on healthcare professionals. © 2017 John Wiley & Sons Ltd.

  19. Dietary sodium restriction in the prophylaxis of hypertensive disorders of pregnancy: effects on the intake of other nutrients.

    PubMed

    van Buul, B J; Steegers, E A; Jongsma, H W; Rijpkema, A L; Eskes, T K; Thomas, C M; Baadenhuysen, H; Hein, P R

    1995-07-01

    Dietary sodium restriction is used in the Netherlands in the prophylaxis of preeclampsia. To study the effects of long-term sodium restriction on the intake of other nutrients and the outcome of pregnancy, 68 healthy nulliparous pregnant women were randomly assigned to either a low-sodium diet (20 mmol/24 h) or an unrestricted diet. The diet was consumed between week 14 of gestation and delivery. The dietary intakes of energy, fat, protein, carbohydrate, sodium, potassium, and calcium were estimated with the dietary-history technique. A low-sodium diet reduced the intake of protein (by approximately 15 g/24 h), fat (by 20 g/24 h), and calcium (by 350 mg/24 h) and tended to decrease the energy intake (by approximately 0.7 MJ/24 h). The intakes of carbohydrate and potassium did not differ between the groups. The maternal weight gain was less in the low-sodium group (6.0 +/- 3.7 compared with 11.7 +/- 4.7 kg). Mean birth weight was not significantly different (3.2 +/- 0.5 compared with 3.4 +/- 0.5 kg).

  20. MTOR signaling and ubiquitin-proteosome gene expression in the preservation of fat free mass following high protein, calorie restricted weight loss

    PubMed Central

    2012-01-01

    Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle) mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy) in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP) and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1. PMID:22974011

  1. Biochemical responses to dietary α-linolenic acid restriction proceed differently among brain regions in mice.

    PubMed

    Miyazawa, Daisuke; Yasui, Yuko; Yamada, Kazuyo; Ohara, Naoki; Okuyama, Harumi

    2011-08-01

    Previously, we noted that the dietary restriction of α-linolenic acid (ALA, n-3) for 4 weeks after weaning brought about significant decreases in the BDNF content and p38 MAPK activity in the striatum of mice, but not in the other regions of the brain, compared with an ALA- and linoleic acid (LNA, n-6)-adequate diet. In this study, we examined whether a prolonged dietary manipulation induces biochemical changes in other regions of the brain as well. Mice were fed a safflower oil (SAF) diet (ALA-restricted, LNA-adequate) or a perilla oil (PER) diet (containing adequate amounts of ALA and LNA) for 8 weeks from weaning. The docosahexaenoic acid (DHA, 22:6n-3) contents and p38 MAPK activities in the cerebral cortex, striatum and hippocampus were significantly lower in the SAF group. The BDNF contents and protein kinase C (PKC) activities in the cerebral cortex as well as in the striatum, but not in the hippocampus, were significantly lower in the SAF group. These data indicate that the biochemical changes induced by the dietary restriction of ALA have a time lag in the striatum and cortex, suggesting that the signal is transmitted through decreased p38 MAPK activity and BDNF content and ultimately decreased PKC activity.

  2. Dietary protein intake and chronic kidney disease.

    PubMed

    Ko, Gang Jee; Obi, Yoshitsugu; Tortorici, Amanda R; Kalantar-Zadeh, Kamyar

    2017-01-01

    High-protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low-protein diet (LPD) of 0.6-0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD in the CKD management. Actual dietary protein consumption in CKD patients remains substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the 'Modification of Diet in Renal Disease' (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their ketoanalogs may be used for incremental transition to dialysis especially on nondialysis days. The LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counseling and surveillance to optimize management of CKD, to assure adequate protein and energy intake, and to avoid or correct protein-energy wasting.

  3. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity.

    PubMed

    Hall, Kevin D; Bemis, Thomas; Brychta, Robert; Chen, Kong Y; Courville, Amber; Crayner, Emma J; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D; Miller, Bernard V; Prado, Carla M; Siervo, Mario; Skarulis, Monica C; Walter, Mary; Walter, Peter J; Yannai, Laura

    2015-09-01

    Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5-day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53 ± 6 g/day of body fat, fat oxidation was unchanged by fat restriction, leading to 89 ± 6 g/day of fat loss, and was significantly greater than carbohydrate restriction (p = 0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with prolonged isocaloric diets varying in carbohydrate and fat. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dietary protein for athletes: from requirements to optimum adaptation.

    PubMed

    Phillips, Stuart M; Van Loon, Luc J C

    2011-01-01

    Opinion on the role of protein in promoting athletic performance is divided along the lines of how much aerobic-based versus resistance-based activity the athlete undertakes. Athletes seeking to gain muscle mass and strength are likely to consume higher amounts of dietary protein than their endurance-trained counterparts. The main belief behind the large quantities of dietary protein consumption in resistance-trained athletes is that it is needed to generate more muscle protein. Athletes may require protein for more than just alleviation of the risk for deficiency, inherent in the dietary guidelines, but also to aid in an elevated level of functioning and possibly adaptation to the exercise stimulus. It does appear, however, that there is a good rationale for recommending to athletes protein intakes that are higher than the RDA. Our consensus opinion is that leucine, and possibly the other branched-chain amino acids, occupy a position of prominence in stimulating muscle protein synthesis; that protein intakes in the range of 1.3-1.8 g · kg(-1) · day(-1) consumed as 3-4 isonitrogenous meals will maximize muscle protein synthesis. These recommendations may also be dependent on training status: experienced athletes would require less, while more protein should be consumed during periods of high frequency/intensity training. Elevated protein consumption, as high as 1.8-2.0 g · kg(-1) · day(-1) depending on the caloric deficit, may be advantageous in preventing lean mass losses during periods of energy restriction to promote fat loss.

  5. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome.

    PubMed

    Yao, Limei; Wei, Jingjing; Shi, Si; Guo, Kunbin; Wang, Xiangyu; Wang, Qi; Chen, Dingsheng; Li, Weirong

    2017-02-28

    Modified Lingguizhugan Decoction (MLD) came from famous Chinese medicine Linggui Zhugan Decoction. The MLD is used for the treatment of metabolic syndrome in the clinical setting. Our study focuses on the comprehensive treatment of MLD incorporated with dietary restriction and exercise in a rat model of the metabolic syndrome (MS). Rats were divided into five groups: control group (Cont), high-fat diet group (HFD), high-fat diet incorporated with dietary restriction group (HFD-DR), exercise incorporated with dietary restriction group (HFD-DR-Ex) and MLD incorporated with dietary restriction and exercise group (HFD-DR-Ex-MLD). Treatments were conducted for 1 week after feeding high-fat diet for 12 weeks. The effects of treatments on high fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance in rats of MS were examined. In addition, the tumor necrosis factor-α (TNF-α), leptin and protein kinase B (PKB) in rats serum and liver were also examined by enzyme-linked immunosorbent assay (ELISA). After a week's intervention by dietary restriction, dietary restriction incorporated with exercise or MLD, compared with HFD rats, the relative weight of liver and fat, levels of triglyceride, total cholesterol, low-density lipoprotein, free fatty acid, aspartate aminotransferase, glutamic-pyruvic transaminase and alkaline phosphatase, insulin, were significantly decreased (p < 0.05 or 0.01). This treatment also inhibited abnormal increases of TNF-α, leptin and PKB in serum and liver. MLD incorporated with dietary restriction and exercise treatment exhibit effects in alleviating high-fat diet-induced obesity, hyperglycemia, hyperlipidemia, hypertension, hepatic injury and insulin resistance, which are possibly due to the down-regulation of TNF-α, leptin and PKB.

  6. Sulfate production depicts fed-state adaptation to protein restriction in humans.

    PubMed

    Hamadeh, M J; Schiffrin, A; Hoffer, L J

    2001-08-01

    One feature of the adaptation to dietary protein restriction is reduced urea production over the hours after consumption of a test meal of fixed composition. This adaptation is impaired in conventionally treated insulin-dependent diabetes mellitus (Hoffer LJ, Taveroff A, and Schiffrin A. Am J Physiol Endocrinol Metab 272: E59--E67, 1997). We have now tested the response to a test meal containing less protein and included as a main outcome variable the production of sulfate, a specific indicator of sulfur amino acid catabolism. Six normal men consumed a mixed test meal containing 0.25 g protein/kg and 10 kcal/kg while adapted to high (1.5 g x kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They followed the identical protocol twice. Six subjects with insulin-dependent diabetes consumed the test meal while adapted to their customary high-protein diet. Adaptation to protein restriction reproducibly reduced 9-h cumulative postmeal urea N and S production by 22--29% and 49--52%, respectively (both P < 0.05). Similar results were obtained for a postmeal collection period of 6 h. The response of the diabetic subjects was normal. We conclude that reductions in postmeal urea and sulfate production after protein restriction are reproducible and are evident using a postmeal collection period as short as 6 h. Sulfate production effectively depicts fed-state adaptation to protein restriction.

  7. Dietary Methionine Restriction Alleviates Hyperglycemia in Pigs with Intrauterine Growth Restriction by Enhancing Hepatic Protein Kinase B Signaling and Glycogen Synthesis.

    PubMed

    Ying, Zhixiong; Zhang, Hao; Su, Weipeng; Zhou, Le; Wang, Fei; Li, Yue; Zhang, Lili; Wang, Tian

    2017-10-01

    Background: Individuals with intrauterine growth restriction (IUGR) are prone to developing type 2 diabetes mellitus (T2DM). Dietary methionine restriction (MR) improves insulin sensitivity and glucose homeostasis in individuals with normal birth weight (NBW). Objective: This study investigated the effects of MR on plasma glucose concentration and hepatic and muscle glucose metabolism in pigs with IUGR. Methods: Thirty female NBW and 60 same-sex spontaneous IUGR piglets (Landrace × Yorkshire) were selected. After weaning (day 21), the piglets were fed diets with adequate methionine (NBW-CON and IUGR-CON) or 30% less methionine (IUGR-MR) ( n = 6). At day 180, 1 pig with a body weight near the mean of each replication was selected for biochemical analysis. Results: The IUGR-CON group showed 41.6%, 68.6%, and 67.1% higher plasma glucose concentration, hepatic phosphoenolpyruvate carboxykinase activity, and glucose-6-phosphatase activity, respectively, than the NBW-CON group ( P < 0.05). Muscle glycogen content and glycogen synthase activity were 36.9% and 38.8% lower, respectively, in the IUGR-CON than the NBW-CON group ( P < 0.05), respectively, and there was decreased hepatic and muscle protein kinase B phosphorylation in the IUGR-CON group ( P < 0.05). Compared with the IUGR-CON pigs, the IUGR-MR pigs had 28.7% lower plasma glucose concentrations ( P < 0.05), which were similar to those of the NBW-CON pigs ( P ≥ 0.05). The hepatic glycogen content and glycogen synthase activity of the IUGR-MR pigs were 62.9% and 50.8% higher than those of the IUGR-CON pigs ( P < 0.05) and 53.5% and 84.3% higher than the NBW-CON pigs ( P < 0.05), respectively. The IUGR-MR pigs' hepatic and muscle protein kinase B phosphorylation was higher than that of the IUGR-CON pigs ( P < 0.05) and similar to that of the NBW-CON pigs ( P ≥ 0.05). Conclusion: MR attenuates hyperglycemia in IUGR pigs by enhancing hepatic protein kinase B signaling and glycogen synthesis, implying a potential

  8. Acute Dietary Restriction Acts via TOR, PP2A, and Myc Signaling to Boost Innate Immunity in Drosophila.

    PubMed

    Lee, Jung-Eun; Rayyan, Morsi; Liao, Allison; Edery, Isaac; Pletcher, Scott D

    2017-07-11

    Dietary restriction promotes health and longevity across taxa through mechanisms that are largely unknown. Here, we show that acute yeast restriction significantly improves the ability of adult female Drosophila melanogaster to resist pathogenic bacterial infections through an immune pathway involving downregulation of target of rapamycin (TOR) signaling, which stabilizes the transcription factor Myc by increasing the steady-state level of its phosphorylated forms through decreased activity of protein phosphatase 2A. Upregulation of Myc through genetic and pharmacological means mimicked the effects of yeast restriction in fully fed flies, identifying Myc as a pro-immune molecule. Short-term dietary or pharmacological interventions that modulate TOR-PP2A-Myc signaling may provide an effective method to enhance immunity in vulnerable human populations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila.

    PubMed

    Romey-Glüsing, Renja; Li, Yang; Hoffmann, Julia; von Frieling, Jakob; Knop, Mirjam; Pfefferkorn, Roxana; Bruchhaus, Iris; Fink, Christine; Roeder, Thomas

    2018-04-01

    Nutritional interventions such as caloric and dietary restriction increase lifespan in various animal models. To identify alternative and less demanding nutritional interventions that extend lifespan, we subjected fruit flies ( Drosophila melanogaster) to weekly nutritional regimens that involved alternating a conventional diet with dietary restriction. Short periods of dietary restriction (up to 2 d) followed by longer periods of a conventional diet yielded minimal increases in lifespan. We found that 3 or more days of contiguous dietary restriction (DR) was necessary to yield a lifespan extension similar to that observed with persistent DR. Female flies were more responsive to these interventions than males. Physiologic changes known to be associated with prolonged DR, such as reduced metabolic rates, showed the same time course as lifespan extension. Moreover, concurrent transcriptional changes indicative of reduced insulin signaling were identified with DR. These physiologic and transcriptional changes were sustained, as they were detectable several days after switching to conventional diets. Taken together, diets with longer periods of DR extended lifespan concurrently with physiologic and transcriptional changes that may underlie this increase in lifespan.-Romey-Glüsing, R., Li, Y., Hoffmann, J., von Frieling, J., Knop, M., Pfefferkorn, R., Bruchhaus, I., Fink, C., Roeder, T. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila.

  10. Dietary Protein Intake and Chronic Kidney Disease

    PubMed Central

    Ko, Gang Jee; Obi, Yoshitsugu; Tortoricci, Amanda R.; Kalantar-Zadeh, Kamyar

    2018-01-01

    Purpose of review High protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low protein diet (LPD) of 0.6–0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD the CKD management. Recent findings Actual dietary protein consumption in CKD patients remain substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the Modification of Diet in Renal Disease (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses including secondary analyses of the MDRD data appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their keto-analogs may be used for incremental transition to dialysis especially in non-dialysis days. An LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. Summary A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counselling and surveillance to optimize management of CKD, to assure adequate protein and energy intake and to avoid or correct protein-energy wasting. PMID:27801685

  11. Dietary sodium restriction: a neglected therapeutic opportunity in chronic kidney disease

    PubMed Central

    Humalda, Jelmer K.; Navis, Gerjan

    2014-01-01

    Purpose of review Restriction of dietary sodium is recommended at a population level as well as for groups at high cardiovascular risk, and chronic kidney disease (CKD). This review addresses recent evidence for the protective effect of dietary sodium restriction in CKD patients specifically. Recent findings Sodium intake in CKD populations is generally high, and often above population average. Recent data demonstrated that moderately lower sodium intake in CKD patients is associated with substantially better long-term outcome of renin–angiotensin–aldosterone system (RAAS)-blockade, in diabetic and nondiabetic CKD, related to better effects of RAAS-blockade on proteinuria, independent of blood pressure. This is in line with better short-term efficacy of RAAS-blockade during moderate sodium restriction in diabetic and nondiabetic CKD. This effect of sodium restriction is likely mediated by its effects on volume status. Sustainable sodium restriction can be achieved by approaches on the basis of behavioral sciences. Summary Moderate restriction of dietary sodium can substantially improve the protective effects of RAAS-blockade in CKD, by specific renal effects apparent from proteinuria reduction. The latter precludes straightforward extrapolation of data from nonrenal populations to CKD. Concerns regarding the adverse effects of a very low sodium intake should not distract from the protective effects of moderate sodium restriction. Prospective studies should assess the efficacy and sustainability of different strategies to target high sodium intake in CKD, along with measures at population level. Video abstract http://links.lww.com/CONH/A14 PMID:25222815

  12. A naturalistic examination of body checking and dietary restriction in women with anorexia nervosa.

    PubMed

    Lavender, Jason M; Wonderlich, Stephen A; Crosby, Ross D; Engel, Scott G; Mitchell, James E; Crow, Scott; Peterson, Carol B; Le Grange, Daniel

    2013-08-01

    Body checking has been conceptualized as a behavioral manifestation of the core overvaluation of eating, shape, and weight concerns underlying eating disorder psychopathology. Cognitive-behavioral theories suggest that body checking behaviors may function to maintain dietary restriction. The current study examined the association between body checking frequency and dietary restriction among women with anorexia nervosa (AN) in the natural environment. Women (N = 118) with full or partial AN completed baseline clinical interviews and a two-week ecological momentary assessment protocol, during which they reported on body checking behaviors (i.e., checking whether one's thighs touch; checking joints/bones for fat) and dietary restriction (i.e., 8 waking hours without eating; consuming less than 1200 calories per day). Average daily body checking frequency was positively associated with baseline eating disorder symptoms and body mass index. Daily body checking frequency was associated with both forms of dietary restriction on the same day, as well as the following day. Results support the theorized association between body checking and overvaluation of shape and weight, and suggest that targeting such behaviors in treatment may have utility in reducing dietary restriction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    PubMed

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  14. Early dietary sodium restriction disrupts the peripheral anatomical development of the gustatory system.

    PubMed

    Krimm, R F; Hill, D L

    1999-05-01

    Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.

  15. Short-Term Preoperative Calorie and Protein Restriction Is Feasible in Healthy Kidney Donors and Morbidly Obese Patients Scheduled for Surgery

    PubMed Central

    Jongbloed, Franny; de Bruin, Ron W. F.; Klaassen, René A.; Beekhof, Piet; van Steeg, Harry; Dor, Frank J. M. F.; van der Harst, Erwin; Dollé, Martijn E. T.; IJzermans, Jan N. M.

    2016-01-01

    Introduction. Surgery-induced oxidative stress increases the risk of perioperative complications and delay in postoperative recovery. In mice, short-term preoperative dietary and protein restriction protect against oxidative stress. We investigated the feasibility of a calorie- and protein-restricted diet in two patient populations. Methods. In this pilot study, 30 live kidney donors and 38 morbidly obese patients awaiting surgery were randomized into three groups: a restricted diet group, who received a synthetic liquid diet with 30% fewer calories and 80% less protein for five consecutive days; a group who received a synthetic diet containing the daily energy requirements (DER); and a control group. Feasibility was assessed using self-reported discomfort, body weight changes, and metabolic parameters in blood samples. Results. Twenty patients (71%) complied with the restricted and 13 (65%) with the DER-diet. In total, 68% of the patients reported minor discomfort that resolved after normal eating resumed. The mean weight loss on the restricted diet was significantly greater (2.4 kg) than in the control group (0 kg, p = 0.002), but not in the DER-diet (1.5 kg). The restricted diet significantly reduced levels of serum urea and plasma prealbumin (PAB) and retinol binding protein (RBP). Conclusions. A short-term preoperative calorie- and protein-restricted diet is feasible in kidney donors and morbidly obese patients. Compliance is high and can be objectively measured via changes in urea, PAB, and RBP levels. These results demonstrate that this diet can be used to study the effects of dietary restriction on surgery-induced oxidative stress in a clinical setting. PMID:27213441

  16. Reduced Insulin/Insulin-like Growth Factor-1 Signaling and Dietary Restriction Inhibit Translation but Preserve Muscle Mass in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.

    Reduced signaling through the C. elegans insulin/IGF1 like tyrosine kinase receptor daf2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LCMS/MS quantitative proteomics we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction as well as in the daf2(e1370) insulin/IGF1 receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that posttranscriptional regulation determines ribosome content. Proteomicsmore » also revealed increased presence of many structural muscle cell components in long-lived worms, which appears to result from prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF16, but not diet-restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf2 specific proteome changes include overexpression of aerobic metabolism enzymes and a general activation of stress responsive and immune defense systems, while increased abundance of many protein subunits of the proteasome core complex is a DR-specific characteristic.« less

  17. Development of injury in a rat model of chronic renal allograft rejection: effect of dietary protein restriction.

    PubMed

    Bombas, A; Stein-Oakley, A N; Baxter, K; Thomson, N M; Jablonski, P

    1999-01-01

    Non-allogeneic factors such as increased nephron "workload" may contribute to chronic renal allograft rejection. Reducing dietary protein from 20% to 8% was tested in a model of chronic rejection: Dark Agouti kidney to Albino Surgery recipient, "tolerised" by previous donor blood transfusions. Survival, weight gain, serum creatinine concentration and creatinine clearance were similar for both groups at all times. Urinary protein was significantly (P < 0.05) lower in the low-protein (LP) group 1 month after transplantation. After 3 and 6 months, both groups demonstrated mild chronic rejection. After 6 months, tubular atrophy was significantly (P < 0.05) less in the LP group and interstitial fibrosis was marginally reduced. Glomerular hypertrophy, glomerular sclerosis, tubular dilatation, leucocyte infiltration, adhesion molecule expression and TGF-beta1 mRNA expression were similarly increased in both groups. Thus, reducing dietary protein to 8% lowered urinary protein, but did not significantly affect the development of chronic rejection in renal allografts beyond affording a degree of protection from tubulointerstitial damage.

  18. Expectancies related to thinness, dietary restriction, eating, and alcohol consumption in women with bulimia nervosa.

    PubMed

    Bruce, Kenneth; Mansour, Sandra; Steiger, Howard

    2009-04-01

    To investigate behavior-outcome expectancies relating to thinness, dietary restriction, eating, and alcohol consumption in women with bulimia nervosa (BN). Women with BN (N = 29), women with BN and a co-morbid lifetime alcohol use disorder (AUD; N = 18), and control women (N = 24), completed interviews and questionnaires assessing eating- and alcohol-related symptoms, as well as questionnaires measuring expectancies relating to thinness, dietary restriction, eating, and alcohol consumption. Compared with the control group, both bulimic groups reported greater positive expectancies relating to thinness, dietary restriction and eating; expectancy endorsements were also predictive of the severity of eating-related symptoms. Compared with the other groups, the bulimic group with comorbid lifetime AUD had elevated positive alcohol-related expectancies, and alcohol expectancy endorsements predicted severity of alcohol-related symptoms. Women with BN endorsed more positive expectancies relating to thinness, dietary restriction, and eating, whereas women with BN and a lifetime comorbid AUD endorsed more positive alcohol expectancies. The results are consistent with expectancy theory in that positive expectancy endorsements were associated with symptom severity in a syndrome-specific manner. Expectancies related to thinness, dietary restriction, eating, and alcohol consumption in women with BN. (c) 2008 by Wiley Periodicals, Inc.

  19. Dietary restriction, cardiac autonomic regulation and stress reactivity in bulimic women.

    PubMed

    Vögele, Claus; Hilbert, Anja; Tuschen-Caffier, Brunna

    2009-08-04

    Recent findings suggest sympathetic inhibition during dietary restriction as opposed to increased sympathetic activity during re-feeding. The present study investigated cardiac autonomic regulation and stress reactivity in relation to biochemical markers of dietary restriction status in women diagnosed with bulimia nervosa. We predicted that bulimic individuals (BN) with a biochemical profile indicating dietary restriction exhibit reduced cardiac sympathetic and/or increased vagal activity. We also hypothesized, that BN with a biochemical profile within a normal range (i.e. currently not dieting or malnourished) would show heart rate variability responses (HRV) and reactivity to mental stress indicating increased sympathetic activation compared with non-eating disordered controls. Seventeen female volunteers diagnosed with bulimia nervosa were categorized according to their serum profile (glucose, pre-albumin, IGF-1, TSH, leptin) into currently fasting versus non-fasting and compared with 16 non-eating disordered controls matched for age and BMI. Spectral components of HRV were calculated on heart rate data from resting and mental stress periods (standardized achievement challenge) using autoregressive analysis. Compared to non-fasting BN and controls, fasting BN showed increased vagal and decreased sympathetic modulation during both resting and recovery periods. Cardiac autonomic regulation was not impaired in response to mental challenge. No differences could be found between non-fasting BN and controls. The results confirm the notion of cardiac sympathetic inhibition and vagal dominance during dietary restriction and suggest the specificity of starvation related biochemical changes for cardiac autonomic control. The results are discussed in terms of the higher incidence in cardiac complications in these patients.

  20. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    PubMed

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  1. Effects of dietary salt restriction on renal progression and interstitial fibrosis in adriamycin nephrosis.

    PubMed

    Park, Joon-Sung; Kim, Sua; Jo, Chor Ho; Oh, Il Hwan; Kim, Gheun-Ho

    2014-01-01

    Although high salt intake is thought to accelerate renal progression in proteinuric kidney disease, it is not known whether strict dietary salt restriction could delay renal inflammation and interstitial fibrosis. Here, we sought to answer this question in a rat model of adriamycin-induced nephrotic syndrome. Adriamycin was administered via the femoral vein in a single bolus (7.5 mg/kg), and the rats were put on a sodium-deficient rodent diet. Rats with intact kidneys were studied for 5 weeks (experiment 1), and uninephrectomized rats were studied for 6 weeks (experiment 2). In experiment 1, restricting salt intake improved renal tubulointerstitial histopathology in adriamycin-treated rats. Immunohistochemical and immunoblot results additionally showed that restricting dietary salt lowered adriamycin-induced expression of osteopontin, collagen III, and fibronectin. In experiment 2, salt restriction improved adriamycin-induced azotemia, although it did not affect proteinuria or blood pressure. Dietary salt restriction also reduced adriamycin-induced infiltration of ED1-positive cells and the upregulated expression of osteopontin and α-SMA. Masson's trichrome and Sirius red staining revealed that salt restriction slowed Adriamycin-induced progression of renal interstitial fibrosis. Finally, qPCR revealed that adriamycin-induced expression of TNF-α, IκB-α, gp91(phox), p47(phox), and p67(phox) mRNA was blocked by salt restriction. Our findings demonstrate that strict dietary salt restriction delays the progress of renal inflammation and fibrosis in proteinuric kidney disease, most likely via relieving the reactive oxygen species-mediated NF-κB activation. © 2014 S. Karger AG, Basel.

  2. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction

    PubMed Central

    Shushimita, Shushimita; van der Pol, Pieter; W.F. de Bruin, Ron; N. M. Ijzermans, Jan; van Kooten, Cees; Dor, Frank J. M. F.

    2015-01-01

    Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10–12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different. PMID:26367533

  3. Fibroblast growth factor 23 and the antiproteinuric response to dietary sodium restriction during renin-angiotensin-aldosterone system blockade.

    PubMed

    Humalda, Jelmer K; Lambers Heerspink, Hiddo J; Kwakernaak, Arjan J; Slagman, Maartje C J; Waanders, Femke; Vervloet, Marc G; Ter Wee, Pieter M; Navis, Gerjan; de Borst, Martin H

    2015-02-01

    Residual proteinuria during renin-angiotensin-aldosterone system (RAAS) blockade is a major renal and cardiovascular risk factor in chronic kidney disease. Dietary sodium restriction potentiates the antiproteinuric effect of RAAS blockade, but residual proteinuria remains in many patients. Previous studies linked high fibroblast growth factor 23 (FGF-23) levels with volume overload; others linked higher serum phosphate levels with impaired RAAS-blockade efficacy. We hypothesized that FGF-23 reduces the capacity of dietary sodium restriction to potentiate RAAS blockade, impairing the antiproteinuric effect. Post hoc analysis of cohort data from a randomized crossover trial with two 6-week study periods comparing proteinuria after a regular-sodium diet with proteinuria after a low-sodium diet, both during background angiotensin-converting enzyme inhibition. 47 nondiabetic patients with CKD with residual proteinuria (median protein excretion, 1.9 [IQR, 0.8-3.1] g/d; mean age, 50±13 [SD] years; creatinine clearance, 69 [IQR, 50-110] mL/min). Plasma carboxy-terminal FGF-23 levels. Difference in residual proteinuria at the end of the regular-sodium versus low-sodium study period. Residual proteinuria during the low-sodium diet period adjusted for proteinuria during the regular-sodium diet period. Higher baseline FGF-23 level was associated with reduced antiproteinuric response to dietary sodium restriction (standardized β=-0.46; P=0.001; model R(2)=0.71). For every 100-RU/mL increase in FGF-23 level, the antiproteinuric response to dietary sodium restriction was reduced by 10.6%. Higher baseline FGF-23 level was a determinant of more residual proteinuria during the low-sodium diet (standardized β=0.27; P=0.003) in linear regression analysis adjusted for baseline proteinuria (model R(2)=0.71). There was no interaction with creatinine clearance (P interaction=0.5). Baseline FGF-23 level did not predict changes in systolic or diastolic blood pressure upon intensified

  4. A mitochondrial mutator plasmid that causes senescence under dietary restricted conditions

    PubMed Central

    Maas, Marc FPM; Hoekstra, Rolf F; Debets, Alfons JM

    2007-01-01

    Background Calorie or dietary restriction extends life span in a wide range of organisms including the filamentous fungus Podospora anserina. Under dietary restricted conditions, P. anserina isolates are several-fold longer lived. This is however not the case in isolates that carry one of the pAL2-1 homologous mitochondrial plasmids. Results We show that the pAL2-1 homologues act as 'insertional mutators' of the mitochondrial genome, which may explain their negative effect on life span extension. Sequencing revealed at least fourteen unique plasmid integration sites, of which twelve were located within the mitochondrial genome and two within copies of the plasmid itself. The plasmids were able to integrate in their entirety, via a non-homologous mode of recombination. Some of the integrated plasmid copies were truncated, which probably resulted from secondary, post-integrative, recombination processes. Integration sites were predominantly located within and surrounding the region containing the mitochondrial rDNA loci. Conclusion We propose a model for the mechanism of integration, based on innate modes of mtDNA recombination, and discuss its possible link with the plasmid's negative effect on dietary restriction mediated life span extension. PMID:17407571

  5. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  6. METABOLIC RESPONSES TO DIETARY LEUCINE RESTRICTION INVOLVE REMODELING OF ADIPOSE TISSUE AND ENHANCED HEPATIC INSULIN SIGNALING

    PubMed Central

    Wanders, Desiree; Stone, Kirsten P.; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W.

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within five to seven days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of FGF21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissue, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and leucine restriction cause opposite effects on tissue lipid levels and expression of lipogenic genes. Together these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine. PMID:26643647

  7. Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition.

    PubMed

    Daniel, Z C T R; Brameld, J M; Craigon, J; Scollan, N D; Buttery, P J

    2007-06-01

    Two experiments were conducted to determine whether the decreased proportion of fast muscle fibers seen previously in 2-wk-old lambs from ewes that were dietary restricted from d 30 to 70 of gestation are still evident in older lambs and what the consequences may be in terms of growth rates and carcass composition. Throughout both experiments, ewes were fed on an individual basis according to the recommended dietary allowance throughout pregnancy relative to metabolic BW (BW(0.73)). Control groups were fed as above, and the treatment groups had their nutrient supply reduced to 50% of this recommended allowance from d 30 to 70 (Exp. 1) or d 30 to 85 (Exp. 2) of gestation, after which they were returned to the same level of nutrition as the control group. All twin lambs were kept with their dams, and at 2 wk were given access to creep. After weaning, lambs were individually housed and fed ad libitum to 24 or 17 wk of age for Exp. 1 and 2, respectively. Although not significant (P = 0.18), growth to 24 wk (Exp. 1) resulted in a small decrease in the protein content and therefore an increase in the fat:lean ratio in the carcass of lambs subjected to maternal dietary restriction. This was not apparent when animals were slaughtered at 17 wk (Exp. 2; P > 0.68). Few significant effects of maternal dietary restriction on the fiber type composition of muscles were observed. In Exp. 1 the number of fast fibers increased (P < 0.008) with no effect on slow fiber number in LM. In Exp. 2 an increase in the total number of fibers in male lambs and an increase in type II (A and B) fibers in female lambs were observed in the LM, and an increase in IIB fiber number was observed in semitendinosus (ST) muscle from male lambs. Prenatal maternal dietary restriction during the time of muscle differentiation demonstrated an increase in type IIB muscle fibers and increase in intramuscular fat; although significant, effects on subsequent carcass quality of lambs were relatively small. These

  8. Involvement of arterial baroreflex in the protective effect of dietary restriction against stroke

    PubMed Central

    Liu, Ai-Jun; Guo, Jin-Min; Liu, Wei; Su, Feng-Yun; Zhai, Qi-Wei; Mehta, Jawahar L; Wang, Wei-Zhong; Su, Ding-Feng

    2013-01-01

    Dietary restriction (DR) protects against neuronal dysfunction and degeneration, and reduces the risk of ischemic stroke. This study examined the role of silent information regulator T1 (SIRT1) and arterial baroreflex in the beneficial effects of DR against stroke, using two distinct stroke models: stroke-prone spontaneously hypertensive rats (SP-SHRs) and Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Sirt1 knockout (KO) mice were used to examine the involvement of sirt1. Sinoaortic denervation was used to inactivate arterial baroreflex. Dietary restriction was defined as 40% reduction of dietary intake. Briefly, DR prolonged the life span of SP-SHRs and reduced the infarct size induced by MCAO. Dietary restriction also improved the function arterial baroreflex, decreased the release of proinflammatory cytokines, and reduced end-organ damage. The beneficial effect of DR on stroke was markedly attenuated by blunting arterial baroreflex. Lastly, the infarct area in sirt1 KO mice was significantly larger than in the wild-type mice. However, the beneficial effect of DR against ischemic injury was still apparent in sirt1 KO mice. Accordingly, arterial baroreflex, but not sirt1, is important in the protective effect of DR against stroke. PMID:23443169

  9. Basal and β-adrenergic cardiomyocytes contractility dysfunction induced by dietary protein restriction is associated with downregulation of SERCA2a expression and disturbance of endoplasmic reticulum Ca2+ regulation in rats.

    PubMed

    Penitente, Arlete R; Novaes, Rômulo D; Silva, Marcelo E; Silva, Márcia F; Quintão-Júnior, Judson F; Guatimosim, Silvia; Cruz, Jader S; Chianca, Deoclécio A; Natali, Antônio J; Neves, Clóvis A

    2014-01-01

    The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR) are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20) and a protein-restricted group (PRG, n = 20), receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV) were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca(2+)sparks analysis. PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca(2+)sparks were observed in PRG cardiomyocytes. The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca(2+) intracellular kinetics. © 2014 S. Karger AG, Basel.

  10. Dietary protein, calcium metabolism, and skeletal homeostasis revisited.

    PubMed

    Kerstetter, Jane E; O'Brien, Kimberly O; Insogna, Karl L

    2003-09-01

    High dietary protein intakes are known to increase urinary calcium excretion and, if maintained, will result in sustained hypercalciuria. To date, the majority of calcium balance studies in humans have not detected an effect of dietary protein on intestinal calcium absorption or serum parathyroid hormone. Therefore, it is commonly concluded that the source of the excess urinary calcium is increased bone resorption. Recent studies from our laboratory indicate that alterations in dietary protein can, in fact, profoundly affect intestinal calcium absorption. In short-term dietary trials in healthy adults, we fixed calcium intake at 20 mmol/d while dietary protein was increased from 0.7 to 2.1 g/kg. Increasing dietary protein induced hypercalciuria in 20 women [from 3.4 +/- 0.3 ( +/- SE) during the low-protein to 5.4 +/- 0.4 mmol/d during the high-protein diet]. The increased dietary protein was accompanied by a significant increase in intestinal calcium absorption from 18.4 +/- 1.3% to 26.3 +/- 1.5% (as determined by dual stable isotopic methodology). Dietary protein intakes at and below 0.8 g/kg were associated with a probable reduction in intestinal calcium absorption sufficient to cause secondary hyperparathyroidism. The long-term consequences of these low-protein diet-induced changes in mineral metabolism are not known, but the diet could be detrimental to skeletal health. Of concern are several recent epidemiologic studies that demonstrate reduced bone density and increased rates of bone loss in individuals habitually consuming low-protein diets. Studies are needed to determine whether low protein intakes directly affect rates of bone resorption, bone formation, or both.

  11. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction.

    PubMed

    Yang, Deying; Lian, Ting; Tu, Jianbo; Gaur, Uma; Mao, Xueping; Fan, Xiaolan; Li, Diyan; Li, Ying; Yang, Mingyao

    2016-09-27

    Dietary restriction (DR) extends lifespan in many species which is a well-known phenomenon. Long non-coding RNAs (lncRNAs) play an important role in regulation of cell senescence and important age-related signaling pathways. Here, we profiled the lncRNA and mRNA transcriptome of fruit flies at 7 day and 42 day during DR and fully-fed conditions, respectively. In general, 102 differentially expressed lncRNAs and 1406 differentially expressed coding genes were identified. Most informatively we found a large number of differentially expressed lncRNAs and their targets enriched in GO and KEGG analysis. We discovered some new aging related signaling pathways during DR, such as hippo signaling pathway-fly, phototransduction-fly and protein processing in endoplasmic reticulum etc. Novel lncRNAs XLOC_092363 and XLOC_166557 are found to be located in 10 kb upstream sequences of hairy and ems promoters, respectively. Furthermore, tissue specificity of some novel lncRNAs had been analyzed at 7 day of DR in fly head, gut and fat body. Also the silencing of lncRNA XLOC_076307 resulted in altered expression level of its targets including Gadd45 (involved in FoxO signaling pathway). Together, the results implicated many lncRNAs closely associated with dietary restriction, which could provide a resource for lncRNA in aging and age-related disease field.

  12. Lean Mass Loss Is Associated with Low Protein Intake during Dietary-Induced Weight Loss in Postmenopausal Women

    PubMed Central

    BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.

    2013-01-01

    The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032

  13. Induced lung inflammation and dietary protein supply affect nitrogen retention and amino acid metabolism in growing pigs.

    PubMed

    Kampman-van de Hoek, Esther; Sakkas, Panagiotis; Gerrits, Walter J J; van den Borne, Joost J G C; van der Peet-Schwering, Carola M C; Jansman, Alfons J M

    2015-02-14

    It is hypothesised that during immune system activation, there is a competition for amino acids (AA) between body protein deposition and immune system functioning. The aim of the present study was to quantify the effect of immune system activation on N retention and AA metabolism in growing pigs, depending on dietary protein supply. A total of sixteen barrows received an adequate (Ad) or restricted (Res) amount of dietary protein, and were challenged at day 0 with intravenous complete Freund's adjuvant (CFA). At days - 5, 3 and 8, an irreversible loss rate (ILR) of eight AA was determined. CFA successfully activated the immune system, as indicated by a 2- to 4-fold increase in serum concentrations of acute-phase proteins (APP). Pre-challenge C-reactive protein concentrations were lower (P< 0·05) and pre- and post-challenge albumin tended to be lower in Res-pigs. These findings indicate that a restricted protein supply can limit the acute-phase response. CFA increased urinary N losses (P= 0·04) and tended to reduce N retention in Ad-pigs, but not in Res-pigs (P= 0·07). The ILR for Val was lower (P= 0·05) at day 8 than at day 3 in the post-challenge period. The ILR of most AA, except for Trp, were strongly affected by dietary protein supply and positively correlated with N retention. The correlations between the ILR and APP indices were absent or negative, indicating that changes in AA utilisation for APP synthesis were either not substantial or more likely outweighed by a decrease in muscle protein synthesis during immune system activation in growing pigs.

  14. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction.

    PubMed

    Murphy, Caoileann H; Shankaran, Mahalakshmi; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Burke, Louise M; Hawley, John A; Kassis, Amira; Karagounis, Leonidas G; Li, Kelvin; King, Chelsea; Hellerstein, Marc; Phillips, Stuart M

    2018-06-01

    Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24

  15. Dietary protein in urea cycle defects: How much? Which? How?

    PubMed

    Boneh, Avihu

    2014-01-01

    Dietary recommendations for patients with urea cycle disorders (UCDs) are designed to prevent metabolic decompensation (primarily hyperammonaemia), and to enable normal growth. They are based on the 'recommended daily intake' guidelines, on theoretical considerations and on local experience. A retrospective dietary review of 28 patients with UCDs in good metabolic control, at different ages, indicates that most patients can tolerate a natural protein intake that is compatible with metabolic stability and good growth. However, protein aversion presents a problem in many patients, leading to poor compliance with the prescribed daily protein intake. These patients are at risk of chronic protein deficiency. Failing to recognise this risk, and further restricting protein intake because of persistent hyperammonaemia may aggravate the deficiency and potentially lead to episodes of metabolic decompensation for which no clear cause is found. These patients may need on-going supplementation with essential amino acids (EAA) to prevent protein malnutrition. Current recommendations for the management of acute metabolic decompensation include cessation of protein intake whilst increasing energy (calorie) intake in the first 24h. We have found that plasma concentrations of all EAA are low at the time of admission to hospital for metabolic decompensation, with correlation between low EAA concentrations, particularly branched-chain amino acids, and hyperammonaemia. Thus, supplementation with EAA should be considered at times of metabolic decompensation. Finally, it would be advantageous to treat patients in metabolic decompensation through enteral supplementation, whenever possible, because of the contribution of the splanchnic (portal-drained viscera) system to protein retention and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Healthy pregnant women in Canada are consuming more dietary protein at 16- and 36-week gestation than currently recommended by the Dietary Reference Intakes, primarily from dairy food sources.

    PubMed

    Stephens, Trina V; Woo, Hillary; Innis, Sheila M; Elango, Rajavel

    2014-07-01

    Adequate dietary protein intake throughout pregnancy is essential to ensure healthy fetal development. Insufficient and excessive maternal dietary protein intakes are both associated with intrauterine growth restriction, resulting in low birth weight infants. The aim of this study was to analyze the dietary protein intake patterns of healthy pregnant women in Vancouver, British Columbia, during early and late gestation. We hypothesized that women would be consuming higher protein during late stages of pregnancy compared with early stages of pregnancy. Interviewer-administered food frequency questionnaires were collected prospectively from 270 women at 16- and 36-week gestation; food frequency questionnaires from 212 women met study criteria. Maternal anthropometrics at both stages and infant weight at birth were collected. Wilcoxon signed rank tests were used to determine significant gestational differences in protein intakes. Spearman correlation was used to determine the influence of protein intakes and maternal anthropometrics on pregnancy outcomes. Median (25th and 75th percentiles) protein intakes adjusted for body weight were 1.5 (1.18 and 1.79) and 1.3 (1.04 and 1.60) g/kg per day at 16- than 36-week gestation, respectively. Primary protein sources were identified as dairy products. Protein intakes were negatively correlated with birth weight (P < .05), whereas maternal height, weight, body mass index, and weight gain to 36-week gestation were positively correlated with birth weight (P < .05). This study provides current dietary protein intake patterns among healthy Canadian women during pregnancy and indicates higher intakes than current Dietary Reference Intakes recommended dietary allowance of 1.1 g/kg per day, especially during early gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  18. Brain-blood amino acid correlates following protein restriction in murine maple syrup urine disease.

    PubMed

    Vogel, Kara R; Arning, Erland; Wasek, Brandi L; McPherson, Sterling; Bottiglieri, Teodoro; Gibson, K Michael

    2014-05-08

    Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders.

  19. Dietary restriction in two rotifer species: the effect of the length of food deprivation on life span and reproduction.

    PubMed

    Weithoff, Guntram

    2007-08-01

    According to resource allocation theory, animals face a trade off between the allocation of resources into reproduction and into individual growth/maintenance. This trade off is reinforced when food conditions decline. It is well established in biological research that many animals increase their life span when food is in suboptimal supply for growth and/or reproduction. Such a situation of reduced food availability is called dietary restriction. An increase in life span under dietary restricted conditions is seen as a strategy to tolerate periods of food shortage so that the animals can start reproduction again when food is in greater supply. In this study, the effect of dietary restriction on life span and reproduction in two rotifer species, Cephalodella sp. and Elosa worallii, was investigated using life table experiments. The food concentration under dietary restricted conditions was below the threshold for population growth. It was (1) tested whether the rotifers start reproduction again after food replenishment, and (2) estimated whether the time scale of dietary restricted conditions is relevant for the persistence of a population in the field. Only E. worallii responded to dietary restriction with an increase in life span at the expense of reproduction. After replenishment of food, E. worallii started to reproduce again within 1 day. With an increase in the duration of dietary restricted conditions of up to 15 days, which is longer than the median life span of E. worallii under food saturation, the life span increased and the life time reproduction decreased. These results suggest that in a temporally (or spatially) variable environment, some rotifer populations can persist even during long periods of severe food deprivation.

  20. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Does Dietary Restriction Reduce Life Span in Male Fruit-feeding Butterflies?

    PubMed Central

    Molleman, Freerk; Ding, Jimin; Boggs, Carol L.; Carey, James R.; Arlet, Małgorzata E.

    2009-01-01

    Male life history and resource allocation is not frequently studied in aging and life span research. Here we verify that males of long-lived fruit-feeding butterfly species have reduced longevity on restricted diets (Beck 2007 Oecologia), in contrast to the common finding of longevity extension in dietary restriction experiments in Drosophila and some other organisms. Males of some of the most long-lived species of fruit-feeding butterflies were collected from Kibale Forest, Uganda, and kept on diets of either sugar or mashed banana. Seven out of eight species had non-significantly longer life spans on mashed banana diets. Data analysis using a time-varying Cox-model with species as covariate showed that males had reduced survival on the sugar diet during the first 35 days of captive life, but the effect was absent or reversed at more advanced ages. These results challenge the generality of dietary restriction as a way to extend life span in animals. We argue that such studies on males are promising tools for better understanding life history evolution and aging because males display a wider variety of tactics for obtaining reproductive success than females. PMID:19580860

  2. The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport.

    PubMed

    Daniel, Zoe; Swali, Angelina; Emes, Richard; Langley-Evans, Simon C

    2016-01-01

    Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life.

  3. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous

  4. Dietary protein considerations to support active aging.

    PubMed

    Wall, Benjamin T; Cermak, Naomi M; van Loon, Luc J C

    2014-11-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the application of dietary protein supplementation to support exercise-induced gains in muscle mass in younger individuals. In contrast, the role of dietary protein in supporting the maintenance (or gain) of skeletal muscle mass in active older persons has received less attention. Older individuals display a blunted muscle protein synthetic response to dietary protein ingestion. However, this reduced anabolic response can largely be overcome when physical activity is performed in close temporal proximity to protein consumption. Moreover, recent evidence has helped elucidate the optimal type and amount of dietary protein that should be ingested by the older adult throughout the day in order to maximize the skeletal muscle adaptive response to physical activity. Evidence demonstrates that when these principles are adhered to, muscle maintenance or hypertrophy over prolonged periods can be further augmented in active older persons. The present review outlines the current understanding of the role that dietary protein occupies in the lifestyle of active older adults as a means to increase skeletal muscle mass, strength and function, and thus support healthier aging.

  5. An exploration of the relationship between adherence with dietary sodium restrictions and health beliefs regarding these restrictions in Irish patients receiving haemodialysis for end-stage renal disease.

    PubMed

    Walsh, Ella; Lehane, Elaine

    2011-02-01

    To measure adherence levels with dietary restrictions in Irish patients with end-stage renal disease receiving haemodialysis and to explore the relationships between adherence with dietary sodium restrictions and health beliefs in relation to following these restrictions in this group. Non-adherence to medical regimes is an important healthcare issue and an ever-present problem, particularly in patients with a chronic illness. The literature revealed a lack of studies measuring adherence with the sodium component of the renal dietary restrictions and associated factors; despite the fact that adherence with sodium restrictions is essential to the optimal management of end-stage renal disease. Furthermore, despite increased emphasis on 'the patients' view' in healthcare no study to date has contextualised health beliefs and adherence in end-stage renal disease from an Irish perspective. A quantitative, descriptive, correlational design was employed using the Health Belief Model as a theoretical framework. A convenience sample (n = 79) was recruited from the haemodialysis units of a large hospital. Data were collected using self-report questionnaires. Data were analysed using descriptive and correlational statistics. Non-adherence with dietary restrictions was a problem among a proportion of the sample. Greater adherence levels with dietary sodium restrictions were associated with greater 'perceived benefits' and fewer 'perceived barriers.' For the Irish patient, beliefs in relation to following a low sodium diet significantly affected adherence levels with this diet. This is an important finding as delineating key beliefs, particularly key barriers, facilitates an increased understanding of non-adherence for nurses. These findings have implications for the care of patients with end-stage renal disease in that they can provide guidance in terms of developing interventions designed to improve adherence. © 2011 Blackwell Publishing Ltd.

  6. Dietary Protein Intake in Dutch Elderly People: A Focus on Protein Sources.

    PubMed

    Tieland, Michael; Borgonjen-Van den Berg, Karin J; Van Loon, Luc J C; de Groot, Lisette C P G M

    2015-11-25

    Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people. to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people. Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people. Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60%) with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source. Daily protein intake in these older populations is mainly (>80%) provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from animal protein, while during breakfast and lunch a large proportion of

  7. Protective effects of short-term dietary restriction in surgical stress and chemotherapy

    PubMed Central

    Brandhorst, Sebastian; Harputlugil, Eylul; Mitchell, James R.; Longo, Valter D.

    2017-01-01

    Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome. PMID:28216454

  8. The Relationship Between Social Support and Adherence of Dietary and Fluids Restrictions among Hemodialysis Patients in Iran

    PubMed Central

    Ahrari, Shahnaz; Moshki, Mahdi; Bahrami, Mahnaz

    2014-01-01

    Introduction: Patient's noncompliance dietary and fluids intake can lead to a build-up of toxic fluids and metabolic end-products in the blood stream which may result in an increased morbidity and premature death. The aim of the study is investigate relationship between the social support and adherence to dietary and fluid restrictions in hemodialysis patients. Methods: In this correlational study upon 237 hemodialysis patients, the data was collected with the dialysis diet and fluids non-adherences hemodialysis questionnaire (DDFQ), and the multidimensional scale of perceived Social Support (MSP). Interdialytic weight gain, predialytic serum potassium levels, and predialytic serum phosphate levels was considered as biochemical indicators of dietary and fluid adherence. Data were analyzed by SPSS Ver.11.5. Results: About 41.1% of patients reported non-adherence to diet and 45.2% of them reported non-adherence to fluid. Frequency of non-adherence to fluid was more common in patients. The highest level of perceived support was the family support 11.19 (1.34). There was a significant relationship between social support and adherence to dietary and fluid restrictions. Noncompliances to dietary and fluid restrictions were related to laboratory results. Conclusion: This way those patients who more supported had more adherences of diet and fluid restrictions and had lower level of phosphorus and potassium in laboratory results. Nurses have the main role to identify different methods providing social support for patients, also to encourage the families to support their hemodialysis patients. PMID:25276744

  9. Protective effects of short-term dietary restriction in surgical stress and chemotherapy.

    PubMed

    Brandhorst, Sebastian; Harputlugil, Eylul; Mitchell, James R; Longo, Valter D

    2017-10-01

    Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome. Copyright © 2017. Published by Elsevier B.V.

  10. Optimum dietary protein requirement of Malaysian mahseer (Tor tambroides) fingerling.

    PubMed

    Misieng, Josephine Dorin; Kamarudin, Mohd Salleh; Musa, Mazlinda

    2011-02-01

    The optimum dietary protein requirement of the Malaysian mahseer (Tor tambroides) fingerlings was determined in this study. In this completely randomized designed experiment, formulated diets of five levels of dietary protein (30, 35, 40, 45 and 50%) were tested on the T. tambroides fingerlings (initial body weight of 5.85 +/- 0.40 g), reared in aquarium fitted with a biofiltering system. The fingerlings were fed twice daily at 5% of biomass. The fingerling body weight and total length was taken at every two weeks. Mortality was recorded daily. The dietary protein had significant effects on the body weight gain and Specific Growth Rate (SGR) of the fingerlings. The body weight gain and SGR of fingerlings fed with the diet with the dietary protein level of 40% was significantly higher (p<0.05) than that of 30, 35 and 50%. The feed conversion ratio of the 40% dietary protein was the significantly lowest at 2.19 +/- 0.163. The dietary protein level of 40% was the most optimum for T. tambroides fingerlings.

  11. Impact of dietary protein and gender on food reinforcement

    USDA-ARS?s Scientific Manuscript database

    Recent evidence suggests that increasing dietary protein may alter reward-driven eating behavior. However, the link between protein and food reinforcement is not known. We sought to determine the extent to which increasing dietary protein alters food reinforcement in healthy adults. In a randomized ...

  12. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein

    PubMed Central

    Laeger, Thomas; Reed, Scott D.; Henagan, Tara M.; Fernandez, Denise H.; Taghavi, Marzieh; Addington, Adele; Münzberg, Heike; Martin, Roy J.; Hutson, Susan M.

    2014-01-01

    Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 μg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet. PMID:24898843

  13. Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid-gestation fetal sheep

    PubMed Central

    Nishina, Hidenori; Green, Lucy R; McGarrigle, Hugh H G; Noakes, David E; Poston, Lucilla; Hanson, Mark A

    2003-01-01

    Unbalanced maternal nutrition affects fetal endocrine and cardiovascular systems, sometimes accompanied by changes in growth, although this is usually in late gestation. We determined the effect of moderate restriction for the first half of gestation of maternal dietary protein, or of total calorific intake on isolated resistance artery function of mid-gestation fetal sheep. Welsh Mountain ewes were nutritionally restricted by 30 % of the recommended nutrient intake (globally restricted) or 30 % of the recommended protein intake (protein-restricted), compared to control ewes fed 100 % of recommended nutrient intake, for ~12 days prior to conception and for the subsequent 70 days of gestation. At mid-gestation, fetal and placental weights were similar in all dietary groups. In isolated femoral arteries, the response curve to noradrenaline was reduced in protein-restricted group fetuses (P < 0.05). Maximal relaxation (P < 0.01) and sensitivity (P < 0.05) to acetylcholine were markedly reduced in protein-restricted group fetuses, and to a smaller extent in globally restricted group fetuses (response curve, P < 0.05). The dilator response (P < 0.05) and sensitivity (P < 0.05) to the α2 agonist UK14304 was lower in protein-, but not in globally restricted group fetuses. The response (P < 0.05) and sensitivity (P < 0.05) to the nitric oxide donor sodium nitroprusside were reduced in protein-restricted group fetuses compared to controls. Our data show that dietary imbalance, in particular restricted protein, of the ewe can produce blunting of endothelial-dependent and -independent relaxation in systemic arteries from the mid-gestation fetus. These changes may precede perturbed late-gestation fetal and postnatal cardiovascular control. PMID:12949230

  14. Urinary prostaglandin excretion in pregnancy: the effect of dietary sodium restriction.

    PubMed

    Delemarre, F M; Thomas, C M; van den Berg, R J; Jongsma, H W; Steegers, E A

    2000-10-01

    Dietary sodium restriction results in activation of the renin-angiotensin-aldosterone-system. In the non-pregnant situation renin release in response to a low sodium diet is mediated by prostaglandins. We studied the effect of dietary sodium restriction on urinary prostaglandin metabolism in pregnancy. In a randomized, longitudinal study the excretion of urinary metabolites of prostacyclin (6-keto-PGF(1 alpha)and 2,3-dinor-6-keto-PGF(1 alpha)) and thromboxane A(2)(TxB(2)and 2,3-dinor-TxB(2)) was determined throughout pregnancy and post partum in 12 women on a low sodium diet and in 12 controls. In pregnancy the excretion of all urinary prostaglandins is increased. The 6-keto-PGF(1 alpha)/ TxB(2)-ratio as well as the 2, 3-dinor-6-keto-PGF(1 alpha)/ 2,3-dinor-TxB(2)-ratio did not significantly change in pregnancy. CONCLUISION Prostacyclin and thromboxane do not seem to play an important role in sodium balance during pregnancy. Copyright 2000 Harcourt Publishers Ltd.

  15. Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    PubMed Central

    Winnik, Stephan; Lohmann, Christine; Richter, Eva K.; Schäfer, Nicola; Song, Wen-Liang; Leiber, Florian; Mocharla, Pavani; Hofmann, Janin; Klingenberg, Roland; Borén, Jan; Becher, Burkhard; FitzGerald, Garret A.; Lüscher, Thomas F.; Matter, Christian M.; Beer, Jürg H.

    2011-01-01

    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 FA. PMID:21285075

  16. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna

    PubMed Central

    Meadows, Melissa G.; Roudybush, Thomas E.; McGraw, Kevin J.

    2012-01-01

    SUMMARY Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  17. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    PubMed

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent.

  18. Prolonged calorie restriction downregulates skeletal muscle mTORC1 signaling independent of dietary protein intake and associated microRNA expression

    USDA-ARS?s Scientific Manuscript database

    Short-term (5-10 days) calorie restriction (CR) downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic ta...

  19. Dietary fat and not calcium supplementation or dairy product consumption is associated with changes in anthropometrics during a randomized, placebo-controlled energy-restriction trial

    PubMed Central

    2011-01-01

    Insufficient calcium intake has been proposed to cause unbalanced energy partitioning leading to obesity. However, weight loss interventions including dietary calcium or dairy product consumption have not reported changes in lipid metabolism measured by the plasma lipidome. Methods The objective of this study was to determine the relationships between dairy product or supplemental calcium intake with changes in the plasma lipidome and body composition during energy restriction. A secondary objective of this study was to explore the relationships among calculated macronutrient composition of the energy restricted diet to changes in the plasma lipidome, and body composition during energy restriction. Overweight adults (n = 61) were randomized into one of three intervention groups including a deficit of 500kcal/d: 1) placebo; 2) 900 mg/d calcium supplement; and 3) 3-4 servings of dairy products/d plus a placebo supplement. Plasma fatty acid methyl esters of cholesterol ester, diacylglycerol, free fatty acids, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine and triacylglycerol were quantified by capillary gas chromatography. Results After adjustments for energy and protein (g/d) intake, there was no significant effect of treatment on changes in weight, waist circumference or body composition. Plasma lipidome did not differ among dietary treatment groups. Stepwise regression identified correlations between reported intake of monounsaturated fat (% of energy) and changes in % lean mass (r = -0.44, P < 0.01) and % body fat (r = 0.48, P < 0.001). Polyunsaturated fat intake was associated with the % change in waist circumference (r = 0.44, P < 0.01). Dietary saturated fat was not associated with any changes in anthropometrics or the plasma lipidome. Conclusions Dairy product consumption or calcium supplementation during energy restriction over the course of 12 weeks did not affect plasma lipids. Independent of calcium and dairy product consumption

  20. Dietary fat and not calcium supplementation or dairy product consumption is associated with changes in anthropometrics during a randomized, placebo-controlled energy-restriction trial.

    PubMed

    Smilowitz, Jennifer T; Wiest, Michelle M; Teegarden, Dorothy; Zemel, Michael B; German, J Bruce; Van Loan, Marta D

    2011-10-05

    Insufficient calcium intake has been proposed to cause unbalanced energy partitioning leading to obesity. However, weight loss interventions including dietary calcium or dairy product consumption have not reported changes in lipid metabolism measured by the plasma lipidome. The objective of this study was to determine the relationships between dairy product or supplemental calcium intake with changes in the plasma lipidome and body composition during energy restriction. A secondary objective of this study was to explore the relationships among calculated macronutrient composition of the energy restricted diet to changes in the plasma lipidome, and body composition during energy restriction. Overweight adults (n = 61) were randomized into one of three intervention groups including a deficit of 500kcal/d: 1) placebo; 2) 900 mg/d calcium supplement; and 3) 3-4 servings of dairy products/d plus a placebo supplement. Plasma fatty acid methyl esters of cholesterol ester, diacylglycerol, free fatty acids, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine and triacylglycerol were quantified by capillary gas chromatography. After adjustments for energy and protein (g/d) intake, there was no significant effect of treatment on changes in weight, waist circumference or body composition. Plasma lipidome did not differ among dietary treatment groups. Stepwise regression identified correlations between reported intake of monounsaturated fat (% of energy) and changes in % lean mass (r = -0.44, P < 0.01) and % body fat (r = 0.48, P < 0.001). Polyunsaturated fat intake was associated with the % change in waist circumference (r = 0.44, P < 0.01). Dietary saturated fat was not associated with any changes in anthropometrics or the plasma lipidome. Dairy product consumption or calcium supplementation during energy restriction over the course of 12 weeks did not affect plasma lipids. Independent of calcium and dairy product consumption, short-term energy restriction

  1. Associations of Dietary Protein and Energy Intakes With Protein-Energy Wasting Syndrome in Hemodialysis Patients.

    PubMed

    Beddhu, Srinivasan; Wei, Guo; Chen, Xiaorui; Boucher, Robert; Kiani, Rabia; Raj, Dominic; Chonchol, Michel; Greene, Tom; Murtaugh, Maureen A

    2017-09-01

    The associations of dietary protein and/or energy intakes with protein or energy wasting in patients on maintenance hemodialysis are controversial. We examined these in the Hemodialysis (HEMO) Study. In 1487 participants in the HEMO Study, baseline dietary protein intake (grams per kilogram per day) and dietary energy intake (kilocalories per kilograms per day) were related to the presence of the protein-energy wasting (PEW) syndrome at month 12 (defined as the presence of at least 1 criteria in 2 of the 3 categories of low serum chemistry, low body mass, and low muscle mass) in logistic regression models. In additional separate models, protein intake estimated from equilibrated normalized protein catabolic rate (enPCR) was also related to the PEW syndrome. Compared with the lowest quartile, the highest quartile of baseline dietary protein intake was paradoxically associated with increased risk of the PEW syndrome at month 12 (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 2.79-6.05). This relationship was completely attenuated (OR: 1.35; 95% CI: 0.88-2.06) with adjustment for baseline body weight, which suggested mathematical coupling. Results were similar for dietary energy intake. Compared with the lowest quartile of baseline enPCR, the highest quartile was not associated with the PEW syndrome at 12 months (OR: 0.78; 95% CI: 0.54-1.12). These data do not support the use of dietary protein intake or dietary energy intake criteria in the definition of the PEW syndrome in patients on maintenance hemodialysis.

