A discrete model of a modified Burgers' partial differential equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.; Shoosmith, J. N.
1990-01-01
A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.
Modelling with Difference Equations Supported by GeoGebra: Exploring the Kepler Problem
ERIC Educational Resources Information Center
Kovacs, Zoltan
2010-01-01
The use of difference and differential equations in the modelling is a topic usually studied by advanced students in mathematics. However difference and differential equations appear in the school curriculum in many direct or hidden ways. Difference equations first enter in the curriculum when studying arithmetic sequences. Moreover Newtonian…
ERIC Educational Resources Information Center
Kozan, Kadir
2016-01-01
The present study investigated the relationships among teaching, cognitive, and social presence through several structural equation models to see which model would better fit the data. To this end, the present study employed and compared several different structural equation models because different models could fit the data equally well. Among…
Study on Heat Transfer Agent Models of Transmission Line and Transformer
NASA Astrophysics Data System (ADS)
Wang, B.; Zhang, P. P.
2018-04-01
When using heat transfer simulation to study the dynamic overload of transmission line and transformer, it needs to establish the mathematical expression of heat transfer. However, the formula is a nonlinear differential equation or equation set and it is not easy to get general solutions. Aiming at this problem, some different temperature change processes caused by different initial conditions are calculated by differential equation and equation set. New agent models are developed according to the characteristics of different temperature change processes. The results show that the agent models have high precision and can solve the problem that the original equation cannot be directly applied in some practical engineers.
Petersson, K J F; Friberg, L E; Karlsson, M O
2010-10-01
Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Effect of Differential Item Functioning on Test Equating
ERIC Educational Resources Information Center
Kabasakal, Kübra Atalay; Kelecioglu, Hülya
2015-01-01
This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…
A comparison of turbulence models in computing multi-element airfoil flows
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Menter, Florian; Durbin, Paul A.; Mansour, Nagi N.
1994-01-01
Four different turbulence models are used to compute the flow over a three-element airfoil configuration. These models are the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, a two-equation k-omega model, and a new one-equation Durbin-Mansour model. The flow is computed using the INS2D two-dimensional incompressible Navier-Stokes solver. An overset Chimera grid approach is utilized. Grid resolution tests are presented, and manual solution-adaptation of the grid was performed. The performance of each of the models is evaluated for test cases involving different angles-of-attack, Reynolds numbers, and flap riggings. The resulting surface pressure coefficients, skin friction, velocity profiles, and lift, drag, and moment coefficients are compared with experimental data. The models produce very similar results in most cases. Excellent agreement between computational and experimental surface pressures was observed, but only moderately good agreement was seen in the velocity profile data. In general, the difference between the predictions of the different models was less than the difference between the computational and experimental data.
Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N
2012-12-01
Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.
Numerical Analysis of a Class of THM Coupled Model for Porous Materials
NASA Astrophysics Data System (ADS)
Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi
2018-01-01
We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.
Evaluation of infiltration models in contaminated landscape.
Sadegh Zadeh, Kouroush; Shirmohammadi, Adel; Montas, Hubert J; Felton, Gary
2007-06-01
The infiltration models of Kostiakov, Green-Ampt, and Philip (two and three terms equations) were used, calibrated, and evaluated to simulate in-situ infiltration in nine different soil types. The Osborne-Moré modified version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the double ring infiltrometers and the infiltration equations, to estimate the model parameters. Comparison of the model outputs with the experimental data indicates that the models can successfully describe cumulative infiltration in different soil types. However, since Kostiakov's equation fails to accurately simulate the infiltration rate as time approaches infinity, Philip's two-term equation, in some cases, produces negative values for the saturated hydraulic conductivity of soils, and the Green-Ampt model uses piston flow assumptions, we suggest using Philip's three-term equation to simulate infiltration and to estimate the saturated hydraulic conductivity of soils.
Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.
2012-01-01
A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3–C30 n-alkanes at column temperatures of 24–260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. PMID:22939376
ERIC Educational Resources Information Center
Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J.
2004-01-01
This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…
Study of stability of the difference scheme for the model problem of the gaslift process
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan; Turarov, Amankeldy
2017-09-01
The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.
Documentation of the Fourth Order Band Model
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Hoitsma, D.
1979-01-01
A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.
Finite difference methods for transient signal propagation in stratified dispersive media
NASA Technical Reports Server (NTRS)
Lam, D. H.
1975-01-01
Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Chaotic attractors in tumor growth and decay: a differential equation model.
Harney, Michael; Yim, Wen-sau
2015-01-01
Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.
Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
de Vries, M P; Schutte, H K; Veldman, A E P; Verkerke, G J
2002-04-01
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.
Nightingale, Claire M; Rudnicka, Alicja R; Owen, Christopher G; Donin, Angela S; Newton, Sian L; Furness, Cheryl A; Howard, Emma L; Gillings, Rachel D; Wells, Jonathan C K; Cook, Derek G; Whincup, Peter H
2013-01-01
Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Cross-sectional study of children aged 8-10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height(2)/Z); C: FFM = linear combination(height(2)/Z+weight)}. Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences.
Nightingale, Claire M.; Rudnicka, Alicja R.; Owen, Christopher G.; Donin, Angela S.; Newton, Sian L.; Furness, Cheryl A.; Howard, Emma L.; Gillings, Rachel D.; Wells, Jonathan C. K.; Cook, Derek G.; Whincup, Peter H.
2013-01-01
Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences. PMID:24204625
Comparison of stochastic lung deposition fractions with experimental data.
Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate
2012-04-01
Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.
Fault Tolerant Optimal Control.
1982-08-01
subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification
Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques
ERIC Educational Resources Information Center
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V.
2010-01-01
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Laplace and Z Transform Solutions of Differential and Difference Equations With the HP-41C.
ERIC Educational Resources Information Center
Harden, Richard C.; Simons, Fred O., Jr.
1983-01-01
A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)
Hong, Sehee; Kim, Soyoung
2018-01-01
There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.
Turbulence kinetic energy equation for dilute suspensions
NASA Technical Reports Server (NTRS)
Abou-Arab, T. W.; Roco, M. C.
1989-01-01
A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
Quantum spectral curve for ( q, t)-matrix model
NASA Astrophysics Data System (ADS)
Zenkevich, Yegor
2018-02-01
We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.
Ordinary differential equations with applications in molecular biology.
Ilea, M; Turnea, M; Rotariu, M
2012-01-01
Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
Finite-difference models of ordinary differential equations - Influence of denominator functions
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.; Smith, Arthur
1990-01-01
This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
Joint modelling rationale for chained equations
2014-01-01
Background Chained equations imputation is widely used in medical research. It uses a set of conditional models, so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary, ordinal or unordered categorical). However, chained equations imputation does not correspond to drawing from a joint distribution when the conditional models are incompatible. Concurrently with our work, other authors have shown the equivalence of the two imputation methods in finite samples. Methods Taking a different approach, we prove, in finite samples, sufficient conditions for chained equations and joint modelling to yield imputations from the same predictive distribution. Further, we apply this proof in four specific cases and conduct a simulation study which explores the consequences when the conditional models are compatible but the conditions otherwise are not satisfied. Results We provide an additional “non-informative margins” condition which, together with compatibility, is sufficient. We show that the non-informative margins condition is not satisfied, despite compatible conditional models, in a situation as simple as two continuous variables and one binary variable. Our simulation study demonstrates that as a consequence of this violation order effects can occur; that is, systematic differences depending upon the ordering of the variables in the chained equations algorithm. However, the order effects appear to be small, especially when associations between variables are weak. Conclusions Since chained equations is typically used in medical research for datasets with different types of variables, researchers must be aware that order effects are likely to be ubiquitous, but our results suggest they may be small enough to be negligible. PMID:24559129
Modeling animal movements using stochastic differential equations
Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie
2004-01-01
We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Moorthi, S.; Higgins, R. W.
1993-01-01
An adiabatic global multilevel primitive equation model using a two time-level, semi-Lagrangian semi-implicit finite-difference integration scheme is presented. A Lorenz grid is used for vertical discretization and a C grid for the horizontal discretization. The momentum equation is discretized in vector form, thus avoiding problems near the poles. The 3D model equations are reduced by a linear transformation to a set of 2D elliptic equations, whose solution is found by means of an efficient direct solver. The model (with minimal physics) is integrated for 10 days starting from an initialized state derived from real data. A resolution of 16 levels in the vertical is used, with various horizontal resolutions. The model is found to be stable and efficient, and to give realistic output fields. Integrations with time steps of 10 min, 30 min, and 1 h are compared, and the differences are found to be acceptable.
ERIC Educational Resources Information Center
McArdle, John J.; Johnson, Ronald C.; Hishinuma, Earl S.; Miyamoto, Robin H.; Andrade, Naleen N.
2001-01-01
Analyzes differences in self-reported Center for Epidemiologic Studies Depression inventory results among ethnic Hawaiian and non-Hawaiian high school students, using different forms of latent variable structural equation models. Finds a high degree of invariance between students on depression. Discusses issues about common features and…
A solution to neural field equations by a recurrent neural network method
NASA Astrophysics Data System (ADS)
Alharbi, Abir
2012-09-01
Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.
Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models
NASA Technical Reports Server (NTRS)
Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)
2000-01-01
Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.
Nested Structural Equation Models: Noncentrality and Power of Restriction Test.
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
1998-01-01
Discusses the difference in noncentrality parameters of nested structural equation models and their utility in evaluating statistical power associated with the pertinent restriction test. Asymptotic confidence intervals for that difference are presented. These intervals represent a useful adjunct to goodness-of-fit indexes in assessing constraints…
Comparing the Discrete and Continuous Logistic Models
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
New explicit global asymptotic stability criteria for higher order difference equations
NASA Astrophysics Data System (ADS)
El-Morshedy, Hassan A.