  2. Dietary protein requirement of juvenile turbot ( Scophthalmus maximus Linnaeus)

    NASA Astrophysics Data System (ADS)

    Liu, Xingwang; Mai, Kangsen; Liufu, Zhiguo; Ai, Qinghui

    2015-04-01

    The dietary protein requirement of juvenile turbot (initial average weight, 38.2 g ± 0.1 g) reared indoor in aerated aquaria was determined in this study. Five energy equal experimental diets were formulated with fish meal as protein source, which contained different concentrations of protein (47.2%, 51.0%, 54.6%, 59.3% and 63.6% of dry diet). Three groups of fish with 18 individuals in each, were cultured in 300-L tanks and fed twice a day for 8 weeks. During culture, temperature was controlled between 15.0 and 18.0°C, salinity was controlled between 28.5 and 32.0, acidity was controlled between pH7.8 and pH8.5, and ammonia nitrogen was maintained below 0.03 mg L-1 and dissolved oxygen was maintained about 7 mg L-1. Results showed that the growth of fish was significantly affected by dietary protein content ( P < 0.05). Specific growth rate ( SGR) of turbot increased when dietary protein content varied between 47.2% and 51.0% ( P < 0.05), and then kept stable when dietary protein content was higher than 51.0%. Fish which were fed the diet containing 63.6% protein showed the highest SGR while those fed the diet containing 59.3% protein showed the highest feed efficiency rate. No significant difference of feed intake and protein efficiency ratio was found among experimental diets ( P > 0.05). Broken-line regression analysis of SGR showed that the optimal dietary protein requirement of turbot was about 57.0%.

  3. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine

    PubMed Central

    Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  4. The potential for dietary restriction to increase longevity in humans: extrapolation from monkey studies.

    PubMed

    Ingram, Donald K; Roth, George S; Lane, Mark A; Ottinger, Mary Ann; Zou, Sige; de Cabo, Rafael; Mattison, Julie A

    2006-06-01

    Based on results emerging from long-term studies of dietary restriction in rhesus monkeys, we offer our views regarding whether dietary restriction can increase longevity in humans. Because lifespan data in monkeys remain inconclusive currently, we respond that "we do not for sure". Based on the vast literature regarding the effects of healthy, low calorie diets on health and longevity in a wide range of species, including humans, and based on data emerging from monkey studies suggesting that dietary restriction improves markers of disease risk and health, we respond that "we think so." Because it is unlikely that an experimental study will ever be designed to address this question in humans, we respond that "we think we will never know for sure." We suggest that debate of this question is clearly an academic exercise; thus, we would suggest that the more compelling discussion should focus on whether basic mechanisms of DR can be discovered and if such discoveries can lead to the development of effective DR mimetics. Even if proof that DR or DR mimetics can increase longevity in humans will likely never emerge, we would suggest that endpoints regarding disease risk and disease incidence as well as maintenance of function can be examined in human clinical trials, and that these will be highly relevant for evaluating the effectiveness of such treatments.

  5. Dietary restriction in combination with a nutraceutical supplement for the management of equine metabolic syndrome in horses.

    PubMed

    McGowan, C M; Dugdale, A H; Pinchbeck, G L; Argo, C McG

    2013-05-01

    Few studies have examined the effect of dietary restriction in horses with equine metabolic syndrome (EMS). This study aimed to determine improvements in insulin sensitivity following dietary restriction for 6 weeks, and to determine if the improvement would be greater in horses receiving short-chain fructo-oligosaccharides (sc-FOS). Dietary management involved feeding grass hay, restricted to 1.25% of body mass (BM) as daily dry matter intake and soaked in cold water prior to feeding, with the addition of a vitamin and mineral nutraceutical supplement with or without the addition of sc-FOS (10 g/100 kg). Soaking the hay resulted in a significant reduction in non-structural carbohydrates (38%, P = 0.01), digestible energy (6.78%, P = 0.01) and water soluble minerals. Following 6 weeks of dietary restriction with soaked grass hay and nutraceutical supplement, horses lost an average of 6.8% BM and showed reductions in body condition score (BCS) and belly circumference. Sensitivity to insulin improved overall, as determined by the total insulin response during the combined glucose insulin test. The magnitude of improvement in insulin sensitivity was associated with the degree of insulin resistance recorded at outset, and the extent of overall losses in BM and BCS, but was independent of the addition of sc-FOS. The nutraceutical supplement was highly palatable and no adverse effects were noted. From the findings of this study a strict dietary program in combination with a specifically designed vitamin and mineral nutraceutical supplement can be recommended to obtain rapid improvements in BM, BCS and insulin sensitivity of animals presenting with EMS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study.

    PubMed

    van Baak, Marleen A; Larsen, Thomas M; Jebb, Susan A; Martinez, Alfredo; Saris, Wim H M; Handjieva-Darlenska, Teodora; Kafatos, Anthony; Pfeiffer, Andreas F H; Kunešová, Marie; Astrup, Arne

    2017-12-06

    An increase in dietary protein intake has been shown to improve weight loss maintenance in the DIOGenes trial. Here, we analysed whether the source of the dietary proteins influenced changes in body weight, body composition, and cardiometabolic risk factors during the weight maintenance period while following an energy-restricted diet. 489 overweight or obese participants of the DIOGenes trial from eight European countries were included. They successfully lost >8% of body weight and subsequently completed a six month weight maintenance period, in which they consumed an ad libitum diet varying in protein content and glycemic index. Dietary intake was estimated from three-day food diaries. A higher plant protein intake with a proportional decrease in animal protein intake did not affect body weight maintenance or cardiometabolic risk factors. A higher plant protein intake from non-cereal products instead of cereal products was associated with benefits for body weight maintenance and blood pressure. Substituting meat protein for protein from other animal sources increased insulin and HOMA-IR (homeostasis model assessment of insulin resistance). This analysis suggests that not only the amount of dietary proteins, but also the source may be important for weight and cardiometabolic risk management. However, randomized trials are needed to test the causality of these associations.

  7. Dietary Intake of Protein from Different Sources and Weight Regain, Changes in Body Composition and Cardiometabolic Risk Factors after Weight Loss: The DIOGenes Study

    PubMed Central

    Jebb, Susan A.; Saris, Wim H. M.; Handjieva-Darlenska, Teodora; Kafatos, Anthony; Kunešová, Marie; Astrup, Arne

    2017-01-01

    An increase in dietary protein intake has been shown to improve weight loss maintenance in the DIOGenes trial. Here, we analysed whether the source of the dietary proteins influenced changes in body weight, body composition, and cardiometabolic risk factors during the weight maintenance period while following an energy-restricted diet. 489 overweight or obese participants of the DIOGenes trial from eight European countries were included. They successfully lost >8% of body weight and subsequently completed a six month weight maintenance period, in which they consumed an ad libitum diet varying in protein content and glycemic index. Dietary intake was estimated from three-day food diaries. A higher plant protein intake with a proportional decrease in animal protein intake did not affect body weight maintenance or cardiometabolic risk factors. A higher plant protein intake from non-cereal products instead of cereal products was associated with benefits for body weight maintenance and blood pressure. Substituting meat protein for protein from other animal sources increased insulin and HOMA-IR (homeostasis model assessment of insulin resistance). This analysis suggests that not only the amount of dietary proteins, but also the source may be important for weight and cardiometabolic risk management. However, randomized trials are needed to test the causality of these associations. PMID:29211027

  8. Dietary sodium restriction for mild hypertension in general practice.

    PubMed Central

    Watt, G C; Edwards, C; Hart, J T; Hart, M; Walton, P; Foy, C J

    1983-01-01

    Eighteen patients with stable mild hypertension (mean blood pressure 144/93 mm Hg) restricted their sodium intake for eight weeks while taking part in a double blind randomised crossover trial of slow sodium and placebo tablets. Mean 24 hour urinary sodium excretion was 143 mmol(mEq) during the period on slow sodium and 87 mmol during the period on placebo. Five patients were unable to reduce their sodium intake below 120 mmol, but the others had a mean 24 hour urinary sodium excretion of 59 mmol during the period on placebo. There was no significant difference in blood pressure between the slow sodium and placebo treatment periods, although the study had a power of 99% to detect a difference of 5 mm Hg in mean arterial pressure between the two periods. Moderate dietary sodium restriction does not lower blood pressure in patients with this degree of hypertension. PMID:6401551

  9. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  10. A calorie-restriction diet supplemented with fish oil and high-protein powder is associated with reduced severity of metabolic syndrome in obese women.

    PubMed

    Su, H-Y; Lee, H-C; Cheng, W-Y; Huang, S-Y

    2015-03-01

    The prevalence of metabolic syndrome (MetS) and obesity has increased worldwide, as well as in Taiwan, particularly in women aged>40 years. The purpose of this study was to elucidate the effects of a calorie-restriction diet (CR) supplemented with protein and n-3 polyunsaturated fatty acids (PUFAs) on women with MetS. A total of 143 eligible female participants were recruited and assigned to four dietary interventions such as 1500-kcal CR, calorie-restriction meal-replacement diet (CRMR), calorie-restriction diet with fish oil supplementation (CRF) and calorie-restriction meal-replacement diet with fish oil supplementation (CRMRF). The changes in anthropometric measures, metabolic profiles, inflammatory response and the Z-score of severity of MetS were evaluated. Among 143 female MetS patients enrolled, 136 patients completed the 12-week study. After the 12-week dietary interventions, we observed reductions in body weight (BW), body mass index (BMI) and waist circumference (WC) in all groups. BMI and triglyceride (TG) levels decreased significantly in the CRMR, CRF and CRMRF groups, but not in the CR group. The homeostasis model assessment of insulin resistance (HOMA-IR) had significantly improved in all four groups, and the levels of interleukin-6 (IL-6) and C-reactive protein (CRP) had significantly decreased in the CRF and CRMRF groups. Following the interventions, the changes in waist circumference (WC), mean arterial pressure (MAP), fasting blood glucose (FBG), TGs, HOMA-IR, CRP and IL-6 significantly correlated with the reductions in Z-score of MetS severity. Our study results indicate that a calorie-restriction dietary intervention combined with various macronutrients can reduce the severity of MetS in women and increase recovery from MetS by almost twofold in comparison with a CR alone.

  11. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise.

    PubMed

    Hector, Amy J; McGlory, Chris; Damas, Felipe; Mazara, Nicole; Baker, Steven K; Phillips, Stuart M

    2018-01-01

    Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit. Adult men (body mass index, 28.6 ± 0.6 kg/m 2 ; age 22 ± 1 yr) underwent 10 d of 40%-reduced energy intake while performing unilateral resistance exercise and consuming lower protein (1.2 g/kg/d, n = 12) or higher protein (2.4 g/kg/d, n = 12). Pre- and postintervention testing included dual-energy X-ray absorptiometry, primed constant infusion of ring -[ 13 C 6 ]phenylalanine, and 15 [N]phenylalanine to measure acute postabsorptive MPS and MPB; D 2 O to measure integrated MPS; and gene and protein expression. There was a decrease in acute MPS after ER (higher protein, 0.059 ± 0.006 to 0.051 ± 0.009%/h; lower protein, 0.061 ± 0.005 to 0.045 ± 0.006%/h; P < 0.05) that was attenuated with resistance exercise (higher protein, 0.067 ± 0.01%/h; lower protein, 0.061 ± 0.006%/h), and integrated MPS followed a similar pattern. There was no change in MPB (energy balance, 0.080 ± 0.01%/hr; ER rested legs, 0.078 ± 0.008%/hr; ER exercised legs, 0.079 ± 0.006%/hr). We conclude that a reduction in MPS is the main mechanism that underpins LBM loss early in ER in adult men.-Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., Phillips, S. M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. © FASEB.

  12. Dietary practices in propionic acidemia: A European survey.

    PubMed

    Daly, A; Pinto, A; Evans, S; Almeida, M F; Assoun, M; Belanger-Quintana, A; Bernabei, S M; Bollhalder, S; Cassiman, D; Champion, H; Chan, H; Dalmau, J; de Boer, F; de Laet, C; de Meyer, A; Desloovere, A; Dianin, A; Dixon, M; Dokoupil, K; Dubois, S; Eyskens, F; Faria, A; Fasan, I; Favre, E; Feillet, F; Fekete, A; Gallo, G; Gingell, C; Gribben, J; Kaalund Hansen, K; Ter Horst, N M; Jankowski, C; Janssen-Regelink, R; Jones, I; Jouault, C; Kahrs, G E; Kok, I L; Kowalik, A; Laguerre, C; Le Verge, S; Lilje, R; Maddalon, C; Mayr, D; Meyer, U; Micciche, A; Och, U; Robert, M; Rocha, J C; Rogozinski, H; Rohde, C; Ross, K; Saruggia, I; Schlune, A; Singleton, K; Sjoqvist, E; Skeath, R; Stolen, L H; Terry, A; Timmer, C; Tomlinson, L; Tooke, A; Vande Kerckhove, K; van Dam, E; van den Hurk, T; van der Ploeg, L; van Driessche, M; van Rijn, M; van Wegberg, A; Vasconcelos, C; Vestergaard, H; Vitoria, I; Webster, D; White, F J; White, L; Zweers, H; MacDonald, A

    2017-12-01

    The definitive dietary management of propionic acidaemia (PA) is unknown although natural protein restriction with adequate energy provision is of key importance. To describe European dietary practices in the management of patients with PA prior to the publication of the European PA guidelines. This was a cross-sectional survey consisting of 27 questions about the dietary practices in PA patients circulated to European IMD dietitians and health professionals in 2014. Information on protein restricted diets of 186 PA patients from 47 centres, representing 14 European countries was collected. Total protein intake [PA precursor-free L-amino acid supplements (PFAA) and natural protein] met WHO/FAO/UNU (2007) safe protein requirements for age in 36 centres (77%). PFAA were used to supplement natural protein intake in 81% (n = 38) of centres, providing a median of 44% (14-83%) of total protein requirement. Seventy-four per cent of patients were prescribed natural protein intakes below WHO/FAO/UNU (2007) safe levels in one or more of the following age groups: 0-6 m, 7-12 m, 1-10 y, 11-16 y and > 16 y. Sixty-three per cent (n = 117) of patients were tube fed (74% gastrostomy), but only 22% received nocturnal feeds. There was high use of PFAA with intakes of natural protein commonly below WHO/FAO/UNU (2007) safe levels. Optimal dietary management can only be determined by longitudinal, multi-centre, prospective case controlled studies. The metabolic instability of PA and small patient cohorts in each centre ensure that this is a challenging undertaking.

  13. Lentivirus Restriction by Diverse Primate APOBEC3A Proteins

    PubMed Central

    Schmitt, Kimberly; Guo, Kejun; Katuwal, Miki; Wilson, Darayu; Prochnow, Courtney; Bransteitter, Ronda; Chen, Xiaojiang S.; Santiago, Mario L.; Stephens, Edward B.

    2016-01-01

    Rhesus macaque APOBEC3A (rhA3A) is capable of restricting both simian-human immunodeficiency virus (SHIVΔvif) and human immunodeficiency virus (HIV-1Δvif) greater extent than hA3A. We constructed chimeric A3A proteins to define the domains required for differential lentivirus restriction. Substitution of amino acids 25–33 from rhA3A into hA3A was sufficient to restrict HIVΔvif to levels similar to rhA3A restriction of SHIVΔvif. We tested if differential lentivirus restriction is conserved between A3A from Old World monkey and hominid lineages. A3A from African green monkey restricted SHIVΔvif but not HIV-1Δvif and colobus monkey A3A restricted both wild type and SHIVΔvif and HIV-1Δvif. In contrast the gibbon ape A3A restricted neither SHIVΔvif nor HIV-1Δvif. Restriction of SHIVΔvif and HIV-1Δvif by New World monkey A3A proteins was not conserved as the A3A from the squirrel monkey but not the northern owl monkey restricted SHIVΔvif. Finally, the colobus A3A protein appears to restrict by a novel post-entry mechanism. PMID:23648232

  14. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    PubMed

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  15. Dietary protein and pesticide toxicity in male weanling rats*

    PubMed Central

    Boyd, Eldon M.

    1969-01-01

    The studies reviewed in this paper were undertaken at the request of the World Health Organization to obtain information on pesticides that would be least toxic for use in countries where the diet is deficient in protein. To investigate the problem, the acute oral LD50 and the associated clinicopathological syndrome of toxicity were measured in weanling male albino rats fed for 28 days from the time of weaning on diets containing different amounts and different types of proteins. Initial results suggested that the type of dietary protein was of minor importance provided it was present in adequate amounts. Using casein as a source of dietary protein, it was found that the toxicity of 5 pesticides was not appreciably increased when the amount of dietary casein was reduced to one-third of normal requirements. When dietary casein was reduced to 13% of the requirements for normal growth, the toxicity of all 13 pesticides under study was increased. The greatest increases were associated with carbaryl, parathion and, particularly, captan. When dietary casein was increased to 3 times the normal amount, the toxicity of some pesticides such as DDT was augmented while that of others such as carbaryl was unaltered. PMID:4898389

  16. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human.

    PubMed

    Lettieri-Barbato, Daniele; Giovannetti, Esmeralda; Aquilano, Katia

    2016-11-29

    In developing countries the rise of obesity and obesity-related metabolic disorders, such as cardiovascular diseases and type 2 diabetes, reflects the changes in lifestyle habits and wrong dietary choices. Dietary restriction (DR) regimens have been shown to extend health span and lifespan in many animal models including primates. Identifying biomarkers predictive of clinical benefits of treatment is one of the primary goals of precision medicine. To monitor the clinical outcomes of DR interventions in humans, several biomarkers are commonly adopted. However, a validated link between the behaviors of such biomarkers and DR effects is lacking at present time. Through a systematic analysis of human intervention studies, we evaluated the effect size of DR (i.e. calorie restriction, very low calorie diet, intermittent fasting, alternate day fasting) on health-related biomarkers. We found that DR is effective in reducing total and visceral adipose mass and improving inflammatory cytokines profile and adiponectin/leptin ratio. By analysing the levels of canonical biomarkers of healthy aging, we also validated the changes of insulin, IGF-1 and IGFBP-1,2 to monitor DR effects. Collectively, we developed a useful platform to evaluate the human responses to dietary regimens low in calories.

  17. Energy-restricted, high-protein diets more effectively impact cardiometabolic profile in overweight and obese women than lower-protein diets.

    PubMed

    Mateo-Gallego, Rocío; Marco-Benedí, Victoria; Perez-Calahorra, Sofía; Bea, Ana M; Baila-Rueda, Lucía; Lamiquiz-Moneo, Itziar; de Castro-Orós, Isabel; Cenarro, Ana; Civeira, Fernando

    2017-04-01

    High-protein energy-restricted diets have demonstrated efficacy in promoting weight loss in overweight and obesity. However, the protein percentage that achieves optimal efficacy and acceptability remains unknown. We sought to assess the effects of three energy-reduced diets with different percentages of calories from protein (20%, 27%, and 35%) on weight loss and lipids. Secondary outcomes included diet acceptability and compliance. Six-month, randomized study included women aged 18-80 years with BMI of 27.5-45 kg/m 2 and who were not taking lipid-lowering drugs. We randomly assigned 91 women to one of three calorie-reduced diets with: protein, 20%, 27%, or 35% (80% from animal protein); carbohydrates, 50%, 43%, or 35%; fat, 30%. Dietary intervention involved individual visits with a nutritionist every 2 weeks during the first 3 months. We performed a follow-up visit at 6 months. Eighty women aged 44.0 ± 9.08 years with BMI of 37.7 ± 3.39 kg/m 2 completed the study. At 3 months, weight loss was -8.16 ± 4.18 kg, -9.66 ± 5.28 kg, and -10.7 ± 4.28 kg in the 20%, 27%, and 35%-protein groups, respectively (P = 0.16). These figures slightly and homogeneously increased at 6 months. Around 65% of women following 35%-protein diet lost ≥10% of body weight vs. ∼33% in 20%-protein group (P = 0.023). Significant decreases occurred in fat mass, lipids and insulin resistance, especially in the 35%-protein group (P < 0.05 vs. 20% protein). This improvement was not fully explained by weight loss. Triglyceride change was negatively correlated with animal-protein intake. All groups provided similar responses to an acceptance, palatability, and satisfaction questionnaire. An energy-restricted diet with 35% protein, mostly of animal origin, more effectively impacts cardiometabolic profile than an energy-restricted diet with lower protein content although no clear benefit between diets in terms of overall weight loss was observed. The high-protein diet

  18. Muscle atrophy in cachexia: can dietary protein tip the balance?

    PubMed

    Op den Kamp, Céline M; Langen, Ramon C; Haegens, Astrid; Schols, Annemie M

    2009-11-01

    To review the efficacy of dietary protein supplementation in attenuating muscle atrophy in cachexia. Only very few recent randomized controlled trials have studied the effects of protein supplementation in clinical cachexia. It appears that supplementation of dietary protein (>1.5 g/kg per day) alone or in combination with other anabolic stimuli such as exercise training maintains or even improves muscle mass, but results on muscle function are controversial and no clinical studies have yet directly linked alterations in cellular signaling or metabolic signatures of protein intake-induced muscle anabolism to muscle weight gain. To elucidate the role of dietary protein supplementation in attenuating muscle atrophy in cachectic patients, randomized clinical trials are needed in adequately phenotyped patients using sensitive measures of muscle mass and function.

  19. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    PubMed Central

    Xie, Xiao; Yi, Weijie; Zhang, Piwei; Wu, Nannan; Yan, Qiaoqiao; Yang, Hui; Tian, Chong; Xiang, Siyun; Du, Miying; Getachew Assefa, Eskedar; Zuo, Xuezhi; Ying, Chenjiang

    2017-01-01

    Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR) or dietary polyphenols such as green tea polyphenols (GTPs) can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD), DR, high-fat diet (HFD), and three diets plus 200 mg/kg(bw)/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA)-treated human proximal tubular epithelial cells (HK-2), which was ameliorated by epigallocatechin-3-gallate (EGCG). Furthermore, GTPs (or EGCG) elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression. PMID:28505110

  20. Dietary Restriction Behaviors and Binge Eating in Anorexia Nervosa, Bulimia Nervosa and Binge Eating Disorder: Trans-diagnostic Examination of the Restraint Model.

    PubMed

    Elran-Barak, Roni; Sztainer, Maya; Goldschmidt, Andrea B; Crow, Scott J; Peterson, Carol B; Hill, Laura L; Crosby, Ross D; Powers, Pauline; Mitchell, James E; Le Grange, Daniel

    2015-08-01

    To compare dietary restriction behaviors among adults with eating disorders involving binge eating, including anorexia nervosa-binge/purge subtype (AN-BE/P), bulimia nervosa (BN), and binge eating disorder (BED), and to examine whether dietary restriction behaviors impact binge eating frequency across diagnoses. Participants included 845 treatment seeking adults (M=30.42+10.76years) who met criteria for DSM-5 AN-BE/P (7.3%;n=62), BN (59.7%;n=504), and BED (33.0%;n=279). All participants self-reported their past and current eating disorder symptoms on the Eating Disorder Questionnaire. Adults with AN-BE/P and BN reported significantly more dietary restriction behaviors (e.g. eating fewer meals per day, higher frequency of fasting, consuming small and low calorie meals) in comparison to adults with BED. Adults with AN-BE/P and BN who reported restricting food intake via eating fewer meals per day had more frequent binge eating episodes. However, adults with BN who reported restricting food intake via eating small meals and low calorie meals had less frequent binge eating episodes. This study provides mixed support for the restraint model by suggesting that not all dietary restriction behaviors are associated with higher levels of binge eating. It may be that adults with BN who report a higher frequency of eating small and low calorie meals display more control over their eating in general, and therefore also have lower frequency of binge eating. Clinicians should assess for dietary restriction behaviors at the start of treatment prior to assuming that all forms of strict dieting and weight control behaviors similarly impact binge eating. Copyright © 2015. Published by Elsevier Ltd.

  1. Dietary restriction alters fine motor function in rats.

    PubMed

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  2. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease.

    PubMed

    Mobbs, Charles V; Mastaitis, Jason W; Zhang, Minhua; Isoda, Fumiko; Cheng, Hui; Yen, Kelvin

    2007-01-01

    Elevated blood glucose associated with diabetes produces progressive and apparently irreversible damage to many cell types. Conversely, reduction of glucose extends life span in yeast, and dietary restriction reduces blood glucose. Therefore it has been hypothesized that cumulative toxic effects of glucose drive at least some aspects of the aging process and, conversely, that protective effects of dietary restriction are mediated by a reduction in exposure to glucose. The mechanisms mediating cumulative toxic effects of glucose are suggested by two general principles of metabolic processes, illustrated by the lac operon but also observed with glucose-induced gene expression. First, metabolites induce the machinery of their own metabolism. Second, induction of gene expression by metabolites can entail a form of molecular memory called hysteresis. When applied to glucose-regulated gene expression, these two principles suggest a mechanism whereby repetitive exposure to postprandial excursions of glucose leads to an age-related increase in glycolytic capacity (and reduction in beta-oxidation of free fatty acids), which in turn leads to an increased generation of oxidative damage and a decreased capacity to respond to oxidative damage, independent of metabolic rate. According to this mechanism, dietary restriction increases life span and reduces pathology by reducing exposure to glucose and therefore delaying the development of glucose-induced glycolytic capacity.

  3. Effects of Maternal Dietary Restriction of Vitamin B-6 on Neocortex Development in Rats

    NASA Astrophysics Data System (ADS)

    Groziak, Susan Marie

    The aim of this investigation was to quantitate the effects of a dietary restriction in Vitamin B-6 during gestation or gestation and lactation on neurogenesis, neuron longevity and neuron differentiation in the neocortex of rats. Sprague Dawley female rats were fed, ad libitum, a Vitamin B-6 free diet (AIN 76) supplemented with 0.0 or 0.6 mg pyridoxine (PN)/kg diet during gestation followed by a control level of 7.0 mg PN/kg diet during lactation, or were fed the Vitamin B-6 free diet supplemented with 0.6 or 7.0 mg PN/kg diet throughout gestation and lactation. The neocortex of progeny of these animals were examined at 30 days of age employing light and electron microscopy. Analyses of neurogenesis, neuron longevity and differentiation of neurons (size of somata, dendritic arborization and spine density in Golgi Cox preparations, and synaptic density in E.M. preparations) were conducted. Each of the Vitamin B-6 restricted treatments adversely affected neurogenesis, neuron longevity and neuron differentiation. The degree of adverse effects paralleled the severity (dose or duration) of the restriction imposed. Expressed as percentage reduction from control values, the findings indicated that neuron longevity and differentiation of neurons in the neocortex were more severely affected than neurogenesis by a maternal dietary restriction in Vitamin B-6.

  4. Effects of dietary caffeine on mood when rested and sleep restricted.

    PubMed

    James, Jack E; Gregg, M Elizabeth

    2004-07-01

    Prolonged use of caffeine can lead to physical dependence evidenced by characteristic withdrawal symptoms during abstinence. Debate exists as to whether mood enhancement by caffeine represents a net effect or merely the restoration of abstinence-induced mood decrements. One aim of this study was to determine the net effects on mood of dietary caffeine compared with prolonged abstinence. In addition, the study aimed to determine whether caffeine restores mood degraded by a non-caffeine source, namely, sleep restriction. A double-blind placebo-controlled cross-over design was employed in which 48 male and female volunteers alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for 4 consecutive weeks, while being either rested or sleep restricted. Mood was assessed using a computerized version of the profile of mood states (POMS), giving scores for overall mood and six mood dimensions. Gender had small effects on mood, whereas all mood dimensions were markedly adversely affected by sleep restriction. Caffeine had no significant net enhancing effects on mood when participants were rested, and produced no net restorative effects when mood was degraded by sleep restriction. On the contrary, caffeine-induced decrements in mood were observed during both conditions of rest and sleep restriction. Copyright 2004 John Wiley & Sons, Ltd.

  5. Immunoglobulins and dietary protein antibodies in childhood coeliac disease 1

    PubMed Central

    Kenrick, K. G.; Walker-Smith, J. A.

    1970-01-01

    Twenty-four children with coeliac disease were compared with a control group, comprising 17 children with a variety of gastroenterological disorders, with respect to serum immunoglobulins and dietary protein antibodies. Elevated levels of IgA and abnormally low levels of IgM were demonstrated in one third of the coeliac patients. Antibodies to at least one of eight dietary proteins were found in 50% of coeliac children. Three children with raised levels of serum IgA and two with deficient IgM were re-examined after varying periods on a gluten-free diet. Antibodies to dietary proteins had waned and immunoglobulin levels returned to normal in all cases. The raised IgA was considered to have resulted from an extensive immunological response to antigens of dietary origin which had entered through the abnormal gut mucosa. It is suggested that IgM deficiency was due to specific inhibition of IgM synthesis by dietary components which had also entered through the mucosa. PMID:4097173

  6. Short term effects of energy restriction and dietary fat sub-type on weight loss and disease risk factors.

    PubMed

    Tapsell, L; Batterham, M; Huang, X F; Tan, S-Y; Teuss, G; Charlton, K; Oshea, J; Warensjö, E

    2010-06-01

    Decreasing energy intake relative to energy expenditure is the indisputable tenet of weight loss. In addition to caloric restriction modification of the type of dietary fat may provide further benefits. The aim of the present study was to examine the effect of energy restriction alone and with dietary fat modification on weight loss and adiposity, as well as on risk factors for obesity related disease. One-hundred and fifty overweight men and women were randomized into a 3month controlled trial with four low fat (30% energy) dietary arms: (1) isocaloric (LF); (2) isocaloric with 10% polyunsaturated fatty acids (LF-PUFA); (3) low calorie (LF-LC) (-2MJ); (4) low calorie with 10% PUFA (LF-PUFA-LC). Primary outcomes were changes in body weight and body fat and secondary outcomes were changes in fasting levels of leptin, insulin, glucose, lipids and erythrocyte fatty acids. Changes in dietary intake were assessed using 3day food records. One-hundred and twenty-two participants entered the study and 95 completed the study. All groups lost weight and body fat (P<0.0001 time effect for both), but the LC groups lost more weight (P=0.026 for diet effect). All groups reduced total cholesterol levels (P<0.0001 time effect and P=0.017 intervention effect), but the LC and PUFA groups were better at reducing triacylglycerol levels (P=0.056 diet effect). HDL increased with LF-LC and LF-PUFA but not with LF-PUFA-LC (0.042 diet effect). The LF and LF-LC groups reported greater dietary fat reductions than the two PUFA groups (P=0.043). Energy restriction has the most potent effect on weight loss and lipids, but fat modification is also beneficial when energy restriction is more modest.

  7. High dietary protein intake and protein-related acid load on bone health

    USDA-ARS?s Scientific Manuscript database

    Protein is an essential nutrient for humans and is required for maintaining optimal bone structure and growth. Consumption of high protein diets in excess of the Recommended Dietary Allowance of (0.8 g protein/kg body weight/d) is increasingly popular due to the benefits of protein on preserving lea...

  8. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  9. Dietary restriction slightly affects glucose homeostasis and delays plasma cholesterol removal in rabbits with dietary lipid lowering.

    PubMed

    Yu, Qi; Liu, Ruihan; Han, Lijuan; Zhang, Guangwei; Guan, Hua; Pan, Qi; Wang, Siwang; Liu, Enqi

    2018-04-15

    Dietary restriction (DR) has been reported to promote the beneficial effects on atherosclerotic progression, lipid and glucose metabolism, but little is known about these effects can be enhanced or weakened by dietary lipid lowering. After 12 weeks of the high-cholesterol diet (HCD) feeding, hypercholesterolemic rabbits were fed with either a chow diet ad libitum (AL) or a chow diet with DR for 16 weeks of dietary lipid lowering. Here, we found the DR group exhibited a loss in body weight, small internal organs and the reduced fat mass, but the AL group accumulated more subcutaneous fat than the baseline group. DR treatment slightly worsened glucose tolerance but enhanced insulin sensitivity, and a slight effect of DR on insulin secretion was also observed. After diet cholesterol withdrawal, rabbits showed persistently lowering of total cholesterol and triglyceride in plasma. The DR group had significantly higher plasma total cholesterol than the AL group at the most time points during 7 to 16 weeks of lipid lowering. Although both AL and DR groups developed more severe atherosclerosis than baseline group, DR did not improve atherosclerotic progression and the accumulation of macrophages and smooth muscle cells as well. We concluded that DR affected glucose and lipid metabolism but did not ameliorate atherosclerosis in rabbits when associated with lipid lowering by the dietary cholesterol withdrawal.

  10. Dietary Sodium Restriction Increases the Risk of Misinterpreting Mild Cases of Primary Aldosteronism.

    PubMed

    Baudrand, Rene; Guarda, Francisco J; Torrey, Jasmine; Williams, Gordon; Vaidya, Anand

    2016-11-01

    The aldosterone to renin ratio (ARR) is recommended to screen for primary aldosteronism (PA). To evaluate whether dietary sodium restriction results in misinterpretation of PA screening. Untreated hypertensives with ARR more than 20 on a high dietary sodium intake (HS) were also evaluated on a low dietary sodium intake (LS) (n = 241). Positive screening for PA was defined as: plasma renin activity (PRA) less than or equal to 1.0 ng/mL · h with serum aldosterone more than or equal to 6 ng/dL. PA was confirmed by a 24-hour urinary aldosterone excretion more than or equal to 12 mcg with urinary sodium more than 200 mmol. Only 33% (79/241) of participants with an ARR more than 20 had a positive PA screen on HS. On LS, 56% (44/79) of these participants no longer met criteria for positive PA screening. When compared with participants with positive PA screening on both diets, participants with a positive screen on HS but negative on LS exhibited a significantly higher PRA on both diets. Remarkably, of the 48/79 participants who had PA confirmed, 52% had negative PA screening on LS. The distinguishing feature of these participants with "discordant" screening results was a larger rise in PRA on LS resulting in normalization of the ARR and higher Caucasian race prevalence. Sodium restriction is recommended in hypertension; however, it can significantly raise PRA, normalize the ARR, and result in false interpretation of PA screening. Milder phenotypes of PA, where PRA is not as suppressed, are most susceptible to dietary sodium influences on renin and ARR. Optimal screening for PA should occur under conditions of HS.

  11. Effect of dietary restriction on sperm characteristic and oxidative status on testicular tissue in young rats exposed to long-term heat stress.

    PubMed

    Aydilek, N; Varisli, O; Kocyigit, A; Taskin, A; Kaya, M S

    2015-11-01

    This study was conducted to evaluate the effects of dietary restriction on oxidative status and sperm parameters in rats exposed to long-term heat stress. Forty healthy Sprague-Dawley rats, aged 2.5 month, were divided into four groups of 10 with respect to feeding and temperature regimen (room temperature (22 °C)-ad libitum, room temperature-dietary restriction (40%), high temperature (38 °C)-ad libitum, high temperature-dietary restriction). At the end of the 9th week, some oxidants (lipid hydroperoxide, total oxidant status, oxidative stress index) and antioxidants (total antioxidant status, sulfhydryl groups, ceruloplasmin, paraoxonase and arylesterase activities) were measured in the testis tissue. The concentration, motility, volume, abnormal sperm count, acrosome and membrane integrity of epididymal spermatozoon and intratesticular testosterone levels were evaluated. High temperature did not change oxidative and antioxidative parameters except for sulfhydryl groups and ceruloplasmin, yet it impaired all sperm values. Neither sperm values nor oxidative status apart from sulfhydryl groups, ceruloplasmin and arylesterase was affected by dietary restriction in the testis tissue. These results suggest that long-term heat stress does not have a significant effect on testicular oxidative status, while the spermatozoa are sensitive to heat stress in young rats. Dietary restriction failed to improve the sperm quality and oxidative status except some individual antioxidant parameters; conversely, it decreased intratesticular testosterone level in the young rats exposed to long-term heat stress. © 2014 Blackwell Verlag GmbH.

  12. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes.

    PubMed

    Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F

    2016-05-01

    This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.

  13. Modifications of gustatory nerve synapses onto nucleus of the solitary tract neurons induced by dietary sodium-restriction during development.

    PubMed

    May, Olivia L; Erisir, Alev; Hill, David L

    2008-06-01

    The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors.

  14. Dietary actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases gastric digestion and the gastric emptying rate of several dietary proteins in growing rats.

    PubMed

    Montoya, Carlos A; Hindmarsh, Jason P; Gonzalez, Lucrecia; Boland, Mike J; Moughan, Paul J; Rutherfurd, Shane M

    2014-04-01

    Dietary actinidin influences the extent to which some dietary proteins are digested in the stomach, and it is hypothesized that the latter modulation will in turn affect their gastric emptying rate (GE). In this study, the effect of dietary actinidin on GE and gastric digestion of 6 dietary protein sources was determined in growing rats. Each dietary protein source [beef muscle, gelatin, gluten, soy protein isolate (SPI), whey protein isolate, and zein] was included in 2 semisynthetic diets as the sole nitrogen source. For each protein source, 1 of the 2 diets contained actinidin [76.5 U/g dry matter (DM)] in the form of ground freeze-dried green kiwifruit (Actinidia deliciosa cv. Hayward), whereas the other diet contained freeze-dried gold kiwifruit (Actinidia chinensis cv. Hort16A), which is devoid of actinidin (3.4 U/g DM). For both diets, dietary kiwifruit represented 20% of the diet on a DM basis. The real-time GE was determined in rats gavaged with a single dose of the diets using magnetic resonance spectroscopy over 150 min (n = 8 per diet). Gastric protein digestion was determined based on the free amino groups in the stomach chyme collected from rats fed the diets (n = 8 per diet) that were later killed. GE differed across the protein sources [e.g., the half gastric emptying time (T(½)) ranged from 157 min for gluten to 266 min for zein] (P < 0.05). Dietary actinidin increased the gastric digestion of beef muscle (0.6-fold), gluten (3.2-fold), and SPI (0.6-fold) and increased the GE of the diets containing beef muscle (43% T(½)) and zein (23% T(½); P < 0.05). There was an inverse correlation between gastric protein digestion and DM retained in the stomach (r = -0.67; P < 0.05). In conclusion, dietary actinidin increased gastric protein digestion and accelerated the GE for several dietary protein sources. GE may be influenced by gastric protein digestion, and dietary actinidin can be used to modulate GE and protein digestion in the stomach of some

  15. Increasing dietary protein requirements in elderly people for optimal muscle and bone health.

    PubMed

    Gaffney-Stomberg, Erin; Insogna, Karl L; Rodriguez, Nancy R; Kerstetter, Jane E

    2009-06-01

    Osteoporosis and sarcopenia are degenerative diseases frequently associated with aging. The loss of bone and muscle results in significant morbidity, so preventing or attenuating osteoporosis and sarcopenia is an important public health goal. Dietary protein is crucial for development of bone and muscle, and recent evidence suggests that increasing dietary protein above the current Recommended Dietary Allowance (RDA) may help maintain bone and muscle mass in older individuals. Several epidemiological and clinical studies point to a salutary effect of protein intakes above the current RDA (0.8 g/kg per day) for adults aged 19 and older. There is evidence that the anabolic response of muscle to dietary protein is attenuated in elderly people, and as a result, the amount of protein needed to achieve anabolism is greater. Dietary protein also increases circulating insulin-like growth factor, which has anabolic effects on muscle and bone. Furthermore, increasing dietary protein increases calcium absorption, which could be anabolic for bone. Available evidence supports a beneficial effect of short-term protein intakes up to 1.6 to 1.8 g/kg per day, although long-term studies are needed to show safety and efficacy. Future studies should employ functional measures indicative of protein adequacy, as well as measures of muscle protein synthesis and maintenance of muscle and bone tissue, to determine the optimal level of dietary protein. Given the available data, increasing the RDA for older individuals to 1.0 to 1.2 g/kg per day would maintain normal calcium metabolism and nitrogen balance without affecting renal function and may represent a compromise while longer-term protein supplement trials are pending.

  16. Lack of functional and morphological susceptibility of the greater superficial petrosal nerve to developmental dietary sodium restriction.

    PubMed

    Sollars, S I; Hill, D L

    2000-12-01

    Restriction of dietary sodium during gestation has major effects on taste function and anatomy in the offspring. The chorda tympani nerve of offspring that are maintained on sodium-reduced chow throughout life (NaDep) has reduced neurophysiological responses to sodium and altered morphology of its terminal field in the nucleus of the solitary tract. There are many anatomical and physiological similarities between the chorda tympani nerve that innervates taste buds on the anterior tongue and the greater superficial petrosal nerve (GSP) that innervates taste buds on the palate. To determine if the GSP is similarly susceptible to the effects of dietary sodium restriction, the present study examined neurophysiological responses and the terminal field of the GSP in NaDep and control rats. Neurophysiological responses of the GSP to a variety of sodium and non-sodium stimuli did not differ between NaDep and control rats. Furthermore, the volume and shape of the GSP terminal field in the nucleus of the solitary tract did not differ between the groups. Therefore, despite the high degree of functional and anatomical correspondence between the chorda tympani nerve and the GSP, the GSP does not appear to be susceptible to the effects of lifelong dietary sodium restriction.

  17. Dietary practices in glutaric aciduria type 1 over 16 years.

    PubMed

    Gokmen-Ozel, H; MacDonald, A; Daly, A; Ashmore, C; Preece, M A; Hendriksz, C; Vijay, S; Chakrapani, A

    2012-12-01

    In glutaric aciduria type 1 (GA1), dietary treatment with emergency management (EM) is essential to prevent encephalopathic crisis (EC). In the present study, dietary practices were examined in a single UK centre without access to newborn screening. Twenty GA1 patients (11 males, median age: 10.2 years, range 2.2-24.1 years) were evaluated. Nine presented without EC (median diagnosis age: 1.1 years, range 4 days to 8 years) and 11 with EC (median diagnosis age 10 months, range 6 months to 1.7 years). Dietary treatment, neurological outcome, anthropometry and biochemical/haematological markers were assessed. Diet treatment varied according to age of diagnosis and symptom severity. Four of six pre-encephalopathic children diagnosed before 2 years of age were treated with carnitine, protein restriction (medium l.2 g kg day(-1)) and lysine-free/low tryptophan protein substitute (PS) (medium dose: 1.6 g kg day(-1)). EM consisted of natural protein cessation and glucose polymer with PS delivered via an enteral feeding tube. Older children (>3 years) without EC were given carnitine and protein restriction, and seven of nine EC patients had PS via an enteral feeding tube. Clinical deterioration occurred in two patients without EC; one taking PS and protein restriction (with a second untreatable pathology) and one after protein restriction only. In patients presenting with EC, four died and one had some improvement in movement, with the rest remaining stable but with severe disability. Patients taking PS had better nutritional markers [serum vitamin B(12) (P < 0.001), albumin (P < 0.001), haemoglobin (P < 0.001) and essential plasma amino acids]. Early diagnosis of GA1 before EC is essential because PS and protein restriction with meticulous EM prevents EC. PS also improves nutritional status irrespective of clinical condition. © 2012 The Authors. Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  18. Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model.

    PubMed

    Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F

    2015-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4  h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of

  19. Dietary Sodium Restriction Increases the Risk of Misinterpreting Mild Cases of Primary Aldosteronism

    PubMed Central

    Guarda, Francisco J.; Torrey, Jasmine; Williams, Gordon

    2016-01-01

    Context: The aldosterone to renin ratio (ARR) is recommended to screen for primary aldosteronism (PA). Objective: To evaluate whether dietary sodium restriction results in misinterpretation of PA screening. Participants: Untreated hypertensives with ARR more than 20 on a high dietary sodium intake (HS) were also evaluated on a low dietary sodium intake (LS) (n = 241). Positive screening for PA was defined as: plasma renin activity (PRA) less than or equal to 1.0 ng/mL · h with serum aldosterone more than or equal to 6 ng/dL. PA was confirmed by a 24-hour urinary aldosterone excretion more than or equal to 12 mcg with urinary sodium more than 200 mmol. Results: Only 33% (79/241) of participants with an ARR more than 20 had a positive PA screen on HS. On LS, 56% (44/79) of these participants no longer met criteria for positive PA screening. When compared with participants with positive PA screening on both diets, participants with a positive screen on HS but negative on LS exhibited a significantly higher PRA on both diets. Remarkably, of the 48/79 participants who had PA confirmed, 52% had negative PA screening on LS. The distinguishing feature of these participants with “discordant” screening results was a larger rise in PRA on LS resulting in normalization of the ARR and higher Caucasian race prevalence. Conclusions: Sodium restriction is recommended in hypertension; however, it can significantly raise PRA, normalize the ARR, and result in false interpretation of PA screening. Milder phenotypes of PA, where PRA is not as suppressed, are most susceptible to dietary sodium influences on renin and ARR. Optimal screening for PA should occur under conditions of HS. PMID:27428770

  20. Optimum dietary protein requirement in nondiabetic maintenance hemodialysis patients.

    PubMed

    Ohkawa, Sakae; Kaizu, Yukiko; Odamaki, Mari; Ikegaya, Naoki; Hibi, Ikuo; Miyaji, Kunihiko; Kumagai, Hiromichi

    2004-03-01

    There is controversy about whether the dietary protein requirement of 1.2 g/kg/d for hemodialysis (HD) patients, in the nutritional guidelines recommended by the National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (NKF-KDOQI), is reasonable. A cross-sectional study was conducted in 129 stable HD patients without diabetes (84 men, 45 women) to investigate the association between the protein equivalent of nitrogen appearance normalized by ideal body weight (nPNAibw), an index of protein intake, and skeletal muscle mass or other metabolic consequences. Patients were divided into 5 groups according to nPNAibw index. Midthigh muscle area (TMA), midthigh subcutaneous fat area (TSFA), abdominal muscle area (AMA), abdominal subcutaneous fat area (ASFA), and visceral fat area (AVFA) were measured using computed tomography, and various nutritional parameters were compared among these groups. TMA and AMA values increased with increasing dietary protein intake from less than 0.7 g/kg/d to 0.9-1.1 g/kg/d and showed a plateau at greater than 0.9 to 1.1 g/kg/d of dietary protein intake. Conversely, fat mass, including TSFA, ASFA, and AVFA, and serum potassium concentration increased with graded protein intake, and no plateau was formed. Patients with nPNAibw greater than 1.3 g/kg/d satisfied the criterion of visceral obesity. Although serum prealbumin levels showed a trend similar to that of muscle mass, there was no significant difference in serum albumin levels among the study groups. Optimal dietary protein requirement for patients undergoing maintenance HD in a stable condition appears to be less than the level recommended by the NKF-KDOQI nutritional guidelines.

  1. Dietary protein, aging and nutritional geometry.

    PubMed

    Simpson, Stephen J; Le Couteur, David G; Raubenheimer, David; Solon-Biet, Samantha M; Cooney, Gregory J; Cogger, Victoria C; Fontana, Luigi

    2017-10-01

    Nearly a century of research has shown that nutritional interventions can delay aging and age- related diseases in many animal models and possibly humans. The most robust and widely studied intervention is caloric restriction, while protein restriction and restriction of various amino acids (methionine, tryptophan) have also been shown to delay aging. However, there is still debate over whether the major impact on aging is secondary to caloric intake, protein intake or specific amino acids. Nutritional geometry provides new perspectives on the relationship between nutrition and aging by focusing on calories, macronutrients and their interactions across a landscape of diets, and taking into account compensatory feeding in ad libitum-fed experiments. Nutritional geometry is a state-space modelling approach that explores how animals respond to and balance changes in nutrient availability. Such studies in insects and mice have shown that low protein, high carbohydrate diets are associated with longest lifespan in ad libitum fed animals suggesting that the interaction between macronutrients may be as important as their total intake. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dietary protein affects urea transport across rat urothelia.

    PubMed

    Spector, David A; Deng, Jie; Stewart, Kerry J

    2012-10-01

    Recent evidence suggests that regulated solute transport occurs across mammalian lower urinary tract epithelia (urothelia). To study the effects of dietary protein on net urothelial transport of urea, creatinine, and water, we used an in vivo rat bladder model designed to mimic physiological conditions. We placed groups of rats on 3-wk diets differing only by protein content (40, 18, 6, and 2%) and instilled 0.3 ml of collected urine in the isolated bladder of anesthetized rats. After 1 h dwell, retrieved urine volumes were unchanged, but mean urea nitrogen (UN) and creatinine concentrations fell 17 and 4%, respectively, indicating transurothelial urea and creatinine reabsorption. The fall in UN (but not creatinine) concentration was greatest in high protein (40%) rats, 584 mg/dl, and progressively less in rats receiving lower protein content: 18% diet, 224 mg/dl; 6% diet, 135 mg/dl; and 2% diet, 87 mg/dl. The quantity of urea reabsorbed was directly related to a urine factor, likely the concentration of urea in the instilled urine. In contrast, the percentage of instilled urea reabsorbed was greater in the two dietary groups receiving the lowest protein (26 and 23%) than in those receiving higher protein (11 and 9%), suggesting the possibility that a bladder/urothelial factor, also affected by dietary protein, may have altered bladder permeability. These findings demonstrate significant regulated urea transport across the urothelium, resulting in alteration of urine excreted by the kidneys, and add to the growing evidence that the lower urinary tract may play an unappreciated role in mammalian solute homeostasis.

  3. d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: A new candidate dietary restriction mimetic.

    PubMed

    Shintani, Tomoya; Sakoguchi, Hirofumi; Yoshihara, Akihide; Izumori, Ken; Sato, Masashi

    2017-12-02

    Dietary restriction (DR) is an effective intervention known to increase lifespan in a wide variety of organisms. DR also delays the onset of aging-associated diseases. DR mimetics, compounds that can mimic the effects of DR, have been intensively explored. d-Allulose (d-Alu), the C3-epimer of d-fructose, is a rare sugar that has various health benefits, including anti-hyperglycemia and anti-obesity effects. Here, we report that d-Alu increased the lifespan of Caenorhabditis elegans both under monoxenic and axenic culture conditions. d-Alu did not further extend the lifespan of the long-lived DR model eat-2 mutant, strongly indicating that the effect is related to DR. However, d-Alu did not reduce the food intake of wild-type C. elegans. To explore the mechanisms of the d-Alu longevity effect, we examined the lifespan of d-Alu-treated mutants deficient for nutrient sensing pathway-related genes daf-16, sir-2.1, aak-2, and skn-1. As a result, d-Alu increased the lifespan of the daf-16, sir-2.1, and skn-1 mutants, but not the aak-2 mutant, indicating that the lifespan extension was dependent on the energy sensor, AMP-activated protein kinase (AMPK). d-Alu also enhanced the mRNA expression and enzyme activities of superoxide dismutase (SOD) and catalase. From these findings, we conclude that d-Alu extends lifespan by increasing oxidative stress resistance through a DR mechanism, making it a candidate DR mimetic. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    PubMed

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  5. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    PubMed Central

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977

  6. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Modifications of Gustatory Nerve Synapses onto Nucleus of the Solitary Tract Neurons Induced by Dietary Sodium-Restriction During Development

    PubMed Central

    MAY, OLIVIA L.; ERISIR, ALEV; HILL, DAVID L.

    2008-01-01

    The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors. PMID:18366062

  8. Challenges in defining the role of dietary protein in bone health

    USDA-ARS?s Scientific Manuscript database

    In systematic review of the impact of dietary protein on bone health and falls, dietary protein was positively associated with spinal bone mineral density but not with bone density at other skeletal sites, with fractures or with falls. This editorial highlights some of the limitations of the current...

  9. Cellular and Molecular Remodeling of Inguinal Adipose Tissue Mitochondria by Dietary Methionine Restriction

    PubMed Central

    Patil, Yuvraj N.; Dille, Kelly N.; Burk, David H.; Cortez, Cory C.; Gettys, Thomas W.

    2015-01-01

    Dietary methionine restriction (MR) produces a coordinated series of biochemical and physiological responses that improve biomarkers of metabolic health, increase energy expenditure, limit fat accretion, and improve overall insulin sensitivity. Inguinal white adipose tissue (IWAT) is a primary target and site of action where the diet initiates transcriptional programs linked to enhancing both synthesis and oxidation of lipid. Using a combination of ex vivo approaches to assess dietary effects on cell morphology and function, we report that dietary MR produced a 4-fold increase in multilocular, UCP1-expressing cells within this depot in conjunction with significant increases in mitochondrial content, size, and cristae density. Dietary MR increased expression of multiple enzymes within the citric acid cycle, as well as respiratory complexes I, II and III. The physiological significance of these responses, evaluated in isolated mitochondria by high resolution respirometry, was a significant increase in respiratory capacity measured using multiple substrates. The morphological, transcriptional, and biochemical remodeling of IWAT mitochondria enhances the synthetic and oxidative capacity of this tissue, and collectively underlie its expanded role as a significant contributor to the overall increase in metabolic flexibility and uncoupled respiration produced by the diet. PMID:26278039

  10. US Military Dietary Protein Recommendations: A Simple But Often Confused Topic.

    PubMed

    Pasiakos, Stefan M; Sepowitz, John J; Deuster, Patricia A

    2015-01-01

    Military recommendations for dietary protein are based on the recommended dietary allowance (RDA) of 0.8 g of protein per kilogram of body mass (BM) established by the Food and Nutrition Board, Institute of Medicine (IOM) of the National Academies. The RDA is likely adequate for most military personnel, particularly when activity levels are low and energy intake is sufficient to maintain a healthy body weight. However, military recommendations account for periods of increased metabolic demand during training and real-world operations, especially those that produce an energy deficit. Under those conditions, protein requirements are higher (1.5-2.0 g/kg BM) in an attempt to attenuate the unavoidable loss of muscle mass that occurs during prolonged or repeated exposure to energy deficits. Whole foods are recommended as the primary method to consume more protein, although there are likely operational scenarios where whole foods are not available and consuming supplemental protein at effective, not excessive, doses (20-25 g or 0.25-0.3 g/kg BM per meal) is recommended. Despite these evidence-based, condition-specific recommendations, the necessity of protein supplements and the requirements and rationale for consuming higher-protein diets are often misunderstood, resulting in an overconsumption of dietary protein and unsubstantiated health-related concerns. This review will provide the basis of the US military dietary protein requirements and highlight common misconceptions associated with the amount and safety of protein in military diets. 2015.

  11. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    USDA-ARS?s Scientific Manuscript database

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  12. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    NASA Astrophysics Data System (ADS)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2016-07-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  13. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    PubMed Central

    Herbert, Martha

    2017-01-01

    Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619

  14. Dietary sodium restriction and β2-adrenergic receptor polymorphism modulate cardiovascular function in humans

    PubMed Central

    Eisenach, John H; Schroeder, Darrell R; Pike, Tasha L; Johnson, Christopher P; Schrage, William G; Snyder, Eric M; Johnson, Bruce D; Garovic, Vesna D; Turner, Stephen T; Joyner, Michael J

    2006-01-01

    Dietary Na+ intake influences β2-adrenergic receptor (β2AR) responsiveness. While receiving a normal Na+ diet (150 mmol day−1), subjects homozygous for glycine at amino acid 16 (Gly16) have greater forearm β2AR-mediated vasodilatation than subjects homozygous for arginine (Arg16), an effect that is mediated by endothelial NO. We tested the hypothesis that dietary Na+ restriction eliminates genotype differences in forearm and systemic β2AR-mediated dilatation in these groups. We measured heart rate, mean arterial pressure and cardiac output (CO, acetylene breathing) responses to administration of intravenous terbutaline (TRB) before and after 5 days of low dietary Na+ intake (10 mmol day−1) in healthy Gly16 (n = 17; age, 31 ± 7 year) and Arg16 homozygotes (n = 15; age, 29 ± 8 year). After the low-Na+ diet, a catheter was placed in the brachial artery to measure forearm blood flow (FBF, plethysmography) responses to administration of isoprenaline (isoproterenol) before and after NO inhibition with NG-mono-methyl-l-arginine (l-NMMA). In the Gly16 group, the low-Na+ diet decreased baseline CO from 6.4 ± 1.4 to 5.5 ± 1.2 l min−1 (P = 0.003, paired t test), tended to decrease stroke volume from 97.0 ± 20.6 to 86.9 ± 21.7 ml (P = 0.06) and increased peripheral resistance from 1106 ± 246 to 1246 ± 222 dynes s cm−5 (P = 0.02); significant effects of the low-Na+ diet were not observed in Arg16 subjects. In a repeated measures ANOVA, the responses of all cardiovascular measures to systemic administration of TRB were not influenced by genotype or diet. Additionally, the FBF response to incremenetal doses of isoprenaline did not differ between genotype groups before or after administration of l-NMMA. We conclude that dietary Na+ restriction blunted the increased forearm NO-mediated β2AR responsiveness in Gly16 homozygotes observed in a previous study after normal dietary Na+ intake, while baseline CO decreased and peripheral resistance increased in this

  15. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake

    PubMed Central

    Anson, R. Michael; Guo, Zhihong; de Cabo, Rafael; Iyun, Titilola; Rios, Michelle; Hagepanos, Adrienne; Ingram, Donald K.; Lane, Mark A.; Mattson, Mark P.

    2003-01-01

    Dietary restriction has been shown to have several health benefits including increased insulin sensitivity, stress resistance, reduced morbidity, and increased life span. The mechanism remains unknown, but the need for a long-term reduction in caloric intake to achieve these benefits has been assumed. We report that when C57BL/6 mice are maintained on an intermittent fasting (alternate-day fasting) dietary-restriction regimen their overall food intake is not decreased and their body weight is maintained. Nevertheless, intermittent fasting resulted in beneficial effects that met or exceeded those of caloric restriction including reduced serum glucose and insulin levels and increased resistance of neurons in the brain to excitotoxic stress. Intermittent fasting therefore has beneficial effects on glucose regulation and neuronal resistance to injury in these mice that are independent of caloric intake. PMID:12724520

  16. Dietary Approaches in the Management of Diabetic Patients with Kidney Disease

    PubMed Central

    Ko, Gang Jee; Goldstein-Fuchs, Jordi; Rhee, Connie M.