2007-12-01
New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.
Application of different variants of the BEM in numerical modeling of bioheat transfer problems.
Majchrzak, Ewa
2013-09-01
Heat transfer processes proceeding in the living organisms are described by the different mathematical models. In particular, the typical continuous model of bioheat transfer bases on the most popular Pennes equation, but the Cattaneo-Vernotte equation and the dual phase lag equation are also used. It should be pointed out that in parallel are also examined the vascular models, and then for the large blood vessels and tissue domain the energy equations are formulated separately. In the paper the different variants of the boundary element method as a tool of numerical solution of bioheat transfer problems are discussed. For the steady state problems and the vascular models the classical BEM algorithm and also the multiple reciprocity BEM are presented. For the transient problems connected with the heating of tissue, the various tissue models are considered for which the 1st scheme of the BEM, the BEM using discretization in time and the general BEM are applied. Examples of computations illustrate the possibilities of practical applications of boundary element method in the scope of bioheat transfer problems.
Solitons of the Kadomtsev-Petviashvili equation based on lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Wang, Huimin
2017-01-01
In this paper, a lattice Boltzmann model for the Kadomtsev-Petviashvili equation is proposed. By using the Chapman-Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales are obtained. Due to the asymmetry in x direction and y direction of the equation, the moments of the equilibrium distribution function are selected are asymmetric. The numerical results demonstrate the lattice Boltzmann method is an effective method to simulate the solitons of the Kadomtsev-Petviashvili equation.
Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique
NASA Technical Reports Server (NTRS)
Nordmann, R.; Weiser, P.
1989-01-01
The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
Properties of finite difference models of non-linear conservative oscillators
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1988-01-01
Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.
NASA Astrophysics Data System (ADS)
Chen, Lin-Jie; Ma, Chang-Feng
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
The Measurement and Cost of Removing Unexplained Gender Differences in Faculty Salaries.
ERIC Educational Resources Information Center
Becker, William E.; Toutkoushian, Robert K.
1995-01-01
In assessing sex-discrimination suit damages, debate rages over the type and number of variables included in a single-equation model of the salary-determination process. This article considers single- and multiple-equation models, providing 36 different damage calculations. For University of Minnesota data, equalization cost hinges on the…
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
Ill-posedness of Dynamic Equations of Compressible Granular Flow
NASA Astrophysics Data System (ADS)
Shearer, Michael; Gray, Nico
2017-11-01
We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
Alternans promotion in cardiac electrophysiology models by delay differential equations.
Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M
2017-09-01
Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.
A three-dimensional, time-dependent model of Mobile Bay
NASA Technical Reports Server (NTRS)
Pitts, F. H.; Farmer, R. C.
1976-01-01
A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.
Optimal harvesting for a predator-prey agent-based model using difference equations.
Oremland, Matthew; Laubenbacher, Reinhard
2015-03-01
In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.
An introduction to three-dimensional climate modeling
NASA Technical Reports Server (NTRS)
Washington, W. M.; Parkinson, C. L.
1986-01-01
The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.
ERIC Educational Resources Information Center
Li, Libo; Bentler, Peter M.
2011-01-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
ERIC Educational Resources Information Center
Haebara, Tomokazu
When several ability scales in item response models are separately derived from different test forms administered to different samples of examinees, these scales must be equated to a common scale because their units and origins are arbitrarily determined and generally different from scale to scale. A general method for equating logistic ability…
NASA Astrophysics Data System (ADS)
Soto-Crespo, J. M.; Akhmediev, Nail
2002-12-01
The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite solitons of this equation are generally stable and have a wider range of existence than for those of the complex quintic Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In particular, there are three types of stable soliton pairs with π and π/2 phase difference and three different fixed separations between the pulses. Different types of soliton pairs can be generated by changing the parameter corresponding to the nonlinear gain (ɛ).
An Analysis of Test Equating Models for the Alabama High School Graduation Examination.
ERIC Educational Resources Information Center
Glowacki, Margaret L.
The purpose of this study was to determine which equating models are appropriate for the Alabama High School Graduation Examination (AHSGE) by equating two previously administered fall forms for each subject area of the AHSGE and determining whether differences exist in the test score distributions or passing scores resulting from the equating…
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.
Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharov, G.S., E-mail: german.sharov@mail.ru
Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r {sub s} ( z {sub d} ). Among the considered models the best value of χ{sup 2} is achieved formore » the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.« less
ERIC Educational Resources Information Center
Furlow, Carolyn F.; Beretvas, S. Natasha
2005-01-01
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Stable boundary conditions and difference schemes for Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Dutt, P.
1985-01-01
The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.