    2017-01-01

    Chronic kidney disease (CKD) is one of the most prevalent complications of diabetes, and patients with diabetic kidney disease (DKD) have a substantially higher risk of cardiovascular disease and death compared to their non-diabetic CKD counterparts. In addition to pharmacologic management strategies, nutritional and dietary interventions in DKD are an essential aspect of management with the potential for ameliorating kidney function decline and preventing the development of other end-organ complications. Among DKD patients with non-dialysis dependent CKD, expert panels recommend lower dietary protein intake of 0.8 g/kg of body weight/day, while higher dietary protein intake (>1.2 g/kg of body weight/day) is advised among diabetic end-stage renal disease patients receiving maintenance dialysis to counteract protein catabolism, dialysate amino acid and protein losses, and protein-energy wasting. Carbohydrates from sugars should be limited to less than 10% of energy intake, and it is also suggested that higher polyunsaturated and monounsaturated fat consumption in lieu of saturated fatty acids, trans-fat, and cholesterol are associated with more favorable outcomes. While guidelines recommend dietary sodium restriction to less than 1.5–2.3 g/day, excessively low sodium intake may be associated with hyponatremia as well as impaired glucose metabolism and insulin sensitivity. As patients with advanced DKD progressing to end-stage renal disease may be prone to the “burnt-out diabetes” phenomenon (i.e., spontaneous resolution of hypoglycemia and frequent hypoglycemic episodes), further studies in this population are particularly needed to determine the safety and efficacy of dietary restrictions in this population. PMID:28758978

  17. Dietary restrictions in healing among speakers of Iquito, an endangered language of the Peruvian Amazon

    PubMed Central

    2011-01-01

    Background Ethnobotanical research was carried out with speakers of Iquito, a critically endangered Amazonian language of the Zaparoan family. The study focused on the concept of "dieting" (siyan++ni in Iquito), a practice involving prohibitions considered necessary to the healing process. These restrictions include: 1) foods and activities that can exacerbate illness, 2) environmental influences that conflict with some methods of healing (e.g. steam baths or enemas) and 3) foods and activities forbidden by the spirits of certain powerful medicinal plants. The study tested the following hypotheses: H1 - Each restriction will correlate with specific elements in illness explanatory models and H2 - Illnesses whose explanatory models have personalistic elements will show a greater number and variety of restrictions than those based on naturalistic reasoning. Methods The work was carried out in 2009 and 2010 in the Alto Nanay region of Peru. In structured interviews, informants gave explanatory models for illness categories, including etiologies, pathophysiologies, treatments and dietary restrictions necessary for 49 illnesses. Seventeen botanical vouchers for species said to have powerful spirits that require diets were also collected. Results All restrictions found correspond to some aspect of illness explanatory models. Thirty-five percent match up with specific illness etiologies, 53% correspond to particular pathophysiologies, 18% correspond with overall seriousness of the illness and 18% are only found with particular forms of treatment. Diets based on personalistic reasoning have a significantly higher average number of restrictions than those based on naturalistic reasoning. Conclusions Dieting plays a central role in healing among Iquito speakers. Specific prohibitions can be explained in terms of specific aspects of illness etiologies, pathophysiologies and treatments. Although the Amazonian literature contains few studies focusing on dietary proscriptions

  18. Dietary restrictions in healing among speakers of Iquito, an endangered language of the Peruvian Amazon.

    PubMed

    Jernigan, Kevin A

    2011-07-11

    Ethno botanical research was carried out with speakers of Iquitos, a critically endangered Amazonian language of the Zaparoan family. The study focused on the concept of "dieting" (siyan++ni in Iquitos), a practice involving prohibitions considered necessary to the healing process. These restrictions include: 1) foods and activities that can exacerbate illness, 2) environmental influences that conflict with some methods of healing (e.g. steam baths or enemas) and 3) foods and activities forbidden by the spirits of certain powerful medicinal plants. The study tested the following hypotheses: H1--Each restriction will correlate with specific elements in illness explanatory models and H2--Illnesses whose explanatory models have personality elements will show a greater number and variety of restrictions than those based on naturalistic reasoning. The work was carried out in 2009 and 2010 in the Alto Nanay region of Peru. In structured interviews, informants gave explanatory models for illness categories, including etiologies, pathophysiologies, treatments and dietary restrictions necessary for 49 illnesses. Seventeen botanical vouchers for species said to have powerful spirits that require diets were also collected. All restrictions found correspond to some aspect of illness explanatory models. Thirty-five percent match up with specific illness etiologies, 53% correspond to particular pathophysiologies, 18% correspond with overall seriousness of the illness and 18% are only found with particular forms of treatment. Diets based on personalistic reasoning have a significantly higher average number of restrictions than those based on naturalistic reasoning. Dieting plays a central role in healing among Iquitos speakers. Specific prohibitions can be explained in terms of specific aspects of illness etiologies, pathophysiologies and treatments. Although the Amazonian literature contains few studies focusing on dietary proscriptions over a wide range of illnesses, some

  19. Protein dietary reference intakes may be inadequate for vegetarians if low amounts of animal protein are consumed.

    PubMed

    Kniskern, Megan A; Johnston, Carol S

    2011-06-01

    The health benefits of vegetarian diets are well-recognized; however, long-term adherence to these diets may be associated with nutrient inadequacies, particularly vitamins B12 and D, calcium, iron, zinc, and protein. The dietary reference intakes (DRIs) expert panels recommended adjustments to the iron, zinc, and calcium DRIs for vegetarians to account for decreased bioavailability, but no adjustments were considered necessary for the protein DRI under the assumption that vegetarians consume about 50% of protein from animal (dairy/egg) sources. This study examined dietary protein sources in a convenience sample of 21 young adult vegetarian women who completed food logs on 4 consecutive days (3 weekdays and 1 weekend day). The daily contribution percentages of protein consumed from cereals, legumes, nuts/seeds, fruits/vegetables, and dairy/egg were computed, and the protein digestibility corrected amino acid score of the daily diets was calculated. The calculated total dietary protein digestibility score for participants was 82 ± 1%, which differed significantly (P < 0.001) from the DRI reference score, 88%, and the 4-d average protein digestibility corrected amino acid score for the sample was 80 ± 2%, which also differed significantly (P < 0.001) from the DRI reference value, 100%. The analyses indicated that animal protein accounted for only 21% of dietary protein. This research suggests that the protein DRI for vegetarians consuming less than the expected amounts of animal protein (45% to 50% of total protein) may need to be adjusted from 0.8 to about 1.0 g/kg to account for decreased protein bioavailability. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Dietary effects on canine and feline behavior.

    PubMed

    Houpt, Katherine A; Zicker, Steven

    2003-03-01

    The effects of dietary deficiency, including both malnutrition and deficiency of specific vitamins, on behavior is discussed with special emphasis on the growing kitten and puppy. The effect of caloric restriction on behavior is reviewed so that owners can be advised what to expect when their dog is placed on a reducing diet. The evidence for influence of dietary protein and tryptophan on canine aggression is presented. The effect of special diets on canine cognitive dysfunction is reviewed.

  1. Increased dietary sodium is independently associated with greater mortality among prevalent hemodialysis patients

    PubMed Central

    Mc Causland, Finnian R.; Waikar, Sushrut S.; Brunelli, Steven M.

    2013-01-01

    Dietary sodium is thought to play a major role in the pathogenesis of hypertension, hypervolemia and mortality in hemodialysis patients. Thus, restriction is almost universally recommended. However, the evidence on which these assumptions are based is limited. We undertook a post-hoc analysis of the Hemodialysis Study with available dietary, clinical and laboratory information. Linear regression models were fit to estimate associations of dietary sodium with ultrafiltration requirement, blood pressure and nutritional indices. Cox regression models were fit to estimate the association of dietary sodium intake, sodium:calorie intake, sodium:potassium intake and prescribed sodium restriction with all-cause mortality. Complete data were available in 1770 subjects, of whom 44% were male, 63% were black and 44% were diabetic. Mean age was 58 (±14) years; median dietary sodium intake was 2080 (IQR: 1490-2850) mg/day. After case-mix adjustment, higher reported dietary sodium was associated with greater ultrafiltration requirement, caloric and protein intake; sodium:calorie intake ratio associated with greater UF requirement; sodium:potassium ratio associated with higher serum sodium. None were associated with pre-dialysis systolic blood pressure. Higher baseline reported dietary sodium, sodium:calorie ratio and sodium:potassium ratio were independently associated with greater all-cause mortality. No associations between prescribed dietary sodium restriction and mortality were observed. Higher reported dietary sodium intake is independently associated with greater mortality among prevalent hemodialysis subjects. Randomized trials are warranted to determine whether dietary sodium restriction improves survival. PMID:22418981

  2. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction

    PubMed Central

    Dumpala, Pradeep R.; Peterson, Brian C.; Lawrence, Mark L.; Karsi, Attila

    2015-01-01

    Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE) for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05) difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri. PMID:26168192

  3. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease.

    PubMed

    Moe, Sharon M; Zidehsarai, Miriam P; Chambers, Mary A; Jackman, Lisa A; Radcliffe, J Scott; Trevino, Laurie L; Donahue, Susan E; Asplin, John R

    2011-02-01

    Patients with advanced chronic kidney disease (CKD) are in positive phosphorus balance, but phosphorus levels are maintained in the normal range through phosphaturia induced by increases in fibroblast growth factor-23 (FGF23) and parathyroid hormone (PTH). This provides the rationale for recommendations to restrict dietary phosphate intake to 800 mg/d. However, the protein source of the phosphate may also be important. We conducted a crossover trial in nine patients with a mean estimated GFR of 32 ml/min to directly compare vegetarian and meat diets with equivalent nutrients prepared by clinical research staff. During the last 24 hours of each 7-day diet period, subjects were hospitalized in a research center and urine and blood were frequently monitored. The results indicated that 1 week of a vegetarian diet led to lower serum phosphorus levels and decreased FGF23 levels. The inpatient stay demonstrated similar diurnal variation for blood phosphorus, calcium, PTH, and urine fractional excretion of phosphorus but significant differences between the vegetarian and meat diets. Finally, the 24-hour fractional excretion of phosphorus was highly correlated to a 2-hour fasting urine collection for the vegetarian diet but not the meat diet. In summary, this study demonstrates that the source of protein has a significant effect on phosphorus homeostasis in patients with CKD. Therefore, dietary counseling of patients with CKD must include information on not only the amount of phosphate but also the source of protein from which the phosphate derives.

  4. Dietary Interventions to Extend Life Span and Health Span Based on Calorie Restriction

    PubMed Central

    Minor, Robin K.; Allard, Joanne S.; Younts, Caitlin M.; Ward, Theresa M.

    2010-01-01

    The societal impact of obesity, diabetes, and other metabolic disorders continues to rise despite increasing evidence of their negative long-term consequences on health span, longevity, and aging. Unfortunately, dietary management and exercise frequently fail as remedies, underscoring the need for the development of alternative interventions to successfully treat metabolic disorders and enhance life span and health span. Using calorie restriction (CR)—which is well known to improve both health and longevity in controlled studies—as their benchmark, gerontologists are coming closer to identifying dietary and pharmacological therapies that may be applicable to aging humans. This review covers some of the more promising interventions targeted to affect pathways implicated in the aging process as well as variations on classical CR that may be better suited to human adaptation. PMID:20371545

  5. Racial/ethnic Differences in Body Mass Index: The Roles of Beliefs about Thinness and Dietary Restriction

    PubMed Central

    Vaughan, Christine A.; Sacco, William P.; Beckstead, Jason W.

    2014-01-01

    The greater BMI of African American relative to Caucasian women is implicated in racial/ethnic disparities in health outcomes. The principal aim of the current study was to evaluate a theoretical account of racial/ethnic differences in BMI. Thin-ideal internalization, the perceived romantic appeal of thinness, dietary restriction, weight, and height were assessed via self-report measures on a sample of female undergraduates of African American (n = 140) and Caucasian (n = 676) race/ethnicity. Using structural equation modeling, support was obtained for the primary hypothesis that racial/ethnic differences in BMI are explained by Caucasian women’s greater thin-ideal internalization and perceived romantic appeal of thinness, thereby resulting in greater levels of dietary restriction. Current findings illustrate the potential for racial/ethnic differences in sociocultural standards of appearance to influence racial/ethnic disparities in physical health, of which BMI is a marker, via effects on weight control behavior. PMID:18585109

  6. Splicing Factor 1 Modulates Dietary Restriction and TORC1 Pathway Longevity in C. elegans

    PubMed Central

    Heintz, Caroline; Escoubas, Caroline; Zhang, Yue; Weir, Heather J.; Dutta, Sneha; Silva-García, Carlos Giovanni; Bruun, Gitte Hoffmann; Morantte, Ianessa; Hoxhaj, Gerta; Manning, Brendan D.; Andresen, Brage S.; Mair, William B.

    2016-01-01

    Ageing is driven by a loss of transcriptional and protein homeostasis1–3 and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction seen with age therefore have potential to reduce overall disease risk in the elderly. Pre-mRNA splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to multiple age-related chronic diseases4,5. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or on dietary restriction (DR), we find defects in global pre-mRNA splicing with age that are reduced by DR via the branch point binding protein (BBP)/splicing factor 1 (SFA-1). We show that SFA-1 is specifically required for lifespan extension both by DR, and modulation of TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 Kinase. Lastly, we demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in DR longevity and suggest modulation of specific spliceosome components can prolong healthy ageing. PMID:27919065

  7. Variation of lifespan in multiple strains, and effects of dietary restriction and BmFoxO on lifespan in silkworm, Bombyx mori.

    PubMed

    Song, Jiangbo; Tang, Dongmei; Li, Zhiquan; Tong, Xiaoling; Zhang, Jianfei; Han, Minjin; Hu, Hai; Lu, Cheng; Dai, Fangyin

    2017-01-31

    Established animal models have accelerated our understanding of the mechanisms involved in lifespan determination. However, more experimental animals are required to clarify the complex mechanisms behind the phenomena of aging and lifespan. In this study, we reported the variation of lifespan in nine distinct silkworm strains. Lifespan correlated significantly with BmFoxO gene expression in the representative silkworm strains tested (Xiafang, Dazao-N, and N4). In general, the female silkworm was longer lived than the male of the same strain. Dietary restriction extended the silkworm lifespan compared with that of silkworms fed ad libitum. The expression of BmFoxO was significantly elevated in the dietary restriction group on day 3 of the 4th instar and day 3 of the 5th instar, suggesting that BmFoxO contributes to dietary restriction-mediated lifespan extension. The RNA interference and overexpression of the BmFoxO gene significantly shortened and extended the silkworm adulthood, respectively. In conclusion, our findings suggest that the silkworm might serve as a promising experimental animal to explore the complex biological mechanisms of lifespan determination.

  8. Orthostatic responses to dietary sodium restriction during heat acclimation

    NASA Technical Reports Server (NTRS)

    Szlyk, Patricia C.; Sils, Ingrid V.; Caretti, David M.; Moore, Robert J.; Armstrong, Lawrence E.; Tartarini, Kim A.; Francesconi, Ralph P.; Askew, Eldon W.; Hubbard, Roger W.

    1994-01-01

    Several studies have shown that individuals consuming low-salt diets and working in the heat have an increased risk or incidence of heat injury, suggestive of inadequate cardiovascular adjustment. Furthermore, others have shown that prolonged work in hot climates can precipitate orthostatic hypotension and syncope. This study was designed to evaluate the effects of moderate-salt (MS) and low-salt (LS) diets on the circulatory responses and incidence of presyncopal symptoms to an orthostatic test (OT) during successive days of heat acclimation (HA). Seventeen unacclimatized male soldiers (mean +/- SE: age 20+/-1 yrs) participated in this two-phase study. The first phase consisted of a seven day dietary stabilization period during which all subjects consumed similar diets of about 4000 kcal/day containing 8g NaCl and lived in a dormitory setting (21 C, 30% RH). The second phase commenced on day eight and consisted of dietary NaCl restriction and 10 days HA (days 8-17). Volunteers were randomly assigned to either the MS diet (n=9) providing 8g NaCl/day or the LS diet (n=8) furnishing just 4g NaCl/day. The acquisition of HA was manifested in both groups by reductions in exercising rectal temperature and heart rate (HR); these characteristics were similar in the MS and LS diets. The OT was performed at 21 C on day seven of the stabilization phase and on days 9, 11, 13, 15, and 17 of the HA phase, before and after 8.5 hr of intermittent treadmill walking in a hot environment. Blood pressure (BP) and HR responses at 1,2, and 4 min and any presyncopal symptoms were recorded after assuming an upright position from recumbency. All subjects completed the OT before and after prolonged exercise in the heat without incidence of either hypotension or presyncopal symptoms irrespective of dietary-salt intake and day of HA. The results indicate that the prolonged work in the heat can be performed without orthostatic hypotension or syncope while consuming 4g NaCl/day with adequate

  9. Dietary Sodium Restriction and Association with Urinary Marinobufagenin, Blood Pressure, and Aortic Stiffness

    PubMed Central

    Fedorova, Olga V.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; Fleenor, Bradley S.; Lakatta, Edward G.; Bagrov, Alexei Y.; Seals, Douglas R.

    2013-01-01

    Summary Background and objectives Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous α1 Na+,K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading. Design, setting, participants, & measurements The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 60±2 years) with moderately elevated systolic BP (139±2/83±2 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulse-wave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (77±9 mmol/d) and 5 weeks of a normal-sodium (144±7 mmol/d) diet. Results Urinary marinobufagenin excretion (weekly measurements; 25.4±1.8 versus 30.7±2.1 pmol/kg per day), systolic BP (127±3 versus 138±5 mmHg), and aortic pulse-wave velocity (700±40 versus 843±36 cm/s) were lower during the low- versus normal-sodium condition (all P<0.05). Across all weeks, marinobufagenin excretion was related with systolic BP (slope=0.61, P<0.001) and sodium excretion (slope=0.46, P<0.001). These associations persisted during the normal- but not the low-sodium condition (both P<0.005). Marinobufagenin excretion also was associated with aortic pulse-wave velocity (slope=0.70, P=0.02) and endothelial cell expression of NAD(P)H oxidase-p47phox (slope=0.64, P=0.006). Conclusions These results show, for the first time in humans, that dietary sodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant

  10. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  11. Temporary dietary iron restriction affects the process of thrombus resolution in a rat model of deep vein thrombosis.

    PubMed

    Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru

    2015-01-01

    Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT. We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation. The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet. These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT.

  12. Temporary Dietary Iron Restriction Affects the Process of Thrombus Resolution in a Rat Model of Deep Vein Thrombosis

    PubMed Central

    Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru

    2015-01-01

    Background Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT. Methods We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation. Results The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet. Conclusions These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT. PMID:25962140

  13. Dietary protein quality and quantity affect lactational responses to corn distillers grains: a meta-analysis.

    PubMed

    Hollmann, M; Allen, M S; Beede, D K

    2011-04-01

    Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N. Copyright © 2011 American Dairy Science Association. Published by

  14. Randomized, Controlled Trial of the Effect of Dietary Potassium Restriction on Nerve Function in CKD.

    PubMed

    Arnold, Ria; Pianta, Timothy J; Pussell, Bruce A; Kirby, Adrienne; O'Brien, Kate; Sullivan, Karen; Holyday, Margaret; Cormack, Christine; Kiernan, Matthew C; Krishnan, Arun V

    2017-10-06

    Neuromuscular complications are almost universal in CKD by the time that a patient commences dialysis. Recent studies have indicated that chronic hyperkalemia may contribute to the development of neuropathy in CKD. This study was undertaken to determine whether dietary restriction of potassium intake may be a neuroprotective factor in CKD. A 24-month prospective, single-blind, randomized, controlled trial was undertaken in 47 consecutively recruited patients with stages 3 and 4 CKD. The intervention arm ( n =23) was prescribed a diet focusing on potassium restriction to meet a monthly serum potassium level of ≤4.5 mEq/L, with oral sodium polystyrene sulfonate provided if dietary advice failed to achieve the target. The control arm ( n =24) received dietary advice regarding general nutrition. The primary outcome was the change in the total neuropathy score evaluated by a blinded observer. Secondary outcomes included electrolyte levels, gait speed, neurophysiologic parameters, and health-related quality of life scores. Five patients withdrew before initiation of treatment, and final analysis consisted of n =21 in each group. There was a greater increase in total neuropathy score from baseline to final assessment in the control arm compared with the intervention arm (6.1±6.2-8.6±7.9 controls; 7.8±7.4-8.2±7.5 intervention; change 2.8±3.3-0.4±2.2, respectively; P <0.01). The intervention significantly reduced mean serum potassium compared with controls (4.6±0.1-4.8±0.1 mEq/L mean recorded every 6 months over the trial duration; P =0.03). There were no adverse changes in other nutritional parameters. Improved gait speed was also noted in the intervention arm compared with the control arm, with a mean increase of 0.15±0.17 m/s in the intervention group versus 0.02±0.16 m/s in the control group ( P =0.01). Our results provide important preliminary evidence that dietary potassium restriction confers neuroprotection in CKD and should be confirmed in a larger

  15. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    PubMed

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  16. Increased dietary sodium is independently associated with greater mortality among prevalent hemodialysis patients.

    PubMed

    Mc Causland, Finnian R; Waikar, Sushrut S; Brunelli, Steven M

    2012-07-01

    Dietary sodium is thought to play a major role in the pathogenesis of hypertension, hypervolemia, and mortality in hemodialysis patients; hence, sodium restriction is almost universally recommended. Since the evidence upon which to base these assumptions is limited, we undertook a post-hoc analysis of 1770 patients in the Hemodialysis Study with available dietary, clinical, and laboratory information. Within this cohort, 772 were men, 1113 black, and 786 diabetic, with a mean age of 58 years and a median dietary sodium intake of 2080 mg/day. After case-mix adjustment, linear regression modeling found that higher dietary sodium was associated with a greater ultrafiltration requirement, caloric and protein intake; sodium to calorie intake ratio was associated with a greater ultrafiltration requirement; and sodium to potassium ratio was associated with higher serum sodium. No indices were associated with the pre-dialysis systolic blood pressure. Cox regression modeling found that higher baseline dietary sodium and the ratio of sodium to calorie or potassium were each independently associated with greater all-cause mortality. No association between a prescribed dietary sodium restriction and mortality were found. Thus, higher reported dietary sodium intake is independently associated with greater mortality among prevalent hemodialysis patients. Randomized trials will be necessary to determine whether dietary sodium restriction improves survival.

  17. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: results from 2 randomized controlled trials.

    PubMed

    Zhou, Jing; Kim, Jung Eun; Armstrong, Cheryl Lh; Chen, Ningning; Campbell, Wayne W

    2016-03-01

    Limited and inconsistent research findings exist about the effect of dietary protein intake on indexes of sleep. We assessed the effect of protein intake during dietary energy restriction on indexes of sleep in overweight and obese adults in 2 randomized, controlled feeding studies. For study 1, 14 participants [3 men and 11 women; mean ± SE age: 56 ± 3 y; body mass index (BMI; in kg/m(2)): 30.9 ± 0.6] consumed energy-restricted diets (a 750-kcal/d deficit) with either beef and pork (BP; n = 5) or soy and legume (SL; n = 9) as the main protein sources for 3 consecutive 4-wk periods with 10% (control), 20%, or 30% of total energy from protein (random order). At baseline and the end of each period, the global sleep score (GSS) was assessed with the use of the Pittsburgh Sleep Quality Index (PSQI) questionnaire. For study 2, 44 participants (12 men and 32 women; age: 52 ± 1 y; BMI: 31.4 ± 0.5) consumed a 3-wk baseline energy-balance diet with 0.8 g protein · kg baseline body mass(-1) · d(-1). Then, study 2 subjects consumed either a normal-protein [NP (control); n = 23] or a high-protein (HP; n = 21) (0.8 compared with 1.5 g · kg(-1) · d(-1), respectively) energy-restricted diet (a 750-kcal/d deficit) for 16 wk. The PSQI was administered during baseline week 3 and intervention weeks 4, 8, 12, and 16. GSSs ranged from 0 to 21 arbitrary units (au), with a higher value representing a worse GSS during the preceding month. In study 1, we showed that a higher protein quantity improved GSSs independent of the protein source. The GSS was higher (P < 0.05) when 10% (6.0 ± 0.4 au) compared with 20% (5.0 ± 0.4 au) protein was consumed, with 30% protein (5.4 ± 0.6 au) intermediate. In study 2, at baseline, the GSS was not different between NP (5.2 ± 0.5 au) and HP (5.4 ± 0.5 au) groups. Over time, the GSS was unchanged for the NP group and improved for the HP group (P-group-by-time interaction < 0.05). After intervention (week 16), GSSs for NP and HP groups were 5

  18. Consideration of insects as a source of dietary protein for human consumption.

    PubMed

    Churchward-Venne, Tyler A; Pinckaers, Philippe J M; van Loon, Joop J A; van Loon, Luc J C

    2017-12-01

    Consumption of sufficient dietary protein is fundamental to muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat (ie, beef, pork, lamb), poultry, fish, eggs, and dairy are generally considered high-quality sources of dietary protein because they meet all of the indispensable amino-acid requirements for humans and are highly digestible. However, the production of sufficient amounts of conventional animal-based protein to meet future global food demands represents a challenge. Edible insects have recently been proposed as an alternative source of dietary protein that may be produced on a more viable and sustainable commercial scale and, as such, may contribute to ensuring global food security. This review evaluates the protein content, amino-acid composition, and digestibility of edible insects and considers their proposed quality and potential as an alternative protein source for human consumption. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories.

    PubMed

    Bosse, John D; Dixon, Brian M

    2012-09-08

    An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.

  20. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories

    PubMed Central

    2012-01-01

    An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed “protein spread theory” and “protein change theory” in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend “protein spread theory” and “protein change theory” to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training. PMID:22958314

  1. 3β-Hydroxy-urs-12-en-28-oic Acid Modulates Dietary Restriction Mediated Longevity and Ameliorates Toxic Protein Aggregation in C. elegans.

    PubMed

    Negi, Hema; Saikia, Shilpi Khare; Pandey, Rakesh

    2017-11-09

    Species from lower invertebrates to a spectrum of mammals show antiaging health benefits of phytochemical(s). Here, we explored the pro-longevity effects of a natural triterpenoid, ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) in Caenorhabditis elegans with maximal life span being evident at 25 µM UA. Similar to eat-2 mutants, UA uptake by worm results in reduced fat storage and attenuation of reactive oxygen species (ROS), independent of superoxide dismutase(s) activation. The genetic requirements for UA-mediated longevity are quite similar to dietary restriction (DR) achieved through SKN-1/NRF-2 exhibiting upregulation of downstream target genes gcs-1 and daf-9. Longevity mechanism was independent of PHA-4/FOXA and attributed to partial dependence on sir-2.1. Altogether, our study suggests differential use of UA-elicited signaling cascades in nutrient sensing for longevity. Both the redox state and the proteostasis of an organism play critical role in aging and disease resistance. Interestingly, we observed a reduction of toxic protein aggregation in transgenic polyglutamine (polyQ) C. elegans model and UA-mediated JNK-1 (c-Jun-NH2-terminal kinase) activation in wild-type animals. Thus, our study demonstrates a small extent of prevention against proteotoxic stress by UA coupled with positive aspects of DR-mediated longevity. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Dietary protein and nutritional supplements in conventional hemodialysis.

    PubMed

    Sabatino, Alice; Piotti, Giovanni; Cosola, Carmela; Gandolfini, Ilaria; Kooman, Jeroen P; Fiaccadori, Enrico

    2018-06-17

    Protein energy wasting (PEW) is a condition commonly occurring among patients with ESRD on hemodialysis. PEW is characterized by depletion of protein and energy stores and is caused by multiple factors related to chronic kidney disease, acute and chronic comorbidities and by renal replacement therapy itself. Anorexia is central in the pathogenesis of PEW; it is frequently observed in these patients whose protein and energy intakes are typically lower than guidelines recommendations. If untreated, PEW invariably leads to major complications, and may activate a vicious circle with further worsening of nutritional status. Dietary counseling and nutritional status monitoring play a key role in the prevention and treatment of PEW, since they allow an early identification of high risk patients, as well as the assessment of the response to nutritional intervention. Different nutritional approaches can be implemented following thorough nutritional counseling. These are chosen on the basis of patients' spontaneous dietary intake, severity of PEW and acute comorbidities. Initially, regular encounters with the dietitian allow patients to clarify doubts and strengthen basic concepts on nutrition to improve dietary intake and prevent PEW. When PEW is present or the patient is at high risk, the clinician may opt for the administration of oral intradialytic or daily supplements, aiming at increasing energy and protein intake, while in selected cases intradialytic parenteral nutrition may be used. This review addresses the main issues of nutritional status in ESRD patients on hemodialysis-its evaluation and monitoring, as well as at describing the available nutritional interventions. © 2018 Wiley Periodicals, Inc.

  3. Dietary and fluid restrictions in CKD: a thematic synthesis of patient views from qualitative studies.

    PubMed

    Palmer, Suetonia C; Hanson, Camilla S; Craig, Jonathan C; Strippoli, Giovanni F M; Ruospo, Marinella; Campbell, Katrina; Johnson, David W; Tong, Allison

    2015-04-01

    Managing the complex fluid and diet requirements of chronic kidney disease (CKD) is challenging for patients. We aimed to summarize patients' perspectives of dietary and fluid management in CKD to inform clinical practice and research. Systematic review of qualitative studies. Adults with CKD who express opinions about dietary and fluid management. MEDLINE, EMBASE, PsycINFO, CINAHL, Google Scholar, reference lists, and PhD dissertations were searched to May 2013. Thematic synthesis. We included 46 studies involving 816 patients living in middle- to high-income countries. Studies involved patients treated with facility-based and home hemodialysis (33 studies; 462 patients), peritoneal dialysis (10 studies; 112 patients), either hemodialysis or peritoneal dialysis (3 studies; 73 patients), kidney transplant recipients (9 studies; 89 patients), and patients with non-dialysis-dependent CKD stages 1 to 5 (5 studies; 80 patients). Five major themes were identified: preserving relationships (interference with roles, social limitations, and being a burden), navigating change (feeling deprived, disrupting held truths, breaking habits and norms, being overwhelmed by information, questioning efficacy, and negotiating priorities), fighting temptation (resisting impositions, experiencing mental invasion, and withstanding physiologic needs), optimizing health (accepting responsibility, valuing self-management, preventing disease progression, and preparing for and protecting a transplant), and becoming empowered (comprehending paradoxes, finding solutions, and mastering change and demands). Limited data in non-English languages and low-income settings and for adults with CKD not treated with hemodialysis. Dietary and fluid restrictions are disorienting and an intense burden for patients with CKD. Patient-prioritized education strategies, harnessing patients' motivation to stay well for a transplant or to avoid dialysis, and viewing adaptation to restrictions as a collaborative

  4. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease

    PubMed Central

    Zidehsarai, Miriam P.; Chambers, Mary A.; Jackman, Lisa A.; Radcliffe, J. Scott; Trevino, Laurie L.; Donahue, Susan E.; Asplin, John R.

    2011-01-01

    Summary Background and objectives Patients with advanced chronic kidney disease (CKD) are in positive phosphorus balance, but phosphorus levels are maintained in the normal range through phosphaturia induced by increases in fibroblast growth factor-23 (FGF23) and parathyroid hormone (PTH). This provides the rationale for recommendations to restrict dietary phosphate intake to 800 mg/d. However, the protein source of the phosphate may also be important. Design, setting, participants, & measurements We conducted a crossover trial in nine patients with a mean estimated GFR of 32 ml/min to directly compare vegetarian and meat diets with equivalent nutrients prepared by clinical research staff. During the last 24 hours of each 7-day diet period, subjects were hospitalized in a research center and urine and blood were frequently monitored. Results The results indicated that 1 week of a vegetarian diet led to lower serum phosphorus levels and decreased FGF23 levels. The inpatient stay demonstrated similar diurnal variation for blood phosphorus, calcium, PTH, and urine fractional excretion of phosphorus but significant differences between the vegetarian and meat diets. Finally, the 24-hour fractional excretion of phosphorus was highly correlated to a 2-hour fasting urine collection for the vegetarian diet but not the meat diet. Conclusions In summary, this study demonstrates that the source of protein has a significant effect on phosphorus homeostasis in patients with CKD. Therefore, dietary counseling of patients with CKD must include information on not only the amount of phosphate but also the source of protein from which the phosphate derives. PMID:21183586

  5. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    USDA-ARS?s Scientific Manuscript database

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  6. Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats.

    PubMed

    Sharma, Sandeep; Singh, Rumani; Kaur, Manpreet; Kaur, Gurcharan

    2010-04-01

    Numerous reports implicate increased oxidative stress in the functional and structural changes occurring in the brain and other organs as a part of the normal aging process. Dietary restriction (DR) has long been shown to be life-prolonging intervention in several species. This study was aimed to assess the potential efficacy of late-onset short term DR when initiated in 21 months old male wistar rats for 3 months on the antioxidant defense system and lipid peroxidation, cellular stress response protein HSP 70 and synaptic marker protein synapsin 1 in discrete brain regions such as cortex, hypothalamus, and hippocampus as well as liver, kidney and heart from 24 month old rats. Age-associated decline in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid peroxidation was observed in brain and peripheral organ as well as increased expression of HSP 70 and reduction in synapsin 1 was observed in brain studied. Late-onset short term DR was effective in partially restoring the antioxidant status and in decreasing lipid peroxidation level as well as enhancing the expression of HSP 70 and synapsin 1 in aged rats. Late onset short term DR also prevented age-related neurodegeneration as revealed by Fluoro-Jade B staining in hippocampus and cortex regions of rat brain. Thus our current results suggest that DR initiated even in old age has the potential to improve age related decline in body functions.

  7. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    PubMed

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  8. Effective translation of current dietary guidance: understanding and communicating the concepts of minimal and optimal levels of dietary protein.

    PubMed

    Rodriguez, Nancy R; Miller, Sharon L

    2015-04-29

    Dietitians and health care providers have critical roles in the translation of the dietary guidance to practice. The protein content of diets for adults can be based on the Recommended Dietary Allowance (RDA) of 0.80 g/kg per day. Alternatively, the most recent Dietary Reference Intakes (DRIs) for macronutrients reflect expanded guidance for assessing protein needs and consider the relative relation of absolute amounts of protein, carbohydrate, and fat to total energy intake in the context of chronic disease prevention. The Acceptable Macronutrient Distribution Range (AMDR) reflects the interrelation between the macronutrients and affords dietitians and clinicians additional flexibility in diet planning. Accounting for the caloric value of RDAs for carbohydrate and fat, "flexible calories" emerge as an opportunity to create varied eating plans that provide for protein intakes in excess of the RDA but within the AMDR. Protein Summit 2.0 highlighted the growing body of scientific evidence documenting the benefits of higher protein intakes at amounts approximating twice the RDA, which include promotion of healthy body weight and preservation of lean body mass and functional ability with age. The essential amino acid (EAA) density of a food also emerged as a novel concept analogous to "nutrient density," which can enable the practitioner to calculate the caloric cost associated with a specific protein source to attain the daily requirement of EAAs to accomplish various health outcomes because these indispensable nutrients have a significant role in protein utilization and metabolic regulation. Tailoring recommendations unique to an individual's varying goals and needs remains a challenge. However, flexibility within the application of DRIs to include consideration of the AMDR provides a sound framework to guide practitioners in effective translation of current dietary guidance with a specific regard for the documented benefits of higher protein intakes. © 2015

  9. Maternal amino acid supplementation for intrauterine growth restriction

    PubMed Central

    Brown, Laura D; Green, Alice S; Limesand, Sean W; Rozance, Paul J

    2011-01-01

    Maternal dietary protein supplementation to improve fetal growth has been considered as an option to prevent or treat intrauterine growth restriction. However, in contrast to balanced dietary supplementation, adverse perinatal outcomes in pregnant women who received high amounts of dietary protein supplementation have been observed. The responsible mechanisms for these adverse outcomes are unknown. This review will discuss relevant human and animal data to provide the background necessary for the development of explanatory hypotheses and ultimately for the development therapeutic interventions during pregnancy to improve fetal growth. Relevant aspects of fetal amino acid metabolism during normal pregnancy and those pregnancies affected by IUGR will be discussed. In addition, data from animal experiments which have attempted to determine mechanisms to explain the adverse responses identified in the human trials will be presented. Finally, we will suggest new avenues for investigation into how amino acid supplementation might be used safely to treat and/or prevent IUGR. PMID:21196387

  10. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  11. Food availability, modeling and restriction: How are these different aspects of the family eating environment related to adolescent dietary intake?

    PubMed

    Loth, Katie A; MacLehose, Richard F; Larson, Nicole; Berge, Jerica M; Neumark-Sztainer, Dianne

    2016-01-01

    To examine individual associations between aspects of the family eating environment (home food availability, parental modeling, and food restriction) and adolescent dietary intake and explore the combined relationship (i.e., environment profiles) between these aspects of the family eating environment and adolescent dietary intake. Adolescents [14.4 years old (SD = 2.0)] and their parents (N = 2383 parent-adolescent pairs] participated in 2 coordinated, population-based studies. Adolescent surveys were completed at school and parent surveys were conducted via mail or phone. Healthy home food availability was positively associated with fruit/vegetable intake and negatively associated with soda and snack food intake in adolescents. Healthy parental modeling was negatively associated with adolescent soda consumption. Food restriction was positively associated with fruit/vegetable consumption and snack food intake. Examination of family eating environment profiles revealed that it was the home food availability component of the profiles that was associated with observed differences in fruits/vegetable consumption, whereas the parental modeling and food restriction components contributed to differences in soda and snack foods consumption. Findings indicate that among the three aspects of the family eating environment explored, making healthy food available at home was most consistently associated with healthy dietary intake in adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Food availability, modeling and restriction: How are these different aspects of the family eating environment related to adolescent dietary intake?

    PubMed Central

    Loth, Katie A; MacLehose, Richard F; Larson, Nicole; Berge, Jerica M; Neumark-Sztainer, Dianne

    2015-01-01

    Objectives To examine individual associations between aspects of the family eating environment (home food availability, parental modeling, and food restriction) and adolescent dietary intake and explore the combined relationship (i.e., environment profiles) between these aspects of the family eating environment and adolescent dietary intake. Methods Adolescents [14.4 years old (SD = 2.0)] and their parents (N=2383 parent-adolescent pairs] participated in 2 coordinated, population-based studies. Adolescent surveys were completed at school and parent surveys were conducted via mail or phone. Results Healthy home food availability was positively associated with fruit/vegetable intake and negatively associated with soda and snack food intake in adolescents. Healthy parental modeling was negatively associated with adolescent soda consumption. Food restriction was positively associated with fruit/vegetable consumption and snack food intake. Examination of family eating environment profiles revealed that it was the home food availability component of the profiles that was associated with observed differences in fruits/vegetable consumption, whereas the parental modeling and food restriction components contributed to differences in soda and snack foods consumption. Conclusions Findings indicate that among the three aspects of the family eating environment explored, making healthy food available at home was most consistently associated with healthy dietary intake in adolescents. PMID:26327222

  13. Components of an Anticancer Diet: Dietary Recommendations, Restrictions and Supplements of the Bill Henderson Protocol

    PubMed Central

    Mannion, Cynthia; Page, Stacey; Bell, Laurie Heilman; Verhoef, Marja

    2010-01-01

    The use of complementary and alternative medicines including dietary supplements, herbals and special diets to prevent or treat disease continues to be popular. The following paper provides a description of an alternative dietary approach to the self-management and treatment of cancer, the Bill Henderson Protocol (BHP). This diet encourages daily intake of raw foods, a combination of cottage cheese and flaxseed oil and a number of supplements. Some foods and food groups are restricted (e.g., gluten, meat, dairy). Early background theory that contributed to the protocol’s development is presented as is a summary of relevant evidence concerning the anti-cancer fighting properties of the individual components. Supplement intake is considered in relation to daily recommended intakes. Challenges and risks to protocol adherence are discussed. As with many complementary and alternative interventions, clear evidence of this dietary protocol’s safety and efficacy is lacking. Consumers of this protocol may require guidance on the ability of this protocol to meet their individual nutritional needs. PMID:22254073

  14. Effects of Dietary Sodium Restriction in Kidney Transplant Recipients Treated With Renin-Angiotensin-Aldosterone System Blockade: A Randomized Clinical Trial.

    PubMed

    de Vries, Laura V; Dobrowolski, Linn C; van den Bosch, Jacqueline J O N; Riphagen, Ineke J; Krediet, C T Paul; Bemelman, Frederike J; Bakker, Stephan J L; Navis, Gerjan

    2016-06-01

    In patients with chronic kidney disease receiving renin-angiotensin-aldosterone system (RAAS) blockade, dietary sodium restriction is an often-used treatment strategy to reduce blood pressure (BP) and albuminuria. Whether these effects extend to kidney transplant recipients is unknown. We therefore studied the effects of dietary sodium restriction on BP and urinary albumin excretion (UAE) in kidney transplant recipients receiving RAAS blockade. Two-center randomized crossover trial. Stable outpatient kidney transplant recipients with creatinine clearance > 30mL/min, BP ≥120/80mmHg, receiving stable RAAS blockade therapy. 6-week regular-sodium diet (target, 150mmol/24 h) and a 6-week low-sodium diet (target, 50mmol/24 h). Main outcome parameters were systolic and diastolic BP, UAE, and estimated glomerular filtration rate (eGFR) at the end of each diet period. Dietary adherence was assessed by 24-hour urinary sodium excretion. We randomly assigned 23 kidney transplant recipients, of whom 22 (mean age, 58±8 [SD] years; 50% men; mean eGFR, 51±21mL/min/1.73m(2)) completed the study. One patient withdrew from the study because of concerns regarding orthostatic hypotension on the low-sodium diet. Sodium excretion decreased from 164±50mmol/24 h during the regular-sodium diet to 87±55mmol/24 h during the low-sodium diet (mean difference, -77 [95% CI, -110 to -44] mmol/24 h; P<0.001). Sodium restriction significantly reduced systolic BP from 140±14 to 129±12mmHg (mean difference, -11 [95% CI, -14 to -7] mmHg; P<0.001), diastolic BP from 86±8 to 79±8mmHg (mean difference, -7 [95% CI, -10 to -5] mmHg; P<0.001). We found no significant effect on natural log (ln)-transformed UAE (mean difference, -0.03 [95% CI, -0.6 to 0.6] ln(mg/24 h); P=0.9) or eGFR. No hard end points; small study; small proportion of patients willing to test the intervention; adherence to sodium diet was achieved in 86% of patients. In stable kidney transplant recipients receiving RAAS

  15. Dietary fatty acids and membrane protein function.

    PubMed

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  16. Dietary protein safety and resistance exercise: what do we really know?

    PubMed Central

    Lowery, Lonnie M; Devia, Lorena

    2009-01-01

    Resistance trainers continue to receive mixed messages about the safety of purposely seeking ample dietary protein in their quest for stimulating protein synthesis, improving performance, or maintaining health. Despite protein's lay popularity and the routinely high intakes exhibited by strength athletes, liberal and purposeful protein consumption is often maligned by "experts". University textbooks, instructors, and various forms of literature from personal training groups and athletic organizations continue to use dissuasive language surrounding dietary protein. Due to the widely known health benefits of dietary protein and a growing body of evidence on its safety profile, this is unfortunate. In response, researchers have critiqued unfounded educational messages. As a recent summarizing example, the International Society of Sports Nutrition (ISSN) Position Stand: Protein and Exercise reviewed general literature on renal and bone health. The concluding remark that "Concerns that protein intake within this range [1.4 – 2.0 g/kg body weight per day] is unhealthy are unfounded in healthy, exercising individuals." was based largely upon data from non-athletes due to "a lack of scientific evidence". Future studies were deemed necessary. This assessment is not unique in the scientific literature. Investigators continue to cite controversy, debate, and the lack of direct evidence that allows it. This review discusses the few existing safety studies done specific to athletes and calls for protein research specific to resistance trainers. Population-specific, long term data will be necessary for effective education in dietetics textbooks and from sports governing bodies. PMID:19138405

  17. The mTORC1-Signaling Pathway and Hepatic Polyribosome Profile Are Enhanced after the Recovery of a Protein Restricted Diet by a Combination of Soy or Black Bean with Corn Protein.

    PubMed

    Márquez-Mota, Claudia C; Rodriguez-Gaytan, Cinthya; Adjibade, Pauline; Mazroui, Rachid; Gálvez, Amanda; Granados, Omar; Tovar, Armando R; Torres, Nimbe

    2016-09-20

    Between 6% and 11% of the world's population suffers from malnutrition or undernutrition associated with poverty, aging or long-term hospitalization. The present work examined the effect of different types of proteins on the mechanistic target of rapamycin (mTORC1)-signaling pathway in: (1) healthy; and (2) protein restricted rats. (1) In total, 200 rats were divided into eight groups and fed one of the following diets: 20% casein (C), soy (S), black bean (B), B + Corn (BCr), Pea (P), spirulina (Sp), sesame (Se) or Corn (Cr). Rats fed C or BCr had the highest body weight gain; rats fed BCr had the highest pS6K1/S6K1 ratio; rats fed B, BCr or P had the highest eIF4G expression; (2) In total, 84 rats were fed 0.5% C for 21 day and protein rehabilitated with different proteins. The S, soy + Corn (SCr) and BCr groups had the highest body weight gain. Rats fed SCr and BCr had the highest eIF4G expression and liver polysome formation. These findings suggest that the quality of the dietary proteins modulate the mTORC1-signaling pathway. In conclusion, the combination of BCr or SCr are the best proteins for dietary protein rehabilitation due to the significant increase in body weight, activation of the mTORC1-signaling pathway in liver and muscle, and liver polysome formation.

  18. The mTORC1-Signaling Pathway and Hepatic Polyribosome Profile Are Enhanced after the Recovery of a Protein Restricted Diet by a Combination of Soy or Black Bean with Corn Protein

    PubMed Central

    Márquez-Mota, Claudia C.; Rodriguez-Gaytan, Cinthya; Adjibade, Pauline; Mazroui, Rachid; Gálvez, Amanda; Granados, Omar; Tovar, Armando R.; Torres, Nimbe

    2016-01-01

    Between 6% and 11% of the world’s population suffers from malnutrition or undernutrition associated with poverty, aging or long-term hospitalization. The present work examined the effect of different types of proteins on the mechanistic target of rapamycin (mTORC1)-signaling pathway in: (1) healthy; and (2) protein restricted rats. (1) In total, 200 rats were divided into eight groups and fed one of the following diets: 20% casein (C), soy (S), black bean (B), B + Corn (BCr), Pea (P), spirulina (Sp), sesame (Se) or Corn (Cr). Rats fed C or BCr had the highest body weight gain; rats fed BCr had the highest pS6K1/S6K1 ratio; rats fed B, BCr or P had the highest eIF4G expression; (2) In total, 84 rats were fed 0.5% C for 21 day and protein rehabilitated with different proteins. The S, soy + Corn (SCr) and BCr groups had the highest body weight gain. Rats fed SCr and BCr had the highest eIF4G expression and liver polysome formation. These findings suggest that the quality of the dietary proteins modulate the mTORC1-signaling pathway. In conclusion, the combination of BCr or SCr are the best proteins for dietary protein rehabilitation due to the significant increase in body weight, activation of the mTORC1-signaling pathway in liver and muscle, and liver polysome formation. PMID:27657118

  19. Dietary protein decreases exercise endurance through rapamycin-sensitive suppression of muscle mitochondria.

    PubMed

    Mitsuishi, Masanori; Miyashita, Kazutoshi; Muraki, Ayako; Tamaki, Masanori; Tanaka, Kumiko; Itoh, Hiroshi

    2013-10-01

    Loss of physical performance is linked not only to decreased activity in daily life but also to increased onset of cardiovascular diseases and mortality. A high-protein diet is recommended for aged individuals in order to preserve muscle mass; however, the regulation of muscle mitochondria by dietary protein has not been clarified. We investigated the long-term effects of a high-protein diet on muscle properties, focusing especially on muscle mitochondria. Mice were fed a high-protein diet from the age of 8 wk and examined for mitochondrial properties and exercise endurance at the ages of 20 and 50 wk. Compared with normal chow, a high-protein diet significantly decreased the amount of muscle mitochondria, mitochondrial activity, and running distance at 50 wk, although it increased muscle mass and grip power. Inhibition of TORC1-dependent signal pathways by rapamycin from 8 wk suppressed the decline in mitochondria and exercise endurance observed when mice were fed the high-protein diet in association with preserved AMPK activity. Collectively, these findings suggest a role for dietary protein as a suppressor of muscle mitochondria and indicate that the age-associated decline in exercise endurance might be accelerated by excessive dietary protein through rapamycin-sensitive suppression of muscle mitochondria.

  20. The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice.

    PubMed

    Elashry, Mohamed I; Matsakas, Antonios; Wenisch, Sabine; Arnhold, Stefan; Patel, Ketan

    2017-06-01

    Skeletal muscle mass loss has a broad impact on body performance and physical activity. Muscle wasting occurs due to genetic mutation as in muscular dystrophy, age-related muscle loss (sarcopenia) as well as in chronic wasting disorders as in cancer cachexia. Food restriction reduces muscle mass underpinned by increased muscle protein break down. However the influence of dietary restriction on the morphometry and phenotype of forelimb muscles in a genetically modified myostatin null mice are not fully characterized. The effect of a five week dietary limitation on five anatomically and structurally different forelimb muscles was examined. C57/BL6 wild type (Mstn +/+ ) and myostatin null (Mstn -/- ) mice were either given a standard rodent normal daily diet ad libitum (ND) or 60% food restriction (FR) for a 5 week period. M. triceps brachii Caput laterale (T.lateral), M. triceps brachii Caput longum (T.long), M. triceps brachii Caput mediale (T.medial), M. extensor carpi ulnaris (ECU) and M. flexor carpi ulnaris (FCU) were dissected, weighted and processed for immunohistochemistry. Muscle mass, fibers cross sectional areas (CSA) and myosin heavy chain types IIB, IIX, IIA and type I were analyzed. We provide evidence that caloric restriction results in muscle specific weight reduction with the fast myofibers being more prone to atrophy. We show that slow fibers are less liable to dietary restriction induced muscle atrophy. The effect of dietary restriction was more pronounced in Mstn -/- muscles to implicate the oxidative fibers compared to Mstn +/+ . Furthermore, peripherally located myofibers are more susceptible to dietary induced reduction compared to deep fibers. We additionally report that dietary restriction alters the glycolytic phenotype of the Mstn -/- into the oxidative form in a muscle dependent manner. In summary our study shows that calorie restriction alters muscle fiber profile of forelimb muscles of Myostatin null mice. Copyright © 2017 Elsevier Gmb

  1. Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: implications for dietary strategies to prevent sarcopenia

    PubMed Central

    Valenzuela, Roxana E Ruiz; Ponce, José A; Morales-Figueroa, Gloria Guadalupe; Muro, Karina Aguilar; Carreón, Virginia Ramírez; Alemán-Mateo, Heliodoro

    2013-01-01

    Background Both low dietary protein intake and inadequate distribution of protein over the three mealtimes have been reported in older Caucasian adults, but the association between protein intake at each meal and muscle mass has not been studied. The purpose of this study was to evaluate dietary protein intake and distribution by mealtimes, and to explore their association with appendicular skeletal muscle mass in apparently healthy older adults. Methods This was a cross-sectional pilot study that included 78 people over the age of 60 years. Caloric and protein intake were estimated on the basis of three nonconsecutive 24-hour diet recalls and appendicular skeletal muscle mass by dual-energy X-ray absorptiometry. Results Men consumed 13.4 g of protein/day more than women (P < 0.05). The estimated value of dietary protein intake was 0.9 g/kg/day. In this sample, 28% of subjects did not cover 100% of the dietary reference intake for protein. Lower consumption of dietary protein was found at breakfast and dinnertime compared with the recommended amount of 25–30 g (P < 0.05). Also, the study observed that appendicular skeletal muscle mass in men and women who consumed <25 g of protein at each mealtime was different from that found in the group that consumed >25 g of protein at one, two, or three mealtimes. Conclusion While protein intake was higher than current recommendations, it failed to achieve the values reported as necessary to prevent sarcopenia. In addition, there was under-consumption of protein per mealtime, especially at breakfast and dinner. PMID:24039411

  2. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  3. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  4. Effect of dietary proteins on zinc bioavailability in pregnant rats.

    PubMed

    Uenishi, K; Horio, H; Manabe, S; Sakamoto, S

    1993-12-01

    In order to clarify the effects of dietary proteins on zinc bioavailability during pregnancy, two experiments were carried out. In Experiment 1, changes in zinc retention due to pregnancy (difference in retention between pregnant and nonpregnant animals) during early-mid and late pregnancy were examined in rats fed 10 and 20% egg white diets. Total amounts of retained zinc due to pregnancy were about 1000 micrograms or slightly more, equal to the zinc content in the products of conception at term. However, extra zinc retention during late pregnancy ranged between only 20 to 40% of overall retention, suggesting that almost all zinc retained during early-mid pregnancy moved from the mothers to the fetuses near term. Zinc retention in early-mid and late periods of pregnancy was higher in pregnant than nonpregnant rats, due mainly to increases in intake and bioavailability. In Experiment 2, to examine the effects of quality and quantity of dietary proteins, pregnant rats were fed either 10 or 20% egg white (EW), whole egg (WE), casein (C) and soy protein isolate with or without methionine (SM and S, respectively) diets. Total zinc retention during pregnancy was affected by both zinc and nitrogen intakes, though the former effect was greater than the latter. Because rats fed the EW diets retained dietary zinc efficiently, a relationship between zinc retention (Y, microgram/100 g BW/21 d.) and zinc intake (X, microgram/100 g BW/21 d.) was also examined in the non-EW protein groups, resulting in the following regression equation: Y = 0.471X-1790 (n: 51, r = 0.81, p < 0.001). Dietary protein quality affected the food intake resulting in different zinc intake and retention during pregnancy. Zinc from EW diets was more available than from the other four protein diets, because similar plots for rats fed the 10 and 20% EW diets fell above this line. Reasons for efficient bioavailability of zinc in EW were discussed in connection with the forms of zinc in diets and the

  5. Dietary fiber and protein: nutritional therapy in chronic kidney disease and beyond.

    PubMed

    Evenepoel, Pieter; Meijers, Björn K

    2012-02-01

    The health benefits of dietary fiber in the general population are increasingly recognized. Krishnamurthy et al. provide compelling evidence that chronic kidney disease (CKD) further augments these benefits. CKD, besides a microinflammatory state, is a state of increased proteolytic fermentation. Both these harmful conditions are exacerbated by dietary protein and reversed by dietary fiber. Future nutrition guidelines should consider recommending a higher consumption of dietary fiber or potassium-free alternatives such as prebiotics in CKD patients.

  6. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium

    PubMed Central

    Santos, Júlia; Leitão-Correia, Fernanda

    2015-01-01

    New evidences have recently emerged from studies in yeast and in higher eukaryotes showing the importance of nutrient balance in dietary regimes and its effects on longevity regulation. We have previously shown that manipulation ofammoniumconcentration in the culture and/or aging medium can drastically affect chronological lifespan (CLS) of Saccharomyces cerevisiae, especially in amino acid restricted cells. Here we describe that the CLS shortening under amino acid restriction can be completely reverted by removing ammonium from the culture medium. Furthermore, the absence of ammonium, and of any rich nitrogen source, was so effective in extending CLS that no beneficial effect could be observed by further imposing calorie restriction conditions. When present in the culture medium,ammoniumimpaired the consumption of theauxotrophy-complementing amino acidsand caused in an improper cell cycle arrest of the culture. TOR1 deletion reverted ammonium effects both in amino acid restricted and non-restricted cultures, whereas, Ras2p and Sch9p seem to have only a milder effect in the mediation ofammonium toxicity under amino acid restriction and no effect on non-restricted cultures. Our studies highlight ammonium as a key effector in the nutritional equilibrium between rich and essential nitrogen sources and glucose required for longevity promotion. PMID:25576917

  7. Dietary Protein Intake and Distribution Patterns of Well-Trained Dutch Athletes.

    PubMed

    Gillen, Jenna B; Trommelen, Jorn; Wardenaar, Floris C; Brinkmans, Naomi Y J; Versteegen, Joline J; Jonvik, Kristin L; Kapp, Christoph; de Vries, Jeanne; van den Borne, Joost J G C; Gibala, Martin J; van Loon, Luc J C

    2017-04-01

    Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p <.001), endurance (r=0.79, p <.001) and team-sport (r=0.77, p <.001) athletes. Animal and plant-based sources of protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.

  8. Differences between health and ethical vegetarians. Strength of conviction, nutrition knowledge, dietary restriction, and duration of adherence.

    PubMed

    Hoffman, Sarah R; Stallings, Sarah F; Bessinger, Raymond C; Brooks, Gary T

    2013-06-01

    Little research has been published concerning the differences between health oriented and ethically oriented vegetarians. The present study compared differences in conviction, nutrition knowledge, dietary restriction, and duration of adherence to vegetarianism between the two groups. Subjects completed an online survey and were grouped by original reason for becoming vegetarian (n=292, 58 health, 234 ethical), and current reason for remaining vegetarian (n=281, 49 health, 232 ethical). Whether grouped by current or original motivation, ethical vegetarians scored higher on the conviction instrument than health vegetarians and exhibited somewhat greater dietary restriction (significant when grouped by current motivation) and had been vegetarian for longer (significant when grouped by original motivation). Nutrition knowledge did not differ between the two groups. The results suggest that ethical vegetarians could experience stronger feelings of conviction and consume fewer animal products than health vegetarians, and may remain vegetarian longer. More research is necessary to understand how vegetarians' eating behaviors are influenced by their motivational profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism.

    PubMed

    Takakuwa, Hiroshi; Shimizu, Kazuaki; Izumiya, Yoshiaki; Kato, Tamayo; Nakaya, Izaya; Yokoyama, Hitoshi; Kobayashi, Ken-ichi; Ise, Takuyuki

    2002-09-01

    The purpose of this study was to elucidate the effects of dietary sodium restriction on diurnal blood pressure (BP) variation in primary aldosteronism. We studied the diurnal variation in the systemic hemodynamic indices and in baroreflex sensitivity (BRS). In 13 subjects with aldosterone-producing adenomas (2 males; mean age, 39+/-2 years), intra-arterial pressure was monitored telemetrically on a normal salt diet (NaCl 10-12 g/day). Non-dippers were defined as those with a nocturnal reduction in systolic BP (SBP) of less than 10% of daytime SBP. Ten subjects showed a non-dipper pattern. Six of these "non-dippers" underwent repetitive hemodynamic studies on the last day of a 1-week low salt diet regimen (NaCl 2-4 g/day). Stroke volume was determined using Wesseling's pulse contour method, calibrated with indocyanine green dilution. BRS was calculated every 30 min as delta pulse interval/delta SBP on spontaneous variations. Nocturnal reduction of SBP was 4.1% on the normal salt diet. With sodium restriction, urinary sodium excretion decreased from 187+/-8 to 46+/-8 mmol/day, and body weight decreased from 57.9+/-2.1 to 56.6+/-1.9 kg. Night-time BP significantly decreased with dietary modification from 154+/-7/88+/-4 to 140+/-6/78+/-4 mmHg, whereas daytime BP was unaltered. With sodium restriction, cardiac index and stroke index decreased throughout the day. No significant difference was seen in either daytime or nighttime BRS between the two diets. We conclude that the non-dipper pattern is common in patients with an aldosterone-producing adenoma on a normal salt intake, and under such conditions, volume expansion appears to play a major role in the impairment of nocturnal BP reduction.

  10. The canine model of dietary hypersensitivity.

    PubMed

    Day, Michael J

    2005-11-01

    IgE-mediated dietary hypersensitivity affects approximately 1% of the canine population. There are no breed associations and < or =50% of the patients are aged <1 year at presentation. The most common causative allergens are beef, chicken, milk, eggs, maize, wheat and soyabean. Affected dogs generally display cutaneous disease and 10-15% of the patients may have concurrent alimentary involvement. Diagnosis is currently based on dietary restriction followed by provocation. Procedures for the detection of serum allergen-specific IgE and IgG antibodies are widely available, but these tests correlate poorly with clinical presentation and dietary testing. Recent studies have demonstrated the allergen specificity of IgE antibodies by immunoblotting and have described blood lymphocyte proliferative responses to food allergens. In addition to investigations of spontaneously-arising dietary hypersensitivity, it has also proved possible to study this disorder experimentally. Small colonies of dogs sensitive to particular dietary proteins have been used to study clinical and serological responses to allergen challenge. Hypersensitivity has been experimentally induced in dogs of an atopic phenotype by repeated subcutaneous injection of alum-adjuvanted dietary allergen during neonatal life. These models have been used to trial a range of modified protein or hydrolysate diets. The dog provides a unique large-animal model for investigation of the immunopathogenesis of human dietary hypersensitivity. The dog is closely related genetically to man and shares environmental disease triggers with man. Spontaneously arising canine dietary hypersensitivity is a good clinical mimic of the human disease, and ability to therapeutically manipulate this adverse response in the dog might lead to benefits for human patients.

  11. Dietary protein intake, energy deficit, and nitrogen balance in normal-weight adults: a randomized controlled

    USDA-ARS?s Scientific Manuscript database

    Consuming protein at levels higher than the recommended dietary allowance (RDA) may be metabolically advantageous for overweight and obese individuals attempting weight loss. However, the dose-response characteristics that define the optimal level of dietary protein necessary to sustain measures of...

  12. The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs.

    PubMed

    Wang, Dan; Wan, Xuebin; Peng, Jian; Xiong, Qi; Niu, Hongdan; Li, Huanan; Chai, Jin; Jiang, Siwen

    2017-04-01

    Amino acid transporter plays an important role in regulating mTOR signaling pathway. This study investigated the effects of reduced dietary protein levels on amino acid transporters and mTOR signaling pathway. A total of 54 weaning pigs were randomly allocated into a 3 × 3 factorial design, followed by slaughtering the pigs separately after 10-, 25- and 45-day feeding, with 18 pigs from each feeding period divided into three subgroups for treatment with three different protein-level diets: 20% crude protein (CP) diet (normal recommended, high protein, HP), 17% CP diet (medium protein, MP) and 14% CP diet (low protein, LP). The results indicated that reduced dietary protein level decreased the weight of longissimus dorsi. Additionally, quantitative PCR chip analysis showed that mRNA expression of amino acid transporters SLC38A2, SLC1A7, SLC7A1, SLC7A5, SLC16A10 and SLC3A2 in the LP group were significantly (P < 0.05) higher than those in the MP or HP group, and the phosphorylation of mTOR and S6K1 decreased in the LP group after 25-day feeding. Furthermore, the vitro experimental results further confirmed that the mRNA levels for SLC7A1, SLC7A5, SLC3A2, SLC38A2 and SLC36A1 were increased and the phosphorylation of mTOR and S6K1 was decreased when the concentration of amino acids in C2C12 myoblasts was reduced. All these results indicated that the LP diet induced a high expression of amino acid transporters and the inhibition of the mTOR activity, which resulting in restriction on protein synthesis and longissimus dorsi growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dietary Methionine Restriction: Effects on Glucose Tolerance, Lipid Content and micro-RNA composition in the muscle of Rainbow Trout

    USDA-ARS?s Scientific Manuscript database

    Lean muscle mass plays an important role in overall health, as altered skeletal muscle metabolism can impact both the incidence and prevention of conditions related to metabolic health. Intriguingly, dietary methionine restriction (MR) has been shown to ameliorate this phenotype over time potentiall...