The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation
NASA Technical Reports Server (NTRS)
Campbell, Joel
2007-01-01
A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
The SMM model as a boundary value problem using the discrete diffusion equation.
Campbell, Joel
2007-12-01
A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.
2000-01-01
MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.
Formulation, Implementation and Validation of a Two-Fluid model in a Fuel Cell CFD Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Kunal; Cole, J. Vernon; Kumar, Sanjiv
2008-12-01
Water management is one of the main challenges in PEM Fuel Cells. While water is essential for membrane electrical conductivity, excess liquid water leads to flooding of catalyst layers. Despite the fact that accurate prediction of two-phase transport is key for optimal water management, understanding of the two-phase transport in fuel cells is relatively poor. Wang et. al. have studied the two-phase transport in the channel and diffusion layer separately using a multiphase mixture model. The model fails to accurately predict saturation values for high humidity inlet streams. Nguyen et. al. developed a two-dimensional, two-phase, isothermal, isobaric, steady state modelmore » of the catalyst and gas diffusion layers. The model neglects any liquid in the channel. Djilali et. al. developed a three-dimensional two-phase multicomponent model. The model is an improvement over previous models, but neglects drag between the liquid and the gas phases in the channel. In this work, we present a comprehensive two-fluid model relevant to fuel cells. Models for two-phase transport through Channel, Gas Diffusion Layer (GDL) and Channel-GDL interface, are discussed. In the channel, the gas and liquid pressures are assumed to be same. The surface tension effects in the channel are incorporated using the continuum surface force (CSF) model. The force at the surface is expressed as a volumetric body force and added as a source to the momentum equation. In the GDL, the gas and liquid are assumed to be at different pressures. The difference in the pressures (capillary pressure) is calculated using an empirical correlations. At the Channel-GDL interface, the wall adhesion affects need to be taken into account. SIMPLE-type methods recast the continuity equation into a pressure-correction equation, the solution of which then provides corrections for velocities and pressures. However, in the two-fluid model, the presence of two phasic continuity equations gives more freedom and more complications. A general approach would be to form a mixture continuity equation by linearly combining the phasic continuity equations using appropriate weighting factors. Analogous to mixture equation for pressure correction, a difference equation is used for the volume/phase fraction by taking the difference between the phasic continuity equations. The relative advantages of the above mentioned algorithmic variants for computing pressure correction and volume fractions are discussed and quantitatively assessed. Preliminary model validation is done for each component of the fuel cell. The two-phase transport in the channel is validated using empirical correlations. Transport in the GDL is validated against results obtained from LBM and VOF simulation techniques. The Channel-GDL interface transport will be validated against experiment and empirical correlation of droplet detachment at the interface.« less
Alternative supply specifications and estimates of regional supply and demand for stumpage.
Kent P. Connaughton; David H. Jackson; Gerard A. Majerus
1988-01-01
Four plausible sets of stumpage supply and demand equations were developed and estimated; the demand equation was the same for each set, although the supply equation differed. The supply specifications varied from the model of regional excess demand in which National Forest harvest levels were assumed fixed to a more realistic model in which the harvest on the National...
Deriving Biomass Estimation Equations for Seven Plantation Hardwood Species
Bryce E. Schlaegel; Harvey E. Kennedy
1986-01-01
Trees of seven species sampled from a plantation over 7 years were used to derive weight equations to predict primary tree components. The seven species required the use of five different model forms to insure the greatest precision. Regardless of model form, all equations include variables for tree diameter, tree height, age, and number of trees planted. The most...
Effect of liquid droplets on turbulence in a round gaseous jet
NASA Technical Reports Server (NTRS)
Mostafa, A. A.; Elghobashi, S. E.
1986-01-01
The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data.
Assessments of a Turbulence Model Based on Menter's Modification to Rotta's Two-Equation Model
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
2013-01-01
The main objective of this paper is to construct a turbulence model with a more reliable second equation simulating length scale. In the present paper, we assess the length scale equation based on Menter s modification to Rotta s two-equation model. Rotta shows that a reliable second equation can be formed in an exact transport equation from the turbulent length scale L and kinetic energy. Rotta s equation is well suited for a term-by-term modeling and shows some interesting features compared to other approaches. The most important difference is that the formulation leads to a natural inclusion of higher order velocity derivatives into the source terms of the scale equation, which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes (RANS) to simulate unsteady flows. The model is implemented in the PAB3D solver with complete formulation, usage methodology, and validation examples to demonstrate its capabilities. The detailed studies include grid convergence. Near-wall and shear flows cases are documented and compared with experimental and Large Eddy Simulation (LES) data. The results from this formulation are as good or better than the well-known SST turbulence model and much better than k-epsilon results. Overall, the study provides useful insights into the model capability in predicting attached and separated flows.
A Structural Equation Model of Expertise in College Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Carr, Martha
2009-01-01
A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
A Priori Calculations of Thermodynamic Functions
1991-12-01
Ten closes this work with a brief summary and offers suggestions for improving the model and for future research. S CHAPTER TWO In this chapter, we...we must first define the theoretical model . The molecules studied in this work contain up to 10 non- hydrogen atoms and, in general, are not...is given by equation (2-31) for two different geometries or two different theoretical models . Equation (2-31) shows the error in the force constant has
A new Eulerian model for viscous and heat conducting compressible flows
NASA Astrophysics Data System (ADS)
Svärd, Magnus
2018-09-01
In this article, a suite of physically inconsistent properties of the Navier-Stokes equations, associated with the lack of mass diffusion and the definition of velocity, is presented. We show that these inconsistencies are consequences of the Lagrangian derivation that models viscous stresses rather than diffusion. A new model for compressible and diffusive (viscous and heat conducting) flows of an ideal gas, is derived in a purely Eulerian framework. We propose that these equations supersede the Navier-Stokes equations. A few numerical experiments demonstrate some differences and similarities between the new system and the Navier-Stokes equations.
NASA Technical Reports Server (NTRS)
Holton, J. R.; Wehrbein, W.
1979-01-01
The complete model is a semispectral model in which the longitudinal dependence is represented by expansion in zonal harmonics while the latitude and height dependencies are represented by a finite difference grid. The model is based on the primitive equations in the log pressure coordinate system. The lower boundary of the model domain is set at the 100 mb level (i.e., near the tropopause) and the effects of tropospheric forcing are included in the lower boundary condition. The upper boundary is at approximately 96 km, and the latitudinal extent is either global or hemispheric. The basic differential equations and boundary conditions are outlined. The finite difference equations are described. The initial conditions are discussed and a sample calculation is presented. The FORTRAN code is given in the appendix.
Joao P. Carvalho; Bernard R. Parresol
2005-01-01
This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The BertalanffyâRichards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...
Model parameter uncertainty analysis for an annual field-scale P loss model
NASA Astrophysics Data System (ADS)
Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie
2016-08-01
Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.
Collaborative Understanding of Cyanobacteria in Lake Ecosystems
ERIC Educational Resources Information Center
Greer, Meredith L.; Ewing, Holly A.; Cottingham, Kathryn L.; Weathers, Kathleen C.
2013-01-01
We describe a collaboration between mathematicians and ecologists studying the cyanobacterium "Gloeotrichia echinulata" and its possible role in eutrophication of New England lakes. The mathematics includes compartmental modeling, differential equations, difference equations, and testing models against high-frequency data. The ecology…
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)
2002-01-01
Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
Kataoka, Takeshi; Tsutahara, Michihisa
2004-03-01
We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.
Non-Linear Acoustic Concealed Weapons Detector
2006-05-01
signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns
Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings
Chai, Yijun; Lin, Chen; Wang, Xian; Li, Yueming
2016-01-01
Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC) systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL), which grows between the thermally grown oxide (TGO) and the bond coat (BC), is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO. PMID:28773894
Global Regularity for Several Incompressible Fluid Models with Partial Dissipation
NASA Astrophysics Data System (ADS)
Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan
2017-09-01
This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.
Bayesian parameter estimation for nonlinear modelling of biological pathways.
Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang
2011-01-01
The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale
NASA Astrophysics Data System (ADS)
Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang
2017-12-01
The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Modeling void growth and movement with phase change in thermal energy storage canisters
NASA Technical Reports Server (NTRS)
Darling, Douglas; Namkoong, David; Skarda, J. R. L.
1993-01-01
A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.
Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems
NASA Astrophysics Data System (ADS)
Zúñiga-Galindo, W. A.
2018-06-01
We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.
NASA Astrophysics Data System (ADS)
Elkhateeb, Esraa
2018-01-01
We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and Štefančić (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.
Nonequilibrium thermodynamics of the shear-transformation-zone model
NASA Astrophysics Data System (ADS)
Luo, Alan M.; Ã-ttinger, Hans Christian
2014-02-01
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
A numerical model for charge transport and energy conversion of perovskite solar cells.
Zhou, Yecheng; Gray-Weale, Angus
2016-02-14
Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.
NASA Astrophysics Data System (ADS)
Umut Caglar, Mehmet; Pal, Ranadip
2010-10-01
The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology
A Variational Assimilation Method for Satellite and Conventional Data: Model 2 (version 1)
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The Model II variational data assimilation model is the second of the four variational models designed to blend diverse meteorological data into a dynamically constrained data set. Model II differs from Model I in that it includes the thermodynamic equation as the fifth dynamical constraint. Thus, Model II includes all five of the primative equations that govern atmospheric flow for a dry atmosphere.
Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation
NASA Astrophysics Data System (ADS)
Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.
2017-10-01
There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.
Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.
ERIC Educational Resources Information Center
Thompson, Bruce; Fan, Xitao
This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…
Dispersive approaches for three-particle final state interaction
Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.