  14. Dietary Quality and Adherence to Dietary Recommendations in Patients Undergoing Hemodialysis.

    PubMed

    Luis, Desiree; Zlatkis, Karyn; Comenge, Beatriz; García, Zoraida; Navarro, Juan F; Lorenzo, Victor; Carrero, Juan Jesús

    2016-05-01

    The multiple dietary restrictions recommended to hemodialysis patients may be difficult to achieve and, at the same time, may result in nutritional deficiencies rendering a poor dietary quality. We here assess the dietary quality and adherence to renal-specific guideline recommendations among hemodialysis patients from a single center in Canary Islands, Spain. Cross-sectional study, including 91 patients undergoing maintenance hemodialysis. Clinical data and 3-day dietary records were collected. We compared patient's reported nutrients intake with guideline recommendations. We also evaluated their alignment with current American Heart Association dietary guidelines for cardiovascular prevention. Seventy-seven percent and 50% of patients consumed less than the recommended daily energy and protein, respectively. Although half of the patients met the recommendations for dietary fat intake, this was accounted by an excess of saturated fat in 92% of them. Only 22% consumed sufficient fiber. A very small proportion of patients (less than 50%) met the requirements for vitamins and other micronutrients. Insufficient dietary intake was observed in most patients for all vitamins except for cobalamin. Similarly, inadequate dietary intake was observed for many minerals, by both excess (phosphorus, calcium, sodium, and potassium) and defect (magnesium). Most patients met the recommendations for iron and zinc in their diets. A large proportion of hemodialysis patients at our center did not meet current renal-specific dietary recommendations. The quality of the diet was considered poor and proatherogenic according to American Heart Association guidelines. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction.

    PubMed

    Hill, D L; Phillips, L M

    1994-05-01

    Unilateral chorda tympani nerve sectioning was combined with institution of a sodium-restricted diet in adult rats to determine the role that environment has on the functional properties of regenerating taste receptor cells. Rats receiving chorda tympani sectioning but no dietary manipulation (cut controls) and rats receiving only the dietary manipulation (diet controls) had normal responses to a concentration series of NaCl, sodium acetate (NaAc), and NH4Cl. However, responses from the regenerated nerve in NaCl-restricted rats (40-120 d postsectioning) to NaCl and NaAc were reduced by as much as 30% compared to controls, indicating that regenerating taste receptors are influenced by environmental (dietary) factors. Responses to NH4Cl were normal; therefore, the effect appears specific to sodium salts. Surprisingly, in the same rats, NaCl responses from the contralateral, intact chorda tympani were up to 40% greater than controls. Thus, in the same rat, there was over a twofold difference in sodium responses between the right and left chorda tympani nerves. A study of the time course of the functional alterations in the intact nerve revealed that responses to NaCl were extremely low immediately following sectioning (about 20% of the normal response), and then increased monotonically during the following 50 d until relative response magnitudes became supersensitive. This function occurred even when the cut chorda tympani was prevented from reinnervating lingual epithelia, demonstrating that events related to regeneration do not play a role in the functional properties of the contralateral side of the tongue.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort.

    PubMed

    Weikert, Cornelia; Walter, Dietmar; Hoffmann, Kurt; Kroke, Anja; Bergmann, Manuela M; Boeing, Heiner

    2005-01-01

    The role of dietary protein in bone health is controversial. The objective of the present study was to examine the association between protein intake, dietary calcium, and bone structure measured by broadband ultrasound attenuation (BUA). Our analysis includes 8,178 female study participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) Potsdam Study. Ultrasound bone measurements were performed on the right os calcis, and BUA was determined. Dietary intake was assessed by a standardized food frequency questionnaire. We applied linear regression models to estimate the association between dietary protein and BUA. After multivariate adjustment, high intake of animal protein was associated with decreased BUA values (beta = -0.03; p = 0.010) whereas high vegetable protein intake was related to an increased BUA (beta = 0.11; p = 0.007). The effect of dietary animal protein on BUA was modified by calcium intake. High consumption of protein from animal origin may be unfavourable, whereas a higher vegetable protein intake may be beneficial for bone health. Our results strengthen the hypothesis that high calcium intake combined with adequate protein intake based on a high ratio of vegetable to animal protein may be protective against osteoporosis. Copyright (c) 2005 S. Karger AG, Basel.

  17. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    USDA-ARS?s Scientific Manuscript database

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  18. Dietary acid load and chronic kidney disease in elderly adults: Protein and potassium intake.

    PubMed

    Ko, Byung-Joon; Chang, Yoosoo; Ryu, Seungho; Kim, Eun Mi; Lee, Mi Yeon; Hyun, Young Youl; Lee, Kyu-Beck

    2017-01-01

    Dietary net endogenous acid production (NEAP), which represents total dietary load of nonvolatile acid, may affect kidney function. Estimated NEAP (eNEAP) is calculated indirectly by the ratio of protein and potassium intake. A few studies are available assessing the association between eNEAP and chronic kidney disease (CKD), and its relation to dietary protein and potassium intake in the elderly. A total 1,369 community-dwelling elderly Koreans in the Kangbuk Samsung Cohort Study (KSCS) were evaluated using a food frequency questionnaire (FFQ) and comprehensive health examination. We evaluated the association between eNEAP and the CKD. We also examined their relation to protein and potassium intake. eNEAP was correlated with potassium intake (r = -0.410, P < 0.001), but was not correlated with protein intake (r = -0.004, P = 0.879). In a full multivariate adjustment for sociodemographic factors, dietary factors, and comorbidities, the participants with higher eNEAP quartiles (Q2, Q3, Q4) had higher odds of CKD compared to the lowest eNEAP quartile (Q1); OR (95% CI) were 1.47 (0.78-2.72), 1.66 (0.85-3.23), and 2.30 (1.16-4.60) respectively (P for trend = 0.019). The odds of CKD decreased for participants with higher potassium intake quartiles (Q2, Q3, Q4) compared to the lowest potassium intake quartile (Q1); OR (95% CI) were 0.52 (0.28-0.95), 0.50 (0.26-0.96), and 0.50 (0.21-0.99) respectively (P for trend = 0.050). Protein intake was not associated with CKD. The association between eNEAP and CKD was similar in subgroup analysis. Dietary acid load was associated with CKD. Among the nutrients related to dietary acid load, potassium intake was negatively associated with CKD, but protein intake was not associated with CKD in elderly adults.

  19. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  20. Evaluation of the immunogenicity of dietary proteins in cats and the influence of the canning process.

    PubMed

    Cave, Nicholas J; Marks, Stanley L

    2004-10-01

    To characterize the antigen-specific immune response to dietary proteins in cats and evaluate whether there was a qualitative or quantitative difference between the responses to dietary proteins when those proteins were fed unprocessed or as part of a canned diet. 14 healthy domestic shorthair cats. Cats were fed 2 dietary proteins (soy and casein) either as unprocessed aqueous suspensions or as part of canned diets for 21 days. Serum IgG and IgA and salivary IgA were assayed by indirect ELISA, and antigen-specific proliferation of mesenteric lymph node-derived lymphocytes was determined. Robust serum IgG and IgA responses to dietary proteins were elicited, irrespective of the form in which they were fed. Salivary IgA responses to unprocessed proteins were not detected. However, a significant salivary IgA response to the protein isolated from the canned casein diet was observed in cats fed canned casein but not in those fed unprocessed casein. Lymphocyte proliferation to the antigens was slight, and there were no significant differences between groups. Results indicated that cats develop robust serum IgG and IgA responses to dietary proteins when fed as either aqueous suspensions or as part of canned diets. For certain proteins, there may be an increase and a qualitative difference in the immunogenicity of canned diets, compared with unprocessed proteins. Canned diets may not be ideal for management of cats with enteritis.

  1. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    PubMed

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  2. EFFECT OF DIETARY PROTEIN AND CARBOHYDRATE LEVELS ON WEIGHT GAIN AND GONAD PRODUCTION IN THE SEA URCHIN LYTECHINUS VARIEGATUS

    PubMed Central

    Heflin, Laura E.; Gibbs, Victoria K.; Powell, Mickie L; Makowsky, Robert; Lawrence, John M.; Lawrence, Addison L.; Watts, Stephen A.

    2014-01-01

    Adult Lytechinus variegatus were fed eight formulated diets with different protein (ranging from 12 to 36%) and carbohydrate (ranging from 21 to 39 %) levels. Each sea urchin (n = 8 per treatment) was fed a daily sub-satiation ration of 1.5% of average body weight for 9 weeks. Akaike information criterion analysis was used to compare six different hypothesized dietary composition models across eight growth measurements. Dietary protein level and protein: energy ratio were the best models for prediction of total weight gain. Diets with the highest (> 68.6 mg P kcal−-1) protein: energy ratios produced the most wet weight gain after 9 weeks. Dietary carbohydrate level was a poor predictor for most growth parameters examined in this study. However, the model containing a protein × carbohydrate interaction effect was the best model for protein efficiency ratio (PER). PER decreased with increasing dietary protein level, more so at higher carbohydrate levels. Food conversion ratio (FCR) was best modeled by total dietary energy levels: Higher energy diets produced lower FCRs. Dietary protein level was the best model of gonad wet weight gain. These data suggest that variations in dietary nutrients and energy differentially affect organismal growth and growth of body components. PMID:24994942

  3. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    PubMed

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  4. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  5. The impact of dietary protein levels on nutrient digestibility and water and nitrogen balances in eventing horses.

    PubMed

    Oliveira, C A A; Azevedo, J F; Martins, J A; Barreto, M P; Silva, V P; Julliand, V; Almeida, F Q

    2015-01-01

    This study was performed to evaluate the impact of dietary protein levels on nutrient digestibility and water and nitrogen balances in conditioning eventing horses. Twenty-four Brazilian Sport Horses, male and female (8.0 to 15.0 yr; 488 ± 32 kg BW), were used in a randomized design with 4 levels of CP diets: 7.5%, 9.0%, 11.0%, and 13.0%. A digestion assay was performed with partial feces collection over 4 d, followed by 1 d of total urine collection. Data were submitted to regression analysis and adjusted to linear and quadratic models (P < 0.05). No differences were observed in the intake of DM, OM, EE, ADF, and NDF as a function of dietary protein levels. Dry matter intake average was 1.7% of BW. CP and N intake showed a linear increase as a function of increasing protein level in diets. A quadratic response (P < 0.05) was observed on the CP and NDF digestibility coefficients, with the maximum estimated level of digestibility at 11.6% and 11.4% CP in the diet, respectively. There was a linear effect on ADF digestibility coefficients, digestible DM and protein intake, and CP/DE ratio according to dietary protein levels. There was no impact of dietary protein levels on daily water intake, total water intake, or fecal water excretion. Urinary excretion values showed a linear increase in response to increased dietary protein levels, but no impact was observed on water balance, with an average of 8.4 L/d. Nitrogen intake (NI), N absorption (NA), and urinary N increased linearly as a function of increasing dietary protein levels. There was no impact of dietary protein levels on N retention (NR), with an average of 7.5 g N/d. Nitrogen retention as a percentage of NI or NA showed no significant changes in the function of dietary protein levels. There was an impact of dietary protein levels on the digestibility coefficient of CP, NDF, ADF, and digestible protein intake on conditioning eventing horses. The 11.6% CP level in the diet provided an intake of 2.25 g CP/kg BW

  6. Role of dietary proteins in sports.

    PubMed

    Colombani, Paolo C; Mettler, Samuel

    2011-03-01

    The previously separate dietary protein recommendations for strength and endurance athletes are no longer supported, and the daily intake for adult athletes suggested by most of the entities is about 1.5 g · kg(-1) body mass with a range of perhaps 1.0 to 2.0 g · kg(-1) body mass. This recommendation is a broad landmark that needs to be adapted to the individual circumstances of the athlete. Research of the past decade indicates a beneficial effect with respect to a positive net muscular protein balance if athletes ingest some protein before an exercise bout. The amount of protein to be ingested to elicit the highest benefit is about 10 to 20 g · h(-1), but due to the insufficient amount of available data, it is not possible yet to rank different protein types or sources according to their anabolic potential. A simple way to translate the nutrient-based recommendations is the Swiss Food Pyramid for Athletes, which ensures a sufficient intake of energy, and all macro- and micronutrients in relation to the volume and intensity of the daily exercise.

  7. PRODUCTION AND ECONOMIC OPTIMIZATION OF DIETARY PROTEIN AND CARBOHYDRATE IN THE CULTURE OF JUVENILE SEA URCHIN Lytechinus variegatus

    PubMed Central

    Heflin, Laura E.; Makowsky, Robert; Taylor, J. Christopher; Williams, Michael B.; Lawrence, Addison L.; Watts, Stephen A.

    2016-01-01

    Juvenile Lytechinus variegatus (ca. 3.95± 0.54 g) were fed one of 10 formulated diets with different protein (ranging from 11- 43%) and carbohydrate (12 or 18%; brackets determined from previous studies) levels. Urchins (n= 16 per treatment) were fed a daily sub-satiation ration equivalent to 2.0% of average body weight for 10 weeks. Our objective was (1) to create predictive models of growth, production and efficiency outcomes and (2) to generate economic analysis models in relation to these dietary outcomes for juvenile L. variegatus held in culture. At dietary protein levels below ca. 30%, models for most growth and production outcomes predicted increased rates of growth and production among urchins fed diets containing 18% dietary carbohydrate levels as compared to urchins fed diets containing 12% dietary carbohydrate. For most outcomes, growth and production was predicted to increase with increasing level of dietary protein up to ca. 30%, after which, no further increase in growth and production were predicted. Likewise, dry matter production efficiency was predicted to increase with increasing protein level up to ca. 30%, with urchins fed diets with 18% carbohydrate exhibiting greater efficiency than those fed diets with 12% carbohydrate. The energetic cost of dry matter production was optimal at protein levels less than those required for maximal weight gain and gonad production, suggesting an increased energetic cost (decreased energy efficiency) is required to increase gonad production relative to somatic growth. Economic analysis models predict when cost of feed ingredients are low, the lowest cost per gram of wet weight gain will occur at 18% dietary carbohydrate and ca. 25- 30% dietary protein. In contrast, lowest cost per gram of wet weight gain will occur at 12% dietary carbohydrate and ca. 35- 40% dietary protein when feed ingredient costs are high or average. For both 18 and 12% levels of dietary carbohydrate, cost per gram of wet weight gain is

  8. PRODUCTION AND ECONOMIC OPTIMIZATION OF DIETARY PROTEIN AND CARBOHYDRATE IN THE CULTURE OF JUVENILE SEA URCHIN Lytechinus variegatus.

    PubMed

    Heflin, Laura E; Makowsky, Robert; Taylor, J Christopher; Williams, Michael B; Lawrence, Addison L; Watts, Stephen A

    2016-10-01

    Juvenile Lytechinus variegatus (ca. 3.95± 0.54 g) were fed one of 10 formulated diets with different protein (ranging from 11- 43%) and carbohydrate (12 or 18%; brackets determined from previous studies) levels. Urchins (n= 16 per treatment) were fed a daily sub-satiation ration equivalent to 2.0% of average body weight for 10 weeks. Our objective was (1) to create predictive models of growth, production and efficiency outcomes and (2) to generate economic analysis models in relation to these dietary outcomes for juvenile L. variegatus held in culture. At dietary protein levels below ca. 30%, models for most growth and production outcomes predicted increased rates of growth and production among urchins fed diets containing 18% dietary carbohydrate levels as compared to urchins fed diets containing 12% dietary carbohydrate. For most outcomes, growth and production was predicted to increase with increasing level of dietary protein up to ca. 30%, after which, no further increase in growth and production were predicted. Likewise, dry matter production efficiency was predicted to increase with increasing protein level up to ca. 30%, with urchins fed diets with 18% carbohydrate exhibiting greater efficiency than those fed diets with 12% carbohydrate. The energetic cost of dry matter production was optimal at protein levels less than those required for maximal weight gain and gonad production, suggesting an increased energetic cost (decreased energy efficiency) is required to increase gonad production relative to somatic growth. Economic analysis models predict when cost of feed ingredients are low, the lowest cost per gram of wet weight gain will occur at 18% dietary carbohydrate and ca. 25- 30% dietary protein. In contrast, lowest cost per gram of wet weight gain will occur at 12% dietary carbohydrate and ca. 35- 40% dietary protein when feed ingredient costs are high or average. For both 18 and 12% levels of dietary carbohydrate, cost per gram of wet weight gain is

  9. The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    PubMed Central

    Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène

    2011-01-01

    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source. PMID:22132207

  10. Increased dietary protein attenuates C-reactive protein and creatine kinase responses to exercise-induced energy deficit

    USDA-ARS?s Scientific Manuscript database

    We determined if dietary protein (P) modulates responses of C-reactive protein (CRP) and creatine kinase (CK), biomarkers of inflammation and muscle damage, during exercise-induced energy deficit (DEF). Thirteen healthy men (22 +/- 1 y, VO2peak 60 +/- 2 ml.kg-1.min-1) balanced energy expenditure (EE...

  11. Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults

    PubMed Central

    Hooker, Emma; Green, Mark A.; Stevenson, Emma J.; Penson, Simon; Johnstone, Alexandra M.

    2018-01-01

    With an ageing population, dietary approaches to promote health and independence later in life are needed. In part, this can be achieved by maintaining muscle mass and strength as people age. New evidence suggests that current dietary recommendations for protein intake may be insufficient to achieve this goal and that individuals might benefit by increasing their intake and frequency of consumption of high-quality protein. However, the environmental effects of increasing animal-protein production are a concern, and alternative, more sustainable protein sources should be considered. Protein is known to be more satiating than other macronutrients, and it is unclear whether diets high in plant proteins affect the appetite of older adults as they should be recommended for individuals at risk of malnutrition. The review considers the protein needs of an ageing population (>40 years old), sustainable protein sources, appetite-related implications of diets high in plant proteins, and related areas for future research. PMID:29547523

  12. Sex differences in snack food reinforcement in response to increasing dietary protein

    USDA-ARS?s Scientific Manuscript database

    BRACKGROUND: Protein is posited to play a dynamic role in energy balance and reward-driven eating behavior. However, little is known about the effect of increasing protein intake on snack food reinforcement. OBJECTIVE: We sought to determine the extent to which increasing dietary protein changes th...

  13. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    PubMed

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  14. Dietary protein level and performance of growing Baladi kids.

    PubMed

    Abdelrahman, M M; Aljumaah, R S

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity.

  15. Dietary protein level and performance of growing Baladi kids

    PubMed Central

    Abdelrahman, M. M.; Aljumaah, R. S.

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity. PMID:27175130

  16. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio, E-mail: amirviz@upo.es

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remainmore » elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We

  17. Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats.

    PubMed

    de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José

    2015-09-01

    During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body

  18. Evaluation of a rapid protocol for the assessment of salt sensitivity against the blood pressure response to dietary sodium chloride restriction.

    PubMed

    Galletti, F; Ferrara, I; Stinga, F; Iacone, R; Noviello, F; Strazzullo, P

    1997-04-01

    The "gold standard" for the assessment of salt sensitivity of hypertension is the blood pressure response to dietary NaCl restriction; nevertheless, for practical purposes, a more rapid test that would not depend on the patient's compliance to the dietary prescription would be very useful in clinical research and medical practice. The aim of this study was thus to evaluate the effectiveness and reliability of a rapid, easy-to-standardize protocol for the assessment of salt sensitivity against the blood pressure response to dietary salt restriction. A total of 108 hypertensive patients were screened for salt sensitivity by the modified protocol of Grim et al. Thereafter, nine patients identified by the test as salt sensitive and nine identified as salt resistant followed, for two consecutive periods of 1 week, a diet with normal (200 mmol/day) or low (50 mmol/day) NaCl content. Compliance to the diet was checked by repeated 24-h urine collections. The group as a whole experienced a significant fall in blood pressure during the low Na diet (mean pressure = 123 +/- 3 v 118 +/- 3 mm Hg; P < .05). However, whereas patients identified as salt sensitive by the Grim protocol had a marked and significant blood pressure decrease (systolic -12 mm Hg, diastolic -7 mm Hg), no change was observed in those classified as salt resistant (systolic -2 mm Hg, diastolic -2 mm Hg). A significant correlation between changes in urinary Na excretion and changes in blood pressure was found only in salt-sensitive hypertensive patients. In conclusion, the modified Grim protocol tested in this study was able to correctly predict a significant blood pressure response to dietary salt restriction in the majority of cases. A validation of this test in a larger patient population may be advisable.

  19. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial.

    PubMed

    Huang, Tao; Qi, Qibin; Li, Yanping; Hu, Frank B; Bray, George A; Sacks, Frank M; Williamson, Donald A; Qi, Lu

    2014-05-01

    A common obesity-risk variant rs9939609 in the fat mass- and obesity-associated (FTO) gene was recently shown to affect appetite, and the gene is sensitive to the regulation of amino acids. We examined the interaction between FTO genotype and protein intake on the long-term changes in appetite in a randomized controlled trial. We genotyped FTO rs9939609 in 737 overweight adults in the 2-y Preventing Overweight Using Novel Dietary Strategies trial and assessed 4 appetite-related traits including cravings, fullness, hunger, and prospective consumption. We showed that dietary protein significantly modified genetic effects on changes in food cravings and appetite scores at 6 mo after adjustment for age, sex, ethnicity, baseline body mass index, weight change, and baseline value for respective outcomes (P-interaction = 0.027 and 0.048, respectively). The A allele was associated with a greater decrease in food cravings and appetite scores in participants with high-protein-diet intake (P = 0.027 and 0.047, respectively) but not in subjects in the low-protein-diet group (P = 0.384 and 0.078, respectively). The weight regain from 6 to 24 mo attenuated gene-protein interactions. Protein intakes did not modify FTO genotype effects on other appetite measures. Our data suggest that individuals with the FTO rs9939609 A allele might obtain more benefits in a reduction of food cravings and appetite by choosing a hypocaloric and higher-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995.

  20. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  1. Effects of energy and protein restriction, followed by nutritional recovery on morphological development of the gastrointestinal tract of weaned kids.

    PubMed

    Sun, Z H; He, Z X; Zhang, Q L; Tan, Z L; Han, X F; Tang, S X; Zhou, C S; Wang, M; Yan, Q X

    2013-09-01

    Effects of energy, protein, or both energy and protein restriction on gastrointestinal morphological development were investigated in 60 Liuyang Black kids, which were sourced from local farms and weaned at 28 d of age. Weaned kids were randomly assigned to receive 1 of 4 dietary treatments (15 kids per treatment), which consisted of adequate nutrient supply (CON), energy restriction (ER), protein restriction (PR), or energy and protein restriction (EPR). The entire experiment included adaptation period (0 to 6 d), nutritional restriction period (7 to 48 d), and recovery period (49 to 111 d). Three kids from each group were killed at d 48 and 111, and the rumen, duodenum, jejunum, and ileum were harvested. On d 48 (end of nutritional restriction), lengths of the duodenum (P = 0.005), jejunum (P = 0.003), and ileum (P = 0.003), and weights of the rumen (P = 0.004), duodenum (P = 0.006), jejunum (P = 0.006), and ileum (P = 0.004) of kids in ER, PR, and EPR were less than those of kids in CON. Compared with CON, PR decreased papillae width (P = 0.03) and surface area (P = 0.05) of the rumen epithelium, villus surface area (P = 0.05), and N concentration (P = 0.02) of the jejunum mucosa on d 48. Compared with CON, EPR decreased papillae height (P = 0.001), width (P = 0.001), and surface area (P = 0.003), N concentration (P = 0.01), and the ratio of N to DNA (P = 0.03) of the rumen epithelium. Compared with CON, EPR also decreased villus height (P = 0.01), width (P = 0.006), and surface area (P = 0.006), N concentration (P < 0.001), and the ratio of N to DNA (P < 0.001) of the jejunum mucosa on d 48. On d 111 (end of nutritional recovery), lengths of the duodenum (P = 0.001), jejunum (P = 0.001), and ileum (P = 0.001), weights of the rumen (P < 0.001), duodenum (P = 0.001), jejunum (P < 0.001), and ileum (P < 0.001) of kids in ER, PR, and EPR were still less than those of kids in CON; N concentrations of rumen epithelium of kids in PR (P = 0.01) and EPR (P = 0.001), and

  2. Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination.

    PubMed

    Wolf, Nathan; Newsome, Seth D; Peters, Jacob; Fogel, Marilyn L

    2015-08-15

    The eco-physiological mechanisms that govern the incorporation and routing of macronutrients from dietary sources into consumer tissues determine the efficacy of stable isotope analysis (SIA) for studying animal foraging ecology. We document how changes in the relative amounts of dietary proteins and lipids affect the metabolic routing of these macronutrients and the consequent effects on tissue-specific discrimination factors in domestic mice using SIA. We also examine the effects of dietary macromolecular content on a commonly used methodological approach: lipid extraction of potential food sources. We used carbon ((13) C) and nitrogen ((15) N) isotopes to examine the routing of carbon from dietary proteins and lipids that were used by mice to biosynthesize hair, blood, muscle, and liver. Growing mice were fed one of four diet treatments in which the total dietary content of C4 -based lipids (δ(13) C = -14.5‰) and C(3) -based proteins (δ(13) C = -27‰) varied inversely between 5% and 40%. The δ(13) C values of mouse tissues increased by approximately 2-6‰ with increasing dietary lipid content. The difference in δ(13) C values between mouse tissues and bulk diet ranged from 0.1 ± 1.5‰ to 2.3 ± 0.6‰ for all diet treatments. The mean (±SD) difference between the δ(13) C values of mouse tissues and dietary protein varied systematically among tissues and ranged from 3.1 ± 0.1‰ to 4.5 ± 0.6‰ for low fat diets and from 5.4 ± 0.4‰ to 10.5 ± 7.3‰ for high fat diets. Mice used some fraction of their dietary lipid carbon to synthesize tissue proteins, suggesting flexibility in the routing of dietary macromolecules to consumer tissues based on dietary macromolecular availability. Consequently, all constituent dietary macromolecules, not just protein, should be considered when determining the relationship between diets and consumer tissues using SIA. In addition, in cases where animals consume diets with high lipid contents, non lipid

  3. Inadequate dietary protein intake: When does it occur and what are the consequences?

    USDA-ARS?s Scientific Manuscript database

    Previous work with country-level data has shown associations between inadequate protein supply and stunting rates. Inadequate protein intake is known to be deleterious in animals. Low dietary protein intake in children is associated with growth faltering. According to World Health Organization (WHO)...

  4. Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course: What Impact on the Colonic Mucosa?

    PubMed Central

    Vidal-Lletjós, Sandra; Beaumont, Martin; Tomé, Daniel; Benamouzig, Robert; Blachier, François; Lan, Annaïg

    2017-01-01

    Inflammatory bowel diseases (IBD), after disease onset, typically progress in two cyclically repeated phases, namely inflammatory flare and remission, with possible nutritional status impairment. Some evidence, either from epidemiological, clinical, and experimental studies indicate that the quantity and the quality of dietary protein consumption and amino acid supplementation may differently influence the IBD course according to the disease phases. For instance, although the dietary protein needs for mucosal healing after an inflammatory episode remain undetermined, there is evidence that amino acids derived from dietary proteins display beneficial effects on this process, serving as building blocks for macromolecule synthesis in the wounded mucosal area, energy substrates, and/or precursors of bioactive metabolites. However, an excessive amount of dietary proteins may result in an increased intestinal production of potentially deleterious bacterial metabolites. This could possibly affect epithelial repair as several of these bacterial metabolites are known to inhibit colonic epithelial cell respiration, cell proliferation, and/or to affect barrier function. In this review, we present the available evidence about the impact of the amount of dietary proteins and supplementary amino acids on IBD onset and progression, with a focus on the effects reported in the colon. PMID:28335546

  5. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    PubMed Central

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  6. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation.

    PubMed

    Law, R A; Young, F J; Patterson, D C; Kilpatrick, D J; Wylie, A R G; Mayne, C S

    2009-03-01

    Ninety autumn-calving Holstein dairy cows [45 primiparous and 45 multiparous (mean parity, 3.1)] were allocated to 1 of 3 dietary crude protein (CP) concentrations: 173, 144, or 114 g of CP/kg of DM, from calving until d 150 of lactation. On d 151, half of the animals in each treatment were allocated an alternative dietary protein concentration. Half of the animals receiving 114 g of CP/kg of DM went onto 144 g of CP/kg of DM; half of the animals receiving 144 g of CP/kg of DM went onto 173 g of CP/kg of DM; and half of the animals receiving 173 g of CP/kg of DM went onto 144 g of CP/kg of DM, with the remaining animals staying on their original treatment. This resulted in 6 treatments in the mid to late lactation period: 114/114, 144/144, 173/173, 114/144, 144/173, and 173/144 g of CP/kg of DM. An increase in dietary CP concentration significantly increased milk, fat, and protein yield in early lactation (d 1 to 150). Dry matter intake was also increased with increased dietary protein concentration; however, this was not significant between 144 and 173 g of CP/kg of DM. Increased dietary CP significantly increased plasma urea, albumin, and total protein concentrations but had no significant effect on NEFA, leptin, or IGF-1 concentrations. Decreasing the dietary CP concentration in mid-late lactation (d 151 to 305) from 173 to 144 g/kg of DM had no significant effect on milk yield, dry matter intake, or milk fat and protein yield, compared with animals that remained on 173 g of CP/kg of DM throughout lactation. Increasing dietary CP concentration from 144 to 173 g/kg of DM significantly increased dry matter intake compared with animals that remained on the 144 g of CP/kg of DM throughout lactation. There were no significant dietary treatment effects on live weight or body condition score change throughout the experiment. Results of this study indicate that high protein diets (up to 173 g of CP/kg of DM) improved feed intake and animal performance in early lactation

  7. Effects of dietary lysine/protein ratio and fat levels on growth performance and meat quality of finishing pigs.

    PubMed

    Maeda, Keisuke; Yamamoto, Fumika; Toyoshi, Masanari; Irie, Masakazu

    2014-04-01

    This study aimed to evaluate the effects of dietary lysine/protein ratio and fat levels on the growth, carcass characteristics and meat quality of finishing pigs fed feed made from food waste, including noodles and chocolate. Four dietary treatments, 2 levels of lysine/protein ratio (0.035 and 0.046) and 2 levels of fat (3.3% and 6.0%), were adapted to a 2 × 2 factorial arrangement. Each diet for the finishing pigs contained the same levels of adequate crude protein (16%) and lysine (0.58-0.75%), and similar levels of high total digestible nutrients (90.2-92.6%). In total, 32 LWD pigs with an average body weight of 57.2 kg were assigned to 4 dietary groups. The pigs were slaughtered at about 115 kg. Growth performance was not influenced by the dietary treatments. Carcass characteristics were slightly influenced by the dietary fat level. As the dietary lysine/protein ratio decreased, the marbling score of Longissimus dorsi muscle increased and the intramuscular fat (IMF) increased from 6.82% to 9.46%. Marbling score was not significantly influenced by the dietary fat level. These results indicate that IMF increased without adverse effects on growth, carcass characteristics and meat quality, when pigs were fed a diet with low lysine/protein ratio. © 2013 Japanese Society of Animal Science.

  8. Psychosocial and cognitive factors associated with adherence to dietary and fluid restriction regimens by people on chronic haemodialysis.

    PubMed

    Sensky, T; Leger, C; Gilmour, S

    1996-01-01

    Failure by people on chronic haemodialysis to adhere adequately to dietary and fluid restrictions can have serious medical consequences. Numerous psychosocial factors possibly associated with adherence have been investigated in previous research. However, most previous studies have examined one or a few variables in isolation, and have tended to focus on sociodemographic variables not easily amenable to intervention. Much previous work has tended to ignore potential differences in adherence between male and female dialysands. Sociodemographic and psychosocial factors associated with adherence to dietary and fluid restrictions were investigated in 45 people on haemodialysis attending one renal unit, excluding those with a residual urine volume > 500 ml/day. Multiple regression analyses were used to estimate the contribution to adherence of a range of variables, including gender, age, duration of dialysis, affective disturbance, past psychiatric history, health locus of control, social adjustment and social supports. Adherence to diet (measured by predialysis serum potassium) and to fluid restriction (interdialysis weight gain) were not linked, and had different psychosocial correlates. Regression models of four different aspects of adherence revealed very distinct psychosocial correlates, with contributions to adherence from complex interactions between psychosocial and cognitive variables, notably gender, age, social adjustment, health locus of control, and depression. The findings cast doubt on the results of many previous studies which have used simple models of adherence. Adherence is likely to be influenced in a complex manner by multiple factors including age, gender, locus of control, social adjustment, and past psychiatric history.

  9. Dietary potassium intake and mortality in long-term hemodialysis patients.

    PubMed

    Noori, Nazanin; Kalantar-Zadeh, Kamyar; Kovesdy, Csaba P; Murali, Sameer B; Bross, Rachelle; Nissenson, Allen R; Kopple, Joel D

    2010-08-01

    Hyperkalemia has been associated with higher mortality in long-term hemodialysis (HD) patients. There are few data concerning the relationship between dietary potassium intake and outcome. The mortality predictability of dietary potassium intake from reported food items estimated using the Block Food Frequency Questionnaire (FFQ) at the start of the cohort was examined in a 5-year (2001-2006) cohort of 224 HD patients in Southern California using Cox proportional hazards regression. 224 long-term HD patients from 8 DaVita dialysis clinics. Dietary potassium intake ranking using the Block FFQ. 5-year survival. HD patients with higher potassium intake had greater dietary energy, protein, and phosphorus intakes and higher predialysis serum potassium and phosphorus levels. Greater dietary potassium intake was associated with significantly increased death HRs in unadjusted models and after incremental adjustments for case-mix, nutritional factors (including 3-month averaged predialysis serum creatinine, potassium, and phosphorus levels; body mass index; normalized protein nitrogen appearance; and energy, protein, and phosphorus intake) and inflammatory marker levels. HRs for death across the 3 higher quartiles of dietary potassium intake in the fully adjusted model (compared with the lowest quartile) were 1.4 (95% CI, 0.6-3.0), 2.2 (95% CI, 0.9-5.4), and 2.4 (95% CI, 1.1-7.5), respectively (P for trend = 0.03). Restricted cubic spline analyses confirmed the incremental mortality predictability of higher potassium intake. FFQs may underestimate individual potassium intake and should be used to rank dietary intake across the population. Higher dietary potassium intake is associated with increased death risk in long-term HD patients, even after adjustments for serum potassium level; dietary protein; energy, and phosphorus intake; and nutritional and inflammatory marker levels. The potential role of dietary potassium in the high mortality rate of HD patients warrants

  10. Protein expression of pectoralis major muscle in chickens in response to dietary methionine status.

    PubMed

    Corzo, A; Kidd, M T; Dozier, W A; Shack, L A; Burgess, S C

    2006-04-01

    The present study evaluated the effect of dietary methionine on breast-meat accretion and protein expression in skeletal muscle of broiler chickens in vivo. All broilers received a common pre-test diet up to 21 d of age, and were subsequently fed either a methionine-deficient (MD) or -adequate (MA) diet (3.1 v. 4.5 g/kg diet) from age 21 to 42 d. Dietary cystine levels were 3.7 v. 3.6 g/kg diet for the MD and MA diet, respectively. Detrimental effects on carcass yield (P=0.004), abdominal fat percentage (P=0.001), and breast-meat weight (P=0.001), yield (P=0.001), and uniformity (P=0.002) were observed and validated in birds fed MD diets. Via tandem MS, a total of 190 individual proteins were identified from pectoralis major (PM) muscle tissue. From the former composite, peptides from three proteins were observed to be present exclusively in breast muscle from those chickens fed the MD diet (pyruvate kinase, myosin alkali light chain-1, ribosomal-protein-L-29). No proteins were observed to be uniquely expressed in chickens fed MA diets. Research is warranted to further explore the possibility of the proteins pyruate kinase, myosin alkali light chain-1, or ribosomal protein L-29, as potential biological indicators of differences in protein expression of PM of chickens in response to a dietary methionine deficiency.

  11. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  12. Effect of dietary energy and protein content on growth and carcass traits of Pekin ducks

    PubMed Central

    Zeng, Q. F.; Cherry, P.; Doster, A.; Murdoch, R.; Adeola, O.; Applegate, T. J.

    2015-01-01

    A study was conducted to determine the influence of dietary energy and protein concentrations on growth performance and carcass traits of Pekin ducks from 15 to 35 d of age. In experiment 1, 14-d-old ducks were randomly assigned to 3 dietary metabolizable energy (11.8, 12.8, and 13.8 MJ/kg) and 3 crude protein concentrations (15, 17, and 19%) in a 3 × 3 factorial arrangement (6 replicate pens; 66 ducks/pen). Carcass characteristics were evaluated on d 28, 32, and 35. In Experiment 2, 15-d-old ducks (6 replicate cages; 6 ducks/cage) were randomly allotted to the 9 diets that were remixed with 0.5% chromic oxide. Excreta were collected from d 17 to 19, and ileal digesta was collected on d 19 to determine AMEn and amino acid digestibility. In Experiment 1, there were interactions (P < 0.05) between dietary metabolizable energy and crude protein (CP) on body weight (BW) gain and feed intake, wherein BW gain increased more to increasing dietary CP as dietary metabolizable energy increased. However, feed intake was only influenced by dietary crude protein at 11.8 MJ ME/kg and not 12.8 or 13.8 MJ/kg. As dietary CP increased from 15 to 19%, breast meat yield increased by 10.8% on d 35 (P < 0.01). Conversely, increasing metabolizable energy from 11.8 to 13.8 MJ/kg increased dressing percentage, breast skin, and subcutaneous fat, but decreased breast meat yield (% but not weight) on d 35 (P < 0.01). In Experiment 2, the determined AMEn for diets formulated to contain 11.8, 12.8, or 13.8 MJ ME/kg were 11.66, 12.68, and 13.75 MJ/kg, respectively; determined standardized ileal digestible Lys was 0.95, 1.00, and 1.21% for diets formulated to contain 15, 17, or 19% crude protein, respectively. The best body weight gain and feed conversion ratio was obtained when ducks were fed a high dietary AMEn (13.75 MJ/kg) and high CP (19%, 1.21% SID Lys). These results provide a framework for subsequent modeling of amino acid and energy inputs and the corresponding outputs of growth

  13. Effect of dietary protein and lipid levels on growth, nutrient utilization and whole-body composition of blue gourami, Trichogaster trichopterus fingerlings.

    PubMed

    Mohanta, K N; Subramanian, S; Korikanthimath, V S

    2013-02-01

    Nine semi-purified diets were prepared with three levels each of protein (300, 350 and 400 g/kg) and lipid (60, 80 and 100 g/kg) and fed ad libitum to Trichogaster trichopterus fingerlings (0.61 ± 0.03 g) in triplicate groups (10 fish/replicate) for 90 days to determine optimum dietary protein and lipid levels. Twenty-seven flow-through fibre-reinforced plastic tanks (200 l capacity each with 100 l of water) were used for rearing the fish. The dietary protein, lipid and their interactions had significant effects (p < 0.05) on weight gain, feed conversion ratio, specific growth rate, nutrient retention and digestibility, but not on hepato- and viscerosomatic indexes (p > 0.05). Dietary protein and the interaction of protein with lipid had significant effect (p < 0.05) on whole-body dry matter, lipid and energy contents, but not on protein and ash contents (p > 0.05). But, the dietary lipid had significant (p < 0.05) effect on whole-body dry matter, protein, lipid and energy contents except the ash contents (p > 0.05). For each level of dietary protein, the increase in dietary lipid resulted significant increase (p < 0.05) in whole-body lipid contents without affecting the protein and ash contents (p > 0.05). Based on better growth and dietary performances, the optimum dietary protein and lipid levels of blue gourami fingerling are 350 and 80 g/kg diet respectively. © 2011 Blackwell Verlag GmbH.

  14. Level of dietary protein impacts whole body protein turnover in trained males at rest.

    PubMed

    Gaine, Patricia C; Pikosky, Matthew A; Martin, William F; Bolster, Douglas R; Maresh, Carl M; Rodriguez, Nancy R

    2006-04-01

    The current investigation examined the effect of variations in protein intake on Whole body protein turnover (WBPTO) at rest in endurance-trained males. Whole body protein turnover is influenced by both diet and exercise. Whether endurance athletes require more protein than the non-exerciser remains equivocal. Five male runners (21.3 +/- 0.3 years, 179 +/- 2 cm, 70.6 +/- 0.1 kg, 8.7% +/- 0.4% body fat, 70.6 +/- 0.1 VO(2)max) participated in a randomized, crossover design diet intervention where they consumed either a low-protein (LP; 0.8 g/kg), moderate-protein (MP; 1.8 g/kg), or high-protein (HP; 3.6 g/kg) diet for 3 weeks. Whole body protein turnover (Ra, leucine rate of appearance; NOLD, nonoxidative leucine disposal; and Ox, leucine oxidation), nitrogen balance, and substrate oxidation were assessed at rest following each dietary intervention period. The HP diet increased leucine Ra (indicator of protein breakdown; 136.7 +/- 9.3, 129.1 +/- 7.4, and 107.8 +/- 3.1 micromol/[kg . h] for HP, MP, and LP diets, respectively) and leucine Ox (31.0 +/- 3.6, 26.2 +/- 4.3, and 18.3 +/- 0.6 micromol/[kg . h] for HP, MP, and LP diets, respectively) compared with LP diet (P < .05). No differences were noted in nonoxidative leucine disposal (an indicator of protein synthesis) across diets. Nitrogen balance was greater for HP diet than for MP and LP diets (10.2 +/- 0.7, 1.8 +/- 0.6, and -0.3 +/- 0.5 for HP, MP, and LP diets, respectively). Protein oxidation increased with increasing protein intake (54% +/- 6%, 25% +/- 1%, and 14% +/- 2% for HP, MP, and LP diets, respectively). Findings from this study show that variations in protein intake can modulate WBPTO and that protein intake approximating the current recommended dietary allowance was not sufficient to achieve nitrogen balance in the endurance-trained males in this investigation. Our results suggest that a protein intake of 1.2 g/kg or 10% of total energy intake is needed to achieve a positive nitrogen balance. This is

  15. Growth and clinical variables in nitrogen-restricted piglets fed an adjusted essential amino acid mix: Effects using free amino acid-based diets

    USDA-ARS?s Scientific Manuscript database

    Excess protein intake in early life has been linked to obesity and metabolic syndrome in later life. Yet, protein, and in particular the essential amino acids (EAA), need to be present in adequate quantity to support growth. Using a piglet model restricted in dietary amino acids (AA), our objective...

  16. Dietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets.

    PubMed

    Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2016-10-01

    The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 μg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1- 13 C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [ 3 H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the

  17. Temporal Alterations in Vascular Angiotensin Receptors and Vasomotor Response in Offspring of Protein-restricted Rat Dams

    PubMed Central

    SATHISHKUMAR, Kunju; BALAKRISHNAN, Meena; CHINNATHAMBI, Vijayakumar; GAO, Haijun; YALLAMPALLI, Chandra

    2012-01-01

    Objective Examine temporal alterations in vascular angiotensin II (ANG II) receptors (AT1R and AT2R) and determine vascular response to ANG II in growth-restricted offspring. Study design Offspring of pregnant rats fed low-protein (6%) and control (20%) diet were compared. Results Prenatal protein restriction reprogrammed AT1aR mRNA expression in males’ mesenteric arteries to cause 1.7- and 2.3-fold increases at 3 and 6 months of age associated with arterial pressure increases of 10 and 33 mmHg, respectively; however, in females, increased AT1aR expression (2-fold) and arterial pressure (15 mmHg) occurred only at 6 months. Prenatal protein restriction did not affect AT2R expression. Losartan abolished hypertension, suggesting that AT1aR plays a primary role in arterial pressure elevation. Vasoconstriction to ANG II was exaggerated in all protein-restricted offspring, with greater potency and efficacy in males. Conclusion Prenatal protein restriction increased vascular AT1R expression and vasoconstriction to ANG II, possibly contributing to programmed hypertension. PMID:22537420

  18. Dietary fat mediates hyperglycemia and the glucogenic response to increased protein consumption in an insect, Manduca sexta L.

    PubMed

    Thompson, S N

    2004-08-04

    Many insects display non-homeostatic regulation over blood sugar level. The concentration of trehalose varies dramatically depending on physiological and nutritional state. In the absence of dietary carbohydrate, blood trehalose in larvae of the lepidopteran insect Manduca sexta is maintained by gluconeogenesis and is dependent on dietary protein consumption. In the present study, the effect of dietary fat on the glucogenic response of insects to increased dietary protein was examined by NMR analysis of (2-13C)pyruvate metabolism. Last instar larvae were maintained on a carbohydrate-free chemically defined artificial diet having variable levels of casein with and without corn oil. Gluconeogenic flux, the ratio of the rate of gluconeogenesis to the rate of glycolysis, was estimated from the 13C distribution in trehalose arising by gluconeogenesis and the 13C enrichment of alanine due to pyruvate cycling. Insects grew well on carbohydrate-free diets and growth increased with increasing dietary protein level. At all dietary protein levels, larvae grew better on diets with fat. Without dietary fat, larvae were glucogenic but displayed low blood trehalose concentrations, <30 mM, regardless of protein consumption. When fat was included in the diet, however, gluconeogenic flux and blood trehalose level increased sharply in response to increased dietary protein level, with trehalose concentrations >50 mM at higher levels of protein consumption. When offered a choice of a high carbohydrate and a high protein diet, larvae maintained on diets with fat displayed a food preference related to blood sugar level. Those with low blood sugar fed on carbohydrate, while those with high blood sugar preferred protein. Trehalose synthesized from (2-13C)pyruvate exhibited asymmetry in the 13C distribution in individual glucose molecules, indicating a disequilibrium at the triose phosphate isomerase-catalyzed step of the gluconeogenic pathway. In trehalose from larvae on diets with fat

  19. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    PubMed

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  20. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    NASA Astrophysics Data System (ADS)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  1. Dietary cholesterol, heart disease risk and cognitive dissonance.

    PubMed

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  2. Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions.

    PubMed

    Clark, O Grant; Moehn, Soenke; Edeogu, Ike; Price, Jason; Leonard, Jeremy

    2005-01-01

    Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.

  3. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    PubMed

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  4. Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted.

    PubMed

    Keane, Michael A; James, Jack E

    2008-12-01

    Until recently, little account had been taken of the confounding effects of caffeine withdrawal and withdrawal reversal when examining the net effects of dietary caffeine. By including a manipulation involving sleep restriction, the present study aimed to extend recent findings from research in which caffeine withdrawal and withdrawal reversal were controlled. The main aims of the study were to examine the net effects of caffeine, as well as its potential restorative effects following sleep restriction, on EEG, performance and mood. A randomised cross-over design was used in which 15 participants alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for four consecutive weeks following either usual sleep or sleep restriction. EEG activity was measured at 32 sites during eyes closed, eyes open and performance of a vigilance task. Modest effects of caffeine were found in the delta and beta bandwidths, but no main effects of caffeine were observed in the theta or alpha bandwidths. Overall, the effects of caffeine on EEG activity were relatively few, weak and inconsistent, and no evidence was found of net restorative effects of caffeine for any outcome variables. The findings do not support the use of caffeine as a means for enhancing human function or as an antidote to the negative effects of sleep loss.

  5. L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction.

    PubMed

    Bourdon, Aurélie; Parnet, Patricia; Nowak, Christel; Tran, Nhat-Thang; Winer, Norbert; Darmaun, Dominique

    2016-03-01

    Intrauterine growth restriction (IUGR) results from either maternal undernutrition or impaired placental blood flow, exposing offspring to increased perinatal mortality and a higher risk of metabolic syndrome and cardiovascular disease during adulthood. l-Citrulline is a precursor of l-arginine and nitric oxide (NO), which regulates placental blood flow. Moreover, l-citrulline stimulates protein synthesis in other models of undernutrition. The aim of the study was to determine whether l-citrulline supplementation would enhance fetal growth in a model of IUGR induced by maternal dietary protein restriction. Pregnant rats were fed either a control (20% protein) or a low-protein (LP; 4% protein) diet. LP dams were randomly allocated to drink tap water either as such or supplemented with l-citrulline (2 g · kg(-1) · d(-1)), an isonitrogenous amount of l-arginine, or nonessential l-amino acids (NEAAs). On day 21 of gestation, dams received a 2-h infusion of l-[1-(13)C]-valine until fetuses were extracted by cesarean delivery. Isotope enrichments were measured in free amino acids and fetal muscle, liver, and placenta protein by GC-mass spectrometry. Fetal weight was ∼29% lower in the LP group (3.82 ± 0.06 g) than in the control group (5.41 ± 0.10 g) (P < 0.001). Regardless of supplementation, fetal weight remained below that of control fetuses. Yet, compared with the LP group, l-citrulline and l-arginine equally increased fetal weight to 4.15 ± 0.08 g (P < 0.05) and 4.13 ± 0.1 g (P < 0.05 compared with LP), respectively, whereas NEAA did not (4.05 ± 0.05 g; P = 0.07). Fetal muscle protein fractional synthesis rate was 35% lower in the LP fetuses (41% ± 11%/d) than in the control (61% ± 13%/d) fetuses (P < 0.001) and was normalized by l-citrulline (56% ± 4%/d; P < 0.05 compared with LP, NS compared with control) and not by other supplements. Urinary nitrite and nitrate excretion was lower in the LP group (6.4 ± 0.8 μmol/d) than in the control group (17.9

  6. The relevance of dietary sodium in hemodialysis

    PubMed Central

    Mc Causland, Finnian R.; Waikar, Sushrut S.; Brunelli, Steven M.

    2013-01-01

    Since the earliest days of hemodialysis, dietary sodium restriction has been recommended as a therapeutic means to mitigate problems of extracellular volume overload, hypertension and inter-dialytic weight gain. Recently, there has been a proliferation of human subjects' research examining the potential effects of dietary sodium curtailment. Herein we examine the available evidence with respect to the effects of dietary sodium restriction on clinically relevant endpoints among hemodialysis patients. PMID:23129821

  7. Protein metabolism in preterm infants with particular reference to intrauterine growth restriction

    PubMed Central

    de Boo, H A; Harding, J E

    2007-01-01

    There is growing evidence that neonatal and long‐term morbidity in preterm infants, particularly those born before 32 weeks' gestation, can be modified by attained growth rate in the neonatal period. Guidelines for optimal growth and the nutritional intakes, particular of protein, required to achieve this are not well defined. Due to delays in postnatal feeding and a lack of energy stores developed in the last trimester of pregnancy, preterm infants often suffer early postnatal catabolism until feeding is established. There are indications that infants born with intrauterine growth restriction have perturbations in protein metabolism. Therefore, they may have different protein requirements than appropriate for gestational age infants. This review summarises what is known about protein requirements and metabolism in the fetus and preterm infant, with particular emphasis on the distinct requirements of the growth‐restricted infant. PMID:17585098

  8. Developmental Programming of Cardiovascular Disease Following Intrauterine Growth Restriction: Findings Utilising A Rat Model of Maternal Protein Restriction

    PubMed Central

    Zohdi, Vladislava; Lim, Kyungjoon; Pearson, James T.; Black, M. Jane

    2014-01-01

    Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of “programming”. The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype. PMID:25551250

  9. High carbohydrate-low protein consumption maximizes Drosophila lifespan

    PubMed Central

    Bruce, Kimberley D.; Hoxha, Sany; Carvalho, Gil B.; Yamada, Ryuichi; Wang, Horng-Dar; Karayan, Paul; He, Shan; Brummel, Ted; Kapahi, Pankaj; Ja, William W.

    2013-01-01

    Dietary restriction extends lifespan in a variety of organisms, but the key nutritional components driving this process and how they interact remain uncertain. In Drosophila, while a substantial body of research suggests that protein is the major dietary component affecting longevity, recent studies claim that carbohydrates also play a central role. To clarify how nutritional factors influence longevity, nutrient consumption and lifespan were measured on a series of diets with varying yeast and sugar content. We show that optimal lifespan requires both high carbohydrate and low protein consumption, but neither nutrient by itself entirely predicts lifespan. Increased dietary carbohydrate or protein concentration does not always result in reduced feeding—the regulation of food consumption is best described by a constant daily caloric intake target. Moreover, due to differences in food intake, increased concentration of a nutrient within the diet does not necessarily result in increased consumption of that particular nutrient. Our results shed light on the issue of dietary effects on lifespan and highlight the need for accurate measures of nutrient intake in dietary manipulation studies. PMID:23403040

  10. Cultural factors influencing dietary and fluid restriction behaviour: perceptions of older Chinese patients with heart failure.

    PubMed

    Rong, Xiaoshan; Peng, Youqing; Yu, Hai-Ping; Li, Dan

    2017-03-01

    To explore the cultural factors related to dietary and fluid restriction behaviours among older Chinese patients. Excess dietary sodium and fluid intake are risk factors contributing to the worsening and rehospitalisation for heart failure in older patients. Managing the complex fluid and diet requirements of heart failure patients is challenging and is made more complicated by cultural variations in self-management behaviours in response to a health threat. Qualitative study using semi-structured in interviews and framework analysis. The design of this study is qualitative descriptive. Semi-structured in-depth interviews were conducted with 15 heart failure patients. Data were analysed through content analysis. Seven cultural themes emerged from the qualitative data: the values placed on health and illness, customary way of life, preference for folk care and the Chinese healthcare system, and factors related to kinship and social ties, religion, economics and education. Dietary change and management in response to illness, including heart failure, is closely related to individuals' cultural background. Healthcare providers should have a good understanding of cultural aspects that can influence patients' conformity to medical recommendations. Heart failure patients need support that considers their cultural needs. Healthcare providers must have a good understanding of the experiences of people from diverse cultural backgrounds. © 2016 John Wiley & Sons Ltd.

  11. Effect of dietary energy and protein content on growth and carcass traits of Pekin ducks.

    PubMed

    Zeng, Q F; Cherry, P; Doster, A; Murdoch, R; Adeola, O; Applegate, T J

    2015-03-01

    A study was conducted to determine the influence of dietary energy and protein concentrations on growth performance and carcass traits of Pekin ducks from 15 to 35 d of age. In experiment 1, 14-d-old ducks were randomly assigned to 3 dietary metabolizable energy (11.8, 12.8, and 13.8 MJ/kg) and 3 crude protein concentrations (15, 17, and 19%) in a 3×3 factorial arrangement (6 replicate pens; 66 ducks/pen). Carcass characteristics were evaluated on d 28, 32, and 35. In Experiment 2, 15-d-old ducks (6 replicate cages; 6 ducks/cage) were randomly allotted to the 9 diets that were remixed with 0.5% chromic oxide. Excreta were collected from d 17 to 19, and ileal digesta was collected on d 19 to determine AMEn and amino acid digestibility. In Experiment 1, there were interactions (P<0.05) between dietary metabolizable energy and crude protein (CP) on body weight (BW) gain and feed intake, wherein BW gain increased more to increasing dietary CP as dietary metabolizable energy increased. However, feed intake was only influenced by dietary crude protein at 11.8 MJ ME/kg and not 12.8 or 13.8 MJ/kg. As dietary CP increased from 15 to 19%, breast meat yield increased by 10.8% on d 35 (P<0.01). Conversely, increasing metabolizable energy from 11.8 to 13.8 MJ/kg increased dressing percentage, breast skin, and subcutaneous fat, but decreased breast meat yield (% but not weight) on d 35 (P<0.01). In Experiment 2, the determined AMEn for diets formulated to contain 11.8, 12.8, or 13.8 MJ ME/kg were 11.66, 12.68, and 13.75 MJ/kg, respectively; determined standardized ileal digestible Lys was 0.95, 1.00, and 1.21% for diets formulated to contain 15, 17, or 19% crude protein, respectively. The best body weight gain and feed conversion ratio was obtained when ducks were fed a high dietary AMEn (13.75 MJ/kg) and high CP (19%, 1.21% SID Lys). These results provide a framework for subsequent modeling of amino acid and energy inputs and the corresponding outputs of growth performance and

  12. [Safety Assessment regarding use of glucosamine sulfate by patients whose dietary potassium intake is restricted].

    PubMed

    Asahina, Yasuko; Hori, Satoko; Sawada, Yasufumi

    2010-02-01

    Hyperkalemia is common in patients with renal disease, and is sometimes caused by dietary potassium intake. We aimed to determine and compare the content of potassium in nine brands of glucosamine supplements sold in the Japanese market and via the Internet. The potassium content was 0.165-3 mg per daily dose in Japanese products, which contained glucosamine hydrochloride or N-acetylglucosamine, while the content in foreign products, in which glucosamine was sulfated, was 197-280 mg. Our results show that the potassium content in glucosamine sulfate supplements can correspond to 20% of the maximum daily intake of potassium by patients on hemodialysis, because the products sometimes contain glucosamine as glucosamine sulfate potassium chloride for stabilization. Although it is not permitted to sell glucosamine sulfate as food in Japan, consumers can easily buy foreign products that contain glucosamine sulfate via the Internet, and those products rarely indicate the potassium content. Health professionals should pay attention to patients' use of glucosamine supplements, especially when patients' dietary potassium intake needs to be restricted.

  13. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    PubMed

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  14. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary glandmore » protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.« less

  15. Current issues in determining dietary protein quality and metabolic utilization

    USDA-ARS?s Scientific Manuscript database

    In resource-limited settings, poor dietary quality has a marked negative impact on health, especially during the sensitive periods of pregnancy and first 2 years of life (the first 1000 days) when stunting, poor development and increased risk of later disease develop. Protein quality is often poor o...

  16. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    PubMed

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed.

  17. Transient decrements in mood during energy deficit are independent of dietary protein-to-carbohydrate ratio

    USDA-ARS?s Scientific Manuscript database

    Energy deficit and dietary macronutrient intake are thought to independently modulate cognition, mood and sleep. To what extent manipulating the dietary ratio of protein-to-carbohydrate affects mood, cognition and sleep during short-term energy deficit is undetermined. Using a randomized, block desi...

  18. Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: a dose-response study.

    PubMed

    Dunlop, Mandy V; Kilroe, Sean P; Bowtell, Joanna L; Finnigan, Tim J A; Salmon, Deborah L; Wall, Benjamin T

    2017-11-01

    The anabolic potential of a dietary protein is determined by its ability to elicit postprandial rises in circulating essential amino acids and insulin. Minimal data exist regarding the bioavailability and insulinotropic effects of non-animal-derived protein sources. Mycoprotein is a sustainable and rich source of non-animal-derived dietary protein. We investigated the impact of mycoprotein ingestion, in a dose-response manner, on acute postprandial hyperaminoacidaemia and hyperinsulinaemia. In all, twelve healthy young men completed five experimental trials in a randomised, single-blind, cross-over design. During each trial, volunteers consumed a test drink containing either 20 g milk protein (MLK20) or a mass matched (not protein matched due to the fibre content) bolus of mycoprotein (20 g; MYC20), a protein matched bolus of mycoprotein (40 g; MYC40), 60 g (MYC60) or 80 g (MYC80) mycoprotein. Circulating amino acid, insulin and uric acid concentrations, and clinical chemistry profiles, were assessed in arterialised venous blood samples during a 4-h postprandial period. Mycoprotein ingestion resulted in slower but more sustained hyperinsulinaemia and hyperaminoacidaemia compared with milk when protein matched, with overall bioavailability equivalent between conditions (P>0·05). Increasing the dose of mycoprotein amplified these effects, with some evidence of a plateau at 60-80 g. Peak postprandial leucine concentrations were 201 (sem 24) (30 min), 118 (sem 10) (90 min), 150 (sem 14) (90 min), 173 (sem 23) (45 min) and 201 (sem 21 (90 min) µmol/l for MLK20, MYC20, MYC40, MYC60 and MYC80, respectively. Mycoprotein represents a bioavailable and insulinotropic dietary protein source. Consequently, mycoprotein may be a useful source of dietary protein to stimulate muscle protein synthesis rates.

  19. TFAP2B Influences the Effect of Dietary Fat on Weight Loss under Energy Restriction

    PubMed Central

    Banasik, Karina; Harder, Marie N.; Taylor, Moira A.; Hager, Jörg; Arner, Peter; Oppert, Jean-Michel; Martinez, J. Alfredo; Polak, Jan; Rousseau, Francis; Langin, Dominique; Rössner, Stephan; Holst, Claus; MacDonald, Ian A.; Kamatani, Yoichiro; Pfeiffer, Andreas F. H.; Kunesova, Marie; Saris, Wim H. M.; Hansen, Torben; Pedersen, Oluf; Astrup, Arne; Sørensen, Thorkild I. A.