2015-10-30
In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong
2016-10-01
Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Neuronal models in infinite-dimensional spaces and their finite-dimensional projections: Part II.
Brzychczy, S; Leszczyński, H; Poznanski, R R
2012-09-01
Application of comparison theorem is used to examine the validitiy of the "lumped parameter assumption" in describing the behavior of solutions of the continuous cable equation U(t) = DU(xx)+f(U) with the discrete cable equation dV(n)/dt = d*(V(n+1) - 2V(n) + V(n-1)) + f(V(n)), where f is a nonlinear functional describing the internal diffusion of electrical potential in single neurons. While the discrete cable equation looks like a finite difference approximation of the continuous cable equation, solutions of the two reveal significantly different behavior which imply that the compartmental models (spiking neurons) are poor quantifiers of neurons, contrary to what is commonly accepted in computational neuroscience.
Multi-physics simulations of space weather
NASA Astrophysics Data System (ADS)
Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron
Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space weather simulation results to "standard" ideal MHD.
Two-Layer Viscous Shallow-Water Equations and Conservation Laws
NASA Astrophysics Data System (ADS)
Kanayama, Hiroshi; Dan, Hiroshi
In our previous papers, the two-layer viscous shallow-water equations were derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. Also, it was noted that the combination of upper and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. Then, the two-layer equations were approximated by a finite element method which followed our numerical scheme established for the one-layer model in 1978. Also, it was numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference. In this paper, we newly show that conservation laws are still valid in the two-layer model. Also, we show results of a new physical experiment for the interfacial instability.
Numerical solutions of the Navier-Stokes equations for transonic afterbody flows
NASA Technical Reports Server (NTRS)
Swanson, R. C., Jr.
1980-01-01
The time dependent Navier-Stokes equations in mass averaged variables are solved for transonic flow over axisymmetric boattail plume simulator configurations. Numerical solution of these equations is accomplished with the unsplit explict finite difference algorithm of MacCormack. A grid subcycling procedure and computer code vectorization are used to improve computational efficiency. The two layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are employed for investigating turbulence closure. Two relaxation models based on these baseline models are also considered. Results in the form of surface pressure distribution for three different circular arc boattails at two free stream Mach numbers are compared with experimental data. The pressures in the recirculating flow region for all separated cases are poorly predicted with the baseline turbulence models. Significant improvements in the predictions are usually obtained by using the relaxation models.
Modeling languages for biochemical network simulation: reaction vs equation based approaches.
Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya
2010-01-01
Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.
NASA Astrophysics Data System (ADS)
Lai, Wencong; Khan, Abdul A.
2018-04-01
A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.
Soltani, M.; Chen, P.
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579
Nonlinear fluctuations-induced rate equations for linear birth-death processes
NASA Astrophysics Data System (ADS)
Honkonen, J.
2008-05-01
The Fock-space approach to the solution of master equations for one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability of occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov’s ecological model and Lanchester’s model of modern warfare.
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C
2017-01-01
Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.
Test Bias: An Objective Definition for Test Items.
ERIC Educational Resources Information Center
Durovic, Jerry J.
A test bias definition, applicable at the item-level of a test is presented. The definition conceptually equates test bias with measuring different things in different groups, and operationally equates test bias with a difference in item fit to the Rasch Model, greater than one, between groups. It is suggested that the proposed definition avoids…
Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)
2001-01-01
An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
ERIC Educational Resources Information Center
Mazaheri, Mehrdad; Theuns, Peter
2009-01-01
The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…
Considerations of the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables
2007-09-01
predict first P arrival times. Since this is a 3-D model, the travel times are predicted with a 3-D finite-difference code solving the eikonal equations...for the eikonal wave equation should provide more accurate predictions of travel-time from 3D models. These techniques and others are being
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling
ERIC Educational Resources Information Center
DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica
2016-01-01
The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.
Recent Turbulence Model Advances Applied to Multielement Airfoil Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2000-01-01
A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
Lu, Zhiming
2018-01-30
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.
Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd
2014-12-01
A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhiming
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
Prediction of Airfoil Characteristics With Higher Order Turbulence Models
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.
1996-01-01
This study focuses on the prediction of airfoil characteristics, including lift and drag over a range of Reynolds numbers. Two different turbulence models, which represent two different types of models, are tested. The first is a standard isotropic eddy-viscosity two-equation model, and the second is an explicit algebraic stress model (EASM). The turbulent flow field over a general-aviation airfoil (GA(W)-2) at three Reynolds numbers is studied. At each Reynolds number, predicted lift and drag values at different angles of attack are compared with experimental results, and predicted variations of stall locations with Reynolds number are compared with experimental data. Finally, the size of the separation zone predicted by each model is analyzed, and correlated with the behavior of the lift coefficient near stall. In summary, the EASM model is able to predict the lift and drag coefficients over a wider range of angles of attack than the two-equation model for the three Reynolds numbers studied. However, both models are unable to predict the correct lift and drag behavior near the stall angle, and for the lowest Reynolds number case, the two-equation model did not predict separation on the airfoil near stall.