    2012-01-01

    Background Numerous gene loci are related to single measures of body weight and shape. We investigated if 55 SNPs previously associated with BMI or waist measures, modify the effects of fat intake on weight loss and waist reduction under energy restriction. Methods and Findings Randomized controlled trial of 771 obese adults. (Registration: ISRCTN25867281.) One SNP was selected for replication in another weight loss intervention study of 934 obese adults. The original trial was a 10-week 600 kcal/d energy-deficient diet with energy percentage from fat (fat%) in range of 20–25 or 40–45. The replication study used an 8-weeks diet of 880 kcal/d and 20 fat%; change in fat% intake was used for estimation of interaction effects. The main outcomes were intervention weight loss and waist reduction. In the trial, mean change in fat% intake was −12/+4 in the low/high-fat groups. In the replication study, it was −23/−12 among those reducing fat% more/less than the median. TFAP2B-rs987237 genotype AA was associated with 1.0 kg (95% CI, 0.4; 1.6) greater weight loss on the low-fat, and GG genotype with 2.6 kg (1.1; 4.1) greater weight loss on the high-fat (interaction p-value; p = 0.00007). The replication study showed a similar (non-significant) interaction pattern. Waist reduction results generally were similar. Study-strengths include (i) the discovery study randomised trial design combined with the replication opportunity (ii) the strict dietary intake control in both studies (iii) the large sample sizes of both studies. Limitations are (i) the low minor allele frequency of the TFAP2B polymorphism, making it hard to investigate non-additive genetic effects (ii) the different interventions preventing identical replication-discovery study designs (iii) some missing data for non-completers and dietary intake. No adverse effects/outcomes or side-effects were observed. Conclusions Under energy restriction, TFAP2B may modify the effect of dietary fat intake on

  20. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial123

    PubMed Central

    Huang, Tao; Li, Yanping; Hu, Frank B; Bray, George A; Sacks, Frank M; Williamson, Donald A; Qi, Lu

    2014-01-01

    Background: A common obesity-risk variant rs9939609 in the fat mass– and obesity-associated (FTO) gene was recently shown to affect appetite, and the gene is sensitive to the regulation of amino acids. Objective: We examined the interaction between FTO genotype and protein intake on the long-term changes in appetite in a randomized controlled trial. Design: We genotyped FTO rs9939609 in 737 overweight adults in the 2-y Preventing Overweight Using Novel Dietary Strategies trial and assessed 4 appetite-related traits including cravings, fullness, hunger, and prospective consumption. Results: We showed that dietary protein significantly modified genetic effects on changes in food cravings and appetite scores at 6 mo after adjustment for age, sex, ethnicity, baseline body mass index, weight change, and baseline value for respective outcomes (P-interaction = 0.027 and 0.048, respectively). The A allele was associated with a greater decrease in food cravings and appetite scores in participants with high-protein–diet intake (P = 0.027 and 0.047, respectively) but not in subjects in the low-protein–diet group (P = 0.384 and 0.078, respectively). The weight regain from 6 to 24 mo attenuated gene-protein interactions. Protein intakes did not modify FTO genotype effects on other appetite measures. Conclusion: Our data suggest that individuals with the FTO rs9939609 A allele might obtain more benefits in a reduction of food cravings and appetite by choosing a hypocaloric and higher-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995. PMID:24622803

  1. No impact of dietary iodine restriction in short term development of hypothyroidism following fixed dose radioactive iodine therapy for Graves' disease.

    PubMed

    Jacob, Jubbin Jagan; Stephen, Charles; Paul, Thomas V; Thomas, Nihal; Oommen, Regi; Seshadri, Mandalam S

    2015-01-01

    The increased incidence of autoimmune thyroid disease with increasing dietary iodine intake has been demonstrated both epidemiologically and experimentally. The hypothyroidism that occurs in the first year following radioactive iodine therapy is probably related to the destructive effects of the radiation and underlying ongoing autoimmunity. To study the outcomes at the end of six months after fixed dose I, (131)therapy for Graves' disease followed by an iodine restricted diet for a period of six months. Consecutive adult patients with Graves' disease planned for I(131) therapy were randomized either to receive instructions regarding dietary iodine restriction or no advice prior to fixed dose (5mCi) I(131) administration. Thyroid functions and urinary iodine indices were evaluated at 3(rd) and 6(th) month subsequently. Forty seven patients (13M and 34F) were assessed, 2 were excluded, 45 were randomized (Cases 24 and Controls 21) and 39 patients completed the study. Baseline data was comparable. Median urinary iodine concentration was 115 and 273 μg/gm creat (p = 0.00) among cases and controls respectively. Outcomes at the 3(rd) month were as follows (cases and controls); Euthyroid (10 and 6: P = 0.24), Hypothyroid (3 and 5: P = 0.38) and Hyperthyroid (7 and 8: P = 0.64). Outcomes at the end of six months were as follows (cases and controls); Euthyroid (10 and 5: P = 0.12), Hypothyroid (3 and 5: P = 0.38) and Hyperthyroid (7 and 9: P = 0.43). Of the hypothyroid patients 5 (cases 1 and controls 4: P = 0.13) required thyroxine replacement. There was no statistical significant difference in the outcome of patients with dietary iodine restriction following I(131) therapy for Graves' disease.

  2. Calciuric effects of short-term dietary loading of protein, sodium chloride and potassium citrate in prepubescent girls.

    PubMed

    Duff, T L; Whiting, S J

    1998-04-01

    Studies using adult human subjects indicate that dietary protein and sodium chloride have negative effects on the retention of calcium by increasing urinary calcium excretion, while alkaline potassium improves calcium retention along with decreasing urinary calcium losses. This study investigated the effect of these dietary factors on acute urinary calcium excretion in 14 prepubescent girls age 6.7 to 10.0 years. Subjects provided a fasting urine sample then consumed a meal containing one of five treatments: moderate protein (MP) providing 11.8 g protein, moderate protein plus 26 mmol sodium chloride (MP+Na), high protein (HP) providing 28.8 g protein, high protein plus 26 mmol sodium chloride (HP+Na), or high protein plus 32 mmol potassium as tripotassium citrate (HP+K). Urine was collected at 1.5 and 3.0 hours after the meal. Supplemental protein was given as 80:20 casein:lactalbumin. Test meals were isocaloric, and unless intentionally altered, components of interest except phosphate were equal between treatments. Each subject completed all five treatments. Urinary calcium excretion rose after the meal, peaking at 1.5 hours. There were no significant differences in calcium excretion between treatments at any time point. The high protein treatments did not result in a significant increase in either net acid or sulfate excretion at 1.5 hours compared to moderate protein. Dietary sodium chloride had no effect on urinary sodium or calcium excretion over the 3 hours. After the potassium treatment, sodium excretion increased (p< or =0.002) and net acid excretion decreased (p<0.001) compared to other treatments at 1.5 hours. In children, a simultaneous increase in protein and phosphorus due to increased milk protein intake did not increase acute urinary calcium excretion. An effect of dietary sodium chloride on acute urinary calcium excretion was not observed. Both these findings were similar to those of adult studies previously conducted in the same laboratory using

  3. Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice.

    PubMed

    Sawada, Hisashi; Naito, Yoshiro; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-05-01

    Excess iron is associated with the pathogenesis of several renal diseases. Aldosterone is reported to have deleterious effects on the kidney, but there have been no reports of the role of iron in aldosterone/salt-induced renal injury. Therefore, we investigated the effects of dietary iron restriction on the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice. Ten-week-old male C57BL/6J mice were uninephrectomized and infused with aldosterone for four weeks. These were divided into two groups: one fed a high-salt diet (Aldo) and the other fed a high-salt with iron-restricted diet (Aldo-IR). Vehicle-infused mice without a uninephrectomy were also divided into two groups: one fed a normal diet (control) and the other fed an iron-restricted diet (IR) for 4 weeks. As compared with control and IR mice, Aldo mice showed an increase in both systolic blood pressure and urinary albumin/creatinine ratio, but these increases were reduced in the Aldo-IR group. In addition, renal histology revealed that Aldo mice exhibited glomerulosclerosis and tubulointerstitial fibrosis, whereas these changes were attenuated in Aldo-IR mice. Expression of intracellular iron transport protein transferrin receptor 1 was increased in the renal tubules of Aldo mice compared with control mice. Dietary iron restriction attenuated the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice.

  4. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    PubMed

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group.

    PubMed

    Prezioso, Domenico; Strazzullo, Pasquale; Lotti, Tullio; Bianchi, Giampaolo; Borghi, Loris; Caione, Paolo; Carini, Marco; Caudarella, Renata; Ferraro, Manuel; Gambaro, Giovanni; Gelosa, Marco; Guttilla, Andrea; Illiano, Ester; Martino, Marangella; Meschi, Tiziana; Messa, Piergiorgio; Miano, Roberto; Napodano, Giorgio; Nouvenne, Antonio; Rendina, Domenico; Rocco, Francesco; Rosa, Marco; Sanseverino, Roberto; Salerno, Annamaria; Spatafora, Sebastiano; Tasca, Andrea; Ticinesi, Andrea; Travaglini, Fabrizio; Trinchieri, Alberto; Vespasiani, Giuseppe; Zattoni, Filiberto

    2015-07-07

    Diet interventions may reduce the risk of urinary stone formation and its recurrence, but there is no conclusive consensus in the literature regarding the effectiveness of dietary interventions and recommendations about specific diets for patients with urinary calculi. The aim of this study was to review the studies reporting the effects of different dietary interventions for the modification of urinary risk factors in patients with urinary stone disease. A systematic search of the Pubmed database literature up to July 1, 2014 for studies on dietary treatment of urinary risk factors for urinary stone formation was conducted according to a methodology developed a priori. Studies were screened by titles and abstracts for eligibility. Data were extracted using a standardized form and the quality of evidence was assessed. Evidence from the selected studies were used to form evidence-based guideline statements. In the absence of sufficient evidence, additional statements were developed as expert opinions. General measures: Each patient with nephrolithiasis should undertake appropriate evaluation according to the knowledge of the calculus composition. Regardless of the underlying cause of the stone disease, a mainstay of conservative management is the forced increase in fluid intake to achieve a daily urine output of 2 liters. HYPERCALCIURIA: Dietary calcium restriction is not recommended for stone formers with nephrolithiasis. Diets with a calcium content ≥ 1 g/day (and low protein-low sodium) could be protective against the risk of stone formation in hypercalciuric stone forming adults. Moderate dietary salt restriction is useful in limiting urinary calcium excretion and thus may be helpful for primary and secondary prevention of nephrolithiasis. A low-normal protein intake decrease calciuria and could be useful in stone prevention and preservation of bone mass. Omega-3 fatty acids and bran of different origin decreases calciuria, but their impact on the urinary

  6. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets.

    PubMed

    Munasinghe, Lalani L; Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2017-02-01

    The neonatal gastrointestinal tract extracts the majority of dietary threonine on the first pass to maintain synthesis of threonine-rich mucins in mucus. As dietary threonine becomes limiting, this extraction must limit protein synthesis in extraintestinal tissues at the expense of maintaining protein synthesis in mucin-producing tissues. The objective was to determine the dietary threonine concentration at which protein synthesis is reduced in various tissues. Twenty Yucatan miniature piglets (10 females; mean ± SD age, 15 ± 1 d; mean ± SD weight, 3.14 ± 0.30 kg) were fed 20 test diets with different threonine concentrations, from 0.5 to 6.0 g/100 g total amino acids (AAs; i.e., 20-220% of requirement), and various tissues were analyzed for protein synthesis by administering a flooding dose of [ 3 H]phenylalanine. The whole-body requirement was determined by [1- 14 C]phenylalanine oxidation and plasma threonine concentrations. Breakpoint analysis indicated a whole-body requirement of 2.8-3.0 g threonine/100 g total AAs. For all of the non-mucin-producing tissues as well as lung and colon, breakpoint analyses indicated decreasing protein synthesis rates below the following concentrations (expressed in g threonine/100 g total AAs; mean ± SE): gastrocnemius muscle, 1.76 ± 0.23; longissimus dorsi muscle, 2.99 ± 0.50; liver, 2.45 ± 0.60; kidney, 3.81 ± 0.97; lung, 1.95 ± 0.14; and colon, 1.36 ± 0.29. Protein synthesis in the other mucin-producing tissues (i.e., stomach, proximal jejunum, midjejunum, and ileum) did not change with decreasing threonine concentrations, but mucin synthesis in the ileum and colon decreased over threonine concentrations <4.54 ± 1.50 and <3.20 ± 4.70 g/100 g total AAs, respectively. The results of this study illustrate that dietary threonine is preferentially used for protein synthesis in gastrointestinal tissues in piglets. If dietary threonine intake is deficient, then muscle growth and the functions of other tissues are likely

  7. The effect of dietary protein restriction on the secretory dynamics of 1 alpha-hydroxycorticosterone and urea in the dogfish, Scyliorhinus canicula: a possible role for 1 alpha-hydroxycorticosterone in sodium retention.

    PubMed

    Armour, K J; O'Toole, L B; Hazon, N

    1993-08-01

    The putative osmoregulatory role of the unique elasmobranch corticosteroid, 1 alpha-hydroxycorticosterone (1 alpha-OH-B), was investigated using dietary protein restriction as a means of limiting urea biosynthetic ability. Groups of dogfish (Scyliorhinus canicula) were adapted to either a high or a low protein diet (HPD and LPD respectively) and the secretory dynamics of urea and 1 alpha-OH-B were determined following acclimation to normal (100%), 130% and 50% sea water. In normal sea water, LPD fish showed significantly decreased blood production of urea compared with fish fed a HPD (P < 0.05), and the plasma urea concentration required to maintain iso-osmolality was achieved only by a substantial decrease in urea clearance from the plasma. Unlike HPD fish, LPD fish in 130% sea water had no apparent ability to increase plasma urea concentration. An alternative strategy adopted by these animals was the retention of high plasma concentrations of Na+ and Cl-, which increased plasma osmolality and tended to decrease osmotic water loss. Concomitant with the increased ion concentrations, plasma 1 alpha-OH-B concentration was also greatly elevated in LPD fish indicating that the steroid may be acting to minimize Na+ (and Cl-) excretion at osmoregulatory sites such as the rectal gland, kidney and gills. This and a previous study have also demonstrated that 1 alpha-OH-B concentration is elevated in 50% sea water. Decreases in plasma Na+ concentration are tolerated down to 75% sea water, whereafter Na+ is preferentially retained and further decreases in osmolality are achieved by reductions in plasma urea concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats

    USDA-ARS?s Scientific Manuscript database

    Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...

  9. Regulation of hepatic peroxisome proliferator-activated receptor alpha expression but not adiponectin by dietary protein in finishing pigs.

    PubMed

    Weber, T E; Kerr, B J; Spurlock, M E

    2008-10-01

    Soy protein regulates adiponectin and peroxisome proliferator-activated receptor alpha (PPARalpha) in some species, but the effect of dietary soy protein on adiponectin and PPARalpha in the pig has not been studied. Therefore, the objective of this study was to determine whether soya bean meal reduction or replacement influences serum adiponectin, adiponectin mRNA, serum metabolites and the expression of PPARalpha and other genes involved in lipid deposition. Thirty-three pigs (11 pigs per treatment) were subjected to one of three dietary treatments: (i) reduced crude protein (CP) diet containing soya bean meal (RCP-Soy), (ii) high CP diet containing soya bean meal (HCP-Soy) or (iii) high CP diet with corn gluten meal replacing soya bean meal (HCP-CGM) for 35 days. Dietary treatment had no effect on overall growth performance, feed intake or measures of body composition. There was no effect of dietary treatment on serum adiponectin or leptin. Dietary treatment did not affect the abundance of the mRNAs for adiponectin, PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthase in adipose tissue. The mRNA expression of PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthetase in loin muscle was not affected by dietary treatment. In liver tissue, the relative abundance of PPARalpha mRNA was greater (p < 0.05) in pigs fed the HCP-Soy diets when compared to pigs fed RCP-Soy or HCP-CGM diets. Hepatic mRNA expression of acyl-CoA oxidase or fatty acid synthase was not affected by dietary treatment. Western blot analysis indicated that hepatic PPARalpha protein levels were decreased (p < 0.05) in pigs fed the RCP-Soy diets when compared to pigs fed the HCP-Soy diets. These data suggest that increasing the soy protein content of swine diets increases hepatic expression of PPARalpha without associated changes in body composition.

  10. Dietary assessment of adolescents undergoing laparoscopic Roux-en-Y gastric bypass surgery: macro- and micronutrient, fiber and supplement intake

    PubMed Central

    Jeffreys, Renee M.; Hrovat, Kathleen; Woo, Jessica G.; Schmidt, Marcia; Inge, Thomas H.; Xanthakos, Stavra A.

    2011-01-01

    Background Extremely obese adolescents are increasingly undergoing bariatric procedures, which restrict dietary intake. However, there are as yet no data available which describe the change in caloric density or composition of the adolescent bariatric patient’s diet pre- and post-operatively. Objective Assess the 1-year change in dietary composition of adolescents undergoing bariatric surgery. Setting Tertiary care children’s hospital Methods Twenty-seven subjects [67% female, 77% white, age 16.7 ± 1.4 years, baseline body mass index (BMI) 60.1 ± 14.1 kg/m2] were prospectively enrolled into an observational cohort study one month prior to laparoscopic Roux-en-Y gastric bypass (RYGB) between August 2005 and March 2008. Three-day dietary intake was recorded at baseline (n=24), at 2 weeks (n=16), 3 months (n=11), and 1 year (n=9) post-operatively. Dietary record data were verified by structured interview and compared with Dietary Reference Intake (DRI) values for ages 14–18. Results By 1 year post-surgery, mean caloric intake adjusted for BMI was 1015 ± 182 kcal/day, a 35% reduction from baseline. The proportion of fat, protein and carbohydrate intake did not differ from baseline. However, protein intake was lower than recommended postoperatively. Calcium and fiber intake was also persistently lower than recommended. Calcium and vitamin B12 supplementation increased the likelihood of meeting daily minimal recommendations (p≤0.02). Conclusions One year after RYGB, adolescents’ caloric intake remained restricted with satisfactory macronutrient composition, but with lower than desirable intake of calcium, fiber and protein. PMID:22260884

  11. Epigenetic mechanisms of dietary restriction induced aging in Drosophila.

    PubMed

    Lian, Ting; Gaur, Uma; Yang, Deying; Li, Diyan; Li, Ying; Yang, Mingyao

    2015-12-01

    Aging is a long-standing problem that people are always interested in. Thus, it is critical to understand the underlying molecular mechanisms in aging and explore the most efficient method to extend life expectancy. To achieve this goal, a wide range of systems including cells, rodent models, budding yeast, worms and flies have been employed for decades. In recent years, the effect of dietary restriction (DR) on lifespan is in the prime focus. Although we have confirmed that reduced insulin and/or insulin-like growth factor (IGF) and the target of rapamycin (TOR) signaling can increase Drosophila lifespan; the precise molecular mechanisms and nutritional response landscape of diet-mediated aging is ambiguous. Epigenetic events have been considered as the major contributors to lifespan extension with response to DR. The role of DNA methylation in aging is well acknowledged in mammals and rodents where it has been shown to impact aging by regulating the transcription, though the mechanism of regulation is not limited to only transcription. In Drosophila, the contribution of methylation during DR in aging is definitely less explored. In this review, we will update the advances in mechanisms of DR, with a particular focus on methylation as an upcoming target for aging studies and discuss Drosophila as a powerful model to understand mechanisms of aging with response to diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging

    PubMed Central

    Arum, Oge; Saleh, Jamal; Boparai, Ravneet; Turner, Jeremy; Kopchick, John; Khardori, Romesh; Bartke, Andrzej

    2014-01-01

    The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice. PMID:25789159

  13. Protein supplements: do they alter dietary intakes?

    PubMed

    Mallard, Alistair R; McLay-Cooke, Rebecca T; Rehrer, Nancy J

    2014-06-01

    Effects of protein versus mixed macronutrient supplementation on total energy intake (TEI) and protein intake during an ad libitum diet were examined. Trained males undertook two, 2-week dietary interventions which were randomized, double blinded, and separated by 2 weeks. These were high-protein supplementation (HP: 1034.5 kJ energy, 29.6 g protein, 8.7 g fat and 12.3 g CHO) and standard meal supplementation (SM: 1039 kJ energy, 9.9 g protein, 9.5 g fat, and 29.4 g CHO) consumed daily following a week of baseline measures. Eighteen participants finished both interventions and one only completed HP. TEI (mean ± SD) was not different between baseline (11148 ± 3347 kJ) and HP (10705 ± 3143 kJ) nor between baseline and SM (12381 ± 3877 kJ), however, TEI was greater with SM than HP (923 ± 4015 kJ p = .043). Protein intake (%TEI) was greater with HP (22.4 ± 6.2%) than baseline (19.4 ± 5.4%; p = .008) but not SM (20.0 ± 5.0%). No differences in absolute daily protein intake were found. Absolute CHO intake was greater with SM than HP (52.0 ± 89.5 g, p = .006). No differences in fat intake were found. Body mass did not change between baseline (82.7 ± 11.2 kg) and either HP (83.1 ± 11.7 kg) or SM (82.9 ± 11.0 kg). Protein supplementation increases the relative proportion of protein in the diet, but doesn't increase the absolute amount of total protein or energy consumed. Thus some compensation by a reduction in other foods occurs. This is in contrast to a mixed nutrient supplement, which does not alter the proportion of protein consumed but does increase TEI.

  14. Preventive fluid and dietary therapy for urolithiasis: An appraisal of strength, controversies and lacunae of current literature

    PubMed Central

    Agarwal, Mayank Mohan; Singh, Shwaran K.; Mavuduru, Ravimohan; Mandal, Arup K.

    2011-01-01

    Regulation of fluid and dietary intake habits is essential in comprehensive preventive management of urolithiasis. However, despite large body of epidemiological database, there is dearth of good quality prospective interventional studies in this regard. Often there is conflict in pathophysiological basis and actual clinical outcome. We describe conflicts, controversies and lacunae in current literature in fluid and dietary modifications in prevention of urolithiasis. Adequate fluid intake is the most important conservative strategy in urolithiasis-prevention; its positive effects are seen even at low volumes. Of the citrus, orange provides the most favorable pH changes in the urine, equivalent to therapeutic alkaline citrates. Despite being richest source of citrate, lemon does not increase pH significant due to its acidic nature. Fructose, animal proteins and fats are implicated in contributing to obesity, which is an established risk factor for urolithiasis. Fructose and proteins also contribute to lithogenecity of urine directly. Sodium restriction is commonly advised since natriuresis is associated with calciuresis. Calcium restriction is not advisable for urolithiasis prevention. Adequate calcium intake is beneficial if taken with food since it reduces absorption of dietary oxalate. Increasing dietary fiber does not protect against urolithiasis. Evidence for pyridoxine and magnesium is not robust. There is no prospective interventional study evaluating effect of many dietary elements, including citrus juices, carbohydrate, fat, dietary fiber, sodium, etc. Due to lack of good-quality prospective interventional trials it is essential to test the findings of pathophysiological understanding and epidemiological evidence. Role of probiotics and phytoceuticals needs special attention for future research. PMID:22022052

  15. Higher Maternal Dietary Protein Intake Is Associated with a Higher Risk of Gestational Diabetes Mellitus in a Multiethnic Asian Cohort.

    PubMed

    Pang, Wei Wei; Colega, Marjorelee; Cai, Shirong; Chan, Yiong Huak; Padmapriya, Natarajan; Chen, Ling-Wei; Soh, Shu-E; Han, Wee Meng; Tan, Kok Hian; Lee, Yung Seng; Saw, Seang-Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; van Dam, Rob M; Chong, Mary Ff

    2017-04-01

    Background: Dietary protein may affect glucose metabolism through several mechanisms, but results from studies on dietary protein intake and risk of gestational diabetes mellitus (GDM) have been inconsistent. Objective: We examined the cross-sectional associations of dietary protein intake from different food sources during pregnancy with the risk of GDM in a multiethnic Asian population. Methods: We included 980 participants with singleton pregnancies from the Growing Up in Singapore Toward healthy Outcomes (GUSTO) cohort. Protein intake was ascertained from 24-h dietary recall and 3-d food diaries at 26-28 wk gestation. GDM was defined as fasting glucose ≥7.0 mmol/L and/or 2-h postload glucose ≥7.8 mmol/L at 26-28 wk gestation. We evaluated the association of dietary protein intake with GDM risk by substituting carbohydrate with protein in an isocaloric model with the use of multivariable logistic regression analysis. Results: The prevalence of GDM was 17.9% among our participants. After adjustment for potential confounders, a higher total dietary protein intake was associated with a higher risk of GDM; the OR comparing the highest with the lowest quartile of intake was 2.15 (95% CI: 1.27, 3.62; P -trend = 0.016). Higher intake levels of both animal protein (OR: 2.87; 95% CI: 1.58, 5.20; P -trend = 0.001) and vegetable protein (OR: 1.78; 95% CI: 0.99, 3.20; P -trend = 0.009) were associated with a higher risk of GDM. Among the animal protein sources, higher intake levels of seafood protein (OR: 2.17; 95% CI: 1.26, 3.72; P -trend = 0.023) and dairy protein (OR: 1.87; 95% CI: 1.11, 3.15; P -trend = 0.017) were significantly associated with a higher GDM risk. Conclusion: Higher intake levels of both animal and vegetable protein were associated with a higher risk of GDM in Asian women. This trial was registered at clinicaltrials.gov as NCT01174875. © 2017 American Society for Nutrition.

  16. Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial.

    PubMed

    Keyzer, Charlotte A; van Breda, G Fenna; Vervloet, Marc G; de Jong, Maarten A; Laverman, Gozewijn D; Hemmelder, Marc H; Janssen, Wilbert M T; Lambers Heerspink, Hiddo J; Kwakernaak, Arjan J; Bakker, Stephan J L; Navis, Gerjan; de Borst, Martin H

    2017-04-01

    Reduction of residual albuminuria during single-agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)-controlled, crossover trial, 45 patients with nondiabetic CKD stages 1-3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μ g/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI ( P =0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h ( P <0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h ( P <0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant ( P =0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction ( P =0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na + per day in the combined RS groups and 108±61 mmol Na + per day in the LS groups ( P <0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin-converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. Copyright © 2017 by the American Society of Nephrology.

  17. Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial

    PubMed Central

    Keyzer, Charlotte A.; van Breda, G. Fenna; Vervloet, Marc G.; de Jong, Maarten A.; Laverman, Gozewijn D.; Hemmelder, Marc H.; Janssen, Wilbert M.T.; Lambers Heerspink, Hiddo J.; Kwakernaak, Arjan J.; Bakker, Stephan J.L.; Navis, Gerjan

    2017-01-01

    Reduction of residual albuminuria during single–agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)–controlled, crossover trial, 45 patients with nondiabetic CKD stages 1–3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μg/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI (P=0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h (P<0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h (P<0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant (P=0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction (P=0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na+ per day in the combined RS groups and 108±61 mmol Na+ per day in the LS groups (P<0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin–converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. PMID:27856633

  18. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-02-01

    Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in rats and mice, achieving "aging retardant" effects very similar to those of caloric restriction, including a suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve moderate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino acid. Plant proteins - especially those derived from legumes or nuts - tend to be lower in methionine than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie content, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free IGF-I; the latter effect would be amplified by methionine restriction - though it is not clear whether IGF-I down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents.

  19. Dietary ratio of animal:plant protein is associated with 24-h urinary iodine excretion in healthy school children.

    PubMed

    Montenegro-Bethancourt, Gabriela; Johner, Simone A; Stehle, Peter; Remer, Thomas

    2015-07-14

    Adequate dietary iodine intake in children is essential for optimal physical and neurological development. Whether lower dietary animal food and salt intake may adversely affect iodine status is under discussion. We examined the association between dietary animal:plant protein ratio with 24-h urinary iodine excretion (24-h UI, μg/d), and whether this is modified by salt intake. A 24-h UI was measured in 1959 24-h urine samples from 516 6- to 12-year-old participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed Study. Parallel 3 d weighed food records were used to estimate dietary intakes. Protein sources were classified as dairy, animal and plant. A repeated-measures regression model (PROC MIXED) was used to analyse the effect of animal:plant protein ratios on 24-h UI. plant protein ratios ranged from 0.5 (95 % CI 0.4, 0.6) to 1.6 (95 % CI 1.4, 1.9) (lowest and highest quartile). After adjustment for total energy intake, main dietary iodine sources (dairy and salt intake), and further covariates, the inter-individual variation in animal:plant protein ratio was significantly associated with variation in 24-h UI. One unit higher animal:plant protein ratio predicted 6 μg/d higher 24-h UI (P= 0.002) in boys and 5 μg/d (P= 0.03) in girls. This relationship was partially mediated by a higher salt intake at higher animal:plant protein ratios. These results suggest that lower consumption of animal protein is associated with a small decline in iodine excretion, partially mediated by decreased salt intake. Because limited salt and increased intake of plant-based foods are part of a preferable healthy food pattern, effective nutrition political strategies will be required in the future to ensure appropriate iodine nutrition in adherent populations.

  20. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats

    PubMed Central

    2011-01-01

    Background Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood. PMID:21702915

  1. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats.

    PubMed

    Toledo, Fabíola C; Perobelli, Juliana E; Pedrosa, Flávia P C; Anselmo-Franci, Janete A; Kempinas, Wilma D G

    2011-06-24

    Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.

  2. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling.

    PubMed

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS), indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR) components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans.

  3. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling

    PubMed Central

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS), indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR) components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans. PMID:25789174

  4. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance.

    PubMed

    Bandegan, Arash; Courtney-Martin, Glenda; Rafii, Mahroukh; Pencharz, Paul B; Lemon, Peter Wr

    2017-05-01

    Background: Despite a number of studies indicating increased dietary protein needs in bodybuilders with the use of the nitrogen balance technique, the Institute of Medicine (2005) has concluded, based in part on methodologic concerns, that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise." Objective: The aim of the study was to assess the dietary protein requirement of healthy young male bodybuilders ( with ≥3 y training experience) on a nontraining day by measuring the oxidation of ingested l-[1- 13 C]phenylalanine to 13 CO 2 in response to graded intakes of protein [indicator amino acid oxidation (IAAO) technique]. Methods: Eight men (means ± SDs: age, 22.5 ± 1.7 y; weight, 83.9 ± 11.6 kg; 13.0% ± 6.3% body fat) were studied at rest on a nontraining day, on several occasions (4-8 times) each with protein intakes ranging from 0.1 to 3.5 g · kg -1 · d -1 , for a total of 42 experiments. The diets provided energy at 1.5 times each individual's measured resting energy expenditure and were isoenergetic across all treatments. Protein was fed as an amino acid mixture based on the protein pattern in egg, except for phenylalanine and tyrosine, which were maintained at constant amounts across all protein intakes. For 2 d before the study, all participants consumed 1.5 g protein · kg -1 · d -1 On the study day, the protein requirement was determined by identifying the breakpoint in the F 13 CO 2 with graded amounts of dietary protein [mixed-effects change-point regression analysis of F 13 CO 2 (labeled tracer oxidation in breath)]. Results: The Estimated Average Requirement (EAR) of protein and the upper 95% CI RDA for these young male bodybuilders were 1.7 and 2.2 g · kg -1 · d -1 , respectively. Conclusion: These IAAO data suggest that the protein EAR and recommended intake for male bodybuilders at rest on a nontraining day exceed the current recommendations of the Institute of Medicine by ∼2.6-fold

  5. Sex differences in body composition, fat storage, and gene expression profile in Caenorhabditis elegans in response to dietary restriction.

    PubMed

    Miersch, Claudia; Döring, Frank

    2013-07-02

    The metabolic and health-promoting effects of dietary restriction (DR) have been extensively studied in several species. The response to DR with respect to sex is essentially unknown. To address this question, we used the model organism Caenorhabditis elegans to analyze body composition and gene expression in males and hermaphrodites in response to DR. Unexpectedly, DR increased the fat-to-fat-free mass ratio and enlarged lipid droplets in both sexes to a similar extent. These effects were linked to a downregulation of the lipase-like 5 (lipl-5) gene in both sexes at two developmental stages. By contrast, the reductions in body size, protein content, and total RNA content in response to DR were more pronounced in hermaphrodites than in males. Functional enrichment analysis of gene expression data showed a DR-induced downregulation of several embryogenesis-associated genes concomitant with an ongoing expression of sperm-associated genes in hermaphrodites. In conclusion, DR increases fat stores in both sexes of C. elegans in the form of large and possibly lipolysis-resistant lipid droplets and markedly alters the reproductive program in hermaphrodites but not in males.

  6. Dietary Protein and Calcium Interact to Influence Calcium Retention: A Controlled Feeding Study

    USDA-ARS?s Scientific Manuscript database

    Objective: To test the effect of dietary protein on Ca (Ca) retention at low and high Ca intakes. Methods: In a randomized, controlled feeding study with a 2x2 factorial crossover design, healthy post-menopausal women (n=27), consumed either ~675 or ~1510 mg Ca/d, with both low and high protein (pro...

  7. Single-dose lubiprostone along with split-dose PEG solution without dietary restrictions for bowel cleansing prior to colonoscopy: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Stengel, Joel Z; Jones, David P

    2008-09-01

    Proper colonic cleansing prior to colonoscopy is paramount to ensuring complete mucosal visualization and polyp identification. In a double-blind fashion, we compared single-dose lubiprostone (24 microg) versus placebo pretreatment prior to a split-dose polyethylene glycol electrolyte (PEG-E) bowel preparation without dietary restriction to determine the efficacy, safety, and patient tolerability. Two hundred patients referred for outpatient colorectal cancer screening were randomized to receive a single-dose of unlabeled lubiprostone (24 microg) or placebo prior to a split-dose PEG-E bowel preparation without dietary restriction. The patients were surveyed prior to the colonoscopy on the tolerability of the bowel preparation, and any adverse events were recorded. The cleanliness of the colon was graded by the endoscopist during the procedure utilizing the Ottawa bowel preparation scale. One hundred ninety-one patients completed the study (95%). Split-dose PEG-E with lubiprostone pretreatment was found to be more effective at bowel cleansing in each segment of the colon when compared with split-dose PEG-E with placebo (P < 0.001). Patients enrolled in the lubiprostone treatment arm rated the overall experience as more tolerable (P 0.003) and complained of less abdominal bloating (P 0.049). No differences were observed between the groups for treatment-emergent side effects or adverse events (P > 0.05). Single-dose lubiprostone prior to split-dose PEG-E without dietary restriction significantly improves colonic mucosa visualization during colonoscopy and is well tolerated by patients.

  8. VLDL metabolism in rats is affected by the concentration and source of dietary protein.

    PubMed

    Madani, Sihem; Prost, Josiane; Narce, Michel; Belleville, Jacques

    2003-12-01

    The present study was designed to determine if changes in dietary protein level and source are related to changes in VLDL lipid concentrations and VLDL binding by hepatic membranes and isolated hepatocytes. Male Wistar rats were fed cholesterol-free diets containing 10, 20 or 30 g/100 g casein or highly purified soybean protein for 4 wk. Hepatic, plasma and VLDL lipids, VLDL apo B-100 and VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were determined. Increasing casein or soybean protein level (from 10 to 30 g/100 g) in the diet increased VLDL apo B-100, indicating an increase in the number of VLDL particles. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane increased when the protein level increased from 10 to 20 g/100 g in the diet and decreased with 30 g/100 g protein, regardless of protein type. The dietary protein source did not affect plasma total cholesterol concentrations at any protein level. Feeding 20 g/100 g soybean protein compared with casein lowered plasma triglyceride concentrations and VLDL number as measured by decreased VLDL-protein, -phospholipid, -triglyceride, -cholesterol and -apo B-100. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were higher in rats fed soybean protein than those fed casein. The higher VLDL uptake could be responsible for the hypotriglyceridemia in rats fed soybean protein.

  9. High dietary protein intake is associated with an increased body weight and total death risk.

    PubMed

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Dietary protein content for an optimal diet: a clinical view.

    PubMed

    Santarpia, Lidia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-06-01

    The dietary protein role in different clinical nutritional conditions and some physio-pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent contradiction with the nutritional ecology statements, which strongly sustain the reduction of animal origin foods in the human diet and are currently concerned about the excessive, mainly animal protein intake in western and westernized Countries. In conclusion, it is time to carefully evaluate protein and aminoacid intake accurately considering quality, digestibility, daily distribution and individual characteristics. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  11. Dietary egg-white protein increases body protein mass and reduces body fat mass through an acceleration of hepatic β-oxidation in rats.

    PubMed

    Matsuoka, Ryosuke; Shirouchi, Bungo; Umegatani, Minami; Fukuda, Meguri; Muto, Ayano; Masuda, Yasunobu; Kunou, Masaaki; Sato, Masao

    2017-09-01

    Egg-white protein (EWP) is known to reduce lymphatic TAG transport in rats. In this study, we investigated the effects of dietary EWP on body fat mass. Male rats, 4 weeks old, were fed diets containing either 20 % EWP or casein for 28 d. Carcass protein levels and gastrocnemius leg muscle weights in the EWP group were significantly higher than those in the casein group. In addition, carcass TAG levels and abdominal fat weights in the EWP group were significantly lower than those in the casein group; adipocyte size in abdominal fat in the EWP group was smaller than that in the casein group. To identify the involvement of dietary fat levels in the rats, one of two fat levels (5 or 10 %) was added to their diet along with the different protein sources (EWP and casein). Abdominal fat weight and serum and hepatic TAG levels were significantly lower in the EWP group than in the casein group. Moreover, significantly higher values of enzymatic activity related to β-oxidation in the liver were observed in the EWP group compared with the casein group. Finally, abdominal fat weight reduction in the EWP group with the 10 % fat diet was lower than that in the EWP group with the 5 % fat diet. In conclusion, our results indicate that, in addition to the inhibition of dietary TAG absorption reported previously, dietary EWP reduces body fat mass in rats through an increase of body protein mass and the acceleration of β-oxidation in the liver.

  12. Effects of dietary selenium supply and timing of nutrient restriction during gestation on maternal growth and body composition of pregnant adolescent ewes.

    PubMed

    Carlson, D B; Reed, J J; Borowicz, P P; Taylor, J B; Reynolds, L P; Neville, T L; Redmer, D A; Vonnahme, K A; Caton, J S

    2009-02-01

    The objectives were to examine effects of dietary Se supplementation and nutrient restriction during defined periods of gestation on maternal adaptations to pregnancy in primigravid sheep. Sixty-four pregnant Western Whiteface ewe lambs were assigned to treatments in a 2 x 4 factorial design. Treatments were dietary Se [adequate Se (ASe; 3.05 microg/kg of BW) vs. high Se (HSe; 70.4 microg/kg of BW)] fed as Se-enriched yeast, and plane of nutrition [control (C; 100% of NRC requirements) vs. restricted (R; 60% of NRC requirements]. Selenium treatments were fed throughout gestation. Plane of nutrition treatments were applied during mid (d 50 to 90) and late gestation (d 90 to 130), which resulted in 4 distinct plane of nutrition treatments [treatment: CC (control from d 50 to 130), RC (restricted from d 50 to 90, and control d 90 to 130), CR (control from d 50 to 90, and restricted from d 90 to 130), and RR (restricted from d 50 to 130)]. All of the pregnant ewes were necropsied on d 132 +/- 0.9 of gestation (length of gestation approximately 145 d). Nutrient restriction treatments decreased ewe ADG and G:F, as a result, RC and CR ewes had similar BW and maternal BW (MBW) at necropsy, whereas RR ewes were lighter than RC and CR ewes. From d 90 to 130, the HSe-CC ewes had greater ADG (Se x nutrition; P = 0.05) than did ASe-CC ewes, whereas ADG and G:F (Se x nutrition; P = 0.08) were less for HSe-RR ewes compared with ASe-RR ewes. The CR and RR treatments decreased total gravid uterus weight (P = 0.01) as well as fetal weight (P = 0.02) compared with RC and CC. High Se decreased total (g; P = 0.09) and relative heart mass (g/kg of MBW; P = 0.10), but increased total and relative mass of liver (P < or = 0.05) and perirenal fat (P < or = 0.06) compared with ASe. Total stomach complex mass was decreased (P < 0.01) by all the nutrient restriction treatments, but was reduced to a greater extent in CR and RR compared with RC. Total small intestine mass was similar between RC

  13. Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice.

    PubMed

    Gokarn, Rahul; Solon-Biet, Samantha M; Cogger, Victoria C; Cooney, Gregory J; Wahl, Devin; McMahon, Aisling C; Mitchell, James R; Mitchell, Sarah J; Hine, Christopher; de Cabo, Rafael; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2018-04-23

    Nutrition influences both hepatic function and aging, but mechanisms are poorly understood. Here, the effects of lifelong, ad libitum-fed diets varying in macronutrients and energy on hepatic gene expression were studied. Gene expression was measured using Affymetrix mouse arrays in livers of 46 mice aged 15 months fed one of 25 diets varying in protein, carbohydrates, fat, and energy density from 3 weeks of age. Gene expression was almost entirely influenced by protein intake. Carbohydrate and fat intake had few effects on gene expression compared with protein. Pathways and processes associated with protein intake included those involved with mitochondrial function, metabolic signaling (PI3K-Akt, AMPK, mTOR) and metabolism of protein and amino acids. Protein intake had variable effects on genes associated with regulation of longevity and influenced by caloric restriction. Among the genes of interest with expression that were significantly associated with protein intake are Cth, Gls2, Igf1, and Nnmt, which were increased with higher protein intake, and Igf2bp2, Fgf21, Prkab2, and Mtor, which were increased with lower protein intake. Dietary protein has a powerful impact on hepatic gene expression in older mice, with some overlap with genes previously reported to be involved with regulation of longevity or caloric restriction.

  14. Luteal activity and effect of dietary energy restriction on follicular development in lactating cows.

    PubMed

    Comin, A; Peric, T; Montillo, M; Cappa, A; Marchi, V; Veronesi, M C; Prandi, A

    2017-08-01

    The aim of this research has been to evaluate the presence of anomalies in the ovarian cycle activity during postpartum and to verify whether 72-hr dietary fasting during the dominance phase, the phase before ovulation, might modify the ovarian follicle population. The presence of anomalies in ovarian cycle activity has been evaluated in 30 Italian Friesian cows starting from 20 days postpartum until 211 days of lactation. Long oestrus and brief dioestrus or scarce luteal activity have been the main anomalies found through measuring progesterone concentrations in the whey. Until 100 days of lactation, the BCS values of the problematic animals have been significantly lower than those in animals with normal ovarian activity. After 100 days of lactation, the ovarian anomalies continued to appear despite the fact that all the animals have reached comparable BCS values. Starting from the results of this trial, the effect of 72-hr dietary fasting on dominant follicles has been studied in six cows. Ultrasonography revealed that the diameter of the follicles at 71 days postpartum has been significantly lower than at 181 days. A 72-hr dietary restriction at 101 and 211 days postpartum did not affect the size of the dominant follicle. However, at 101 days postpartum, half of the animals presented follicular cysts. The effect of fasting differed if the animal has been in early postpartum or 211 days of lactation. Further researches are necessary to understand how different metabolic conditions can modify the follicular population but on the other hand the study shows the utility for farmers and field veterinarians of monitoring the resumption of the ovarian cycle postpartum through the whey progesterone concentrations. © 2017 Blackwell Verlag GmbH.

  15. Dietary soy, meat, and fish proteins modulate the effects of prebiotic raffinose on composition and fermentation of gut microbiota in rats.

    PubMed

    Bai, Gaowa; Tsuruta, Takeshi; Nishino, Naoki

    2018-06-01

    Soy, meat (mixture of pork and beef), and fish proteins were fed to rats with and without prebiotic raffinose (RAF), and the composition and fermentation of gut microbiota were examined. Bifidobacterium spp. populations were higher, and propionic acid concentration was lower in soy protein-fed than meat protein-fed rats. Likewise, Enterobacteriaceae populations were higher in fish protein-fed rats than other rats. RAF feeding increased Bifidobacterium spp. and decreased Faecalibacterium prausnitzii populations regardless of the dietary protein source. Interactions between dietary proteins and RAF were shown for Lactobacillus spp. and Clostridium perfringens group; the increase of Lactobacillus spp. populations by RAF was seen only for soy protein-fed rats, whereas the reduction of C. perfringens group by RAF was evident in fish and meat protein-fed rats. It is concluded that dietary proteins may differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, with differences observed between plant and animal proteins.

  16. Epidemiology of dietary nutrient intake in ESRD.

    PubMed

    Kovesdy, Csaba P; Shinaberger, Christian S; Kalantar-Zadeh, Kamyar

    2010-01-01

    Protein-energy wasting (PEW) is one of the strongest risk factors of adverse outcomes in patients with chronic kidney disease including those with end-stage renal disease (ESRD) who undergo maintenance dialysis treatment. One important determinant of PEW in this patient population is an inadequate amount of protein and energy intake. Compounding the problem are the many qualitative nutritional deficiencies that arise because of the altered dietary habits of dialysis patients. Many of these alterations are iatrogenically induced, and albeit well intentioned, they could induce unintended harmful effects. In order to determine the best possible diet in ESRD patients, one must first understand the complex interplay between the quantity and quality of nutrient intake in these patients, and their impact on relevant clinical outcomes. We review available studies examining the association of nutritional intake with clinical outcomes in ESRD, stressing the complicated and often difficult-to-study inter-relationship between quantitative and qualitative aspects of nutrient intake in nutritional epidemiology. The currently recommended higher protein intake of 1.2 g/kg/day may be associated with a higher phosphorus and potassium burden and with worsening hyperphosphatemia and hyperkalemia, whereas dietary control of phosphorus and potassium by restricting protein intake may increase the risk of PEW. We assess the relevance of associative studies by examining the biologic plausibility of underlying mechanisms of action and emphasize areas in need of further research.

  17. Khat Chewing and Restrictive Dietary Behaviors Are Associated with Anemia among Pregnant Women in High Prevalence Rural Communities in Eastern Ethiopia

    PubMed Central

    Kedir, Haji; Berhane, Yemane; Worku, Alemayehu

    2013-01-01

    Background Anemia affects a high proportion of pregnant women in the developing countries. Factors associated with it vary in context. This study aimed to determine the prevalence and predictors of anemia among pregnant women in the rural eastern Ethiopia. Methods A community-based cross-sectional study was done on 1678 pregnant women who were selected by a cluster random sampling technique. A pregnant woman was identified as anemic if her hemoglobin concentration was <11 g/dl. Data were collected in a community-based setting. Multilevel mixed effect logistic regression was used to determine the adjusted odds ratios (AOR) with 95% confidence intervals (CI) for the predictors of anemia. Results Anemia was observed among 737(43.9%) of the 1678 pregnant women studied (95% CI 41.5%–46.3%). After controlling for the confounders, the risk of anemia was 29% higher in the women who chewed khat daily than those who sometimes or never did so (AOR, 1.29; 95% CI, 1.02–1.62). The study subjects with restrictive dietary behavior (reduced either meal size or frequency) had a 39% higher risk of anemia compared to those without restrictive dietary behavior (AOR, 1.39; 95% CI, 1.02–1.88). The risk of anemia was increased by 68% (AOR, 1.68; 95% CI, 1.15–2.47), and 60% (AOR, 1.60; 95% CI, 1.08–2.37) in parity levels of 2 births and 3 births, respectively. Compared to the first trimester, the risk of anemia was higher by two-fold (AOR, 2.09; 95% CI, 1.46–3.00) in the second trimester and by four-fold (AOR, 4.23; 95% CI, 2.97–6.02) in the third trimester. Conclusion In this study, two out of five women were anemic. Chewing khat and restrictive dietary habits that are associated with anemia in the setting should be addressed through public education programs. Interventions should also focus on the women at higher parity levels and those who are in advanced stages of pregnancy. PMID:24223828

  18. The ketogenic diet and other dietary treatments for refractory epilepsy in children

    PubMed Central

    Sharma, Suvasini; Jain, Puneet

    2014-01-01

    The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed. PMID:25221391

  19. Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats.

    PubMed

    Paßlack, Nadine; Burmeier, Hannes; Brenten, Thomas; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The role of dietary protein for the development of feline calcium oxalate (CaOx) uroliths has not been conclusively clarified. The present study evaluated the effects of a varying dietary protein concentration and quality on critical indices for the formation of CaOx uroliths. Three diets with a high protein quality (10-11 % greaves meal/diet) and a varying crude protein (CP) concentration (35, 44 and 57 % in DM) were compared. Additionally, the 57 % CP diet was compared with a fourth diet that had a similar CP concentration (55 % in DM), but a lower protein quality (34 % greaves meal/diet). The Ca and oxalate (Ox) concentrations were similar in all diets. A group of eight cats received the same diet at the same time. Each feeding period was divided into a 21 d adaptation period and a 7 d sampling period to collect urine. There were increases in urinary volume, urinary Ca concentrations, renal Ca and Ox excretion and urinary relative supersaturation (RSS) with CaOx with increasing dietary protein concentrations. Urinary pH ranged between 6·34 and 6·66 among all groups, with no unidirectional effect of dietary protein. Lower renal Ca excretion was observed when feeding the diet with the lower protein quality, however, the underlying mechanism needs further evaluation. In conclusion, although the observed higher urinary volume is beneficial, the increase in urinary Ca concentrations, renal Ca and Ox excretion and urinary RSS CaOx associated with a high-protein diet may be critical for the development of CaOx uroliths in cats.

  20. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  1. Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks.

    PubMed

    Shah, Faiz-Ul-Hassan; Sharif, Mian Kamran; Butt, Masood Sadiq; Shahid, Muhammad

    2017-06-01

    The study was aimed to develop protein, dietary fiber, and micronutrient enriched corn snacks through extrusion processing. Corn snacks supplemented with chickpea, defatted soy flour (20-40/100 g) and guar gum (7/100 g) were prepared through extrusion processing. Micronutrients (iron, zinc, iodine, and vitamins A, C, and folic acid) at recommended daily values were added in all formulations. Extruded corn snacks were analyzed for physical, textural, and sensory attributes. Results showed that piece density (0.34-0.44 g/cm 3 ), moisture (3.40-5.25%), water activity (0.203-0.361), hardness (64.4-133.2 N), and cohesiveness (0.25-0.44) was increased Whereas, expansion ratio (3.72-2.64), springiness (0.82-0.69), chewiness (1.63-0.42), and resilience (1.37-0.14) was decreased as supplementation with soy and chickpea flour increased from 20 to 40/100 g. Overall corn snack supplemented with 15/100 g of soy and 15/100 g of chickpea flour got the highest acceptance from the sensory panelists. The article focuses on physical, textural, and sensory attributes of extruded corn snacks enriched with protein, dietary fiber, and micronutrients Awareness about the importance of healthy snacks has grown among the consumers during the last decade. Extruded snacks developed using nutrient rich ingredients with good textural and sensory properties has always remained a challenge for the snack industry. Texture of the extruded snacks varies a lot with high levels of protein and dietary fiber. This study is helpful for the development of healthy snacks especially in developing countries lacking storage infrastructure or tropical environment. Nutrient rich extruded snacks can also be used to alleviate malnutrition by incorporating in school lunch programs. © 2016 Wiley Periodicals, Inc.

  2. Enhanced Locomotor Activity Is Required to Exert Dietary Restriction-Dependent Increase of Stress Resistance in Drosophila.

    PubMed

    Ghimire, Saurav; Kim, Man Su

    2015-01-01

    Dietary restriction (DR) is known to be one of the most effective interventions to increase stress resistance, yet the mechanisms remain elusive. One of the most obvious DR-induced changes in phenotype is an increase in locomotor activity. Although it is conceptually perceivable that nutritional scarcity should prompt enhanced foraging behavior to garner additional dietary resources, the significance of enhanced movement activity has not been associated with the DR-dependent increase of stress resistance. In this study, we confirmed that flies raised on DR exhibited enhanced locomotive activity and increased stress resistance. Excision of fly wings minimized the DR-induced increase in locomotive activity, which resulted in attenuation of the DR-dependent increase of stress resistance. The possibility that wing clipping counteracts the DR by coercing flies to have more intake was ruled out since it did not induce any weight gain. Rather it was found that elimination of reactive oxygen species (ROS) that is enhanced by DR-induced upregulation of expression of antioxidant genes was significantly reduced by wing clipping. Collectively, our data suggests that DR increased stress resistance by increasing the locomotor activity, which upregulated expression of protective genes including, but not limited to, ROS scavenger system.

  3. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet.

    PubMed

    Kimani, S; Moterroso, V; Morales, P; Wagner, J; Kipruto, S; Bukachi, F; Maitai, C; Tshala-Katumbay, D

    2014-04-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5mg/kg bw) or NaOCN (50mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~80× faster in the nervous system (14 ms to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In M. fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~2× relative to that of rodents. The nervous system susceptibility to cyanide may result from a "multiple hit" by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet

    PubMed Central

    Kimani, S.; Moterroso, V.; Morales, P.; Wagner, J.; Kipruto, S.; Bukachi, F.; Maitai, C.; Tshala-Katumbay, D.

    2014-01-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5 mg/kg bw) or NaOCN (50 mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~ 80X faster in the nervous system (14 milliseconds to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In macaca fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~ 2X relative to that of rodents. The nervous system susceptibility to cyanide may result from a “multiple hit” by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. PMID:24500607

  5. Molar Macrowear Reveals Neanderthal Eco-Geographic Dietary Variation

    PubMed Central

    Fiorenza, Luca; Benazzi, Stefano; Tausch, Jeremy; Kullmer, Ottmar; Bromage, Timothy G.; Schrenk, Friedemann

    2011-01-01

    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources. PMID:21445243

  6. A brief review of higher dietary protein diets in weight loss: a focus on athletes.

    PubMed

    Phillips, Stuart M

    2014-11-01

    Thermodynamics dictates that for body weight (i.e. stored substrate) loss to occur a person must ingest less energy than they expend. Athletes, who owing to their oftentimes large daily energy expenditures, may have greater flexibility than non-athletes in this regard; however, they may also have different goals for weight loss. In particular, weight lost may be less important to an athlete than from which compartment the weight is lost: fat or lean. A critical question is thus, what balance of macronutrients might promote a greater fat loss, a relative retention of lean mass, and still allow athletic performance to remain uncompromised? It is the central thesis of this review that dietary protein should be a nutrient around which changes in macronutrient composition should be framed. The requirement for protein to sustain lean mass increases while in negative energy balance and protein, as macronutrient, may have advantages with respect to satiety during energy balance, and it may allow greater fat loss during a negative energy balance. However, athletes should be mindful of the fact that increasing dietary protein intake while in negative energy balance would come at the 'expense' of another macronutrient. Most recently there has been interest in lower carbohydrate diets, which may not allow performance to be sustained given the importance of dietary carbohydrate in high-intensity exercise. The relative merits of higher protein diets for athletes are discussed.

  7. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    PubMed

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    PubMed

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  9. Commercial breakfast cereals available in Mexican markets and their contribution in dietary fiber, β-glucans and protein quality by rat bioassays.

    PubMed

    Falcón-Villa, María R; Barrón-Hoyos, Jesús M; Cinco-Moroyoqui, Francisco J

    2014-09-01

    The beneficial effect of dietary fiber (DF) consumption has long been recognized. The global economy and open market trade policies have increased the availability of food products in Mexican markets, resulting in a wide variety of ready-to-eat commercial breakfast cereals classified as 'high fiber'. This research was aimed to evaluate the total dietary fiber contents, its fractions (soluble and insoluble) and β-glucan in 13 commercial 'high-fiber' breakfast cereals, as well as to evaluate their protein quality by rat bioassays. Commercial 'high-fiber' breakfast cereals had 7.42-39.82% insoluble dietary fiber, 2.53-12.85% soluble dietary fiber, and 0.45-4.96% β-glucan. These ready-to-eat commercial 'high-fiber' breakfast cereals differed significantly in their total dietary fiber, their soluble and insoluble DF fractions, and also in their β-glucan contents. When supplied as experimental diets, in 14-day rat feeding trials, the 'high-fiber' breakfast cereals showed an adverse effect on the % N digestibility but protein utilization, as measured as net protein ratio (NPR), was not significantly affected. The consumption of these commercial breakfast cereals, especially those made of oats as the basic ingredient, is highly recommended, since these products, being a concentrated source of dietary fiber, do not affect their protein quality.

  10. Increased Endothelin Activity Mediates Augmented Distal Nephron Acidification Induced by Dietary Protein

    PubMed Central

    Khanna, Apurv; Simoni, Jan; Hacker, Callenda; Duran, Marie-Josée; Wesson, Donald E

    2005-01-01

    We tested the hypothesis that increased dietary protein augments distal nephron acidification through an endothelin-dependent mechanism. Munich-Wistar rats ate minimum electrolyte diets of 50% (HiPro) and 20% (CON) casein-provided protein, the latter comparable to standard chow. HiPro vs. CON had higher distal nephron H+ secretion (41.3 ± 4.0 vs. 23.0 ± 2.1 pmol/mm.min, p < 0.002) mediated by augmented Na+/H+ exchange and H+-ATPase activity. Renal cortex of HiPro vs. CON had higher ET-1 addition to microdialysate and higher ET-1 mRNA, consistent with increased renal ET-1 production. Bosentan, an endothelin A/B receptor antagonist, decreased HiPro distal nephron H+ secretion (28.4 ± 2.4 vs. 41.3 ± 4.0 pmol/mm.min, p < 0.016) through decreased Na+/H+ exchange and decreased H+-ATPase activity. Increased dietary protein augments distal nephron acidification through an endothelin-sensitive increase in Na+/H+ exchange and H+-ATPase activity, supporting an endothelin role in the distal nephron response to this common challenge to acid-base status. PMID:16555618

  11. Dietary protein and resistance training effects on muscle and body composition in older persons.

    PubMed

    Campbell, Wayne W; Leidy, Heather J

    2007-12-01

    The regular performance of resistance exercises and the habitual ingestion of adequate amounts of dietary protein from high-quality sources are two important ways for older persons to slow the progression of and treat sarcopenia, the age-related loss of skeletal muscle mass and function. Resistance training can help older people gain muscle strength, hypertrophy muscle, and increase whole body fat-free mass. It can also help frail elderly people improve balance and physical functioning capabilities. Inadequate protein intake will cause adverse metabolic and physiological accommodation responses that include the loss of fat-free mass and muscle strength and size. Findings from controlled feeding studies show that older persons retain the capacity to metabolically adjust to lower protein intakes by increasing the efficiency of nitrogen retention and amino acid utilization. However, they also suggest that the recommended dietary allowance of 0.8 g protein x kg(-1) x d(-1) might not be sufficient to prevent subtle accommodations and blunt desired changes in body composition and muscle size with resistance training. Most of the limited research suggests that resistance training-induced improvements in body composition, muscle strength and size, and physical functioning are not enhanced when older people who habitually consume adequate protein (modestly above the RDA) increase their protein intake by either increasing the ingestion of higher-protein foods or consuming protein-enriched nutritional supplements.

  12. Protein-enhanced soups: a consumer-accepted food for increasing dietary protein provision among older adults.

    PubMed

    Donahue, Elizabeth; Crowe, Kristi Michele; Lawrence, Jeannine

    2015-02-01

    Protein-enhanced soups (PES) may improve protein intake among older adults. This study examined sensory attributes (aroma, texture, taste, and overall acceptability) and preferences of PES (chicken noodle and cheddar broccoli) compared with flavor-matched control soups (FCS) among older adults (≥65 years) and evaluated dietary profile changes of a standard menu based on the substitution of one PES serving/d for a standard soup. Modified paired preference tests and 5-point facial hedonic scales were administered to participants (n = 44). No significant differences in sensory attributes between either PES compared with FCS were identified, but significant gender- and age-related differences (p < 0.05) were observed. About Sixty-one percent of participants preferred protein-enhanced chicken noodle soup while only 38% preferred protein-enhanced cheddar broccoli soup to their respective FCS. Substituting one PES serving for one non-fortified soup serving per day resulted in significantly higher (p < 0.001) protein profile. Results suggest that all attributes of PES were consistent with sensory expectations and PES substitution could improve protein provision.

  13. Angiotensin II Inhibits the ROMK-like Small Conductance K Channel in Renal Cortical Collecting Duct during Dietary Potassium Restriction*

    PubMed Central

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M.; Wang, Wen-Hui

    2010-01-01

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction. PMID:17194699

  14. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.

    PubMed

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M; Wang, Wen-Hui

    2007-03-02

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.