Computation of Separated and Unsteady Flows with One- and Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Ekaterinaris, John A.; Menter, Florian R.
1994-01-01
The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. The two-equation turbulence models are discretized in space with an upwind-biased, second order accurate total variation diminishing scheme. One and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading edge and where natural transition was allowed to occur naturally are considered. The more recently developed field-equation turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are obtained. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading edge transitional flow region in order to capture the correct physical mechanism that leads to dynamic stall.
The Complex-Step-Finite-Difference method
NASA Astrophysics Data System (ADS)
Abreu, Rafael; Stich, Daniel; Morales, Jose
2015-07-01
We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.
Accuracy of parameterized proton range models; A comparison
NASA Astrophysics Data System (ADS)
Pettersen, H. E. S.; Chaar, M.; Meric, I.; Odland, O. H.; Sølie, J. R.; Röhrich, D.
2018-03-01
An accurate calculation of proton ranges in phantoms or detector geometries is crucial for decision making in proton therapy and proton imaging. To this end, several parameterizations of the range-energy relationship exist, with different levels of complexity and accuracy. In this study we compare the accuracy of four different parameterizations models for proton range in water: Two analytical models derived from the Bethe equation, and two different interpolation schemes applied to range-energy tables. In conclusion, a spline interpolation scheme yields the highest reproduction accuracy, while the shape of the energy loss-curve is best reproduced with the differentiated Bragg-Kleeman equation.
Stochastic model for threat assessment in multi-sensor defense system
NASA Astrophysics Data System (ADS)
Wang, Yongcheng; Wang, Hongfei; Jiang, Changsheng
2007-11-01
This paper puts forward a stochastic model for target detecting and tracking in multi-sensor defense systems and applies the Lanchester differential equations to threat assessment in combat. The two different modes of targets tracking and their respective Lanchester differential equations are analyzed and established. By use of these equations, we could briefly estimate the loss of each combat side and accordingly get the threat estimation results, given the situation analysis is accomplished.
Powdthavee, Nattavudh; Lekfuangfu, Warn N.; Wooden, Mark
2017-01-01
Many economists and educators favour public support for education on the premise that education improves the overall quality of life of citizens. However, little is known about the different pathways through which education shapes people’s satisfaction with life overall. One reason for this is because previous studies have traditionally analysed the effect of education on life satisfaction using single-equation models that ignore interrelationships between different theoretical explanatory variables. In order to advance our understanding of how education may be related to overall quality of life, the current study estimates a structural equation model using nationally representative data for Australia to obtain the direct and indirect associations between education and life satisfaction through five different adult outcomes: income, employment, marriage, children, and health. Although we find the estimated direct (or net) effect of education on life satisfaction to be negative and statistically significant in Australia, the total indirect effect is positive, sizeable and statistically significant for both men and women. This implies that misleading conclusions regarding the influence of education on life satisfaction might be obtained if only single-equation models were used in the analysis. PMID:28713668
Stress stiffening and approximate equations in flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1993-01-01
A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.
Stochastic Mixing Model with Power Law Decay of Variance
NASA Technical Reports Server (NTRS)
Fedotov, S.; Ihme, M.; Pitsch, H.
2003-01-01
Here we present a simple stochastic mixing model based on the law of large numbers (LLN). The reason why the LLN is involved in our formulation of the mixing problem is that the random conserved scalar c = c(t,x(t)) appears to behave as a sample mean. It converges to the mean value mu, while the variance sigma(sup 2)(sub c) (t) decays approximately as t(exp -1). Since the variance of the scalar decays faster than a sample mean (typically is greater than unity), we will introduce some non-linear modifications into the corresponding pdf-equation. The main idea is to develop a robust model which is independent from restrictive assumptions about the shape of the pdf. The remainder of this paper is organized as follows. In Section 2 we derive the integral equation from a stochastic difference equation describing the evolution of the pdf of a passive scalar in time. The stochastic difference equation introduces an exchange rate gamma(sub n) which we model in a first step as a deterministic function. In a second step, we generalize gamma(sub n) as a stochastic variable taking fluctuations in the inhomogeneous environment into account. In Section 3 we solve the non-linear integral equation numerically and analyze the influence of the different parameters on the decay rate. The paper finishes with a conclusion.
Generalized heat-transport equations: parabolic and hyperbolic models
NASA Astrophysics Data System (ADS)
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
NASA Astrophysics Data System (ADS)
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-04-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Recursive utility in a Markov environment with stochastic growth
Hansen, Lars Peter; Scheinkman, José A.
2012-01-01
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428
Recursive utility in a Markov environment with stochastic growth.