  15. Dietary pattern, serum magnesium, ferritin, C-reactive protein and anaemia among older people.

    PubMed

    Xu, Xiaoyue; Hall, John; Byles, Julie; Shi, Zumin

    2017-04-01

    Epidemiological data of dietary patterns and anaemia among older Chinese remains extremely scarce. We examined the association between dietary patterns and anaemia in older Chinese, and to assess whether biomarkers of serum magnesium, C-reactive protein (CRP) and serum ferritin can mediate these associations. We analysed the 2009 China Health and Nutrition Survey data (2401 individuals aged ≥60 years for whom both dietary and biomarker data are available). Dietary data was obtained using 24 h-recall over three consecutive days. Fasting blood samples and anthropometry measurement were also collected. Factor analysis was used to identify dietary patterns. Factor scores representing dietary patterns were used in Poisson regression models to explore the association between each dietary pattern and anaemia. Of the 2401 participants, 18.9% had anaemia, 1.9% had anaemia related to inflammation (AI), and 1.3% had iron-deficiency anaemia (IDA). A traditional dietary pattern (high intake of rice, pork and vegetables) was positively associated with anaemia; a modern dietary pattern (high intake of fruit and fast food) was inversely associated with anaemia. Progressively lower magnesium and BMI levels were associated with increasing traditional dietary quartiles; while a progressively higher magnesium and BMI levels were associated with increasing modern dietary quartiles (p < 0.001). There were no significant differences (p > 0.05) in CRP and serum ferritin across quartiles for either dietary pattern. In the fully adjusted model, the prevalence ratio (PR) of anaemia, comparing the fourth quartile to the first quartile, was 1.75 (95% CI: 1.33; 2.29) for a traditional dietary pattern, and 0.89 (95% CI: 0.68; 1.16) for a modern dietary pattern. The association between dietary patterns and anaemia is mediated by serum magnesium. Traditional dietary pattern is associated with a higher prevalence of anaemia among older Chinese. Future studies need to examine whether

  16. The role of protein in weight loss and maintenance.

    PubMed

    Leidy, Heather J; Clifton, Peter M; Astrup, Arne; Wycherley, Thomas P; Westerterp-Plantenga, Margriet S; Luscombe-Marsh, Natalie D; Woods, Stephen C; Mattes, Richard D

    2015-04-29

    Over the past 20 y, higher-protein diets have been touted as a successful strategy to prevent or treat obesity through improvements in body weight management. These improvements are thought to be due, in part, to modulations in energy metabolism, appetite, and energy intake. Recent evidence also supports higher-protein diets for improvements in cardiometabolic risk factors. This article provides an overview of the literature that explores the mechanisms of action after acute protein consumption and the clinical health outcomes after consumption of long-term, higher-protein diets. Several meta-analyses of shorter-term, tightly controlled feeding studies showed greater weight loss, fat mass loss, and preservation of lean mass after higher-protein energy-restriction diets than after lower-protein energy-restriction diets. Reductions in triglycerides, blood pressure, and waist circumference were also reported. In addition, a review of the acute feeding trials confirms a modest satiety effect, including greater perceived fullness and elevated satiety hormones after higher-protein meals but does not support an effect on energy intake at the next eating occasion. Although shorter-term, tightly controlled feeding studies consistently identified benefits with increased protein consumption, longer-term studies produced limited and conflicting findings; nevertheless, a recent meta-analysis showed persistent benefits of a higher-protein weight-loss diet on body weight and fat mass. Dietary compliance appears to be the primary contributor to the discrepant findings because improvements in weight management were detected in those who adhered to the prescribed higher-protein regimen, whereas those who did not adhere to the diet had no marked improvements. Collectively, these data suggest that higher-protein diets that contain between 1.2 and 1.6 g protein · kg -1 · d -1 and potentially include meal-specific protein quantities of at least ∼25-30 g protein/meal provide

  17. Effects of dietary soy protein on skeletal muscle volume and strength in humans with various physical activities.

    PubMed

    Hashimoto, Rie; Sakai, Atsuko; Murayama, Masumi; Ochi, Arisa; Abe, Tomoki; Hirasaka, Katsuya; Ohno, Ayako; Teshima-Kondo, Shigetada; Yanagawa, Hiroaki; Yasui, Natsuo; Inatsugi, Mikiko; Doi, Daisuke; Takeda, Masanori; Mukai, Rie; Terao, Junji; Nikawa, Takeshi

    2015-01-01

    In recent years, the number of bedridden people is rapidly increasing due to aging or lack of exercise in Japan. This problem is becoming more serious, since there is no countermeasure against it. In the present study, we designed to investigate whether dietary proteins, especially soy, had beneficial effects on skeletal muscle in 59 volunteers with various physical activities. We subjected 59 volunteers with various physical activities to meal intervention examination. Persons with low and high physical activities were divided into two dietary groups, the casein diet group and the soy diet group. They ate daily meals supplemented with 7.8 g of powdered casein or soy protein isolate every day for 30 days. Bedridden patients in hospitals were further divided into three dietary groups: the no supplementation diet group, the casein diet group and the soy diet group. They were also subjected to a blood test, a urinalysis, magnetic resonance imaging analysis and muscle strength test of the knee before and after the meal intervention study. Thirty-day soy protein supplementation significantly increased skeletal muscle volume in participants with low physical activity, compared with 30-day casein protein supplementation. Both casein and soy protein supplementation increased the volume of quadriceps femoris muscle in bedridden patients. Consistently, soy protein significantly increased their extension power of the knee, compared with casein protein. Although casein protein increased skeletal muscle volume more than soy protein in bedridden patients, their muscle strength changes by soy protein supplementation were bigger than those by casein protein supplementation. The supplementation of soy protein would be one of the effective foods which prevent the skeletal muscle atrophy caused by immobilization or unloading.

  18. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy1234

    PubMed Central

    Kovesdy, Csaba P; Kopple, Joel D; Kalantar-Zadeh, Kamyar

    2013-01-01

    Protein-energy wasting (PEW), characterized by a decline in body protein mass and energy reserves, including muscle and fat wasting and visceral protein pool contraction, is an underappreciated condition in early to moderate stages of chronic kidney disease (CKD) and a strong predictor of adverse outcomes. The prevalence of PEW in early to moderate CKD is ≥20–25% and increases as CKD progresses, in part because of activation of proinflammatory cytokines combined with superimposed hypercatabolic states and declines in appetite. This anorexia leads to inadequate protein and energy intake, which may be reinforced by prescribed dietary restrictions and inadequate monitoring of the patient's nutritional status. Worsening uremia also renders CKD patients vulnerable to potentially deleterious effects of uncontrolled diets, including higher phosphorus and potassium burden. Uremic metabolites, some of which are anorexigenic and many of which are products of protein metabolism, can exert harmful effects, ranging from oxidative stress to endothelial dysfunction, nitric oxide disarrays, renal interstitial fibrosis, sarcopenia, and worsening proteinuria and kidney function. Given such complex pathways, nutritional interventions in CKD, when applied in concert with nonnutritional therapeutic approaches, encompass an array of strategies (such as dietary restrictions and supplementations) aimed at optimizing both patients’ biochemical variables and their clinical outcomes. The applicability of many nutritional interventions and their effects on outcomes in patients with CKD with PEW has not been well studied. This article reviews the definitions and pathophysiology of PEW in patients with non-dialysis-dependent CKD, examines the current indications for various dietary modification strategies in patients with CKD (eg, manufactured protein-based supplements, amino acids and their keto acid or hydroxyacid analogues), discusses the rationale behind their potential use in

  19. Equine Myxovirus Resistance Protein 2 Restricts Lentiviral Replication by Blocking Nuclear Uptake of Capsid Protein.

    PubMed

    Ji, Shuang; Na, Lei; Ren, Huiling; Wang, Yujie; Wang, Xiaojun

    2018-05-09

    Human Myxovirus resistance 2 (huMxB) has been shown to be a determinant type I interferon-induced host factor involved in the inhibition of HIV-1 as well as many other primate lentiviruses. This blocking occurs after the reverse transcription of viral RNA and ahead of the integration into the host DNA, which is closely connected to the ability of the protein to bind the viral capsid. To date, Mx2s derived from non-primate animals have shown no capacity for HIV-1 suppression. In this study, we examined the restrictive effect of equine Mx2 (eqMx2) on both the equine infectious anemia virus (EIAV) and HIV-1 and investigated possible mechanisms for its specific function. We demonstrated that IFNα/β upregulates the expression of eqMx2 in equine monocyte-derived macrophages (eMDMs). Overexpression of eqMx2 significantly suppresses the replication of EIAV, HIV-1, and SIVs, but not that of MLV. Knockdown of eqMx2 transcription weakens the inhibition of EIAV replication by type I interferon. Interestingly, immunofluorescence assays suggest that the subcellular localization of eqMx2 changes following virus infection, from being dispersed in the cytoplasm to being accumulated at the nuclear envelope. Furthermore, eqMx2 blocks the nuclear uptake of the proviral genome by binding to the viral capsid. The N-truncated mutant of eqMx2 lost the ability to bind the viral capsid as well as the restriction effect for lentiviruses. These results improve our understanding of the Mx2 protein in non-primate animals. IMPORTANCE Previous research has shown that the antiviral ability of Mx2s is confined to primates, particularly humans. EIAV has been shown to be insensitive to the restriction by human MxB. Here, we described the function of equine Mx2. This protein plays an important role in the suppression of EIAV, HIV-1, and SIVs. The antiviral activity of eqMx2 depends on its subcellular location as well as its capsid binding capacity. Our results showed that following viral infection

  20. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner.

    PubMed

    Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao

    2015-04-14

    Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.

  1. Long-term weight maintenance and cardiovascular risk factors are not different following weight loss on carbohydrate-restricted diets high in either monounsaturated fat or protein in obese hyperinsulinaemic men and women.

    PubMed

    Keogh, Jennifer B; Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Clifton, Peter M

    2007-02-01

    The aim of this study was to determine after 52 weeks whether advice to follow a lower carbohydrate diet, either high in monounsaturated fat or low fat, high in protein had differential effects in a free-living community setting. Following weight loss on either a high monounsaturated fat, standard protein (HMF; 50 % fat, 20 % protein (67 g/d), 30 % carbohydrate) or a high protein, moderate fat (HP) (40 % protein (136 g/d), 30 % fat, 30 % carbohydrate) energy-restricted diet (6000 kJ/d) subjects were asked to maintain the same dietary pattern without intensive dietary counselling for the following 36 weeks. Overall weight loss was 6.2 (SD 7.3) kg (P < 0.01 for time with no diet effect, 7.6 (SD 8.1) kg, HMF v. 4.8 (SD 6.6) kg, HP). In a multivariate regression model predictors of weight loss at the end of the study were sex, age and reported percentage energy from protein (R2 0.22, P < 0.05 for the whole model). Fasting plasma insulin decreased (P < 0.01, with no difference between diets), 13.9 (SD 4.6) to 10.2 (SD 5.2) mIU/l, but fasting plasma glucose was not reduced. Neither total cholesterol nor LDL-cholesterol were different but HDL was higher, 1.19 (SD 0.26) v. 1.04 (SD 0.29) (P < 0.001 for time, no diet effect), while TAG was lower, 1.87 (SD 1.23) v. 2.22 (SD 1.15) mmol/l (P < 0.05 for time, no diet effect). C-reactive protein decreased (3.97 (SD 2.84) to 2.43 (SD 2.29) mg/l, P < 0.01). Food records showed that compliance to the prescribed dietary patterns was poor. After 1 year there remained a clinically significant weight loss and improvement in cardiovascular risk factors with no adverse effects of a high monounsaturated fat diet.

  2. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis

    USDA-ARS?s Scientific Manuscript database

    This study examined ubiquitin-mediated proteolysis and associated gene expression in normal-23 weight adults consuming varying levels of dietary protein during short-term energy deficit. 24 Using a randomized-bock design, 32 men and 7 women were assigned to diets providing protein 25 at 0.8 (RDA), 1...

  3. Dietary protein intake is associated with lean body mass in community-dwelling older adults.

    PubMed

    Geirsdottir, Olof G; Arnarson, Atli; Ramel, Alfons; Jonsson, Palmi V; Thorsdottir, Inga

    2013-08-01

    Lean body mass (LBM) is important to maintain physical function during aging. We hypothesized that dietary protein intake and leisure-time physical activity are associated with LBM in community-dwelling older adults. To test the hypothesis, participants (n = 237; age, 65-92 years) did 3-day weighed food records and reported physical activity. Body composition was assessed using dual-energy x-ray absorptiometry. Protein intake was 0.98 ± 0.28 and 0.95 ± 0.29 g/kg body weight in male and female participants, respectively. Protein intake (in grams per kilogram of body weight) was associated with LBM (in kilograms); that is, the differences in LBM were 2.3 kg (P < .05) and 2.0 kg (P = .054) between the fourth vs the first and the fourth vs the second quartiles of protein intake, respectively. Only a minor part of this association was explained by increased energy intake, which follows an increased protein intake. Our study shows that dietary protein intake was positively associated with LBM in older adults with a mean protein intake higher than the current recommended daily allowance of 0.8 g/kg per day. Leisure-time physical activity, predominantly consisting of endurance type exercises, was not related to LBM in this group. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    PubMed

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  5. Dietary assessment of adolescents undergoing laparoscopic Roux-en-Y gastric bypass surgery: macro- and micronutrient, fiber, and supplement intake.

    PubMed

    Jeffreys, Renee M; Hrovat, Kathleen; Woo, Jessica G; Schmidt, Marcia; Inge, Thomas H; Xanthakos, Stavra A

    2012-01-01

    Extremely obese adolescents are increasingly undergoing bariatric procedures, which restrict dietary intake. However, as yet, no data are available describing the change in caloric density or composition of the adolescent bariatric patient's diet pre- and postoperatively. Our objective was to assess the 1-year change in the dietary composition of adolescents undergoing bariatric surgery at a tertiary care children's hospital. A total of 27 subjects (67% female, 77% white, age 16.7 ± 1.4 yr, baseline body mass index 60.1 ± 14.1 kg/m(2)) were prospectively enrolled into an observational cohort study 1 month before undergoing laparoscopic Roux-en-Y gastric bypass from August 2005 to March 2008. The 3-day dietary intake was recorded at baseline (n = 24) and 2 weeks (n = 16), 3 months (n = 11), and 1 year (n = 9) postoperatively. The dietary record data were verified by structured interview and compared with the Dietary Reference Intake values for ages 14-18 years. By 1 year after surgery, the mean caloric intake, adjusted for body mass index was 1015 ± 182 kcal/d, a 35% reduction from baseline. The proportion of fat, protein, and carbohydrate intake did not differ from baseline. However, the protein intake was lower than recommended postoperatively. The calcium and fiber intake was also persistently lower than recommended. Calcium and vitamin B(12) supplementation increased the likelihood of meeting the daily minimal recommendations (P ≤ .02). At 1 year after Roux-en-Y gastric bypass, the adolescents' caloric intake remained restricted, with satisfactory macronutrient composition but a lower than desirable intake of calcium, fiber, and protein. Copyright © 2012 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  6. Nutrigenetics and nutrigenomics of caloric restriction.

    PubMed

    Abete, Itziar; Navas-Carretero, Santiago; Marti, Amelia; Martinez, J Alfredo

    2012-01-01

    Obesity is a complex disease resulting from a chronic and long-term positive energy balance in which both genetic and environmental factors are involved. Weight-reduction methods are mainly focused on dietary changes and increased physical activity. However, responses to nutritional intervention programs show a wide range of interindividual variation, which is importantly influenced by genetic determinants. In this sense, subjects carrying several obesity-related single-nucleotide polymorphisms (SNPs) show differences in the response to calorie-restriction programs. Furthermore, there is evidence indicating that dietary components not only fuel the body but also participate in the modulation of gene expression. Thus, the expression pattern and nutritional regulation of several obesity-related genes have been studied, as well as those that are differentially expressed by caloric restriction. The responses to caloric restriction linked to the presence of SNPs in obesity-related genes are reviewed in this chapter. Also, the influence of energy restriction on gene expression pattern in different tissues is addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A Low Protein Diet Increases the Hypoxic Tolerance in Drosophila

    PubMed Central

    Vigne, Paul; Frelin, Christian

    2006-01-01

    Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O2) and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses. PMID:17183686

  8. An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice

    PubMed Central

    Ghosh, Sujoy; Forney, Laura A.; Wanders, Desiree; Stone, Kirsten P.

    2017-01-01

    Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype. PMID:28520765

  9. Dietary management of urea cycle disorders: European practice.

    PubMed

    Adam, S; Almeida, M F; Assoun, M; Baruteau, J; Bernabei, S M; Bigot, S; Champion, H; Daly, A; Dassy, M; Dawson, S; Dixon, M; Dokoupil, K; Dubois, S; Dunlop, C; Evans, S; Eyskens, F; Faria, A; Favre, E; Ferguson, C; Goncalves, C; Gribben, J; Heddrich-Ellerbrok, M; Jankowski, C; Janssen-Regelink, R; Jouault, C; Laguerre, C; Le Verge, S; Link, R; Lowry, S; Luyten, K; Macdonald, A; Maritz, C; McDowell, S; Meyer, U; Micciche, A; Robert, M; Robertson, L V; Rocha, J C; Rohde, C; Saruggia, I; Sjoqvist, E; Stafford, J; Terry, A; Thom, R; Vande Kerckhove, K; van Rijn, M; van Teeffelen-Heithoff, A; Wegberg, A van; van Wyk, K; Vasconcelos, C; Vestergaard, H; Webster, D; White, F J; Wildgoose, J; Zweers, H

    2013-12-01

    There is no published data comparing dietary management of urea cycle disorders (UCD) in different countries. Cross-sectional data from 41 European Inherited Metabolic Disorder (IMD) centres (17 UK, 6 France, 5 Germany, 4 Belgium, 4 Portugal, 2 Netherlands, 1 Denmark, 1 Italy, 1 Sweden) was collected by questionnaire describing management of patients with UCD on prescribed protein restricted diets. Data for 464 patients: N-acetylglutamate synthase (NAGS) deficiency, n=10; carbamoyl phosphate synthetase (CPS1) deficiency, n=29; ornithine transcarbamoylase (OTC) deficiency, n=214; citrullinaemia, n=108; argininosuccinic aciduria (ASA), n=80; arginase deficiency, n=23 was reported. The majority of patients (70%; n=327) were aged 0-16y and 30% (n=137) >16y. Prescribed median protein intake/kg body weight decreased with age with little variation between disorders. The UK tended to give more total protein than other European countries particularly in infancy. Supplements of essential amino acids (EAA) were prescribed for 38% [n=174] of the patients overall, but were given more commonly in arginase deficiency (74%), CPS (48%) and citrullinaemia (46%). Patients in Germany (64%), Portugal (67%) and Sweden (100%) were the most frequent users of EAA. Only 18% [n=84] of patients were prescribed tube feeds, most commonly for CPS (41%); and 21% [n=97] were prescribed oral energy supplements. Dietary treatment for UCD varies significantly between different conditions, and between and within European IMD centres. Further studies examining the outcome of treatment compared with the type of dietary therapy and nutritional support received are required. © 2013 Elsevier Inc. All rights reserved.

  10. Quality assurance issues in the use of dietary supplements, with special reference to protein supplements.

    PubMed

    Maughan, Ronald J

    2013-11-01

    The use of dietary supplements is widespread in the general population, in athletes and recreational exercisers, and in military personnel. A wide array of supplements is available, but protein-containing products are consistently among the most popular, especially among those who engage in resistance training. There are significant risks associated with the use of unregulated dietary supplements. Risks include the absence of active ingredients, the presence of harmful substances (including microbiological agents and foreign objects), the presence of toxic agents, and the presence of potentially dangerous prescription-only pharmaceuticals. There is ample evidence of athletes who have failed doping tests because of the use of dietary supplements. There is also growing evidence of risks to health and of serious adverse events, including a small number of fatalities, as a result of supplement use. The risk associated with the use of protein powders produced by major manufacturers is probably low, and the risk can be further reduced by using only products that have been tested under one of the recognized supplement quality assurance programs that operate in various countries. Nevertheless, a small risk remains, and athletes, soldiers, and other consumers should conduct a cost-benefit analysis before using any dietary supplements.

  11. Dietary proportions of carbohydrates, fat, and protein and risk of oesophageal cancer by histological type.

    PubMed

    Lagergren, Katarina; Lindam, Anna; Lagergren, Jesper

    2013-01-01

    Dietary habits influence the risk of cancer of the oesophagus and oesophago-gastric junction, but the role of proportions of the main dietary macronutrients carbohydrates, fats and proteins is uncertain. Data was derived from a nationwide Swedish population-based case-control study conducted in 1995-1997, in which case ascertainment was rapid, and all cases were uniformly classified. Information on the subjects' history of dietary intake was collected in personal interviews. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression, with adjustment for potentially confounding factors. Included were 189 oesophageal adenocarcinomas, 262 oesophago-gastric adenocarcinomas, 167 oesophageal squamous cell carcinomas, and 820 control subjects. Regarding oesophageal or oesophago-gastric junctional adenocarcinoma, a high dietary proportion of carbohydrates decreased the risk (OR 0.50, CI 0.34-0.73), and a high portion of fat increased the risk (OR 1.96, CI 1.34-2.87), while a high proportion of protein did not influence the risk (OR 1. 08, 95% CI 0.75-1.56). Regarding oesophageal squamous cell carcinoma, the single macronutrients did not influence the risk statistically significantly. A diet with a low proportion of carbohydrates and a high proportion of fat might increase the risk of oesophageal adenocarcinoma.

  12. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2-9 weeks of age.

    PubMed

    Mahrose, Kh M; Attia, A I; Ismail, I E; Abou-Kassem, D E; El-Hack, M E Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%).

  13. Dietary Protein Sources and All-Cause and Cause-Specific Mortality: The Golestan Cohort Study in Iran.

    PubMed

    Farvid, Maryam S; Malekshah, Akbar F; Pourshams, Akram; Poustchi, Hossein; Sepanlou, Sadaf G; Sharafkhah, Maryam; Khoshnia, Masoud; Farvid, Mojtaba; Abnet, Christian C; Kamangar, Farin; Dawsey, Sanford M; Brennan, Paul; Pharoah, Paul D; Boffetta, Paolo; Willett, Walter C; Malekzadeh, Reza

    2017-02-01

    Dietary protein comes from foods with greatly different compositions that may not relate equally with mortality risk. Few cohort studies from non-Western countries have examined the association between various dietary protein sources and cause-specific mortality. Therefore, the associations between dietary protein sources and all-cause, cardiovascular disease, and cancer mortality were evaluated in the Golestan Cohort Study in Iran. Among 42,403 men and women who completed a dietary questionnaire at baseline, 3,291 deaths were documented during 11 years of follow up (2004-2015). Cox proportional hazards models estimated age-adjusted and multivariate-adjusted hazard ratios (HRs) and 95% CIs for all-cause and disease-specific mortality in relation to dietary protein sources. Data were analyzed from 2015 to 2016. Comparing the highest versus the lowest quartile, egg consumption was associated with lower all-cause mortality risk (HR=0.88, 95% CI=0.79, 0.97, p trend =0.03). In multivariate analysis, the highest versus the lowest quartile of fish consumption was associated with reduced risk of total cancer (HR=0.79, 95% CI=0.64, 0.98, p trend =0.03) and gastrointestinal cancer (HR=0.75, 95% CI=0.56, 1.00, p trend =0.02) mortality. The highest versus the lowest quintile of legume consumption was associated with reduced total cancer (HR=0.72, 95% CI=0.58, 0.89, p trend =0.004), gastrointestinal cancer (HR=0.76, 95% CI=0.58, 1.01, p trend =0.05), and other cancer (HR=0.66, 95% CI=0.47, 0.93, p trend =0.04) mortality. Significant associations between total red meat and poultry intake and all-cause, cardiovascular disease, or cancer mortality rate were not observed among all participants. These findings support an association of higher fish and legume consumption with lower cancer mortality, and higher egg consumption with lower all-cause mortality. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  14. Dietary Protein Sources and All-Cause and Cause-Specific Mortality: The Golestan Cohort Study in Iran

    PubMed Central

    Farvid, Maryam S.; Malekshah, Akbar F.; Pourshams, Akram; Poustchi, Hossein; Sepanlou, Sadaf G.; Sharafkhah, Maryam; Khoshnia, Masoud; Farvid, Mojtaba; Abnet, Christian C.; Kamangar, Farin; Dawsey, Sanford M.; Brennan, Paul; Pharoah, Paul D.; Boffetta, Paolo; Willett, Walter C.; Malekzadeh, Reza

    2016-01-01

    Introduction Dietary protein comes from foods with greatly different compositions that may not relate equally with mortality risk. Few cohort studies from non-Western countries have examined the association between various dietary protein sources and cause-specific mortality. Therefore, the associations between dietary protein sources and all-cause, cardiovascular disease, and cancer mortality were evaluated in the Golestan Cohort Study in Iran. Methods Among 42,403 men and women who completed a dietary questionnaire at baseline, 3,291 deaths were documented during 11 years of follow up (2004–2015). Cox proportional hazards models estimated age-adjusted and multivariate-adjusted hazard ratios (HRs) and 95% CIs for all- cause and disease-specific mortality in relation to dietary protein sources. Data were analyzed from 2015 to 2016. Results Comparing the highest versus the lowest quartile, egg consumption was associated with lower all-cause mortality risk (HR=0.88, 95% CI=0.79, 0.97, ptrend=0.03). In multivariate analysis, the highest versus the lowest quartile of fish consumption was associated with reduced risk of total cancer (HR=0.79, 95% CI=0.64, 0.98, ptrend=0.03) and gastrointestinal cancer (HR=0.75, 95% CI=0.56, 1.00, ptrend=0.02) mortality. The highest versus the lowest quintile of legume consumption was associated with reduced total cancer (HR=0.72, 95% CI=0.58, 0.89, ptrend=0.004), gastrointestinal cancer (HR=0.76, 95% CI=0.58, 1.01, ptrend=0.05), and other cancer (HR=0.66, 95% CI=0.47, 0.93, ptrend=0.04) mortality. Significant associations between total red meat and poultry intake and all- cause, cardiovascular disease, or cancer mortality rate were not observed among all participants. Conclusions These findings support an association of higher fish and legume consumption with lower cancer mortality, and higher egg consumption with lower all-cause mortality. PMID:28109460

  15. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  16. Effect of early dietary energy restriction and phosphorus level on subsequent growth performance, intestinal phosphate transport, and AMPK activity in young broilers

    PubMed Central

    Miao, Zhiqiang; Zhang, Guixian; Zhang, Junzhen; Yang, Yu

    2017-01-01

    We aimed to determine the effect of low dietary energy on intestinal phosphate transport and the possible underlying mechanism to explain the long-term effects of early dietary energy restriction and non-phytate phosphorus (NPP). A 2 × 3 factorial experiment, consisting of 2 energy levels and 3 NPP levels, was conducted. Broiler growth performance, intestinal morphology in 0–21 days and 22–35 days, type IIb sodium-phosphate co-transporter (NaPi-IIb) mRNA expression, adenylate purine concentrations in the duodenum, and phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α) activity in 0–21 days were determined. The following results were obtained. (1) Low dietary energy (LE) induced a high feed conversion ratio (FCR) and significantly decreased body weight gain in young broilers, but LE induced significantly higher compensatory growth in low NPP (LP) groups than in the high or medium NPP groups (HP and MP). (2) LE decreased the villus height (VH) in the intestine, and LE-HP resulted in the lowest crypt depth (CD) and the highest VH:CD ratio in the initial phase. However, in the later period, the LE-LP group showed an increased VH:CD ratio and decreased CD in the intestine. (3) LE increased ATP synthesis and decreased AMP:ATP ratio in the duodenal mucosa of chickens in 0–21 days, and LP diet increased ATP synthesis and adenylate energy charges but decreased AMP production and AMP:ATP ratio. (4) LE led to weaker AMPK phosphorylation, higher mTOR phosphorylation, and higher NaPi-IIb mRNA expression. Thus, LE and LP in the early growth phase had significant compensatory and interactive effect on later growth and intestinal development in broilers. The effect might be relevant to energy status that LE leads to weaker AMPK phosphorylation, causing a lower inhibitory action toward mTOR phosphorylation. This series of events stimulates NaPi-IIb mRNA expression. Our findings provide a theoretical basis and a new perspective on intestinal phosphate

  17. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats

    USDA-ARS?s Scientific Manuscript database

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-...

  18. Self-monitoring urinary salt excretion in adults: A novel education program for restricting dietary salt intake

    PubMed Central

    YASUTAKE, KENICHIRO; SAWANO, KAYOKO; YAMAGUCHI, SHOKO; SAKAI, HIROKO; AMADERA, HATSUMI; TSUCHIHASHI, TAKUYA

    2011-01-01

    This study aimed to examine the usefulness of the self-monitoring of urinary salt excretion for educating individuals about the risk of excessive dietary salt intake. The subjects were 30 volunteers (15 men and 15 women) not consuming anti-hypertensive medication. The subjects measured urinary salt excretion at home for 4 weeks using a self-monitoring device. Blood pressure (BP), anthropometric variables and nutritional variables (by a dietary-habits questionnaire) were measured before and after the measurement of urinary salt excretion. Statistical analyses were performed, including paired t-tests, Chi-square test, Pearson’s product moment correlation coefficient and multiple linear regression analysis. In all subjects, the average urinary salt excretion over 4 weeks was 8.05±1.61 g/day and the range (maximum-minimum value) was 5.58±2.15 g/day. Salt excretion decreased significantly in weeks 3 and 4 (P<0.05 and P<0.01, respectively). Diastolic BP decreased from 77.7±14.3 (at baseline) to 74.3±13.3 after 4 weeks (P<0.05), while systolic BP and anthropometric variables remained unchanged. Nutrition surveys indicated that energy intake was correlated with salt intake both before and after the measurements; changes in both variables during the observation period were correlated (r=0.40, P<0.05). The percentage of subjects who were aware of the restriction in dietary salt intake increased from 47 to 90%. In conclusion, daily monitoring of the amount of urinary salt excretion using a self-monitoring device appears to be an effective educational tool for improving the quality of life of healthy adults. PMID:22977549

  19. Self-monitoring urinary salt excretion in adults: A novel education program for restricting dietary salt intake.

    PubMed

    Yasutake, Kenichiro; Sawano, Kayoko; Yamaguchi, Shoko; Sakai, Hiroko; Amadera, Hatsumi; Tsuchihashi, Takuya

    2011-07-01

    This study aimed to examine the usefulness of the self-monitoring of urinary salt excretion for educating individuals about the risk of excessive dietary salt intake. The subjects were 30 volunteers (15 men and 15 women) not consuming anti-hypertensive medication. The subjects measured urinary salt excretion at home for 4 weeks using a self-monitoring device. Blood pressure (BP), anthropometric variables and nutritional variables (by a dietary-habits questionnaire) were measured before and after the measurement of urinary salt excretion. Statistical analyses were performed, including paired t-tests, Chi-square test, Pearson's product moment correlation coefficient and multiple linear regression analysis. In all subjects, the average urinary salt excretion over 4 weeks was 8.05±1.61 g/day and the range (maximum-minimum value) was 5.58±2.15 g/day. Salt excretion decreased significantly in weeks 3 and 4 (P<0.05 and P<0.01, respectively). Diastolic BP decreased from 77.7±14.3 (at baseline) to 74.3±13.3 after 4 weeks (P<0.05), while systolic BP and anthropometric variables remained unchanged. Nutrition surveys indicated that energy intake was correlated with salt intake both before and after the measurements; changes in both variables during the observation period were correlated (r=0.40, P<0.05). The percentage of subjects who were aware of the restriction in dietary salt intake increased from 47 to 90%. In conclusion, daily monitoring of the amount of urinary salt excretion using a self-monitoring device appears to be an effective educational tool for improving the quality of life of healthy adults.

  20. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    PubMed

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of ractopamine hydrochloride and dietary protein content on performance, carcass traits and meat quality of Nellore bulls.

    PubMed

    Cônsolo, N R B; Mesquita, B S; Rodriguez, F D; Rizzi, V G; Silva, L F P

    2016-03-01

    Ractopamine hydrochloride (RH) alters protein metabolism and improves growth performance in Bos taurus cattle with high carcass fat. Our objective was to evaluate the effects of RH, dietary CP and RH×CP interaction on performance, blood metabolites, carcass characteristics and meat quality of young Nellore bulls. A total of 48 bulls were randomly assigned to four treatments in a 2×2 factorial arrangement. The factors were two levels of dietary CP (100% and 120% of metabolizable protein requirement, defined as CP100 and CP120, respectively), and two levels of RH (0 and 300 mg/animal·per day). Treated animal received RH for the final 35 days before slaughter. Animals were weighed at the beginning of the feedlot period (day 63), at the beginning of ractopamine supplementation (day 0), after 18 days of supplementation (day 18) and before slaughter (day 34). Animals were slaughtered and hot carcass weights recorded. After chilling, carcass data was collected and longissimus samples were obtained for determination of meat quality. The 9-11th rib section was removed for carcass composition analysis. Supplementation with RH increased ADG independently of dietary CP. There was a RH×CP interaction on dry matter intake (DMI), where RH reduced DMI at CP120, with no effect at CP100. Ractopamine improved feed efficiency, without RH×CP interaction. Ractopamine had no effect on plasma creatinine and urea concentration. Greater dietary CP tended to increase blood urea, and there was a RH×CP interaction for plasma total protein. Ractopamine supplementation increased plasma total protein at CP120, and had no effect at CP100. Ractopamine also decreased plasma glucose concentration at CP100, but had no effect at CP120. Ractopamine increased alkaline phosphatase activity at CP120 and had no effect at CP100. There was a tendency for RH to increase longissimus muscle area, independently of dietary CP. Ractopamine did not alter fat thickness; however, fat thickness was reduced by

  2. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  3. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    DTIC Science & Technology

    2012-03-01

    After 1 week of tumor inoculation, vehicle (10% ethanol, 90% corn oil ), 10 mg/kg body weight (BW) of daidzein, or combined soy isoflavones 10 mg/kg BW...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING...00935 Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression Columba de la Parra Simental

  4. Influence of dietary protein level and origin on the flow of mucin along the small intestine of the preruminant calf.

    PubMed

    Montagne, L; Toullec, R; Formal, M; Lallès, J P

    2000-12-01

    The objective of this study was to investigate the effect of the dietary crude protein (CP) content and origin on the flow of mucin protein along the small intestine of the preruminant calf. Diets contained 1, 10, 20 and 28% of CP supplied by skim milk powder (SMP) in experiment 1. Diets differed by the nature of protein [soybean protein concentrate (SPC), partially hydrolyzed soybean protein isolate (HSPI) or potato protein concentrate (PPC)] in experiment 2. Duodenal, jejunal, and ileal digesta were collected from calves fitted with simple cannulae and continuously infused the milk replacers into the abomasum. In experiment 1, the basal flow of mucin protein was 1.1, 1.8, and 4.0 g/kg of dry matter intake at the duodenum, jejunum, and ileum, respectively. Mucin protein contributed to 19 and 40% of ileal loss of CP and lysine, respectively. When dietary CP rose from 1 to 28%, the flow of mucin protein increased at the duodenum (+300%). In experiment 2, the flow of mucin protein increased by 70% at the duodenum and at the jejunum when SMP was partially replaced by SPC and HSPI. With PPC, this flow increased at the duodenum (+24%) and ileum (+52%). These data demonstrate the importance of mucin as a source of endogenous nitrogen and the impact of dietary protein content and origin on this flow.

  5. Dietary inflammatory index is associated with serum C-reactive protein and protein energy wasting in hemodialysis patients: A cross-sectional study

    PubMed Central

    Tengilimoglu-Metin, M. Merve; Gumus, Damla; Sevim, Sumeyra; Turkoglu, İnci; Mandiroglu, Fahri

    2016-01-01

    BACKGROUND/OBJECTIVE Malnutrition and inflammation are reported as the most powerful predictors of mortality and morbidity in hemodialysis (HD) patients. Diet has a key role in modulating inflammation and dietary inflammatory index (DII) is a new tool for assessment of inflammatory potential of diet. The aim of this study was to evaluate the application of DII on dietary intake of HD patients and examine the associations between DII and malnutrition-inflammation markers. SUBJECTS/METHODS A total of 105 subjects were recruited for this cross-sectional study. Anthropometric measurements, 3-day dietary recall, and pre-dialysis biochemical parameters were recorded for each subject. Subjective global assessment (SGA), which was previously validated for HD patients, and malnutrition inflammation score (MIS) were used for the diagnosis of protein energy wasting. DII was calculated according to average of 3-day dietary recall data. RESULTS DII showed significant correlation with reliable malnutrition and inflammation indicators including SGA (r = 0.28, P < 0.01), MIS (r = 0.28, P < 0.01), and serum C-reactive protein (CRP) (r = 0.35, P < 0.001) in HD patients. When the study population was divided into three subgroups according to their DII score, significant increasing trends across the tertiles of DII were observed for SGA score (P = 0.035), serum CRP (P = 0.001), dietary energy (P < 0.001), total fat (P < 0.001), saturated fatty acids (P < 0.001), polyunsaturated fatty acids (P = 0.006), and omega-6 fatty acids (P = 0.01) intakes. CONCLUSION This study shows that DII is a good tool for assessing the overall inflammatory potential of diet in HD patients. PMID:27478547

  6. Multiple Amino Acid Supplementations to Reduce Dietary Protein in Plant-Based Rainbow Trout, Oncorhynchus mykiss, Feeds

    USDA-ARS?s Scientific Manuscript database

    Reducing dietary protein in trout feeds will reduce production costs if growth performance can be maintained. A study was conducted to determine if balancing plant-based diets on an available amino acid basis would result in a reduction in total protein level. The diets were formulated to contain ...

  7. Dietary trends and management of hyperphosphatemia among patients with chronic kidney disease: an international survey of renal care professionals.

    PubMed

    Fouque, Denis; Cruz Casal, Maria; Lindley, Elizabeth; Rogers, Susan; Pancířová, Jitka; Kernc, Jennifer; Copley, J Brian

    2014-03-01

    The objective of this study was to review the opinions and experiences of renal care professionals to examine dietary trends among patients with chronic kidney disease (CKD) and problems associated with the clinical management of hyperphosphatemia. This was an online survey comprising open and closed questions requesting information on patient dietary trends and the clinical management of hyperphosphatemia. The study was conducted in 4 European countries (the Netherlands, Spain, Sweden, and the United Kingdom). Participants were 84 renal care professionals. This was an online survey. Responder-reported experiences and perceptions of patient dietary trends and hyperphosphatemia management were assessed. Most survey responders (56%) observed an increase in the consumption of processed convenience food, 48% noticed an increase in the consumption of foods rich in phosphorus-containing additives, and 60% believed that there has been a trend of increasing patient awareness of the phosphorus content of food. Patients undergoing hemodialysis (HD) were most likely to experience difficulties in following advice on dietary phosphorus restriction (38% of responders estimated that 25-50% of their patients experienced difficulties, and 29% estimated that 51-75% experienced difficulties). Maintaining protein intake and restricting dietary phosphorus were perceived as being equally important by at least half of responders for predialysis patients (56%) and for those undergoing peritoneal dialysis and HD (54% and 50%, respectively). There were international variations in dietary trends and hyperphosphatemia management. Although most responders have observed a trend of increasing awareness of the phosphorus content of food among patients with CKD, the survey results indicate that many patients continue to experience difficulties when attempting to restrict dietary phosphorus. The survey responses reflect the global trend of increasing consumption of processed convenience foods and

  8. Relation of dietary salt and aldosterone to urinary protein excretion in subjects with resistant hypertension.

    PubMed

    Pimenta, Eduardo; Gaddam, Krishna K; Pratt-Ubunama, Monique N; Nishizaka, Mari K; Aban, Inmaculada; Oparil, Suzanne; Calhoun, David A

    2008-02-01

    Experimental data indicate that the cardiorenal effects of aldosterone excess are dependent on concomitant high dietary salt intake. Such an interaction of endogenous aldosterone and dietary salt has not been observed previously in humans. We assessed the hypothesis that excess aldosterone and high dietary sodium intake combine to worsen proteinuria in patients with resistant hypertension. Consecutive subjects with resistant hypertension (n=84) were prospectively evaluated by measurement of 24-hour urinary aldosterone (Ualdo), sodium, and protein (Uprot) excretion. Subjects were analyzed according to aldosterone status (high: Ualdo >or=12 microg/24 hours; or normal: <12 microg/24 hours) and dietary salt intake based on tertiles of urinary sodium. The mean clinic blood pressure for all of the subjects was 161.4+/-22.4/89.8+/-13.5 mm Hg on an average of 4.3 medications. There was no blood pressure difference between study groups. Uprot was significantly higher in the 38 subjects with high Ualdo compared with the 46 subjects with normal Ualdo (143.0+/-83.8 versus 95.9+/-81.7 mg/24 hours; P=0.01). Among subjects with high Ualdo, Uprot increased progressively across urinary sodium groups (P<0.05). In contrast, there was no difference in Uprot across sodium tertiles among subjects with normal Ualdo. A positive correlation between Uprot and urinary sodium (r=0.47; P=0.003) was observed in subjects with high Ualdo but not in subjects with normal Ualdo (r=0.18; P value not significant). These results suggest that aldosterone excess and high dietary salt combine to increase urinary protein excretion.

  9. Adaptive response of broilers to dietary phosphorus and calcium restrictions.

    PubMed

    Rousseau, Xavière; Valable, Anne-Sophie; Létourneau-Montminy, Marie-Pierre; Même, Nathalie; Godet, Estelle; Magnin, Michel; Nys, Yves; Duclos, Michel J; Narcy, Agnès

    2016-12-01

    The aim of this study was to evaluate the capacity of chickens to adapt to and compensate for early dietary restriction of non-phytate P ( NPP: ) and/or Ca (10 to 21 d) in a later phase (22 to 35 d), and to determine whether compensatory processes depend on the P and Ca concentrations in the finisher diet. Four diets were formulated and fed to broilers from 10 to 21 d in order to generate birds with different mineral status: L 1 (0.6% Ca, 0.30% NPP), L 2 (0.6% Ca, 0.45% NPP), H 1 (1.0% Ca, 0.30% NPP), and H 2 (1.0% Ca, 0.45% NPP). On d 22, each group was divided into three groups which received a low (L, 0.48% Ca, 0.24% NPP), moderate (M, 0.70% Ca, 0.35% NPP), or high (H, 0.90% Ca, 0.35% NPP) finisher diet until 35 d, resulting in a total of 12 treatments. Lowering the Ca level enhanced apparent ileal digestibility of P (P AID) at 21 d especially with the high NPP level (Ca × NPP, P < 0.01). The lower bone mineralization observed at 21 d in broilers fed the L 1 diet compared to those fed the H 2 diet had disappeared by 35 d with long-term stimulation of the P AID with the low NPP level (P < 0.001). Although P AID and growth performance were improved in birds fed the L 1 L compared to the L 1 H and H 2 H treatments, tibia characteristics tended to be lower in birds fed the L 1 L compared to those fed the L 1 H treatment. Birds fed the H 1 M treatment had higher P AID, growth performance and tibia ash content than those fed the H 1 H treatment. A significant increase in the mRNA levels of several genes encoding Ca and P transporters was observed at 35 d in birds fed the L 1 followed by the L diet compared to birds fed the L 1 followed by the M diet. In conclusion, chickens are able to adapt to early dietary changes in P and Ca through improvement of digestive efficiency in a later phase, and the extent of the compensation in terms of growth performance and bone mineralization depends on the P and Ca levels in the subsequent diet. © 2016 Poultry Science Association

  10. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  11. Dietary protein level and origin (casein and highly purified soybean protein) affect hepatic storage, plasma lipid transport, and antioxidative defense status in the rat.

    PubMed

    Madani, S; Prost, J; Belleville, J

    2000-05-01

    The effects of different proportions (10, 20, and 30%) of dietary casein or highly purified soybean protein on lipid metabolism were studied in growing Wistar rats. Hepatic, plasma and lipoprotein lipid, and protein concentrations, plasma thiobarbituric acid-reactive substance (TBARS) levels, and resistance of red blood cells against free-radical attack were determined after a 4-wk dietary regimen. Compared with the 20% casein diet, the 20% soybean protein diet exhibited similar cholesterolemia but lower plasma triacylglycerol concentrations and very-low-density lipoprotein (VLDL) particle number, as measured by diminished contents of VLDL-triacylglycerol, VLDL-protein, and VLDL-apolipoprotein (Apo) B (B-100 and B-48). The soybean protein diet raised high-density lipoprotein (HDL)(2-3) particle number, as measured by enhanced concentrations of HDL(2-3) cholesterol, HDL-phospholipid, and HDL-ApoA-I. Increasing casein or soybean protein level (from 10 to 30%) in the diet involved higher VLDL-ApoB (B-100 and B-48), indicating an increase in the number of VLDL particles. Feeding the 30% casein or 30% soybean protein diet enhanced LDL-HDL(1) cholesterol contents. Despite similar HDL(2-3)-ApoA-I levels, the 30% casein diet enhanced the HDL(2-3) mass and its cholesterol concentrations. In contrast, feeding either the 10 or 30% soybean protein diet significantly lowered HDL(2-3) cholesterol and ApoA-I levels. These effects on cholesterol distribution in lipoprotein fractions occurred despite unchanged total cholesterol concentrations in plasma. Feeding 20% soybean protein versus 20% casein involved lower plasma TBARS concentrations. Decreasing casein or soybean protein levels in the diet were associated with higher plasma TBARS concentrations and had a lower resistance of red blood cells against free-radical attack. The present study shows that dietary protein level and origin play an important role in lipoprotein metabolism and the antioxidative defense status but do not

  12. Dietary Protein Sources and the Risk of Stroke in Men and Women

    PubMed Central

    Bernstein, Adam M.; Pan, An; Rexrode, Kathryn M.; Stampfer, Meir; Hu, Frank B.; Mozaffarian, Dariush; Willett, Walter C.

    2012-01-01

    Background and Purpose Few dietary protein sources have been studied prospectively in relation to stroke. We examined the relation between foods that are major protein sources and risk of stroke. Methods We prospectively followed 84,010 women aged 30–55 years at baseline and 43,150 men aged 40–75 years at baseline without diagnosed cancer, diabetes, or cardiovascular disease. Diet was assessed repeatedly by a standardized and validated questionnaire. We examined the association between protein sources and incidence of stroke using a proportional hazard model adjusted for stroke risk factors. Results During 26 and 22 years of follow-up in women and men, respectively, we documented 2,633 and 1,397 strokes, respectively. In multivariable analyses, higher intake of red meat was associated with an elevated risk of stroke, while a higher intake of poultry was associated with lower risk. In models estimating the effects of exchanging different protein sources, compared to one serving/day of red meat, one serving/day of poultry was associated with a 27% (95% CI: 12% to 39%) lower risk of stroke, nuts with a 17% (95% CI: 4% to 27%) lower risk, fish with a 17% (95% CI: 0% to 30%) lower risk, low-fat dairy with an 11% (95% CI: 5% to 17%) lower risk, and whole-fat dairy with a 10% (95% CI: 4% to 16%) lower risk. We did not see significant associations with exchanging legumes or eggs for red meat. Conclusions These data suggest that stroke risk may be reduced by replacing red meat with other dietary sources of protein. PMID:22207512

  13. The interactive effect of dietary protein and vitamin levels on the depression of gonadal development in growing male rats kept under disturbed daily rhythm.

    PubMed

    Hanai, Miho; Esashi, Takatoshi

    2007-04-01

    The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. The present study examined protein and vitamins, and their interactions. This study was based on three-way ANOVA; the three factors were lighting conditions, dietary protein and dietary vitamins, respectively. The levels of dietary protein were low or normal: 9% casein or 20% casein. The levels of dietary vitamins were low, normal or high: 1/3.3 of normal (AIN-93G diet) content, normal content, or three times the normal content, respectively. Other compositions were the same as those of the AIN-93G diet, and six kinds of experimental diet were prepared. Four-week-old rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. After 4 wk, the gonadal weights and serum testosterone content were evaluated. In the constant darkness groups (D-groups), the low-protein diet induced reduction of gonadal organ weights and serum testosterone concentrations. This reduction of gonadal organ weights was exacerbated by progressively higher levels of dietary vitamins. In the case of a normal-protein diet, the depression of gonadal development was not accelerated by high-vitamin intake. In the normal lighting groups (N-groups), the low-protein and high-vitamin diet slightly depressed gonadal development. These results suggest that the metabolism of protein and vitamins is different in rats being kept under constant darkness, and that excess dietary vitamins have an adverse effect on gonadal development in rats fed a low-protein diet.

  14. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    PubMed

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal

  15. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro.

    PubMed

    Smith, S E; Gibson, M S; Wash, R S; Ferrara, F; Wright, E; Temperton, N; Kellam, P; Fife, M

    2013-12-01

    Interferon-inducible transmembrane protein 3 (IFITM3) is an effector protein of the innate immune system. It confers potent, cell-intrinsic resistance to infection by diverse enveloped viruses both in vitro and in vivo, including influenza viruses, West Nile virus, and dengue virus. IFITM3 prevents cytosolic entry of these viruses by blocking complete virus envelope fusion with cell endosome membranes. Although the IFITM locus, which includes IFITM1, -2, -3, and -5, is present in mammalian species, this locus has not been unambiguously identified or functionally characterized in avian species. Here, we show that the IFITM locus exists in chickens and is syntenic with the IFITM locus in mammals. The chicken IFITM3 protein restricts cell infection by influenza A viruses and lyssaviruses to a similar level as its human orthologue. Furthermore, we show that chicken IFITM3 is functional in chicken cells and that knockdown of constitutive expression in chicken fibroblasts results in enhanced infection by influenza A virus. Chicken IFITM2 and -3 are constitutively expressed in all tissues examined, whereas IFITM1 is only expressed in the bursa of Fabricius, gastrointestinal tract, cecal tonsil, and trachea. Despite being highly divergent at the amino acid level, IFITM3 proteins of birds and mammals can restrict replication of viruses that are able to infect different host species, suggesting IFITM proteins may provide a crucial barrier for zoonotic infections.

  16. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age

    PubMed Central

    Mahrose, Kh.M.; Attia, A.I.; Ismail, I.E.; Abou-Kassem, D.E.; El-Hack, M.E. Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%). PMID:26623373

  17. Food cravings discriminate between anorexia and bulimia nervosa. Implications for "success" versus "failure" in dietary restriction.

    PubMed

    Moreno, Silvia; Warren, Cortney S; Rodríguez, Sonia; Fernández, M Carmen; Cepeda-Benito, Antonio

    2009-06-01

    Food cravings are subjective, motivational states thought to induce binge eating among eating disorder patients. This study compared food cravings across eating disorders. Women (N=135) diagnosed with anorexia nervosa, restrictive (ANR) or binge-purging (ANBP) types, or bulimia nervosa, non-purging (BNNP) or purging (BNP) types completed measures of food cravings. Discriminant analysis yielded two statistically significant functions. The first function differentiated between all the four group pairs except ANBP and BNNP, with levels of various food-craving dimensions successively increasing for ANR, ANBP, BNNP, and BNP participants. The second function differentiated between ANBP and BNNP participants. Overall, the functions improved classification accuracy above chance level (44% fewer errors). The findings suggest that cravings are more strongly associated with loss of control over eating than with dietary restraint tendencies.

  18. Effect of dietary protein on post-prandial glucose in patients with type 1 diabetes.

    PubMed

    Borie-Swinburne, C; Sola-Gazagnes, A; Gonfroy-Leymarie, C; Boillot, J; Boitard, C; Larger, E

    2013-12-01

    In flexible insulin therapy, determination of the prandial insulin dose only takes into account the carbohydrate content of the evening meal, and not the protein content. Protein can, however, contribute to gluconeogenesis. We compared the glycaemic effect of a standard evening meal with that of a test evening meal enriched in protein. The present study was conducted in 28 C-peptide negative patients with type 1 diabetes. Two evening meals that were similar in content, except that one was enriched by the addition of 300 g of 0%-fat fromage frais, were taken on two consecutive days. Insulin doses were maintained exactly the same before both evening meals. Patients were monitored with a continuous glucose-monitoring device. Patients ate similar quantities at both evening meals, except for protein (21.5 g more at the test evening meal). The preprandial insulin dose was 0.96 (0.4) U per 10 g carbohydrates. After correction for differences of interstitial glucose at the start of the evening meals, both interstitial and capillary glucose levels were similar after both evening meals, except for the late-post-prandial interstitial glucose level. We found no effect of dietary protein on post-prandial-, overnight- or late-night glucose levels in patients with type 1 diabetes. This confirms that dietary proteins need not be included in the calculation of prandial insulin dose. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  19. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice.

    PubMed

    Nishizawa, Naoyuki; Togawa, Tubasa; Park, Kyung-Ok; Sato, Daiki; Miyakoshi, Yo; Inagaki, Kazuya; Ohmori, Norimasa; Ito, Yoshiaki; Nagasawa, Takashi

    2009-02-01

    Millet is an important food crop in Asia and Africa, but the health benefits of dietary millet are little known. This study defined the effects of dietary Japanese millet on diabetic mice. Feeding of a high-fat diet containing Japanese millet protein concentrate (JMP, 20% protein) to type 2 diabetic mice for 3 weeks significantly increased plasma levels of adiponectin and high-density lipoprotein cholesterol (HDL cholesterol) and decreased the levels of glucose and triglyceride as compared to control. The starch fraction of Japanese millet had no effect on glucose or adiponectin levels, but the prolamin fraction beneficially modulated plasma glucose and insulin concentrations as well as adiponectin and tumor necrosis factor-alpha gene expression. Considering the physiological significance of adiponectin and HDL cholesterol levels in type 2 diabetes, insulin resistance, and cardiovascular disease, our findings imply that dietary JMP has the potential to ameliorate these diseases.

  20. Dietary protein intake by meal type in adults aged 51 years and over: WWEIA, NHANES 2011-2012

    USDA-ARS?s Scientific Manuscript database

    Evenly distributing daily protein intake at meals has been suggested to improve muscle mass among older adults. The aim of this research is to evaluate protein intake and its distribution across three meal types (breakfast, lunch, and dinner). Nationally representative dietary intake data of adult...

  1. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine.

    PubMed

    Madeira, Marta Sofia Morgado Dos Santos; Rolo, Eva Sofia Alves; Pires, Virgínia Maria Rico; Alfaia, Cristina Maria Riscado Pereira Mateus; Coelho, Diogo Francisco Maurício; Lopes, Paula Alexandra Antunes Brás; Martins, Susana Isabel Vargas; Pinto, Rui Manuel Amaro; Prates, José António Mestre

    2017-05-30

    In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in

  2. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats

    PubMed Central

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-01-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167

  3. Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana

    USDA-ARS?s Scientific Manuscript database

    Little is known about the effects of dietary macronutrients on the capacity of insects to ward off a fungal pathogen. Here we tested the hypothesis that Mormon crickets fed restricted protein diets have lower enzymatic assays of generalized immunity, slower rates of encapsulation of foreign bodies,...

  4. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    PubMed

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Dietary proteins in the regulation of food intake and body weight in humans.

    PubMed

    Anderson, G Harvey; Moore, Shannon E

    2004-04-01

    This review presents 4 lines of evidence supporting a role for proteins in the regulation of food intake and maintenance of healthy body weights. It is concluded that the protein content of food, and perhaps its source, is a strong determinant of short-term satiety and of how much food is eaten. Although the role of protein in the regulation of long-term food intake and body weight is less clear, the evidence reviewed suggests that further research to define its role is merited. Such research has the potential to lead to new functional foods, food formulations, and dietary recommendations for achieving healthy body weights.

  6. Protecting military personnel from high risk dietary supplements.

    PubMed

    Deuster, Patricia A; Lieberman, Harris R

    2016-01-01

    It is legal tomarketmost naturally occurring substances as dietary supplements in the USA without manufacturers demonstrating they are safe or effective, and an endless variety of ingredients, from esoteric botanicals to unapproved pharmaceuticals, can be found in dietary supplements. Use of certain supplements can pose a risk, but since a robust reporting systemdoes not exist in the USA it is difficult to know which are problematic and the number of adverse events (AE) resulting from their use. Certain populations, includingmilitary personnel, aremore likely to use dietary supplements than the general population. Approximately 70% of military personnel take dietary supplements while about 50% of civilians do. Service members prefer supplements purported to enhance physical performance such as supposedly natural stimulants, protein and amino acids, and combination products. Since some of thesemay be problematic, Servicemembers are probably at higher risk of injury than the general population. Ten percent of military populations appear to be taking potentially risky supplements, and the US Department of Defense (DoD) has taken variousmeasures to protect uniformed personnel including education, policy changes, and restricting sales. Actions taken include launching Operation Supplement Safety (OPSS), introducing a High Risk Supplement list, educating health care professionals on reporting AE thatmight be associated with dietary supplements, recommending policy for reporting AE, and developing an online AE reporting system. OPSS is a DoD-wide effort to educate service members, leaders, health care providers, military families, and retirees on how to safely select supplements

  7. Increasing dietary crude protein does not increase the methionine requirement in kittens.

    PubMed

    Strieker, M J; Morris, J G; Kass, P H; Rogers, Q R

    2007-12-01

    The objective of this study was to determine if the methionine (met) requirement of kittens is correlated with the concentration of dietary crude protein (CP). The study used 48 male kittens in two replications of six 4 x 4 Latin squares, each representing one concentration of met (1.5, 2.5, 3.5, 4.5, 6.0 or 9.0 g/kg diet) with four CP concentrations (150, 200, 300 and 500 g/kg diet) in 2-week periods. Cystine was present in the lowest CP diet at 5.3 g/kg diet and increased as dietary CP increased. Body weight gain, food intake, nitrogen balance and plasma amino acids, glucose, insulin, cortisol, somatomedin C, T(3) and T(4) concentrations on day 12 were measured. From breakpoint analysis of the nitrogen retention curves, the met requirement of kittens was found to be 3.1, 3.8, 3.1 and 2.4 g met/kg for the 150, 200, 300 and 500 g CP/kg diets, respectively. When met was limiting (1.5 or 2.5 g/kg diet), increasing dietary CP did not decrease, but rather increased food intake, body weight gain and nitrogen retention. Plasma met concentrations increased as dietary met increased and at 2.5-3.5 g met/kg diet were not different among kittens fed the various CP diets. Total plasma T(3) and T(4) increased significantly as dietary CP increased in kittens given the 2.5 and 4.5 g met/kg diets. Results indicate that food intake and possibly altered hormonal secretion play a role in this growth response. In conclusion, the met requirement of growing kittens, unlike omnivores and herbivores studied, was not positively correlated with the concentration of dietary CP.

  8. Apparent low ability of liver and muscle to adapt to variation of dietary carbohydrate:protein ratio in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Skiba-Cassy, Sandrine; Panserat, Stéphane; Larquier, Mélanie; Dias, Karine; Surget, Anne; Plagnes-Juan, Elisabeth; Kaushik, Sadasivam; Seiliez, Iban

    2013-04-28

    The rainbow trout (Oncorhynchus mykiss) exhibits high dietary amino acid requirements and an apparent inefficiency to use dietary carbohydrates. Using this species, we investigated the metabolic consequences of long-term high carbohydrates/low protein feeding. Fish were fed two experimental diets containing either 20% carbohydrates/50% proteins (C20P50), or high levels of carbohydrates at the expense of proteins (35% carbohydrates/35% proteins--C35P35). The expression of genes related to hepatic and muscle glycolysis (glucokinase (GK), pyruvate kinase and hexokinase) illustrates the poor utilisation of carbohydrates irrespective of their dietary levels. The increased postprandial GK activity and the absence of inhibition of the gluconeogenic enzyme glucose-6-phosphatase activity support the hypothesis of the existence of a futile cycle around glucose phosphorylation extending postprandial hyperglycaemia. After 9 weeks of feeding, the C35P35-fed trout displayed lower body weight and feed efficiency and reduced protein and fat gains than those fed C20P50. The reduced activation of eukaryotic translation initiation factor 4-E binding protein 1 (4E-BP1) in the muscle in this C35P35 group suggests a reduction in protein synthesis, possibly contributing to the reduction in N gain. An increase in the dietary carbohydrate:protein ratio decreased the expression of genes involved in amino acid catabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E1α and E1β), and increased that of carnitine palmitoyltransferase 1, suggesting a higher reliance on lipids as energy source in fish fed high-carbohydrate and low-protein diets. This probably also contributes to the lower fat gain. Together, these results show that different metabolic pathways are affected by a high-carbohydrate/low-protein diet in rainbow trout.

  9. The Effect of Protein Restriction in the In Vitro Metabolism of Albendazole in Rats.

    PubMed

    Belaz, Kátia Roberta A; de O Cardoso, Josiane; da Silva, Carlos Alberto; Oliveira, Regina V

    2015-01-01

    This work presents an in vitro investigation of the effect of protein restriction on the metabolism of albendazole (ABZ). This study was conducted using liver microsomal fractions obtained from Wistar rats. For the quantitative analysis, a multidimensional High Performance Liquid Chromatography (2D HPLC) method was fully validated for the determination of the ABZ metabolites: albendazole sulfoxide, albendazole sulfone and albendazole 2-aminesulfone. The target compounds were directly extracted using a C8-RAM-BSA column (5.0x0.46 cm i.d.) and analyzed on a chromatographic chiral column containing amylose tris(3,5-dimethylphenylcarbamate) (150x4.6 mm i.d.). The in vitro biotransformation results showed that the protein restriction influenced the oxidative metabolism of ABZ. The production of R-(+)-ABZ-SO (1309 nmol/L) and S-(-)-ABZ-SO (1456 nmol/L) was higher in the control animals than in the animals fed with a diet containing 6% protein, which produced 778.7 nmol/L and 709.5 nmol/L for R-(+) and S-(-)-ABZ-SO enantiomers, respectively. These results were statistically inspected by Student´s t test and the results showed a significant difference between the two means (p<0.05). Moreover, the production of ABZ-SO enantiomers was enantioselective where the S-(-)-ABZ-SO was formed in greater amounts than the R-(+)-ABZ-SO in control animals (p=0.0231). However, the enantioselectivity was not observed when the in vitro biotransformation of ABZ was conducted using the microsomal fractions obtained from protein restriction animals (p>0.05). Furthermore, animal nutritional condition could affect the pattern of ABZ sulphoxidation indicating that the protein nutrition affect primarily the formation of R-(+)-ABZSO and S-(-)-ABZ-SO enantiomers.

  10. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure.

    PubMed

    Smith, Patrick J; Blumenthal, James A; Babyak, Michael A; Craighead, Linda; Welsh-Bohmer, Kathleen A; Browndyke, Jeffrey N; Strauman, Timothy A; Sherwood, Andrew

    2010-06-01

    High blood pressure increases the risks of stroke, dementia, and neurocognitive dysfunction. Although aerobic exercise and dietary modifications have been shown to reduce blood pressure, no randomized trials have examined the effects of aerobic exercise combined with dietary modification on neurocognitive functioning in individuals with high blood pressure (ie, prehypertension and stage 1 hypertension). As part of a larger investigation, 124 participants with elevated blood pressure (systolic blood pressure 130 to 159 mm Hg or diastolic blood pressure 85 to 99 mm Hg) who were sedentary and overweight or obese (body mass index: 25 to 40 kg/m(2)) were randomized to the Dietary Approaches to Stop Hypertension (DASH) diet alone, DASH combined with a behavioral weight management program including exercise and caloric restriction, or a usual diet control group. Participants completed a battery of neurocognitive tests of executive function-memory-learning and psychomotor speed at baseline and again after the 4-month intervention. Participants on the DASH diet combined with a behavioral weight management program exhibited greater improvements in executive function-memory-learning (Cohen's D=0.562; P=0.008) and psychomotor speed (Cohen's D=0.480; P=0.023), and DASH diet alone participants exhibited better psychomotor speed (Cohen's D=0.440; P=0.036) compared with the usual diet control. Neurocognitive improvements appeared to be mediated by increased aerobic fitness and weight loss. Also, participants with greater intima-medial thickness and higher systolic blood pressure showed greater improvements in executive function-memory-learning in the group on the DASH diet combined with a behavioral weight management program. In conclusion, combining aerobic exercise with the DASH diet and caloric restriction improves neurocognitive function among sedentary and overweight/obese individuals with prehypertension and hypertension.

  11. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction.

    PubMed

    Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin

    2012-03-15

    Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Threonine supplementation reduces dietary protein and improves lipid metabolism in Pekin ducks.

    PubMed

    Jiang, Y; Tang, J; Xie, M; Wen, Z G; Qiao, S Y; Hou, S S

    2017-12-01

    1. This study was conducted to investigate the efficiency of threonine (Thr) supplementation on reducing dietary crude protein (CP) content and the effects of Thr on lipid metabolism in Pekin ducks. The effects of dietary CP concentration (160, 190 and 220 g/kg) and Thr supplemental concentration (0, 0.7, 1.4, 2.1 and 2.8 g/kg) on growth performance, carcass, liver lipid and plasma profiles were determined in Pekin ducks from 1-21 d of age. 2. A total of 720-d-old male Pekin ducks were randomly allotted to 1 of 15 dietary treatments with 6 replicate cages of 8 birds per cage for each treatment according to average body weight. 3. Dietary Thr supplementation improved growth performance and breast muscle percentage at all CP diets, and ducks fed Thr-supplemented diets had higher plasma concentrations of some plasma amino acids. Thr supplementation reduced the concentrations of total lipid, triglyceride, cholesterol in liver, and plasma low density lipoprotein cholesterin concentration at 160 and 190 g/kg CP, whereas it increased triglyceride concentration at 160 g/kg CP. 4. Thr requirements based on quadratic broken-line model estimation were 6.6 and 7.0 g/kg for optimal average daily gain (ADG), and 6.7 and 7.3 g/kg for breast muscle percentage of Pekin ducks from 1-21 d of age at 190 and 220 g/kg CP, respectively. The dietary Thr requirements and estimated ADG (55.18 vs. 55.86 g/d/bird) and breast muscle percentage (2.79% vs. 2.75%) of Pekin ducks did not differ between 190 and 220 g/kg CP according to the t-test results. 5. Dietary CP level could be reduced to 190 g/kg in Pekin ducks from 1-21 d of age with Thr supplementation to balance dietary amino acids, and Thr supplementation prevented excess liver lipid deposition in this instance.

  13. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila

    PubMed Central

    Laye, Matthew J; Tran, ViLinh; Jones, Dean P; Kapahi, Pankaj; Promislow, Daniel E L

    2015-01-01

    Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age. PMID:26085309

  14. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort

    PubMed Central

    McLean, Robert R.; Mangano, Kelsey M.; Hannan, Marian T.; Kiel, Douglas P.

    2016-01-01

    Abstract Background: Age-related decline in muscle strength is an important public health issue for older adults. Dietary protein has been associated with maintenance of muscle mass, yet its relation to muscle strength remains unclear. Methods: We determined the association of dietary protein (total, animal, and plant) intake, measured by food frequency questionnaire, with change in grip strength over 6 years in 1,746 men and women from the Framingham Offspring cohort. Results: Mean age at baseline was 58.7 years (range: 29–85), and mean total, animal, and plant protein intakes were 79, 57, and 22g/d, respectively. Adjusted baseline mean grip strength did not differ across quartiles of energy-adjusted total, animal or protein intake. Greater protein intake, regardless of source, was associated with less decrease in grip strength (all p for trend ≤.05): participants in the lowest quartiles lost 0.17% to 0.27% per year while those in the highest quartiles gained 0.52% to 0.60% per year. In analyses stratified by age, participants aged 60 years or older ( n = 646) had similar linear trends on loss of grip strength for total and animal (all p for trend <.03) but not plant protein, while the trends in participants younger than 60 years ( n = 896) were not statistically significant. Conclusions: Higher dietary intakes of total and animal protein were protective against loss of grip strength in community-dwelling adults aged 60 years and older. Increasing intake of protein from these sources may help maintain muscle strength and support prevention of mobility impairment in older adults. PMID:26525088

  15. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD?

    PubMed Central

    Snelson, Matthew; Clarke, Rachel E.; Coughlan, Melinda T.

    2017-01-01

    Diet is one of the largest modifiable risk factors for chronic kidney disease (CKD)-related death and disability. CKD is largely a progressive disease; however, it is increasingly appreciated that hallmarks of chronic kidney disease such as albuminuria can regress over time. The factors driving albuminuria resolution remain elusive. Since albuminuria is a strong risk factor for GFR loss, modifiable lifestyle factors that lead to an improvement in albuminuria would likely reduce the burden of CKD in high-risk individuals, such as patients with diabetes. Dietary therapy such as protein and sodium restriction has historically been used in the management of CKD. Evidence is emerging to indicate that other nutrients may influence kidney health, either through metabolic or haemodynamic pathways or via the modification of gut homeostasis. This review focuses on the role of diet in the pathogenesis and progression of CKD and discusses the latest findings related to the mechanisms of diet-induced kidney disease. It is possible that optimizing diet quality or restricting dietary intake could be harnessed as an adjunct therapy for CKD prevention or progression in susceptible individuals, thereby reducing the burden of CKD. PMID:28287463

  16. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution.

    PubMed

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim A; Zota, Annika; Schmoll, Dieter; Kiens, Bente; Herzig, Stephan; Rose, Adam J

    2017-08-01

    Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total AAD, or the same diet with complete levels of BCAAs (AAD + BCAA). We quantified serum AAs and characterized mice in terms of metabolic efficiency, body composition, glucose homeostasis, serum FGF21, and tissue markers of the integrated stress response (ISR) and mTORC1 signaling. Serum BCAAs, while elevated in serum from hyperphagic NZO, were consistently reduced by dietary PD in humans and murine models. Repletion of dietary BCAAs modestly attenuated insulin sensitivity and metabolic efficiency in wildtype mice but did not restore hyperglycemia in NZO mice. While hepatic markers of the ISR such as P-eIF2α and FGF21 were unabated by dietary BCAA repletion, hepatic and peripheral mTORC1 signaling were fully or partially restored, independent of changes in circulating glucose or insulin. Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD.

  17. Effects of dietary protein/energy ratio on growth performance, carcass trait, meat quality, and plasma metabolites in pigs of different genotypes.

    PubMed

    Liu, Yingying; Kong, Xiangfeng; Jiang, Guoli; Tan, Bi'e; Deng, Jinping; Yang, Xiaojian; Li, Fengna; Xiong, Xia; Yin, Yulong

    2015-01-01

    The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes. Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 × 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases. We observed significant interactions (P < 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P < 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P < 0.05) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P < 0.05) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN. Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower

  18. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial12

    PubMed Central

    Hill, Alison M; Harris Jackson, Kristina A; Roussell, Michael A; West, Sheila G; Kris-Etherton, Penny M

    2015-01-01

    Background: Food-based dietary patterns emphasizing plant protein that were evaluated in the Dietary Approaches to Stop Hypertension (DASH) and OmniHeart trials are recommended for the treatment of metabolic syndrome (MetS). However, the contribution of plant protein to total protein in these diets is proportionally less than that of animal protein. Objective: This study compared 3 diets varying in type (animal compared with plant) and amount of protein on MetS criteria. Design: Sixty-two overweight adults with MetS consumed a healthy American diet for 2 wk before being randomly allocated to either a modified DASH diet rich in plant protein (18% protein, two-thirds plant sources, n = 9 males, 12 females), a modified DASH diet rich in animal protein (Beef in an Optimal Lean Diet: 18.4% protein, two-thirds animal sources, n = 9 males, 11 females), or a moderate-protein diet (Beef in an Optimal Lean Diet Plus Protein: 27% protein, two-thirds animal sources, n = 10 males, 11 females). Diets were compared across 3 phases of energy balance: 5 wk of controlled (all foods provided) weight maintenance (WM), 6 wk of controlled weight loss (minimum 500-kcal/d deficit) including exercise (WL), and 12 wk of prescribed, free-living weight loss (FL). The primary endpoint was change in MetS criteria. Results: All groups achieved ∼5% weight loss at the end of the WL phase and maintained it through FL, with no between-diet differences (WM compared with WL, FL, P < 0.0001; between diets, P = NS). All MetS criteria decreased independent of diet composition (main effect of phase, P < 0.01; between diets, P = NS). After WM, all groups had a MetS prevalence of 80–90% [healthy American diet (HAD) compared with WM, P = NS], which decreased to 50–60% after WL and was maintained through FL (HAD, WM vs WL, FL, P < 0.01). Conclusions: Weight loss was the primary modifier of MetS resolution in our study population regardless of protein source or amount. Our findings demonstrate that heart

  19. Effects of dietary protein on the composition of weight loss in post-menopausal women.

    PubMed

    Gordon, M M; Bopp, M J; Easter, L; Miller, G D; Lyles, M F; Houston, D K; Nicklas, B J; Kritchevsky, S B

    2008-10-01

    To determine whether a hypocaloric diet higher in protein can prevent the loss of lean mass that is commonly associated with weight loss. An intervention study comparing a hypocaloric diet moderately high in protein to one lower in protein. Study measurements were taken at the Wake Forest University General Clinical Research Center (GCRC) and Geriatric Research Center (GRC). Twenty-four post-menopausal, obese women (mean age = 58 +/- 6.6 yrs; mean BMI = 33.0 +/- 3.6 kg/m2). Two 20-week hypocaloric diets (both reduced by 2800 kcal/wk) were compared: one maintaining dietary protein intake at 30% of total energy intake (1.2-1.5 g/kg/d; HI PROT), and the other maintaining dietary protein intake at 15% of total energy (0.5-0.7 g/kg/d; LO PROT). The GCRC metabolic kitchen provided lunch and dinner meals which the women picked up 3 days per week and ate outside of the clinic. Body composition, including total body mass, total lean mass, total fat mass, and appendicular lean mass, assessed by dual energy x-ray absorptiometry, was measured before and after the diet interventions. The HI PROT group lost 8.4 +/- 4.5 kg and the LO PROT group lost 11.4 +/- 3.8 kg of body weight (p = 0.11). The mean percentage of total mass lost as lean mass was 17.3% +/- 27.8% and 37.5% +/- 14.6%, respectively (p = 0.03). Maintaining adequate protein intake may reduce lean mass losses associated with voluntary weight loss in older women.

  20. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    PubMed

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  1. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings.

    PubMed

    Trepanowski, John F; Canale, Robert E; Marshall, Kate E; Kabir, Mohammad M; Bloomer, Richard J

    2011-10-07

    Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion.

  2. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings

    PubMed Central

    2011-01-01

    Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion. PMID:21981968

  3. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets.

    PubMed

    Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen

    2014-01-01

    Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal

  4. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    PubMed Central

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  5. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    PubMed

    Démares, Fabien J; Crous, Kendall L; Pirk, Christian W W; Nicolson, Susan W; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  6. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  7. Gestational Protein Restriction Reduces Expression of Hsd17b2 in Rat Placental Labyrinth1

    PubMed Central

    Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra

    2012-01-01

    ABSTRACT Accumulating evidence strongly supports the premise that testosterone may be a key player in fetal programming on hypertension. Studies have shown that gestational protein restriction doubles the plasma testosterone levels in pregnant rats. In this study, we hypothesized that elevated testosterone levels in response to gestational protein restriction were caused by enhanced expression of steroidogenic enzymes or impaired expression of Hsd17b2, a known testosterone inactivator that converts testosterone to androstenedione in placenta. Pregnant Sprague-Dawley rats were fed normal (20% protein, control; n = 10) or a low-protein diet (6% protein, PR; n = 10) from Day 1 of pregnancy until killed at Days 14, 18, or 21. Junctional (JZ) and labyrinth (LZ) zones of placenta were collected for expression assay on steroidogenic genes (Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b2, and Srd5a1) by real-time PCR. The main findings include the following: 1) expressions of Cyp11a1, Hsd3b1, and Cyp17a1 in JZ were not affected by diet but were affected by day of pregnancy; 2) expression of Hsd17b2 in both female and male JZs was remarkably increased by PR at Days 18 and 21 of pregnancy; 3) expressions of Hsd17b2 were reduced by PR in both female and male LZ at Day 18 of pregnancy and in female LZ at Day 21 of pregnancy; and 4) expression of Srd5a1in LZ was not affected by day of pregnancy, gender, or diet. These results indicate that in response to gestational protein restriction, Hsd17b2 may be a key regulator of testosterone levels and associated activities in placental zones, apparently in a paradoxical manner. PMID:22837477

  8. Certain dietary patterns are beneficial for the metabolic syndrome: reviewing the evidence.

    PubMed

    Calton, Emily K; James, Anthony P; Pannu, Poonam K; Soares, Mario J

    2014-07-01

    The metabolic syndrome (MetS) is a global public health issue of increasing magnitude. The Asia-Pacific region is expected to be hardest hit due to large population numbers, rising obesity, and insulin resistance (IR). This review assessed the protective effects of dietary patterns and their components on MetS. A literature search was conducted using prominent electronic databases and search terms that included in combination: diet, dietary components, dietary patterns, and metabolic syndrome. Articles were restricted to prospective studies and high quality randomized controlled trials that were conducted on humans, reported in the English language, and within the time period of 2000 to 2012. Traditional factors such as age, gender, physical activity, and obesity were associated with risk of MetS; however, these potential confounders were not always accounted for in study outcomes. Three dietary patterns emerged from the review; a Mediterranean dietary pattern, dietary approaches to stop hypertension diet, and the Nordic Diet. Potential contributors to their beneficial effects on prevalence of MetS or reduction in MetS components included increases in fruits, vegetables, whole grains, dairy and dairy components, calcium, vitamin D, and whey protein, as well as monounsaturated fatty acids, and omega-3 fatty acids. Additional prospective and high quality randomized controlled trial studies that investigate Mediterranean dietary pattern, the dietary approaches to stop hypertension diet, and the Nordic Diet would cement the protective benefits of these diets against the MetS. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses.

    PubMed

    Blyth, Graham A D; Chan, Wing Fuk; Webster, Robert G; Magor, Katharine E

    2016-01-01

    Interferon-inducible transmembrane proteins (IFITMs) can restrict the entry of a wide range of viruses. IFITM3 localizes to endosomes and can potently restrict the replication of influenza A viruses (IAV) and several other viruses that also enter host cells through the endocytic pathway. Here, we investigate whether IFITMs are involved in protection in ducks, the natural host of influenza virus. We identify and sequence duck IFITM1, IFITM2, IFITM3, and IFITM5. Using quantitative PCR (qPCR), we demonstrate the upregulation of these genes in lung tissue in response to highly pathogenic IAV infection by 400-fold, 30-fold, 30-fold, and 5-fold, respectively. We express each IFITM in chicken DF-1 cells and show duck IFITM1 localizes to the cell surface, while IFITM3 localizes to LAMP1-containing compartments. DF-1 cells stably expressing duck IFITM3 (but not IFITM1 or IFITM2) show increased restriction of replication of H1N1, H6N2, and H11N9 IAV strains but not vesicular stomatitis virus. Although duck and human IFITM3 share only 38% identity, critical residues for viral restriction are conserved. We generate chimeric and mutant IFITM3 proteins and show duck IFITM3 does not require its N-terminal domain for endosomal localization or antiviral function; however, this N-terminal end confers endosomal localization and antiviral function on IFITM1. In contrast to mammalian IFITM3, the conserved YXXθ endocytosis signal sequence in the N-terminal domain of duck IFITM3 is not essential for correct endosomal localization. Despite significant structural and amino acid divergence, presumably due to host-virus coevolution, duck IFITM3 is functional against IAV. Immune IFITM genes are poorly conserved across species, suggesting that selective pressure from host-specific viruses has driven this divergence. We wondered whether coevolution between viruses and their natural host would result in the evasion of IFITM restriction. Ducks are the natural host of avian influenza A viruses

  10. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study.

    PubMed

    Houston, Denise K; Nicklas, Barbara J; Ding, Jingzhong; Harris, Tamara B; Tylavsky, Frances A; Newman, Anne B; Lee, Jung Sun; Sahyoun, Nadine R; Visser, Marjolein; Kritchevsky, Stephen B

    2008-01-01

    Dietary surveys suggest that many older, community-dwelling adults consume insufficient dietary protein, which may contribute to the age-related loss of lean mass (LM). The objective of the study was to determine the association between dietary protein and changes in total LM and nonbone appendicular LM (aLM) in older, community-dwelling men and women. Dietary protein intake was assessed by using an interviewer-administered 108-item food-frequency questionnaire in men and women aged 70-79 y who were participating in the Health, Aging, and Body Composition study (n=2066). Changes in LM and aLM over 3 y were measured by using dual-energy X-ray absorptiometry. The association between protein intake and 3-y changes in LM and aLM was examined by using multiple linear regression analysis adjusted for potential confounders. After adjustment for potential confounders, energy-adjusted protein intake was associated with 3-y changes in LM [beta (SE): 8.76 (3.00), P=0.004] and aLM [beta (SE): 5.31 (1.64), P=0.001]. Participants in the highest quintile of protein intake lost approximately 40% less LM and aLM than did those in the lowest quintile of protein intake (x+/-SE: -0.501+/-0.106 kg compared with -0.883+/-0.104 kg for LM; -0.400+/-0.058 kg compared with -0.661+/-0.057 kg for aLM; P for trend<0.01). The associations were attenuated slightly after adjustment for change in fat mass, but the results remained significant. Dietary protein may be a modifiable risk factor for sarcopenia in older adults and should be studied further to determine its effects on preserving LM in this population.

  11. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai.

    PubMed

    Wu, Chenglong; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhong, Xiaoli

    2011-06-01

    The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (p<0.05). Excessive dietary Zn (710.6 and 3462.5 mg/kg) significantly increases the Zn content and significantly decreases the total antioxidant capacity (T-AOC) in hepatopancreas (p<0.05). These findings showed that dietary Zn (33.8 mg/kg) could highly trigger the expression levels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Dietary Sodium Modulation of Aldosterone Activation and Renal Function During the Progression of Experimental Heart Failure Miller: Dietary Sodium and Early Heart Failure

    PubMed Central

    Miller, Wayne L.; Borgeson, Daniel D.; Grantham, J. Aaron; Luchner, Andreas; Redfield, Margaret M.; Burnett, John C.

    2015-01-01

    Aims Aldosterone activation is central to the sodium-fluid retention that marks the progression of heart failure (HF). The actions of dietary sodium restriction, a mainstay in HF management, on cardiorenal and neuroendocrine adaptations during the progression of HF are poorly understood. The study aim was to assess the role of dietary sodium during the progression of experimental HF. Methods and Results Experimental HF was produced in a canine model by rapid right ventricular pacing which evolves from early mild HF to overt, severe HF. Dogs were fed one of three diets: 1) high sodium [250 mEq (5.8 grams) per day, n=6]; 2) standard sodium [58 mEq (1.3 grams) per day, n=6]; and 3) sodium restriction [11 mEq (0.25 grams) per day, n=6]. During the 38 day study hemodynamics, renal function, renin activity (PRA), and aldosterone were measured. Changes in hemodynamics at 38 days were similar in all three groups, as were changes in renal function. Aldosterone activation was demonstrated in all three groups, however, dietary sodium restriction, in contrast to high sodium, resulted in early (10 days) activation of PRA and aldosterone. High sodium demonstrated significant suppression of aldosterone activation over the course of HF progression. Conclusions Excessive dietary sodium restriction particularly in early stage HF results in early aldosterone activation, while normal and excess sodium intake are associated with delayed or suppressed activation. These findings warrant evaluation in humans to determine if dietary sodium manipulation, particularly during early stage HF, may have a significant impact on neuroendocrine disease progression. PMID:25823360

  13. A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans

    PubMed Central

    Chamoli, Manish; Singh, Anupama; Malik, Yasir; Mukhopadhyay, Arnab

    2014-01-01

    Although dietary restriction (DR) is known to extend lifespan across species, from yeast to mammals, the signalling events downstream of food/nutrient perception are not well understood. In Caenorhabditis elegans, DR is typically attained either by using the eat-2 mutants that have reduced pharyngeal pumping leading to lower food intake or by feeding diluted bacterial food to the worms. In this study, we show that knocking down a mammalian MEKK3-like kinase gene, mekk-3 in C. elegans, initiates a process similar to DR without compromising food intake. This DR-like state results in upregulation of beta-oxidation genes through the nuclear hormone receptor NHR-49, a HNF-4 homolog, resulting in depletion of stored fat. This metabolic shift leads to low levels of reactive oxygen species (ROS), potent oxidizing agents that damage macromolecules. Increased beta-oxidation, in turn, induces the phase I and II xenobiotic detoxification genes, through PHA-4/FOXA, NHR-8 and aryl hydrocarbon receptor AHR-1, possibly to purge lipophilic endotoxins generated during fatty acid catabolism. The coupling of a metabolic shift with endotoxin detoxification results in extreme longevity following mekk-3 knock-down. Thus, MEKK-3 may function as an important nutrient sensor and signalling component within the organism that controls metabolism. Knocking down mekk-3 may signal an imminent nutrient crisis that results in initiation of a DR-like state, even when food is plentiful. PMID:24655420

  14. Measurement of Dietary Restraint: Validity Tests of Four Questionnaires

    PubMed Central

    Williamson, Donald A.; Martin, Corby K.; York-Crowe, Emily; Anton, Stephen D.; Redman, Leanne M.; Han, Hongmei; Ravussin, Eric

    2007-01-01

    This study tested the validity of four measures of dietary restraint: Dutch Eating Behavior Questionnaire, Eating Inventory (EI), Revised Restraint Scale (RS), and the Current Dieting Questionnaire. Dietary restraint has been implicated as a determinant of overeating and binge eating. Conflicting findings have been attributed to different methods for measuring dietary restraint. The validity of four self-report measures of dietary restraint and dieting behavior was tested using: 1) factor analysis, 2) changes in dietary restraint in a randomized controlled trial of different methods to achieve calorie restriction, and 3) correlation of changes in dietary restraint with an objective measure of energy balance, calculated from the changes in fat mass and fat-free mass over a six-month dietary intervention. Scores from all four questionnaires, measured at baseline, formed a dietary restraint factor, but the RS also loaded on a binge eating factor. Based on change scores, the EI Restraint scale was the only measure that correlated significantly with energy balance expressed as a percentage of energy require d for weight maintenance. These findings suggest that that, of the four questionnaires tested, the EI Restraint scale was the most valid measure of the intent to diet and actual caloric restriction. PMID:17101191

  15. Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids.

    PubMed

    Auestad, N; Innis, S M

    2000-01-01

    Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.

  16. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  17. Gestational dietary protein is associated with sex specific decrease in blood flow, fetal heart growth and post-natal blood pressure of progeny.

    PubMed

    Hernandez-Medrano, Juan H; Copping, Katrina J; Hoare, Andrew; Wapanaar, Wendela; Grivell, Rosalie; Kuchel, Tim; Miguel-Pacheco, Giuliana; McMillen, I Caroline; Rodgers, Raymond J; Perry, Viv E A

    2015-01-01

    The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14 mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60 d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98 dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36 dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60 d up to 23 dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system.

  18. High dietary sodium chloride causes further protein loss during head-down tilt bed rest (HDBR)

    NASA Astrophysics Data System (ADS)

    Buehlmeier, Judith; Frings-Meuthen, Petra; Baecker, Natalie; Stehle, Peter; Heer, Martina

    Human spaceflight is associated with a loss of body protein most likely caused by muscle degradation. Additionally astronauts tend towards a high dietary intake of sodium chloride (NaCl), which has recently been shown to induce low grade metabolic acidosis (Frings-Meuthen et al. JBMR, Epub 2007). In several patterns, e.g. chronical renal failure, metabolic acidosis is associated with protein catabolism. We therefore hypothesized that high dietary intake of NaCl enforces protein losses in HDBR, a model for physiological changes in microgravity (µG). Eight healthy male subjects (mean age 26.25 ± 3.5; mean body weight: 78.5 ± 4.1 kg) participated in a 14-day bed rest study in the metabolic ward of the DLR - Institute of Aerospace Medicine, Cologne, Germany. The study was carried out in a cross over design, consisting of two phases, each lasting 22 days (5 days adaptation, 14 days 6° HDBR and 3 days recovery). Both study phases were identical with respect to environmental conditions and study protocol. Subjects received an individually tailored, weight-maintaining diet containing 1.3 g protein/kg/day. The diet was identical in both study phases with the exception of NaClintake: Every subject received a low NaCl diet (0.7 mmol/kg/day) in one phase and a high NaCl diet (7.7 mmol/kg/day) in another one. Blood gas for analysis of acid-base balance was implemented at days 4 and 5 of adaptation, days 2, 5, 7, 10, 12, 14 of HDBR and days 2, 3 of recovery. Continuous urine collection started on the first day in the metabolic ward to analyze nitrogen excretion. Nitrogen balance was calculated from the difference between protein intake and urinary nitrogen excretion, determined by use of chemiluminescence (Grimble et al. JPEN, 1988). Plasma pH did not change significantly (p=0.285), but plasma bicarbonate and base excess decreased (p=0.0175; p=0.0093) with high NaCl intake in HDBR compared to the low NaCl diet. Nitrogen balance in HDBR was negative, as expected in

  19. Conserved and Differential Effects of Dietary Energy Intake on the Hippocampal Transcriptomes of Females and Males

    PubMed Central

    Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Keselman, Alex; Iyun, Titilola; Carlson, Olga D.; Egan, Josephine M.; Becker, Kevin G.; Wood, William; Prabhu, Vinayakumar; de Cabo, Rafael

    2008-01-01

    The level of dietary energy intake influences metabolism, reproductive function, the development of age-related diseases, and even cognitive behavior. Because males and females typically play different roles in the acquisition and allocation of energy resources, we reasoned that dietary energy intake might differentially affect the brains of males and females at the molecular level. To test this hypothesis, we performed a gene array analysis of the hippocampus in male and female rats that had been maintained for 6 months on either ad libitum (control), 20% caloric restriction (CR), 40% CR, intermittent fasting (IF) or high fat/high glucose (HFG) diets. These diets resulted in expected changes in body weight, and circulating levels of glucose, insulin and leptin. However, the CR diets significantly increased the size of the hippocampus of females, but not males. Multiple genes were regulated coherently in response to energy restriction diets in females, but not in males. Functional physiological pathway analyses showed that the 20% CR diet down-regulated genes involved in glycolysis and mitochondrial ATP production in males, whereas these metabolic pathways were up-regulated in females. The 40% CR diet up-regulated genes involved in glycolysis, protein deacetylation, PGC-1α and mTor pathways in both sexes. IF down-regulated many genes in males including those involved in protein degradation and apoptosis, but up-regulated many genes in females including those involved in cellular energy metabolism, cell cycle regulation and protein deacetylation. Genes involved in energy metabolism, oxidative stress responses and cell death were affected by the HFG diet in both males and females. The gender-specific molecular genetic responses of hippocampal cells to variations in dietary energy intake identified in this study may mediate differential behavioral responses of males and females to differences in energy availability. PMID:18545695

  20. Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows.

    PubMed

    Broderick, G A; Stevenson, M J; Patton, R A

    2009-06-01

    An incomplete 8 x 8 Latin square trial (4-wk periods; 12 wk total) using 32 multiparous and 16 primiparous Holstein cows was conducted to assess the production response to crude protein (CP), digestible rumen-undegraded protein (RUP), and rumen-protected Met (RPM; fed as Mepron; Degussa Corp., Kennesaw, GA). Diets contained [dry matter (DM) basis] 21% alfalfa silage, 34% corn silage, 22 to 26% high-moisture corn, 10 to 14% soybean meal, 4% soyhulls, 2% added fat, 1.3% minerals and vitamins, and 27 to 28% neutral detergent fiber. Treatments were a 2 x 2 x 2 factorial arrangement of the following main effects: 15.8 or 17.1% dietary CP, with or without supplemental rumen-undegraded protein (RUP) from expeller soybean meal, and 0 or 9 g of RPM/d. None of the 2- or 3-way interactions was significant. Higher dietary CP increased DM intake 1.1 kg/d and yield of milk 1.7 kg/d, 3.5% fat-corrected milk (FCM) 2.2 kg/d, fat 0.10 kg/d, and true protein 0.05 kg/d, and improved apparent N balance and DM and fiber digestibility. However, milk urea N and estimated urinary excretion of urea-N and total-N also increased, and apparent N efficiency (milk-N/N-intake) fell from 33 to 30% when cows consumed higher dietary CP. Positive effects of feeding more RUP were increased feed efficiency and milk fat content plus 1.8 kg/d greater FCM and 0.08 kg/d greater fat, but milk protein content was lower and milk urea N and urinary urea excretion were elevated. Supplementation with RPM increased DM intake 0.7 kg/d and FCM and fat yield by 1.4 and 0.06 kg/d, and tended to increase milk fat content and yield of milk and protein.

  1. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    PubMed

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  2. Effect of dietary protein on intake, nutrients utilization, nitrogen balance, blood metabolites, growth and puberty in growing Bhadawari buffalo (Bubalus bubalis) heifers.

    PubMed

    Singh, Sultan; Kushwaha, Badri Prasad; Maity, Subendu Bikas; Singh, Krishan Kunwar; Das, Nityanand

    2015-01-01

    Fifteen Bhadawari buffalo heifers of 207 ± 9.78 kg mean body weight were randomly distributed into three dietary groups to evaluate the effect of protein level on nutrient utilization, nitrogen (N) balance, growth rate, blood metabolites, and puberty. All animals were offered wheat straw-berseem diets supplemented with concentrate mixtures of similar energy (2.7 Mcal/kg) and different protein levels (14.3-22%). Animals of standard-protein group (SPG) were offered protein and energy as per requirement, while animals of low-protein group (LPG) and high-protein group (HPG) were fed 20% less and 20% more protein, respectively, than SPG. Feed dry matter (DM) and metabolizable energy (ME) intake (% body wt. and g/kg w(0.75)) were similar for all three diets; however, the crude protein (CP) and digestible crude protein (DCP) intake on percent body weight and per kilogram metabolic weight was higher (P < 0.05) in HPG than in SPG or LPG. Digestibility of CP, cellulose, and hemicellulose was higher (P < 0.05) in HPG versus LPG. Fecal N excretion was similar, while urinary N excretion was highest (P < 0.05) in HPG (74.83 g/day) compared with SPG (50.03 g/day) and LPG (47.88 g/day), which resulted in lower N retention in HPG than in the other dietary groups. Level of dietary N had no effect on blood metabolites viz. glucose, urea, and N. Digestible energy (DE) and ME contents of diets were identical, while DCP contents were higher (P < 0.05) in HPG than in LPG. Feed and nutrient (CP and ME) conversion efficiency to produce a unit kilogram weight gain was identical among the dietary groups. Dietary protein level had no effect on the heifer's weight and age at puberty. The mean growth rate of heifers at 240 days was higher (P > 0.05) in SPG (330.8 g/day) than in LPG (296.7 g/day), while the animals gained more weight in January to March months and the lowest weight in May to July months. Protein level had no effect on conception rate of heifers. Results

  3. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila.

    PubMed

    Laye, Matthew J; Tran, ViLinh; Jones, Dean P; Kapahi, Pankaj; Promislow, Daniel E L

    2015-10-01

    Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Blood harmane concentrations and dietary protein consumption in essential tremor.

    PubMed

    Louis, E D; Zheng, W; Applegate, L; Shi, L; Factor-Litvak, P

    2005-08-09

    Beta-carboline alkaloids (e.g., harmane) are highly tremorogenic chemicals. Animal protein (meat) is the major dietary source of these alkaloids. The authors previously demonstrated that blood harmane concentrations were elevated in patients with essential tremor (ET) vs controls. Whether this difference is due to greater animal protein consumption by patients or their failure to metabolize harmane is unknown. The aim of this study was to determine whether patients with ET and controls differ with regard to 1) daily animal protein consumption and 2) the correlation between animal protein consumption and blood harmane concentration. Data on current diet were collected with a semiquantitative food frequency questionnaire and daily calories and consumption of animal protein and other food types was calculated. Blood harmane concentrations were log-transformed (logHA). The mean logHA was higher in 106 patients than 161 controls (0.61 +/- 0.67 vs 0.43 +/- 0.72 g(-10)/mL, p = 0.035). Patients and controls consumed similar amounts of animal protein (50.2 +/- 19.6 vs 49.4 +/- 19.1 g/day, p = 0.74) and other food types (animal fat, carbohydrates, vegetable fat) and had similar caloric intakes. In controls, logHA was correlated with daily consumption of animal protein (r = 0.24, p = 0.003); in patients, there was no such correlation (r = -0.003, p = 0.98). The similarity between patients and controls in daily animal protein consumption and the absence of the normal correlation between daily animal protein consumption and logHA in patients suggests that another factor (e.g., a metabolic defect) may be increasing blood harmane concentration in patients.

  5. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  6. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  7. Interactive effects of arsenate, selenium, and dietary protein on survival, growth, and physiology in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Sanderson, C.J.; LeCaptain, L.J.; Cromartie, E.; Pendleton, G.W.

    1992-01-01

    High concentrations of arsenic (As) and selenium (Se) have been found in aquatic food chains associated with irrigation drainwater. Total biomass of invertebrates, a maJor source of protein for wild ducklings, may vary in environments that are contaminated with selenium. Dayold mallard (Anas platyrhynchos) ducklings received an untreated diet (controls) containing 22% protein or diets containing 15 ppm Se (as selenomethionine), 60 ppm Se, 200 ppm As (as sodium arsenate), 15 ppm Se with 200 ppm As, or 60 ppm Se with 200 ppm As. In a concurrent experiment, the same sequence was repeated with a proteinrestricted (7%) but isocaloric diet. After 4 weeks, blood and tissue samples were collected for biochemical and histological examination. With 22% protein and 60 ppm Se in the diet, duckling survival and growth was reduced and livers had histopathological lesions. Arsenic alone caused some reduction in growth. Antagonistic interactive effects occurred between As and Se, including complete to partial alleviation of the following Se effects: mortality, impaired growth, hepatic lesions and lipid peroxidation, and altered glutathione and thiol status. With 7% protein, survival and growth of controls was less than that with 22% protein, Se (60 ppm) caused 100% mortality, and As (200 ppm) caused mortality, decreased growth, and liver histopathology. These findings suggest the potential for antagonistic effects of Se and As on duckling survival, growth, and physiology with adequate dietary protein but more severe toxicological effects when dietary protein is diminished.

  8. Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight.

    PubMed

    Hudson, Joshua L; Kim, Jung Eun; Paddon-Jones, Douglas; Campbell, Wayne W

    2017-11-01

    Background: Emerging research suggests that redistributing total protein intake from 1 high-protein meal/d to multiple moderately high-protein meals improves 24-h muscle protein synthesis. Over time, this may promote positive changes in body composition. Objective: We sought to assess the effects of within-day protein intake distribution on changes in body composition during dietary energy restriction and resistance training. Design: In a randomized parallel-design study, 41 men and women [mean ± SEM age: 35 ± 2 y; body mass index (in kg/m 2 ): 31.5 ± 0.5] consumed an energy-restricted diet (750 kcal/d below the requirement) for 16 wk while performing resistance training 3 d/wk. Subjects consumed 90 g protein/d (1.0 ± 0.03 g · kg -1 · d -1 , 125% of the Recommended Dietary Allowance, at intervention week 1) in either a skewed (10 g at breakfast, 20 g at lunch, and 60 g at dinner; n = 20) or even (30 g each at breakfast, lunch, and dinner; n = 21) distribution pattern. Body composition was measured pre- and postintervention. Results: Over time, whole-body mass (least-squares mean ± SE: -7.9 ± 0.6 kg), whole-body lean mass (-1.0 ± 0.2 kg), whole-body fat mass (-6.9 ± 0.5 kg), appendicular lean mass (-0.7 ± 0.1 kg), and appendicular fat mass (-2.6 ± 0.2 kg) each decreased. The midthigh muscle area (0 ± 1 cm 2 ) did not change over time, whereas the midcalf muscle area decreased (-3 ± 1 cm 2 ). Within-day protein distribution did not differentially affect these body-composition responses. Conclusion: The effectiveness of dietary energy restriction combined with resistance training to improve body composition is not influenced by the within-day distribution of protein when adequate total protein is consumed. This trial was registered at clinicaltrials.gov as NCT02066948. © 2017 American Society for Nutrition.

  9. Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity.

    PubMed

    Sarker, Marjana Rahman; Franks, Susan; Sumien, Nathalie; Thangthaeng, Nopporn; Filipetto, Frank; Forster, Michael

    2015-01-01

    Dietary curcumin was studied for its potential to decrease adiposity and reverse obesity- associated cognitive impairment in a mouse model of midlife sedentary obesity. We hypothesized that curcumin intake, by decreasing adiposity, would improve cognitive function in a manner comparable to caloric restriction (CR), a weight loss regimen. 15-month-old male C57BL/6 mice were assigned in groups to receive the following dietary regimens for 12 weeks: (i) a base diet (Ain93M) fed ad libitum (AL), (ii) the base diet restricted to 70% of ad libitum (CR) or (iii) the base diet containing curcumin fed AL (1000 mg/kg diet, CURAL). Blood markers of inflammation, interleukin 6 (IL-6) and C-reactive protein (CRP), as well as an indicator of redox stress (GSH: GSSG ratio), were determined at different time points during the treatments, and visceral and subcutaneous adipose tissue were measured upon completion of the experiment. After 8 weeks of dietary treatment, the mice were tested for spatial cognition (Morris water maze) and cognitive flexibility (discriminated active avoidance). The CR group showed significant weight loss and reduced adiposity, whereas CURAL mice had stable weight throughout the experiment, consumed more food than the AL group, with no reduction of adiposity. However, both CR and CURAL groups took fewer trials than AL to reach criterion during the reversal sessions of the active avoidance task, suggesting an improvement in cognitive flexibility. The AL mice had higher levels of CRP compared to CURAL and CR, and GSH as well as the GSH: GSSG ratio were increased during curcumin intake, suggesting a reducing shift in the redox state. The results suggest that, independent of their effects on adiposity; dietary curcumin and caloric restriction have positive effects on frontal cortical functions that could be linked to anti-inflammatory or antioxidant actions.

  10. Proteome and radioimmunoassay analyses of pituitary hormones and proteins in response to feed restriction of dairy cows.

    PubMed

    Kuhla, Björn; Albrecht, Dirk; Bruckmaier, Rupert; Viergutz, Torsten; Nürnberg, Gerd; Metges, Cornelia C

    2010-12-01

    The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, β-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Calcium requirements of the modern broiler chicken as influenced by dietary protein and age.

    PubMed

    Driver, J P; Pesti, G M; Bakalli, R I; Edwards, H M

    2005-10-01

    Two experiments were conducted to examine the calcium requirements of broiler chickens fed corn-soybean meal diets. Experiment 1 used a 6 x 2 x 2 factorial arrangement and was conducted with broilers in floor pens during the grower phase (19 to 42 d). Diets were mixed with 6 levels of dietary Ca (0.325, 0.4, 0.475, 0.55, 0.625, and 0.9%) and 17 or 23% CP and fed to males and females separately. Experiment 2 was a 6 x 2 factorial design conducted using Petersime battery brooders during the starter phase (0 to 16 d). The same 6 levels of dietary Ca used in experiment 1 were fed separately to each sex, but only at the 23% level of CP. The diets used in both experiments were formulated to contain 0.45% nonphytin phosphorus. In experiment 1, grower chickens did not demonstrate significant body weight gain (BWG) or feed conversion ratio (FCR) response (g of feed per g of gain) to the different levels of Ca at either level of protein. The percentage tibia ash did not respond to increasing Ca levels beyond 0.625% Ca at either protein level. In experiment 2, BWG increased linearly up to 0.55 and 0.625% dietary Ca for males and females, respectively. Feed conversion ratio decreased linearly with increasing dietary Ca up to 0.625% Ca, and tibia ash was highest at 0.9% Ca for both sexes. These results suggest that the current NRC Ca requirements for the broiler starter (1.0%) are sufficient for maximum bone ash, but that Ca requirements for grower birds (0.9%) may be excessive for optimum BWG, FCR, and tibia ash.

  12. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The

  13. Interaction between dietary content of protein and sodium chloride on milk urea concentration, urinary urea excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy cows.

    PubMed

    Spek, J W; Bannink, A; Gort, G; Hendriks, W H; Dijkstra, J

    2013-09-01

    Dietary protein and salt affect the concentration of milk urea nitrogen (MUN; mg of N/dL) and the relationship between MUN and excretion of urea nitrogen in urine (UUN; g of N/d) of dairy cattle. The aim of the present study was to examine the effects of dietary protein and sodium chloride (NaCl) intake separately, and their interaction, on MUN and UUN, on the relationship between UUN and MUN, on renal recycling of urea, and on urea transfer to the gastrointestinal tract. Twelve second-parity cows (body weight of 645±37 kg, 146±29 d in milk, and a milk production of 34.0±3.28 kg/d), of which 8 were previously fitted with a rumen cannula, were fitted with catheters in the urine bladder and jugular vein. The experiment had a split-plot arrangement with dietary crude protein (CP) content as the main plot factor [116 and 154 g of CP/kg of dry matter (DM)] and dietary NaCl content as the subplot factor (3.1 and 13.5 g of Na/kg of DM). Cows were fed at 95% of the average ad libitum feed intake of cows receiving the low protein diets. Average MUN and UUN were, respectively, 3.90 mg of N/dL and 45 g of N/d higher for the high protein diets compared with the low protein diets. Compared with the low NaCl diets, MUN was, on average, 1.74 mg of N/dL lower for the high NaCl diets, whereas UUN was unaffected. We found no interaction between dietary content of protein and NaCl on performance characteristics or on MUN, UUN, urine production, and renal clearance characteristics. The creatinine clearance rate was not affected by dietary content of protein and NaCl. Urea transfer to the gastrointestinal tract, expressed as a fraction of plasma urea entry rate, was negatively related to dietary protein, whereas it was not affected by dietary NaCl content. We found no interaction between dietary protein and NaCl content on plasma urea entry rate and gastrointestinal urea entry rate or their ratio. The relationship between MUN and UUN was significantly affected by the class variable

  14. Beyond the role of dietary protein and amino acids in the prevention of diet-induced obesity.

    PubMed

    Petzke, Klaus J; Freudenberg, Anne; Klaus, Susanne

    2014-01-20

    High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.

  15. Dietary advice for muscularity, leanness and weight control in Men's Health magazine: a content analysis.

    PubMed

    Cook, Toni M; Russell, Jean M; Barker, Margo E

    2014-10-11

    The dietary content of advice in men's lifestyle magazines has not been closely scrutinised. We carried out an analysis of such content in all 2009 issues (n = 11) of Men's Health (MH) focusing on muscularity, leanness and weight control. Promotion of a mesomorphic body image underpinned advice to affect muscle building and control weight. Diet advice was underpinned by a strong pseudo-scientific discourse, with citation of expert sources widely used to legitimise the information. Frequently multiple dietary components were advocated within one article e.g. fat, omega-3 fatty acids, thiamine, zinc and high-glycaemic index foods. Furthermore advice would cover numerous nutritional effects, e.g. strengthening bones, reducing stress and boosting testosterone, with little contextualisation. The emphasis on attainment of a mesomorphic body image permitted promotion of slimming diets.Advice to increase calorie and protein intake to augment muscle mass was frequent (183 and 262 references, respectively). Such an anabolic diet was advised in various ways, including consumption of traditional protein foods (217 references) and sports foods (107 references), thereby replicating muscle magazines' support for nutritional supplements. Although advice to increase consumption of red meat was common (52 references), fish and non-flesh sources of protein (eggs, nuts & pulses, and soy products) together exceeded red meat in number of recommendations (206 references). Advice widely asserted micronutrients and phytochemicals from plant food (161 references) as being important in muscle building. This emphasis diverges from stereotypical gender-based food consumption patterns.Dietary advice for control of body weight largely replicated that of muscularity, with strong endorsement to consume fruits and vegetables (59 references), diets rich in nuts and pulses and fish (66 references), as well as specific micronutrients and phytochemicals (62 references). Notably there was emphasis on

  16. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats.

    PubMed

    Adam, Clare L; Gratz, Silvia W; Peinado, Diana I; Thomson, Lynn M; Garden, Karen E; Williams, Patricia A; Richardson, Anthony J; Ross, Alexander W

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity.

  17. BST-2 restricts IAV release and is countered by the viral M2 protein.

    PubMed

    Hu, Siqi; Yin, Lijuan; Mei, Shan; Li, Jian; Xu, Fengwen; Sun, Hong; Liu, Xiaoman; Cen, Shan; Liang, Chen; Li, Ailing; Guo, Fei

    2017-02-20

    BST-2 (tetherin, CD317, and HM1.24) is induced by interferon and restricts virus release by tethering the enveloped viruses to the cell surface. The effect of BST-2 on influenza A virus (IAV) infection has been inconclusive. In the present study, we report that BST-2 diminishes the production of IAV virus-like particles (VLPs) that are generated by viral neuraminidase and hemagglutinin proteins to a much greater degree than it inhibits the production of wild-type IAV particles. This relatively weaker inhibition of IAV is associated with reduction in BST-2 levels, which is caused by the M2 protein that interacts with BST-2 and leads to down-regulation of cell surface BST-2 via the proteasomal pathway. Similarly to the viral antagonist Vpu, M2 also rescues the production of human immunodeficiency virus-1 VLPs and IAV VLPs in the presence of BST-2. Replication of wild-type and the M2-deleted viruses were both inhibited by BST-2, with the M2-deleted IAV being more restricted. These data reveal one mechanism that IAV employs to counter restriction by BST-2. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Nutrition targeting by food timing: time-related dietary approaches to combat obesity and metabolic syndrome.

    PubMed

    Sofer, Sigal; Stark, Aliza H; Madar, Zecharia

    2015-03-01

    Effective nutritional guidelines for reducing abdominal obesity and metabolic syndrome are urgently needed. Over the years, many different dietary regimens have been studied as possible treatment alternatives. The efficacy of low-calorie diets, diets with different proportions of fat, protein, and carbohydrates, traditional healthy eating patterns, and evidence-based dietary approaches were evaluated. Reviewing literature published in the last 5 y reveals that these diets may improve risk factors associated with obesity and metabolic syndrome. However, each diet has limitations ranging from high dropout rates to maintenance difficulties. In addition, most of these dietary regimens have the ability to attenuate some, but not all, of the components involved in this complicated multifactorial condition. Recently, interest has arisen in the time of day foods are consumed (food timing). Studies have examined the implications of eating at the right or wrong time, restricting eating hours, time allocation for meals, and timing of macronutrient consumption during the day. In this paper we review new insights into well-known dietary therapies as well as innovative time-associated dietary approaches for treating obesity and metabolic syndrome. We discuss results from systematic meta-analyses, clinical interventions, and animal models. © 2015 American Society for Nutrition.

  19. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction.

    PubMed

    Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng

    2013-04-01

    In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

  20. Dietary protein intake may reduce hospitalisation due to infection in Māori of advanced age: LiLACS NZ.

    PubMed

    Wham, Carol; Baggett, Fiona; Teh, Ruth; Moyes, Simon; Kēpa, Mere; Connolly, Martin; Jatrana, Santosh; Kerse, Ngaire

    2015-08-01

    To investigate factors related to hospital admission for infection, specifically examining nutrient intakes of Māori in advanced age (80+ years). Face-to-face interviews with 200 Māori (85 men) to obtain demographic, social and health information. Diagnoses were validated against medical records. Detailed nutritional assessment using the 24-hour multiple-pass recall method was collected on two separate days. FOODfiles was used to analyse nutrient intake. National Health Index (NHI) numbers were matched to hospitalisations over a two-year period (12 months prior and 12 months following dietary assessment). Selected International Classification of Disease (ICD) codes were used to identify admissions related to infection. A total of 18% of participants were hospitalised due to infection, most commonly lower respiratory tract infection. Controlling for age, gender, NZ deprivation index, diabetes, CVD and chronic lung disease, a lower energy-adjusted protein intake was independently associated with hospitalisation due to infection: OR (95%CI) 1.14 (1.00-1.29), p=0.046. Protein intake may have a protective effect on the nutrition-related morbidity of older Māori. Improving dietary protein intake is a simple strategy for dietary modification aiming to decrease the risk of infections that lead to hospitalisation and other morbidities. © 2015 Public Health Association of Australia.

  1. Urea synthesis in patients with chronic pancreatitis: relation to glucagon secretion and dietary protein intake.

    PubMed

    Hamberg, O; Andersen, V; Sonne, J; Larsen, S; Vilstrup, H

    2001-12-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine urea synthesis kinetics in CP patients in relation to glucagon secretion (study I) and during an increase in protein intake (study II). In study I, urea synthesis rate, calculated as urinary excretion rate corrected for accumulation in total body water and intestinal loss, was measured during infusion of alanine in 7 CP patients and 5 control subjects on spontaneous protein intake. The functional hepatic nitrogen clearance (FHNC), i.e. urea synthesis expressed independent of changes in plasma amino acid concentration, was calculated as the slope of the linear relation between urea synthesis rate and plasma alpha -amino nitrogen concentration. In study II, 6 of the patients of study I had urea synthesis and FHNC determined before and after a period of 14 days of supplementation with a protein-enriched liquid (dietary sequence randomized). Study I: Alanine infusion increased urea synthesis rate by a factor of 10 in the control subjects, and by a factor of 5 in the CP patients (P<0.01). FHNC was 31.9+/-2.4 l/h in the control subjects and 16.5+/-2.0 l/h (P<0.05) in the CP patients. The glucagon response to alanine infusion (AUC) was reduced by 75 % in the CP patients. The reduction in FHNC paralleled the reduced glucagon response (r(2)=0.55, P<0.01). Study II: The spontaneous protein intake was 0.75+/-0.14 g/(kg x day) and increased during the high protein period to 1.77+/-0.12 g/(kg x day). This increased alanine stimulated urea synthesis by a factor of 1.3 (P<0.05), FHNC from 13.5+/-2.6 l/h to 19.4+/-3.1 l/h (P<0.01), and the glucagon response to alanine infusion (AUC) by a factor of 1.8 (P<0.05). Urea synthesis rate and FHNC are markedly reduced in CP patients. This is

  2. Necroptosis increases with age and is reduced by dietary restriction.

    PubMed

    Deepa, Sathyaseelan S; Unnikrishnan, Archana; Matyi, Stephanie; Hadad, Niran; Richardson, Arlan

    2018-04-25

    Necroptosis is a newly identified programmed cell death pathway that is highly proinflammatory due to the release of cellular components that promote inflammation. To determine whether necroptosis might play a role in inflammaging, we studied the effect of age and dietary restriction (DR) on necroptosis in the epididymal white adipose tissue (eWAT), a major source of proinflammatory cytokines. Phosphorylated MLKL and RIPK3, markers of necroptosis, were increased 2.7- and 1.9-fold, respectively, in eWAT of old mice compared to adult mice, and DR reduced P-MLKL and P-RIPK3 to levels similar to adult mice. An increase in the expression of RIPK1 (1.6-fold) and MLKL (2.7-fold), not RIPK3, was also observed in eWAT of old mice, which was reduced by DR in old mice. The increase in necroptosis was paralleled by an increase in 14 inflammatory cytokines, including the pro-inflammatory cytokines IL-6 (3.9-fold), TNF-α (4.7-fold), and IL-1β (5.1-fold)], and 11 chemokines in old mice. DR attenuated the expression of IL-6, TNF-α, and IL-1β as well as 85% of the other cytokines/chemokines induced with age. In contrast, inguinal WAT (iWAT), which is less inflammatory, did not show any significant increase with age in the levels of P-MLKL and MLKL or inflammatory cytokines/chemokines. Because the changes in biomarkers of necroptosis in eWAT with age and DR paralleled the changes in the expression of pro-inflammatory cytokines, our data support the possibility that necroptosis might play a role in increased chronic inflammation observed with age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    PubMed

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  4. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men.

    PubMed

    Bisschop, P H; De Sain-Van Der Velden, M G M; Stellaard, F; Kuipers, F; Meijer, A J; Sauerwein, H P; Romijn, J A

    2003-08-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets with identical protein content and low-carbohydrate/high-fat (2% and 83% of total energy, respectively), intermediate-carbohydrate/intermediate-fat (44% and 41% of total energy, respectively), and high-carbohydrate/low-fat (85% and 0% of total energy, respectively) content in six healthy men. Whole body protein metabolism was assessed by 24-h urinary nitrogen excretion, postabsorptive leucine kinetics, and fibrinogen and albumin synthesis by infusion of [1-(13)C]leucine and [1-(13)C]valine. The low-carbohydrate/high-fat diet resulted in lower absorptive and postabsorptive plasma insulin concentrations, and higher rates of nitrogen excretion compared with the other two diets: 15.3 +/- 0.9 vs. 12.1 +/- 1.1 (P = 0.03) and 10.8 +/- 0.5 g/24 h (P = 0.005), respectively. Postabsorptive rates of appearance of leucine and of leucine oxidation were not different among the three diets. In addition, dietary carbohydrate content did not affect the synthesis rates of fibrinogen and albumin. In conclusion, eucaloric carbohydrate deprivation increases 24-h nitrogen loss but does not affect postabsorptive protein metabolism at the hepatic and whole body level. By deduction, dietary carbohydrate is required for an optimal regulation of absorptive, rather than postabsorptive, protein metabolism.

  5. An analysis of partial efficiencies of energy utilisation of different macronutrients by barramundi (Lates calcarifer) shows that starch restricts protein utilisation in carnivorous fish.

    PubMed

    Glencross, Brett D; Blyth, David; Bourne, Nicholas; Cheers, Susan; Irvin, Simon; Wade, Nicholas M

    2017-02-01

    This study examined the effect of including different dietary proportions of starch, protein and lipid, in diets balanced for digestible energy, on the utilisation efficiencies of dietary energy by barramundi (Lates calcarifer). Each diet was fed at one of three ration levels (satiety, 80 % of initial satiety and 60 % of initial satiety) for a 42-d period. Fish performance measures (weight gain, feed intake and feed conversion ratio) were all affected by dietary energy source. The efficiency of energy utilisation was significantly reduced in fish fed the starch diet relative to the other diets, but there were no significant effects between the other macronutrients. This reduction in efficiency of utilisation was derived from a multifactorial change in both protein and lipid utilisation. The rate of protein utilisation deteriorated as the amount of starch included in the diet increased. Lipid utilisation was most dramatically affected by inclusion levels of lipid in the diet, with diets low in lipid producing component lipid utilisation rates well above 1·3, which indicates substantial lipid synthesis from other energy sources. However, the energetic cost of lipid gain was as low as 0·65 kJ per kJ of lipid deposited, indicating that barramundi very efficiently store energy in the form of lipid, particularly from dietary starch energy. This study defines how the utilisation efficiency of dietary digestible energy by barramundi is influenced by the macronutrient source providing that energy, and that the inclusion of starch causes problems with protein utilisation in this species.

  6. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    PubMed Central

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  7. Blood harmane concentrations and dietary protein consumption in essential tremor

    PubMed Central

    Louis, E.D.; Zheng, W.; Applegate, L.; Shi, L.; Factor-Litvak, P.

    2016-01-01

    Background β-Carboline alkaloids (e.g., harmane) are highly tremorogenic chemicals. Animal protein (meat) is the major dietary source of these alkaloids. The authors previously demonstrated that blood harmane concentrations were elevated in patients with essential tremor (ET) vs controls. Whether this difference is due to greater animal protein consumption by patients or their failure to metabolize harmane is unknown. Objective The aim of this study was to determine whether patients with ET and controls differ with regard to 1) daily animal protein consumption and 2) the correlation between animal protein consumption and blood harmane concentration. Methods Data on current diet were collected with a semiquantitative food frequency questionnaire and daily calories and consumption of animal protein and other food types was calculated. Blood harmane concentrations were log-transformed (logHA). Results The mean logHA was higher in 106 patients than 161 controls (0.61 ± 0.67 vs 0.43 ± 0.72 g−10/mL, p = 0.035). Patients and controls consumed similar amounts of animal protein (50.2 ± 19.6 vs 49.4 ± 19.1 g/day, p = 0.74) and other food types (animal fat, carbohydrates, vegetable fat) and had similar caloric intakes. In controls, logHA was correlated with daily consumption of animal protein (r = 0.24, p = 0.003); in patients, there was no such correlation (r = −0.003, p = 0.98). Conclusions The similarity between patients and controls in daily animal protein consumption and the absence of the normal correlation between daily animal protein consumption and logHA in patients suggests that another factor (e.g., a metabolic defect) may be increasing blood harmane concentration in patients. PMID:16087903

  8. Dietary lufenuron reduces egg hatch and influences protein expression in the fruit fly Bactrocera latifrons (Hendel).

    PubMed

    Chang, Chiou Ling; Geib, Scott; Cho, Il Kyu; Li, Qing X; Stanley, David

    2014-08-01

    Lufenuron (LFN), a chitin synthase inhibitor, impacts the fertility of Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. We posed the hypothesis that LFN curtails egg hatch in the solanaceous fruit fly, B. latifrons. In this study, newly emerged virgin adults were sexed and fed for 12 days with varying concentrations of LFN-laced agar diets until sexual maturation. Eggs were collected from 12-d-old adults and the egg hatch was assessed. Egg hatch decreased in adults reared on LFN-treated diets. LFN-treated media did not influence fertility after one gender was reared on experimental and the other on control media before mating. Exposure to LFN-treated medium after mating led to reduced egg hatch. We infer that LFN is not a permanent sterilant, and reduced egg hatch depends on continuous exposure to dietary LFN after mating. Proteomic analysis identified two differentially expressed proteins, a pheromone binding protein and a chitin binding protein, between adults maintained on LFN-treated and control diets. Expression of two genes encoding chitin synthase 2, and chitin binding protein, was altered in adults exposed to dietary LFN. LFN treatments also led to increased expression of two odorant binding proteins one in females and one in males. We surmise these data support our hypothesis and provide insight into LFN actions. © 2014 Wiley Periodicals, Inc.

  9. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  10. Bile-pancreatic juice-independent increases in pancreatic proteases and intestinal cholecystokinin by dietary protein in rats.

    PubMed

    Hara, H; Ochi, Y; Kasai, T

    1998-02-01

    Luminal bile-pancreatic juice (BPJ) is involved in the induction of pancreatic proteases in rats fed a high-protein diet. Recently, we have demonstrated that a BPJ-independent mechanism is responsible for enhancement of pancreatic secretion after feeding of a dietary protein in chronic BPJ-diverted rats. The aim of the present study was to explore the existence of a BPJ-independent mechanism during adaptation of the exocrine pancreas to dietary protein. Rats, whose BPJ was diverted into the ileum through a common bile-pancreatic duct catheter for 5 days (PBD rat), were fed a fat-free diet containing 25% or 60% casein for 3 days. Messenger RNA levels for pancreatic enzymes, cholecystokinin, and secretin in the jejunal mucosa were evaluated by northern blotting method. Pancreatic trypsin and chymotrypsin activities and mRNA levels of their zymogens were higher in PBD rats than in rats whose diverted BPJ was returned into the duodenum (PBD returned rat). In the PBD groups, pancreatic protease activities were further increased by 3-day feeding of a high-protein diet without changes in mRNA levels of these proteases. Cholecystokinin mRNA was increased after feeding of a high-protein diet in the PBD rats. These results indicate that pancreatic proteases are induced by feeding a high-protein diet by a mechanism independent of luminal BPJ, which is associated with an increase in intestinal cholecystokinin mRNA level.

  11. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages

    PubMed Central

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A.; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  12. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    PubMed

    Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  13. Intestinal IRE1 Is Required for Increased Triglyceride Metabolism and Longer Lifespan under Dietary Restriction.

    PubMed

    Luis, Nuno Miguel; Wang, Lifen; Ortega, Mauricio; Deng, Hansong; Katewa, Subhash D; Li, Patrick Wai-Lun; Karpac, Jason; Jasper, Heinrich; Kapahi, Pankaj

    2016-10-25

    Dietary restriction (DR) is one of the most robust lifespan-extending interventions in animals. The beneficial effects of DR involve a metabolic adaptation toward increased triglyceride usage. The regulatory mechanism and the tissue specificity of this metabolic switch remain unclear. Here, we show that the IRE1/XBP1 endoplasmic reticulum (ER) stress signaling module mediates metabolic adaptation upon DR in flies by promoting triglyceride synthesis and accumulation in enterocytes (ECs) of the Drosophila midgut. Consistently, IRE1/XBP1 function in ECs is required for increased longevity upon DR. We further identify sugarbabe, a Gli-like zinc-finger transcription factor, as a key mediator of the IRE1/XBP1-regulated induction of de novo lipogenesis in ECs. Overexpression of sugarbabe rescues metabolic and lifespan phenotypes of IRE1 loss-of-function conditions. Our study highlights the critical role of metabolic adaptation of the intestinal epithelium for DR-induced lifespan extension and explores the IRE1/XBP1 signaling pathway regulating this adaptation and influencing lifespan. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Role of sodium-restricted dietary approaches to control blood pressure in Pakistani hypertensive population.

    PubMed

    Naseem, Sajida; Ghazanfar, Haider; Assad, Salman; Ghazanfar, Ali

    2016-07-01

    To assess the change in systolic and diastolic blood pressure in post-interventional phase through dietary approaches to stop hypertension/salt-restricted diet. This randomised controlled clinical study was conducted from February 2014 to March 2015 at the Armed Forces Institute of Cardiology, Rawalpindi, and Ali Medical Centre, Islamabad, Pakistan, and involved hypertensive patients and matching controls. The control group followed routine diet while the intervention group was given a diet plan containing 1,500mg of sodium providing 2,000 calories. Both groups were advised not to consume sodium-rich foods. Paired sample t-test was applied to determine the change in blood pressure among the groups at two different occasions. Of the 1,492 participants, 710(47.6%) were controls and 782(52.4%) were in the interventional group. Overall, 417(27.9%) participants got their blood pressure checked less than twice in six months, while 409(27.4%) had it done on a regular basis. Moreover, 941(63.1%)) subjects had a family history of high blood pressure and 149(10.0%) participants did not exercise at all. The overall mean age was 53.42±9.302 years. Mean systolic blood pressure and diastolic blood pressure after five weeks was 126.33±3.35 and 84.40±3.04mmHg in the intervention group, and128.41±3.52 and 84.04±2.953mmHg in the control group. Changes in blood pressure between the two groups were minimal but statistically significant (p<0.05). A diet which is restricted in salt, rich in fruits, vegetables, and low-fat dairy foods and reduced saturated and total fat can substantially lower blood pressure. Such a diet offers an additional nutritional approach to the prevention and treatment of hypertension.

  15. Effect of dietary protein sources on the small intestine microbiome of weaned piglets based on high-throughput sequencing.

    PubMed

    Cao, K F; Zhang, H H; Han, H H; Song, Y; Bai, X L; Sun, H

    2016-05-01

    In this study, we comprehensively investigated the effect of dietary protein sources on the gut microbiome of weaned piglets with diets comprising different protein source using High-throughput 16SrRNA gene-based Illumina Miseq. A total of 48 healthy weaned piglets were allocated randomly to four treatments with 12 piglets in each group. The weaned piglets were fed with diets containing soybean meal (SBM), cottonseed meal (CSM), SBM and CSM (SC) or fish meal (FM). The intestinal content samples were taken from five segments of the small intestine. DNA was extracted from the samples and the V3-V4 regions of the 16SrRNA gene were amplified. The microbiota of the contents of the small intestine were very complex, including more than 4000 operational taxonomic units belonging to 32 different phyla. Four bacterial populations (i.e. Firmicutes, Proteobacteria, Bacteroidetes and Acidobacteria) were the most abundant bacterial groups. The genera Lactobacillus and Clostridium were found in slightly higher proportions in the groups with added CSM compared to the other groups. The proportion of reads assigned to the genus Escherichia/Shigella was much higher in the FM group. In conclusion, dietary protein source had significant effects on the small microbiome of weaned piglets. Dietary protein source have the potential to affect the small intestine microbiome of weaned piglets that will have a large impact on its metabolic capabilities and intestinal health. In this study, we successfully identified the microbiomes in the contents of the small intestine in the weaned piglets that were fed different protein source diets using high-throughput sequencing. The finding provided an evidence for the option of the appropriate protein source in the actual production. © 2016 The Society for Applied Microbiology.

  16. Improvement in metabolic effects by dietary intervention is dependent on the precise nature of the developmental programming challenge.

    PubMed

    Bautista, C J; Guzmán, C; Rodríguez-González, G L; Zambrano, E

    2015-08-01

    Predisposition to offspring metabolic dysfunction due to poor maternal nutrition differs with the developmental stage at exposure. Post-weaning nutrition also influences offspring phenotype in either adverse or beneficial ways. We studied a well-established rat maternal protein-restriction model to determine whether post-weaning dietary intervention improves adverse outcomes produced by a deficient maternal nutritional environment in pregnancy. Pregnant rats were fed a controlled diet (C, 20% casein) during pregnancy and lactation (CC) or were fed a restricted diet (R, 10% casein isocaloric diet) during pregnancy and C diet during lactation (RC). After weaning, the offspring were fed the C diet. At postnatal day (PND) 70 (young adulthood), female offspring either continued with the C diet (CCC and RCC) or were fed commercial Chow Purina 5001 (I) to further divide the animals into dietary intervention groups CCI and RCI. Another group of mothers and offspring were fed I throughout (III). Offspring food intake was averaged between PND 95-110 and 235-250 and carcass and liver compositions were measured at PND 25 and 250. Leptin (PND 110 and 250) and serum glucose, triglycerides and cholesterol (PND 250) levels were measured. Statistical analysis was carried out using ANOVA. At PND 25, body and liver weights were similar between groups; however, CCC and RCC carcass protein:fat ratios were lower compared with III diet. At PND 110 and 250, offspring CCC and RCC had higher body weight, food intake and serum leptin compared with CCI and RCI. CCI had lower carcass fat and increased protein compared with CCC and improved fasting glucose and triglycerides. Adult dietary intervention partially overcomes adverse effects of programming. Further studies are needed to determine the mechanisms involved.

  17. Protein extraction from biomass in a bioethanol refinery--possible dietary applications: Use as animal feed and potential extension to human consumption.

    PubMed

    Chiesa, Simone; Gnansounou, Edgard

    2011-01-01

    The economy of the production of lignocellulosic ethanol could be supported by the simultaneous use of different components of the biomass other than sugars. Among these, protein is present at high concentration in leaves and is a candidate for different possible utilizations. Among dietary applications, plant protein may be used as animal feed and possibly extended to human consumption, in close similarity to leaf protein concentrates already proposed in the past. This would be especially beneficial for developing countries. For this aim, protein quality plays a crucial role: separating only the noble fraction of protein in biomass and preserving its nutritional value, while simultaneously obtaining good yields and limiting drawbacks on other steps of the production chain is particularly challenging from a technical viewpoint. In this review, we compare the possible extraction of protein from dry biomass with the more commonly studied situation in which freshly harvested material is used, with special focus on dietary implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.

  19. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing

    PubMed Central

    Tolfsen, Christina C.; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V.

    2011-01-01

    SUMMARY Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210

  20. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids.

    PubMed

    Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Keogh, Jennifer B; Foster, Paul; Clifton, Peter M

    2005-04-01

    When substituted for carbohydrate in an energy-reduced diet, dietary protein enhances fat loss in women. It is unknown whether the effect is due to increased protein or reduced carbohydrate. We compared the effects of 2 isocaloric diets that differed in protein and fat content on weight loss, lipids, appetite regulation, and energy expenditure after test meals. This was a parallel, randomized study in which subjects received either a low-fat, high-protein (LF-HP) diet (29 +/- 1% fat, 34 +/- 0.8% protein) or a high-fat, standard-protein (HF-SP) diet (45 +/- 0.6% fat, 18 +/- 0.3% protein) during 12 wk of energy restriction (6 +/- 0.1 MJ/d) and 4 wk of energy balance (7.4 +/- 0.3 MJ/d). Fifty-seven overweight and obese [mean body mass index (in kg/m(2)): 33.8 +/- 0.9] volunteers with insulin concentrations >12 mU/L completed the study. Weight loss (LF-HP group, 9.7 +/- 1.1 kg; HF-SP group, 10.2 +/- 1.4 kg; P = 0.78) and fat loss were not significantly different between diet groups even though the subjects desired less to eat after the LF-HP meal (P = 0.02). The decrease in resting energy expenditure was not significantly different between diet groups (LF-HP, -342 +/- 185 kJ/d; HF-SP, -349 +/- 220 kJ/d). The decrease in the thermic effect of feeding with weight loss was smaller in the LF-HP group than in the HF-SP group (-0.3 +/- 1.0% compared with -3.6 +/- 0.7%; P = 0.014). Glucose and insulin responses to test meals improved after weight loss (P < 0.001) with no significant diet effect. Bone turnover, inflammation, and calcium excretion did not change significantly. The magnitude of weight loss and the improvements in insulin resistance and cardiovascular disease risk factors did not differ significantly between the 2 diets, and neither diet had any detrimental effects on bone turnover or renal function.

  1. Nutrition Targeting by Food Timing: Time-Related Dietary Approaches to Combat Obesity and Metabolic Syndrome1234

    PubMed Central

    Sofer, Sigal; Stark, Aliza H; Madar, Zecharia

    2015-01-01

    Effective nutritional guidelines for reducing abdominal obesity and metabolic syndrome are urgently needed. Over the years, many different dietary regimens have been studied as possible treatment alternatives. The efficacy of low-calorie diets, diets with different proportions of fat, protein, and carbohydrates, traditional healthy eating patterns, and evidence-based dietary approaches were evaluated. Reviewing literature published in the last 5 y reveals that these diets may improve risk factors associated with obesity and metabolic syndrome. However, each diet has limitations ranging from high dropout rates to maintenance difficulties. In addition, most of these dietary regimens have the ability to attenuate some, but not all, of the components involved in this complicated multifactorial condition. Recently, interest has arisen in the time of day foods are consumed (food timing). Studies have examined the implications of eating at the right or wrong time, restricting eating hours, time allocation for meals, and timing of macronutrient consumption during the day. In this paper we review new insights into well-known dietary therapies as well as innovative time-associated dietary approaches for treating obesity and metabolic syndrome. We discuss results from systematic meta-analyses, clinical interventions, and animal models. PMID:25770260

  2. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  3. Pancreatic enzyme deficiency depends on dietary protein origin in milk-fed calves.

    PubMed

    Guilloteau, P; Plodari, M; Romé, V; Savary, G; Le Normand, L; Zabielski, R

    2011-03-01

    In young mammals, milk proteins and their substitutes are used in milk formula. Protein substitution modifies diet digestibility and pancreatic secretions. The aim of this study was to test if milk protein substitution could generate pancreatic deficiency in milk-fed calves. The effect of pancreatic juice on the digestibility of proteins was studied. Measurement of apparent fecal nutrient digestibility was used to estimate digestion. Ten calves (60 to 130 d old) were chronically fitted with pancreatic accessory duct cannulas and 2 duodenal cannulas to provide precise measurement, sampling, and reintroduction of pancreatic juice as well as additional infusions. Animals were fed milk formula based on skim milk powder or soybean concentrate. Level of deficiency depended on dietary protein origin. Twice as much protein or trypsin was required with a soybean concentrate diet than with a skim milk powder diet to obtain maximal nutrient digestibility. Pancreatic protein concentration in the juice can be used to differentiate between normal and deficient animals. Among these proteins, trypsin measurement is a good pancreatic deficiency marker. These results confirmed the major role of exocrine pancreatic secretions in producing optimal digestion in young calves. Furthermore, practical applications of these results can be applied for the young in other animal species and in humans. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction.

    PubMed

    Chen, Jun; Toyomasu, Yoshitaka; Hayashi, Yujiro; Linden, David R; Szurszewski, Joseph H; Nelson, Heidi; Farrugia, Gianrico; Kashyap, Purna C; Chia, Nicholas; Ordog, Tamas

    2016-10-03

    Nutritional interventions often fail to prevent growth failure in childhood and adolescent malnutrition and the mechanisms remain unclear. Recent studies revealed altered microbiota in malnourished children and anorexia nervosa. To facilitate mechanistic studies under physiologically relevant conditions, we established a mouse model of growth failure following chronic dietary restriction and examined microbiota in relation to age, diet, body weight, and anabolic treatment. Four-week-old female BALB/c mice (n = 12/group) were fed ad libitum (AL) or offered limited food to abolish weight gain (LF). A subset of restricted mice was treated with an insulin-like growth factor 1 (IGF1) analog. Food access was restored in a subset of untreated LF (LF-RF) and IGF1-treated LF mice (TLF-RF) on day 97. Gut microbiota were determined on days 69, 96-99 and 120 by next generation sequencing of the V3-5 region of the 16S rRNA gene. Microbiota-host factor associations were analyzed by distance-based PERMANOVA and quantified by the coefficient of determination R 2 for age, diet, and normalized body weight change (Δbwt). Microbial taxa on day 120 were compared following fitting with an overdispersed Poisson regression model. The machine learning algorithm Random Forests was used to predict age based on the microbiota. On day 120, Δbwt in AL, LF, LF-RF, and TLF-RF mice was 52 ± 3, -6 ± 1*, 40 ± 3*, and 46 ± 2 % (*, P < 0.05 versus AL). Age and diet, but not Δbwt, were associated with gut microbiota composition. Age explained a larger proportion of the microbiota variability than diet or Δbwt. Random Forests predicted chronological age based on the microbiota and indicated microbiota immaturity in the LF mice before, but not after, refeeding. However, on day 120, the microbiota community structure of LF-RF mice was significantly different from that of both AL and LF mice. IGF1 mitigated the difference from the AL group. Refed groups had a higher

  5. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group.

    PubMed

    Bauer, Jürgen; Biolo, Gianni; Cederholm, Tommy; Cesari, Matteo; Cruz-Jentoft, Alfonso J; Morley, John E; Phillips, Stuart; Sieber, Cornel; Stehle, Peter; Teta, Daniel; Visvanathan, Renuka; Volpi, Elena; Boirie, Yves

    2013-08-01

    New evidence shows that older adults need more dietary protein than do younger adults to support good health, promote recovery from illness, and maintain functionality. Older people need to make up for age-related changes in protein metabolism, such as high splanchnic extraction and declining anabolic responses to ingested protein. They also need more protein to offset inflammatory and catabolic conditions associated with chronic and acute diseases that occur commonly with aging. With the goal of developing updated, evidence-based recommendations for optimal protein intake by older people, the European Union Geriatric Medicine Society (EUGMS), in cooperation with other scientific organizations, appointed an international study group to review dietary protein needs with aging (PROT-AGE Study Group). To help older people (>65 years) maintain and regain lean body mass and function, the PROT-AGE study group recommends average daily intake at least in the range of 1.0 to 1.2 g protein per kilogram of body weight per day. Both endurance- and resistance-type exercises are recommended at individualized levels that are safe and tolerated, and higher protein intake (ie, ≥ 1.2 g/kg body weight/d) is advised for those who are exercising and otherwise active. Most older adults who have acute or chronic diseases need even more dietary protein (ie, 1.2-1.5 g/kg body weight/d). Older people with severe kidney disease (ie, estimated GFR <30 mL/min/1.73 m(2)), but who are not on dialysis, are an exception to this rule; these individuals may need to limit protein intake. Protein quality, timing of ingestion, and intake of other nutritional supplements may be relevant, but evidence is not yet sufficient to support specific recommendations. Older people are vulnerable to losses in physical function capacity, and such losses predict loss of independence, falls, and even mortality. Thus, future studies aimed at pinpointing optimal protein intake in specific populations of older people

  6. Effect of restricted forage intake on ruminal disappearance of bromegrass hay and a blood meal, feather meal, and fish meal supplement.

    PubMed

    Scholljegerdes, E J; Ludden, P A; Hess, B W

    2005-09-01

    Two experiments were conducted to determine in situ disappearance of bromegrass hay and a ruminally undegraded protein (RUP) supplement in beef cattle fed restricted amounts of forage. Six Angus crossbred cattle (BW = 589 +/- 44.4 kg; three steers and three heifers) fitted with ruminal cannulas were fed chopped (2.54 cm) bromegrass hay (8.9% CP) at one of three percentages of maintenance intake (30, 55, or 80%; one steer and one heifer per treatment). In both experiments, the cattle were allowed 7 d for diet adaptation followed by 3 d of sample collection. In Exp 1, in situ bags (50 microm pore size) containing 4.1 g of brome-grass hay (OM basis) were inserted into the rumen and subsequently removed at 3, 6, 9, 12, 15, 18, 24, 36, and 48 h after insertion. Nonlinear regression models were used to determine the rapidly solubilized protein Fraction A, the potentially ruminal degradable protein Fraction B, the ruminally undegraded protein Fraction C, and protein degradation rate. Intake level did not affect (P = 0.15 to 0.95) forage protein remaining after in situ incubation or Fractions A, B, and C; however, effective ruminal degradation of hay protein tended to increase quadratically (P = 0.12) as forage intake increased. In Exp 2, 4.2 g (OM basis) of an RUP supplement (6.8% porcine blood meal, 24.5% hydrolyzed feather meal, and 68.7% menhaden fish meal) formulated to provide equal amounts of metabolizable protein across all levels of hay consumption was evaluated in a similar manner as in Exp 1. The undegraded protein fraction of the supplement did not differ (P = 0.16 to 0.74) across treatments at 3, 6, 9, and 18 h; however, increasing forage intake resulted in a linear increase (P < or = 0.06) in undegraded protein remaining at 12, 15, 24, 36, and 48 h. Dietary treatment had no affect (P = 0.30) on protein Fractions A, B, or C; however, protein degradation rate of the supplement decreased linearly (P = 0.03) as forage intake increased. Therefore, effective

  7. Partitioning of nutrient net fluxes across the portal-drained viscera in sheep fed twice daily: effect of dietary protein degradability.

    PubMed

    Rémond, Didier; Bernard, Laurence; Savary-Auzeloux, Isabelle; Nozière, Pierre

    2009-08-01

    Extrusion is used to decrease leguminous seed protein degradability in the rumen in order to shift part of the dietary protein digestion towards the small intestine. The effect of such displacement of digestion site on the partitioning of nutrient net fluxes across the gastrointestinal tract was studied using four sheep fitted with catheters and blood-flow probes, allowing measurements across the rumen, the mesenteric-drained viscera (MDV) and the portal-drained viscera (PDV). Two diets containing 34 % of pea seeds were tested in a crossover design. They differed only according to pea treatment: raw pea (RP) or extruded pea (EP) diet. Rumen undegradable protein (RUP) accounted for 23 and 40 % of dietary crude protein for RP and EP diets, respectively. Across the rumen wall, ammonia net flux was lower with EP diet, whereas urea net flux was not different. Across the MDV, free amino acid (FAA) net flux was greater with EP diet, whereas peptide amino acid net flux was not different, accounting for 7 % of the non-protein amino acid net release. From RP to EP diet, PDV net flux of ammonia decreased by 23 %, whereas FAA net release increased by 21 %. The difference in dietary RUP did not affect the PDV net flux of SCFA, 3-hydroxybutyrate, lactate and glucose. In conclusion, the partial shift in pea protein digestion from the rumen to the small intestine did not affect the portal net balance of N, but decreased N loss from the rumen, and increased amino acid intestinal absorption and portal delivery.

  8. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state.

    PubMed

    Lopez-Legarrea, Patricia; Fuller, Nicholas Robert; Zulet, María Angeles; Martinez, Jose Alfredo; Caterson, Ian Douglas

    2014-01-01

    The role of the gut microbiota in understanding the onset and development of obesity is gaining importance. Dietary strategies are the main tool employed to counteract obesity, and nowadays they are focused on a wide range of different aspects of diet and not only on calorie restriction. Additionally, diet is known to be a major factor influencing modification of the gut microbiota. Therefore the influence of both macronutrient and micronutrient content of any dietary strategy to treat obesity on gut bacterial composition should now be taken into consideration, in addition to energy restriction. This review aims to collect the available data regarding the influence of different dietary components on gut microbiota in relation to obesity and inflammatory states in humans. Although more work is needed, specific dietary factors (carbohydrate, protein and Mediterranean foods) have been shown to have an influence on the gut microbiome composition, meaning that there is an opportunity to prevent and treat obesity based on microbiota outcomes.

  9. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans.

    PubMed

    Fierro-González, Juan Carlos; González-Barrios, María; Miranda-Vizuete, Antonio; Swoboda, Peter

    2011-03-18

    Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1 in ASJ neurons during aging, which in turn triggers TRX-1-dependent mechanisms to extend adult lifespan in the worm. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    PubMed

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  11. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    PubMed Central

    Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723

  12. STAT3/NF-κB interactions determine the level of haptoglobin expression in male rats exposed to dietary restriction and/or acute phase stimuli.

    PubMed

    Uskoković, Aleksandra; Dinić, Svetlana; Mihailović, Mirjana; Grdović, Nevena; Arambašić, Jelena; Vidaković, Melita; Bogojević, Desanka; Ivanović-Matić, Svetlana; Martinović, Vesna; Petrović, Miodrag; Poznanović, Goran; Grigorov, Ilijana

    2012-01-01

    Haptoglobin is a constitutively expressed protein which is predominantly synthesized in the liver. During the acute-phase (AP) response haptoglobin is upregulated along with other AP proteins. Its upregulation during the AP response is mediated by cis-trans interactions between the hormone-responsive element (HRE) residing in the haptoglobin gene and inducible transcription factors STAT3 and C/EBP β. In male rats that have been subjected to chronic 50% dietary restriction (DR), the basal haptoglobin serum level is decreased. The aim of this study was to characterize the trans-acting factor(s) responsible for the reduction of haptoglobin expression in male rats subjected to 50% DR for 6 weeks. Protein-DNA interactions between C/EBP and STAT families of transcription factors and the HRE region of the haptoglobin gene were examined in livers of male rats subjected to DR, as well as during the AP response that was induced by turpentine administration. In DR rats, we observed associations between the HRE and C/EBPα/β, STAT5b and NF-κB p50, and the absence of interactions between STAT3 and NF-kB p65. Subsequent induction of the AP response in DR rats by turpentine administration elicited a normal, almost 2-fold increase in the serum haptoglobin level that was accompanied by HRE-binding of C/EBPβ, STAT3/5b and NF-kB p65/p50, and the establishment of interaction between STAT3 and NF-κB p65. These results suggest that STAT3 and NF-κB p65 crosstalk plays a central role while C/EBPβ acquires an accessory role in establishing the level of haptoglobin gene expression in male rats exposed to DR and AP stimuli.

  13. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats

    PubMed Central

    Adam, Clare L.; Gratz, Silvia W.; Peinado, Diana I.; Thomson, Lynn M.; Garden, Karen E.; Williams, Patricia A.; Richardson, Anthony J.; Ross, Alexander W.

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity. PMID:27224646

  14. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1.

    PubMed

    Lee, Jong Doo; Choi, Min-Ah; Ro, Simon Weonsang; Yang, Woo Ick; Cho, Arthur E H; Ju, Hye-Lim; Baek, Sinhwa; Chung, Sook In; Kang, Won Jun; Yun, Mijin; Park, Jeon Han

    2016-01-01

    Calorie restriction or a low-carbohydrate diet (LCD) can increase life span in normal cells while inhibiting carcinogenesis. Various phytochemicals also have calorie restriction-mimetic anticancer properties. We investigated whether an isocaloric carbohydrate-restriction diet and AMP-activated protein kinase (AMPK)-activating phytochemicals induce synergic tumor suppression. We used a mixture of AMPK-activating phytochemical extracts including curcumin, quercetin, catechins, and resveratrol. Survival analysis was carried out in a B16F10 melanoma model fed a control diet (62.14% kcal carbohydrate, 24.65% kcal protein and 13.2% kcal fat), a control diet with multiple phytochemicals (MP), LCD (16.5, 55.2, and 28.3% kcal, respectively), LCD with multiple phytochemicals (LCDmp), a moderate-carbohydrate diet (MCD, 31.9, 62.4, and 5.7% kcal, respectively), or MCD with phytochemicals (MCDmp). Compared with the control group, MP, LCD, or MCD intervention did not produce survival benefit, but LCDmp (22.80±1.58 vs. 28.00±1.64 days, P=0.040) and MCDmp (23.80±1.08 vs. 30.13±2.29 days, P=0.008) increased the median survival time significantly. Suppression of the IGF-1R/PI3K/Akt/mTOR signaling, activation of the AMPK/SIRT1/LKB1pathway, and NF-κB suppression were the critical tumor-suppression mechanisms. In addition, SIRT1 suppressed proliferation of the B16F10 and A375SM cells under a low-glucose condition. Alterations in histone methylation within Pten and FoxO3a were observed after the MCDmp intervention. In the transgenic liver cancer model developed by hydrodynamic transfection of the HrasG12V and shp53, MCDmp and LCDmp interventions induced significant cancer-prevention effects. Microarray analysis showed that PPARα increased with decreased IL-6 and NF-κB within the hepatocytes after an MCDmp intervention. In conclusion, an isocaloric carbohydrate-restriction diet and natural AMPK-activating agents induce synergistic anticancer effects. SIRT1 acts as a

  15. Dietary fibers and crude protein content alleviate hepatic fat deposition and obesity in broiler breeder hens.

    PubMed

    Mohiti-Asli, M; Shivazad, M; Zaghari, M; Aminzadeh, S; Rezaian, M; Mateos, G G

    2012-12-01

    The effects of inclusion of cellulose or inulin as a source of dietary fiber and CP content of the diet on hepatic fat deposition were investigated in hens fed restricted or close to ad libitum consumption. There were 12 dietary treatments forming a 2 × 3 × 2 factorial with 2 feeding regimens [restricted and liberal (close to ad libitum consumption; LIB)], 3 fiber sources (control, 3% inulin, and 3% cellulose), and 2 levels of CP (14.5 and 17.4%). Hens were assigned in groups of 6 to 60 floor pens. From 43 to 55 wk of age, hens fed LIB showed increased activity of the hepatic malic enzyme (MalE; P < 0.01), which led to an increase (P < 0.001) in liver weight and hepatic lipid deposition and was associated with enhancements (P < 0.05) in plasma levels of glucose, triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Abdominal fat deposition and BW of the hens increased (P < 0.001) with liberal feeding. Inclusion of inulin in the diet reduced (P < 0.05) liver and abdominal fat weight, whereas cellulose inclusion decreased (P < 0.05) feed intake, abdominal fat, and BW. An increase in CP content of the diet from 14.5 to 17.4% reduced MalE activity (P < 0.001), liver weight (P < 0.001), and the accumulation of lipids and cholesterol in the liver, as well as plasma triglyceride concentration and abdominal fat pad weight (P < 0.05). It is concluded that fiber inclusion reduced abdominal fat and liver weight, with effects being more pronounced with cellulose than with inulin. An increase in dietary CP reduced MalE activity and alleviated hepatic and plasma lipid concentration; therefore, it might be a practical approach to reduce the incidence of obesity-linked problems in broiler breeder hens. The combination of high-CP diets and the inclusion of a fiber source did not suppress liver lipid content over that observed with the high-CP diet, exclusively.

  16. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    PubMed Central

    Margolis, Lee M.; Rivas, Donato A.; Ezzyat, Yassine; Gaffney-Stomberg, Erin; Young, Andrew J.; McClung, James P.; Fielding, Roger A.; Pasiakos, Stefan M.

    2016-01-01

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL) or CR (40% restriction), adequate (10%), or high (32%) protein (PRO) milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR) values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β) values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05) in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN), stearoyl-CoA destaurase-1 (SCD1) and pyruvate dehydrogenase kinase, isozyme 4 (PDK4) were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05), respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05) in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet. PMID:27649241

  17. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H

    2016-03-16

    Interactions between gluten proteins and dietary fiber supplements at the stage of bread dough formation are crucial in the baking industry. The dietary fiber additives are regarded as a source of polysaccharides and antioxidants, which have positive effects on human health. The fiber enrichment of bread causes a significant reduction in its quality, which is connected with changes in the structure of gluten proteins. Changes in the structure of gluten proteins and their thermal properties induced by seven commercial dietary fibers (fruit, vegetable, and cereal) were studied by FT-Raman spectroscopy and thermogravimetry (TGA), respectively. For this aim the bread dough at 500 FU consistency was made of a blend of wheat starch and wheat gluten as well as the fiber, the content of which ranged from 3 to 18% w/w. The obtained results revealed that all dietary fibers apart from oat caused similar changes in the secondary structure of gluten proteins. The most noticeable changes were observed in the regions connected with hydrogen-bonded β-sheets (1614 and 1684 cm(-1)) and β-turns (1640 and 1657 cm(-1)). Other changes observed in the gluten structure, concerning other β-structures, conformation of disulfide bridges, and aromatic amino acid microenvironment, depend on the fibers' chemical composition. The results concerning structural changes suggested that the observed formation of hydrogen bonds in the β-structures can be connected with aggregation or abnormal folding. This hypothesis was confirmed by thermogravimetric results. Changes in weight loss indicated the formation of a more complex and strong gluten network.

  18. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone.

    PubMed

    Gao, Xiang; Wu, Jianxiang; Dong, Zheyi; Hua, Can; Hu, Huimin; Mei, Changlin

    2010-02-01

    Dietary protein restriction is one major therapy in chronic kidney disease (CKD), and ketoacids have been evaluated in CKD patients during restricted-protein diets. The objective of the present study was to compare the efficacy of a low-protein diet supplemented with ketoacids (LPD+KA) and a low-protein diet alone (LPD) in halting the development of renal lesions in CKD. 5/6 Nephrectomy Sprague-Dawley rats were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % ketoacids (LPD+KA) for 24 weeks. Sham-operated rats were used as controls. Each 5/6 nephrectomy group included fifteen rats and the control group included twelve rats. Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were found in the remnant kidneys of the NPD group. Protein restriction ameliorated these changes, and the effect was more obvious in the LPD+KA group after 5/6 nephrectomy. Lower body weight and serum albumin levels were found in the LPD group, indicating protein malnutrition. Lipid and protein oxidative products were significantly increased in the LPD group compared with the LPD+KA group. These findings indicate that a LPD supplemented with ketoacids is more effective than a LPD alone in protecting the function of remnant kidneys from progressive injury, which may be mediated by ketoacids ameliorating protein malnutrition and oxidative stress injury in remnant kidney tissue.

  19. Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters.

    PubMed

    Dong, L F; Zhang, W B; Zhang, N F; Tu, Y; Diao, Q Y

    2017-02-01

    Eighteen Chinese Holstein heifers average age 230 ± 14 days were allocated to 1 of 3 dietary crude protein (CP) to metabolizable energy (ME) ratios to examine the effects on growth performance, blood metabolites and rumen fermentation parameters with 90-days experiment. Three different dietary CP:ME ratios were targeted based on the formulation of dietary CP contents of 10.85%, 12.78% and 14.63% on dry matter (DM) basis with similar ME contents (10.42 MJ/kg DM), which were categorized as low, medium and high dietary CP:ME ratios. The actual CP:ME ratios obtained in this study significantly increased from low to high CP:ME ratio groups with a value of 10.59, 11.83 and 13.38 g/MJ respectively. Elevated CP:ME ratios significantly increased CP intake (kg/day) and feed efficiency (FE) which was defined as dry matter intake as a proportion of average daily gain (ADG), whereas little difference was observed in body weight (kg), ADG (kg/day), DM intake (kg/day) and ME intake (MJ/day) among the three different CP:ME ratio groups. Increasing dietary CP to ME ratios significantly increased CP digestibility, whereas digestibility of DM and gross energy remained constant in the current experiment. Blood urea nitrogen and insulin-like growth factor-1 linearly increased with increasing dietary CP:ME ratios. There was significantly dietary treatment effect on rumen fermentation parameters including acetate, propionate, butyrate and total volatile fatty acids. Therefore, this study indicated that increasing dietary CP levels with similar energy content contributed to increased protein intake and its digestibility, as well as FE. Holstein heifers between 200 and 341 kg subjected to 13.38 dietary CP:ME ratio showed improved feed efficiency, nutrient digestibility, some blood metabolites and rumen fermentation characteristics for 0.90 kg/day rate of gain. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  20. Nutritional adequacy of energy restricted diets for young obese women.

    PubMed

    O'Connor, Helen; Munas, Zahra; Griffin, Hayley; Rooney, Kieron; Cheng, Hoi Lun; Steinbeck, Katharine

    2011-01-01

    Energy restricted meal plans may compromise nutrient intake. This study used diet modelling to assess the nutritional adequacy of energy restricted meal plans designed for weight management in young obese women. Diet modelling of 6000 kJ/d animal protein based meal plans was performed using Australian nutrient databases with adequacy compared to the Australian Nutrient Reference Values (NRVs) for women (19-30 years). One diet plan was based on the higher carbohydrate (HC) version of the Australian Guide to Healthy Eating for women 19-60 years. An alternative higher protein (HP) plan was adapted from the CSIRO Total Wellbeing Diet. Vegan and lacto-ovo versions of these plans were also modelled and compared to the appropriate vegetarian NRVs. Both animal protein diets met the estimated average requirement (EAR) or adequate intake (AI) for all nutrients analysed. The recommended dietary intake (RDI) was also satisfied, except for iron. HC met 75±30% and HP 81±31% of the iron RDI when red meat and iron fortified cereal were both included three days a week, and remained below the RDI even when red meat was increased to seven days. Iron for the modified vegan (57±5% HC; 66±4% HP) and lacto-ovo (48±6% HC; 59±7% HP) plans was below the RDI and zinc below the EAR for the vegan (76±8% HC; 84±9% HP) plans. The 6000 kJ/d animal protein meal plans met the RDI for all nutrients except iron. Iron and zinc failed to meet the vegetarian RDI and EAR respectively for the vegan plans.

  1. Comparison of a Restricted and Unrestricted Vegan Diet Plan with a Restricted Omnivorous Diet Plan on Health-Specific Measures

    PubMed Central

    Bloomer, Richard J.; Gunnels, Trint A.; Schriefer, JohnHenry M.

    2015-01-01

    Background: We have previously noted beneficial health outcomes when individuals follow a dietary restriction plan in accordance with the Daniel Fast (DF). This is true whether individuals eliminate all animal products or include small amounts of meat and dairy in their plan. The present study sought to compare anthropometric and biochemical measures of health in individuals following a traditional DF (i.e., restricted vegan) or modified DF (i.e., restricted omnivorous; inclusive of ad libitum meat and skim milk consumption), with those following an unrestricted vegan diet plan. Methods: 35 subjects (six men; 29 women; 33 ± 2 years; range: 18–67 years) completed a 21-day diet plan. Subjects reported to the lab for pre- (day 1) and post-intervention testing (day 22) in a 10 h fasted state. Blood samples were collected and assayed for complete blood count, metabolic panel, lipid panel, insulin, HOMA-IR, C-reactive protein, and oxidative stress biomarkers (malondialdehyde, advanced oxidation protein products, and nitrate/nitrite). Heart rate and blood pressure were measured and body composition was determined via dual energy X-ray absorptiometry. Subjects’ self-reported compliance, mental and physical health, and satiety in relation to the dietary modification were recorded. Results: No interaction effects were noted for our outcome measures (p > 0.05). However, subjects in the traditional DF group reported an approximate 10% increase in perceived mental and physical health, with a 25% reduction in malondialdehyde and a 33% reduction in blood insulin. Systolic BP was reduced approximately 7 mmHg in subjects assigned to the traditional DF, with an approximate 5 mmHg reduction in subjects assigned to the modified DF and the unrestricted vegan plan. A small (2 mmHg) reduction in diastolic BP was noted for subjects in both DF groups; a slight increase in diastolic BP was noted for subjects assigned to the unrestricted vegan group. An approximate 20% reduction was

  2. Comparison of a Restricted and Unrestricted Vegan Diet Plan with a Restricted Omnivorous Diet Plan on Health-Specific Measures.

    PubMed

    Bloomer, Richard J; Gunnels, Trint A; Schriefer, JohnHenry M

    2015-07-14

    We have previously noted beneficial health outcomes when individuals follow a dietary restriction plan in accordance with the Daniel Fast (DF). This is true whether individuals eliminate all animal products or include small amounts of meat and dairy in their plan. The present study sought to compare anthropometric and biochemical measures of health in individuals following a traditional DF (i.e., restricted vegan) or modified DF (i.e., restricted omnivorous; inclusive of ad libitum meat and skim milk consumption), with those following an unrestricted vegan diet plan. 35 subjects (six men; 29 women; 33 ± 2 years; range: 18-67 years) completed a 21-day diet plan. Subjects reported to the lab for pre- (day 1) and post-intervention testing (day 22) in a 10 h fasted state. Blood samples were collected and assayed for complete blood count, metabolic panel, lipid panel, insulin, HOMA-IR, C-reactive protein, and oxidative stress biomarkers (malondialdehyde, advanced oxidation protein products, and nitrate/nitrite). Heart rate and blood pressure were measured and body composition was determined via dual energy X-ray absorptiometry. Subjects' self-reported compliance, mental and physical health, and satiety in relation to the dietary modification were recorded. No interaction effects were noted for our outcome measures (p > 0.05). However, subjects in the traditional DF group reported an approximate 10% increase in perceived mental and physical health, with a 25% reduction in malondialdehyde and a 33% reduction in blood insulin. Systolic BP was reduced approximately 7 mmHg in subjects assigned to the traditional DF, with an approximate 5 mmHg reduction in subjects assigned to the modified DF and the unrestricted vegan plan. A small (2 mmHg) reduction in diastolic BP was noted for subjects in both DF groups; a slight increase in diastolic BP was noted for subjects assigned to the unrestricted vegan group. An approximate 20% reduction was noted in total and LDL cholesterol

  3. Dietary protein intake and quality in early life: impact on growth and obesity.

    PubMed

    Lind, Mads V; Larnkjær, Anni; Mølgaard, Christian; Michaelsen, Kim F

    2017-01-01

    Obesity is an increasing problem and high-protein intake early in life seems to increase later risk of obesity. This review summarizes recent publications in the area including observational and intervention studies and publications on underlying mechanisms. Recent observational and randomized controlled trials confirmed that high-protein intake in early life seems to increase early weight gain and the risk of later overweight and obesity. Recent studies have looked at the effect of different sources of protein, and especially high-animal protein intake seems to have an effect on obesity. Specific amino acids, such as leucine, have also been implicated in increasing later obesity risk maybe via specific actions on insulin-like growth factor I. Furthermore, additional underlying mechanisms including epigenetics have been linked to long-term obesogenic programming. Finally, infants with catch-up growth or specific genotypes might be particularly vulnerable to high-protein intake. Recent studies confirm the associations between high-protein intake during the first 2 years and later obesity. Furthermore, knowledge of the mechanisms involved and the role of different dietary protein sources and amino acids has increased, but intervention studies are needed to confirm the mechanisms. Avoiding high-protein intake in early life holds promise as a preventive strategy for childhood obesity.

  4. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss?

    PubMed

    Varady, K A

    2011-07-01

    Dietary restriction is an effective strategy for weight loss in obese individuals. The most common form of dietary restriction implemented is daily calorie restriction (CR), which involves reducing energy by 15-60% of usual caloric intake every day. Another form of dietary restriction employed is intermittent CR, which involves 24 h of ad libitum food consumption alternated with 24 h of complete or partial food restriction. Although both diets are effective for weight loss, it remains unknown whether one of these interventions produces superior changes in body weight and body composition when compared to the other. Accordingly, this review examines the effects of daily CR versus intermittent CR on weight loss, fat mass loss and lean mass retention in overweight and obese adults. Results reveal similar weight loss and fat mass loss with 3 to 12 weeks' intermittent CR (4-8%, 11-16%, respectively) and daily CR (5-8%, 10-20%, respectively). In contrast, less fat free mass was lost in response to intermittent CR versus daily CR. These findings suggest that these diets are equally as effective in decreasing body weight and fat mass, although intermittent CR may be more effective for the retention of lean mass. © 2011 The Author. obesity reviews © 2011 International Association for the Study of Obesity.

  5. Protein - Which is Best?

    PubMed

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  6. Evidence Supports the Use of Soy Protein to Promote Cardiometabolic Health and Muscle Development.

    PubMed

    Paul, Greg; Mendelson, Garry J

    2015-01-01

    Consumption of adequate amounts of dietary protein can help individuals maintain a healthy body composition, especially when combined with resistance exercise and during weight loss. It is well established that dietary protein intake supports muscle development and helps reduce loss of lean body mass during weight loss. Numerous studies have demonstrated the efficacy of soy protein intake for promoting fat loss while preserving muscle mass and supporting lean body mass gains. In fact, soy protein and animal-based proteins both support weight loss and weight maintenance equally as part of an energy-restricted diet; however, soy protein offers additional cardiometabolic advantages. Key teaching points: Soy protein is a high-quality, plant-based protein that can be consumed throughout the life span. More human clinical studies have been conducted to assess the cholesterol-lowering effects of soy protein than any other cholesterol-lowering food ingredient. Ingestion of proteins with unique and complementary characteristics like soy, whey, and casein helps resistance-trained individuals achieve significant muscle growth. Recent research supports the efficacy of consuming a combination of soy, whey, and casein after resistance exercise to extend the time period that muscle building occurs.

  7. Different dietary energy intake affects skeletal muscle development through an Akt-dependent pathway in Dorper × Small Thin-Tailed crossbred ewe lambs.

    PubMed

    Zhao, J X; Liu, X D; Li, K; Liu, W Z; Ren, Y S; Zhang, J X

    2016-10-01

    The objective of this experiment was to investigate the mechanisms through which different levels of dietary energy affect postnatal skeletal muscle development in ewe lambs. Twelve Dorper × Small Thin-Tailed crossbred ewe lambs (100 d of age; 20 ± 0.5 kg BW) were selected randomly and divided into 2 groups in a completely randomized design. Animals were offered identical diets at 100% or 65% of ad libitum intake. Lambs were euthanized when BW in the ad libitum group reached 35 kg and the semitendinosus muscle was sampled. Final BW and skeletal muscle weight were decreased (P < 0.01) by feed restriction. Both muscle fiber size distribution and myofibril cross-sectional area were altered by feed restriction. Insulin-like growth factor 1 (IGF-1) messenger RNA (mRNA) content was decreased (P < 0.05) when lambs were underfed, whereas no difference for IGF-2 mRNA expression was observed (P > 0.05). Feed restriction altered phosphor-Akt protein abundance (P < 0.01). Moreover, the mammalian target of rapamycin (mTOR) pathway was inhibited by feed restriction, which was associated with decreased phosphor-mTOR, phosphorylated eukaryotic initiation factor 4E binding protein 1 (phosphor-4EBP1), and phosphorylated ribosomal protein S6 kinase (phosphor-S6K). Both mRNA expression of myostatin and its protein content were elevated in feed-restricted ewe lambs (P < 0.05). In addition, mRNA expression of both muscle RING finger 1 and muscle atrophy F-box was increased when ewe lambs were underfed. In summary, feed restriction in young growing ewe lambs attenuates skeletal muscle hypertrophy by inhibiting protein synthesis and increasing protein degradation, which may act through the Akt-dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Promotion of hepatocarcinogenesis by hexachlorobenzene in energy-restricted rats.

    PubMed

    Kishima, M O; Barbisan, L F; Estevão, D; Rodrigues, M A; Viana de Camargo, J L

    2000-04-28

    The interaction between dietary energy restriction and low dose of the fungicide hexachlorobenzene (HCB) was evaluated in a rat liver medium-term bioassay for carcinogenesis. Male Wistar rats were fed a control or a 50% energy-restricted diet, both added or not with 50 ppm HCB, for 6 weeks. HCB exposure or energy restriction separately did not exert any influence on the development of glutathione S-transferase placental form (GST-P(+)) foci of hepatocytes. Simultaneous HCB exposure and energy restriction induced a significant increase in liver centrilobular hypertrophy and GST-P(+) foci development. Our findings suggest that energy restriction increases liver response to low dose of HCB, unmasking the promoting potential of this fungicide.

  9. Dietary phosphorus restriction to half the minimum required amount slightly reduces weight gain and length of tibia, but sustains femur mineralization and prevents nephrocalcinosis in female kittens.

    PubMed

    Pastoor, F J; Opitz, R; Van 't Klooster, A T; Beynen, A C

    1995-07-01

    The effects of dietary P restriction to half the recommended minimum level on growth, bone and renal mineralization and urinary composition were studied in female kittens. In two separate experiments, 8-week-old weanling kittens were fed on purified diets containing either 4.6 or 9.2 mmol P/MJ (2.8 or 5.6 g P/kg diet). In the second experiment there was an additional low-P diet in which the Ca concentration was reduced from 9.5 to 4.8 mmol/MJ (7.5 v. 3.8 g Ca/kg diet). P restriction slightly but systematically reduced weight gain (to a maximum of 16%) and growth of the tibia (by 1-4%); the former effect was statistically significant (P < 0.05) between the ages of 15 and 20 weeks in Expt 1 only, and the latter did not reach statistical significance at any time point (P > or = 0.13). No adverse effect of P restriction was found on mineralization of femur at the age of 39 weeks. Kidney Ca concentrations were significantly lowered (Expt 1, 6 v. 20 mumol/g dry weight, P < 0.001; Expt 2, 7 v. 16 mumol/g dry weight, P < 0.01) in cats fed on the low-P diets, this effect not being affected by the dietary Ca:P ratio. Urinary P concentration was significantly depressed (by 50-96%) after feeding the low-P diets (P < 0.001). P intake did not influence P, Ca and Mg retention during the period of 15 to 39 weeks of age.

  10. Dietary modulation and structure prediction of rat mucosal pentraxin (Mptx) protein and loss of function in humans

    PubMed Central

    van der Meer-van Kraaij, Cindy; Siezen, Roland; Kramer, Evelien; Reinders, Marjolein; Blokzijl, Hans; van der Meer, Roelof

    2007-01-01

    Mucosal pentraxin (Mptx), identified in rats, is a short pentraxin of unknown function. Other subfamily members are Serum amyloid P component (SAP), C-reactive protein (CRP) and Jeltraxin. Rat Mptx mRNA is predominantly expressed in colon and in vivo is strongly (30-fold) regulated by dietary heme and calcium, modulators of colon cancer risk. This renders Mptx a potential nutrient sensitive biomarker of gut health. To support a role as biomarker, we examined whether the pentraxin protein structure is conserved, whether Mptx protein is nutrient-sensitively expressed and whether Mptx is expressed in mouse and human. Sequence comparison and 3D modelling showed that rat Mptx is highly homologous to the other pentraxins. The calcium-binding site and subunit interaction sites are highly conserved, while a loop deletion and charged residues contribute to a distinctive “top” face of the pentamer. In accordance with mRNA expression, Mptx protein is strongly down-regulated in rat colon mucosa in response to high dietary heme intake. Mptx mRNA is expressed in rat and mouse colon, but not in human colon. A stop codon at the beginning of human exon two indicates loss of function, which may be related to differences in intestinal cell turnover between man and rodents. PMID:18850182

  11. Dietary Guidelines for Breast Cancer Patients: A Critical Review.

    PubMed

    Limon-Miro, Ana Teresa; Lopez-Teros, Veronica; Astiazaran-Garcia, Humberto

    2017-07-01

    Current dietary guidelines for breast cancer patients (BCPs) fail to address adequate dietary intakes of macro- and micronutrients that may improve patients' nutritional status. This review includes information from the PubMed and Biomed Central databases over the last 15 y concerning dietary guidelines for BCPs and the potential impact of a personalized, nutrient-specific diet on patients' nutritional status during and after antineoplastic treatment. Results indicated that BCPs should receive a nutritional assessment immediately after diagnosis. In addition, they should be encouraged to pursue and maintain a healthy body weight [body mass index (BMI; in kg/m 2 ) 20-24.9], preserving their lean mass and avoiding an increase in fat mass. Therefore, after nutritional status diagnosis, a conservative energy restriction of 500-1000 kcal/d could be considered in the dietary intervention when appropriate. Based on the reviewed information, we propose a personalized nutrition intervention for BCPs during and after antineoplastic treatment. Specifications in the nutritional therapy should be based on the patients' nutritional status, dietary habits, schedule, activities, and cultural preferences. BCPs' daily energy intake should be distributed as follows: <30% fat/d (mainly monounsaturated and polyunsaturated fatty acids), ∼55% carbohydrates (primarily whole foods such as oats, brown rice, and fruits), and 1.2-1.5 g protein ⋅ kg -1 ⋅ d -1 to avoid sarcopenic obesity. Findings suggest that 5-9 servings/d of fruits (∼150 g/serving) and vegetables (∼75 g/serving) should be encouraged. Garlic and cruciferous vegetables must also be part of the nutrition therapy. Adequate dietary intakes of food-based macro- and micronutrients rich in β-carotene and vitamins A, E, and C can both prevent deterioration in BCPs' nutritional status and improve their overall health and prognosis. © 2017 American Society for Nutrition.

  12. Neurogenic contributions made by dietary regulation to hippocampal neurogenesis.

    PubMed

    Park, Hee Ra; Lee, Jaewon

    2011-07-01

    Adult neural stem cells in the dentate gyrus of the hippocampus are negatively and positively regulated by a broad range of environmental stimuli that include aging, stress, social interaction, physical activity, and dietary modulation. Interestingly, dietary regulation has a distinct outcome, such that reduced dietary intake enhances neurogenesis, whereas excess calorie intake by a high-fat diet has a negative effect. As a type of metabolic stress, dietary restriction (DR) is also known to extend life span and increase resistance to age-related neurodegenerative diseases. However, the potential application of DR as a "neurogenic enhancer" in humans remains problematic because of the severity of restriction and the protracted duration of the treatment required. Therefore, the authors consider that an understanding of the neurogenic mechanisms of DR would provide a basis for the identification of the pharmacological and nutraceutical interventions that mimic the beneficial effects of DR without limiting caloric intake. The current review describes the regulatory effect of DR on hippocampal neurogenesis and presents a possible neurogenic mechanism. © 2011 New York Academy of Sciences.

  13. Amino acid δ13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore.

    PubMed

    Newsome, Seth D; Wolf, Nathan; Peters, Jacob; Fogel, Marilyn L

    2014-11-01

    Stable-isotope analysis (SIA) has revolutionized animal ecology by providing time-integrated estimates of the use of resources and/or habitats. SIA is based on the premise that the isotopic composition of a consumer's tissues originates from its food, but is offset by trophic-discrimination (enrichment) factors controlled by metabolic processes associated with the assimilation of nutrients and the biosynthesis of tissues. Laboratory preparation protocols dictate that tissues both of consumers and of their potential prey be lipid-extracted prior to analysis, because (1) lipids have carbon isotope (δ(13)C) values that are lower by approximately 3-8‰ than associated proteins and (2) amino acids in consumers' proteinaceous tissues are assumed to be completely routed from dietary protein. In contrast, models of stable-isotope mixing assume that dietary macromolecules are broken into their elemental constituents from which non-essential amino acids are resynthesized to build tissues. Here, we show that carbon from non-protein dietary macromolecules, namely lipids, was used to synthesize muscle tissue in an omnivorous rodent (Mus musculus). We traced the influence of dietary lipids on the synthesis of consumers' tissues by inversely varying the dietary proportion of C4-based lipids and C3-based protein while keeping carbohydrate content constant in four dietary treatments, and analyzing the δ(13)C values of amino acids in mouse muscle after 4 months of feeding. The influence of dietary lipids on non-essential amino acids varied as function of biosynthetic pathway. The source of carbon in ketogenic amino acids synthesized through the Krebs cycle was highly sensitive to dietary lipid content, with significant increases of approximately 2-4‰ in Glutamate and Aspartate δ(13)C values from the 5% to 15% dietary lipid treatment. Glucogenic amino acids (Glycine and Serine) were less sensitive to dietary lipid, but increased by approximately 3-4‰ from the 25% to 40% lipid

  14. Effect of physical activity and dietary restriction interventions on weight loss and the musculoskeletal function of overweight and obese older adults with knee osteoarthritis: a systematic review and mixed method data synthesis

    PubMed Central

    Alrushud, Asma S; Rushton, Alison B; Kanavaki, Archontissa M; Greig, Carolyn A

    2017-01-01

    Background Despite the clinical recommendation of exercise and diet for people with knee osteoarthritis (OA), there are no systematic reviews synthesising the effectiveness of combining physical activity and dietary restriction interventions on the musculoskeletal function of overweight and obese older adults with knee OA. Objective To evaluate the effectiveness of combined physical activity and dietary restriction programmes on body weight, body mass index (BMI) and the musculoskeletal function of overweight and obese older adults with knee OA. Information sources A detailed search strategy was applied to key electronic databases (Ovid, Embase, Web of Science andCumulative Index to Nursing and Allied Health Literature (CINAHL)) for randomised controlled trials (RCTs) published in English prior to 15 January 2017. Participants Participants with BMI ≥25 kg/m2, aged ≥55 years of age and with radiographic evidence of knee OA. Interventions Physical activity plus dietary restriction programmes with usual care or exercise as the comparators. Outcome measures Primary outcome measures were body weight, BMI or musculoskeletal function. Secondary outcome measures were pain and quality of life. Results One pilot and two definitive trials with n=794 participants were included. Two articles reporting additional data and outcome measures for one of the RCTs were identified. All included RCTs had an unclear risk of bias. Meta-analysis was only possible to evaluate mobility (6 min walk test) at 6 months and the pooled random effect 15.05 (95% CI −11.77 to 41.87) across two trials with n=155 participants did not support the combined intervention programme. Narrative synthesis showed clear differences in favour of a reduced body weight and an increased 6 min walk in the intervention group compared with control groups. Conclusion The quality of evidence of benefit of combining exercise and dietary interventions in older overweight/obese adults with knee OA is unclear

  15. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex

    PubMed Central

    Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207

  16. Effects of dietary protein levels during rearing and dietary energy levels during lay on body composition and reproduction in broiler breeder females.

    PubMed

    van Emous, R A; Kwakkel, R P; van Krimpen, M M; Hendriks, W H

    2015-05-01

    A study with a 2 × 3 × 2 factorial arrangement was conducted to determine the effects of 2 dietary protein levels (high = CPh and low = CPl) during rearing, 3 dietary energy levels (3,000, MEh1; 2,800, MEs1; and 2,600, MEl1, kcal/kg AMEn, respectively) during the first phase of lay, and 2 dietary energy levels (2,800, MEs2; and 3,000, MEh2, kcal/kg AMEn, respectively) during the second phase of lay on body composition and reproduction in broiler breeders. No meaningful interactions for energy and protein treatments within the different phases of the study were found and, therefore, this paper focusses on the main effects. Pullets fed the CPl diet had a 12.8% higher feed intake, 14% lower breast muscle, and 97% higher abdominal fat pad portion at 22 wk age. The increased abdominal fat pad and decreased breast muscle of the CPl compared to the CPh birds increased hatchability during the first phase of lay, due to a decreased embryonic mortality between d 10 to 21 of incubation, and increased egg production during the second phase of lay. Feeding birds the MEh1 and MEl1 diets slightly decreased egg production compared to the MEs1 birds. Birds fed the MEh1 diet showed a higher mortality compared to the birds fed the MEs1 and MEl1 diets. Feeding birds the MEh2 diet did not affect egg production, increased hatchability of fertile eggs, decreased embryonic mortality between d 3 to 21 of incubation, and increased the number of first-grade chicks. It was concluded that a low-protein diet during rearing changed body composition with positive effects on incubation traits during the first phase of lay and improved egg production during the second phase of lay in broiler breeders. A high-energy or low-energy diet compared to a standard diet during the first phase of lay slightly decreased total and settable egg numbers while a high-energy diet during the second phase of lay increased hatchability and number of saleable chicks. © 2015 Poultry Science Association Inc.

  17. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis

    PubMed Central

    Kim, Jung Eun; O’Connor, Lauren E.; Sands, Laura P.; Slebodnik, Mary B.

    2016-01-01

    Context: The impact of dietary protein on body composition changes after older adults purposefully lose weight requires systematic evaluation. Objective: This systematic review and meta-analysis assessed the effects of protein intake (<25% vs ≥25% of energy intake or 1.0 g/kg/d) on energy restriction–induced changes in body mass, lean mass, and fat mass in adults older than 50 years. Data Sources: PubMed, Cochrane, Scopus, and Google Scholar were searched using the keywords “dietary proteins,” “body composition,” “skeletal muscle,” and “muscle strength.” Study Selection: Two researchers independently screened 1542 abstracts. Data Extraction: Information was extracted from 24 articles. Data Synthesis: Twenty randomized control trials met the inclusion criteria. Conclusion: Older adults retained more lean mass and lost more fat mass during weight loss when consuming higher protein diets. PMID:26883880

  18. Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review.

    PubMed

    Doering, Thomas M; Reaburn, Peter R; Phillips, Stuart M; Jenkins, David G

    2016-04-01

    Participation rates of masters athletes in endurance events such as long-distance triathlon and running continue to increase. Given the physical and metabolic demands of endurance training, recovery practices influence the quality of successive training sessions and, consequently, adaptations to training. Research has suggested that, after muscle-damaging endurance exercise, masters athletes experience slower recovery rates in comparison with younger, similarly trained athletes. Given that these discrepancies in recovery rates are not observed after non-muscle-damaging exercise, it is suggested that masters athletes have impairments of the protein remodeling mechanisms within skeletal muscle. The importance of postexercise protein feeding for endurance athletes is increasingly being acknowledged, and its role in creating a positive net muscle protein balance postexercise is well known. The potential benefits of postexercise protein feeding include elevating muscle protein synthesis and satellite cell activity for muscle repair and remodeling, as well as facilitating muscle glycogen resynthesis. Despite extensive investigation into age-related anabolic resistance in sedentary aging populations, little is known about how anabolic resistance affects postexercise muscle protein synthesis and thus muscle remodeling in aging athletes. Despite evidence suggesting that physical training can attenuate but not eliminate age-related anabolic resistance, masters athletes are currently recommended to consume the same postexercise dietary protein dose (approximately 20 g or 0.25 g/kg/meal) as younger athletes. Given the slower recovery rates of masters athletes after muscle-damaging exercise, which may be due to impaired muscle remodeling mechanisms, masters athletes may benefit from higher doses of postexercise dietary protein, with particular attention directed to the leucine content of the postexercise bolus.

  19. Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution.

    PubMed

    Cardon-Thomas, Danielle K; Riviere, Timothy; Tieges, Zoë; Greig, Carolyn A

    2017-02-23

    Daily distribution of dietary protein may be important in protecting against sarcopenia, specifically in terms of per meal amounts relative to a proposed threshold for maximal response. The aims of this study were to determine total and per meal protein intake in older adults, as well as identifying associations with physical activity and sedentary behavior. Three-day food diaries recorded protein intake in 38 participants. Protein distribution, coefficient of variation (CV), and per meal amounts were calculated. Accelerometry was used to collect physical activity data as well as volume and patterns of sedentary time. Average intake was 1.14 g·kg -1 ·day -1 . Distribution was uneven (CV = 0.67), and 79% of participants reported <0.4 g·kg -1 protein content in at least 2/3 daily meals. Protein intake was significantly correlated with step count ( r = 0.439, p = 0.007) and negatively correlated with sedentary time ( r = -0.456, p = 0.005) and Gini index G, which describes the pattern of accumulation of sedentary time ( r = -0.421, p = 0.011). Total daily protein intake was sufficient; however, distribution did not align with the current literature; increasing protein intake may help to facilitate optimization of distribution. Associations between protein and other risk factors for sarcopenia may also inform protective strategies.

  20. An Appetite for Modernizing the Regulatory Framework for Protein Content Claims in Canada

    PubMed Central

    Marinangeli, Christopher P. F.; Foisy, Samara; Shoveller, Anna K.; Porter, Cara; Musa-Veloso, Kathy; Sievenpiper, John L.; Jenkins, David J. A.

    2017-01-01

    The need for protein-rich plant-based foods continues as dietary guidelines emphasize their contribution to healthy dietary patterns that prevent chronic disease and promote environmental sustainability. However, the Canadian Food and Drug Regulations provide a regulatory framework that can prevent Canadian consumers from identifying protein-rich plant-based foods. In Canada, protein nutrient content claims are based on the protein efficiency ratio (PER) and protein rating method, which is based on a rat growth bioassay. PERs are not additive, and the protein rating of a food is underpinned by its Reasonable Daily Intake. The restrictive nature of Canada’s requirements for supporting protein claims therefore presents challenges for Canadian consumers to adapt to a rapidly changing food environment. This commentary will present two options for modernizing the regulatory framework for protein content claims in Canada. The first and preferred option advocates that protein quality not be considered in the determination of the eligibility of a food for protein content claims. The second and less preferred option, an interim solution, is a framework for adopting the protein digestibility corrected amino acid score as the official method for supporting protein content and quality claims and harmonizes Canada’s regulatory framework with that of the USA. PMID:28832556