Hansen, Lars Peter; Scheinkman, José A
2012-07-24
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
NASA Astrophysics Data System (ADS)
Xue, Hong-Jie; Wu, Reng-Lai; Hu, Cheng-Xi; Zhang, Ming
2018-04-01
In atomic clusters, plasmon modes are generally gained by the resonant responses for external fields. However, these resonant methods still carry some defects: some plasmon modes may not have been found as that may not have been excited by the external fields. Recently, by employing the extended Hubbard model to describe electron systems of atomic clusters, we have presented the eigen-oscillation equation of charge to study plasmon modes. In this work, based on the free-electron gas model, we further explore the eigen-equation method. Under different external electric fields, some of the plasmon mode spectrums with obvious differences are found, which display the defects of the resonant methods. All the plasmon modes obtained by the resonant methods are predicted by the eigen-equation method. This effectively shows that the eigen-equation method is feasible and reliable in the process of finding plasmon. In addition, various kinds of plasmons are displayed by charge distributions, and the evolution features of plasmon with system parameters are gained by the energy absorption spectrum.
Reconstruction of the modified discrete Langevin equation from persistent time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czechowski, Zbigniew
The discrete Langevin-type equation, which can describe persistent processes, was introduced. The procedure of reconstruction of the equation from time series was proposed and tested on synthetic data, with short and long-tail distributions, generated by different Langevin equations. Corrections due to the finite sampling rates were derived. For an exemplary meteorological time series, an appropriate Langevin equation, which constitutes a stochastic macroscopic model of the phenomenon, was reconstructed.
Dillenseger, Jean-Louis; Esneault, Simon; Garnier, Carole
2008-01-01
This paper describes a modeling method of the tissue temperature evolution over time in hyperthermia. More precisely, this approach is used to simulate the hepatocellular carcinoma curative treatment by a percutaneous high intensity ultrasound surgery. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be algebraically solved after a Fourier transformation over the space coordinates. The implementation and boundary conditions of this method will be shown and compared with the finite difference method.
NASA Astrophysics Data System (ADS)
Wu, Zedong; Alkhalifah, Tariq
2018-07-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.
HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, R.A.; Lowery, P.S.; Lessor, D.L.
1987-09-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2012-01-01
The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.
A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
1992-01-01
This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu
In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2015-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
NASA Astrophysics Data System (ADS)
Martin, Bradley; Fornberg, Bengt
2017-04-01
In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models
NASA Astrophysics Data System (ADS)
Giona, M.; Brasiello, A.; Crescitelli, S.
2015-11-01
One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.
Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry
NASA Astrophysics Data System (ADS)
Damevin, Henri-Marie
Magnetogasdynamics, the science concerned with the mutual interaction between electromagnetic field and flow of electrically conducting gas, offers promising advances in flow control and propulsion of future hypersonic vehicles. Numerical simulations are essential for understanding phenomena, and for research and development. The current dissertation is devoted to the development and validation of numerical algorithms for the solution of multidimensional magnetogasdynamic equations and the simulation of hypersonic high-temperature effects. Governing equations are derived, based on classical magnetogasdynamic assumptions. Two sets of equations are considered, namely the full equations and equations in the low magnetic Reynolds number approximation. Equations are expressed in a suitable formulation for discretization by finite differences in a computational space. For the full equations, Gauss law for magnetism is enforced using Powell's methodology. The time integration method is a four-stage modified Runge-Kutta scheme, amended with a Total Variation Diminishing model in a postprocessing stage. The eigensystem, required for the Total Variation Diminishing scheme, is derived in generalized three-dimensional coordinate system. For the simulation of hypersonic high-temperature effects, two chemical models are utilized, namely a nonequilibrium model and an equilibrium model. A loosely coupled approach is implemented to communicate between the magnetogasdynamic equations and the chemical models. The nonequilibrium model is a one-temperature, five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. The chemical equilibrium model computes thermodynamics properties using curve fit procedures. Selected results are provided, which explore the different features of the numerical algorithms. The shock-capturing properties are validated for shock-tube simulations using numerical solutions reported in the literature. The computations of superfast flows over corners and in convergent channels demonstrate the performances of the algorithm in multiple dimensions. The implementation of diffusion terms is validated by solving the magnetic Rayleigh problem and Hartmann problem, for which analytical solutions are available. Prediction of blunt-body type flow are investigated and compared with numerical solutions reported in the literature. The effectiveness of the chemical models for hypersonic flow over blunt body is examined in various flow conditions. It is shown that the proposed schemes perform well in a variety of test cases, though some limitations have been identified.
Development of a Standalone Thermal Wellbore Simulator
NASA Astrophysics Data System (ADS)
Xiong, Wanqiang
With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new correlations regressed by this study. Meanwhile, a correlation for handling heat transfer in double-tubing annulus is regressed. This work initiates the research on heat transfer in a double-tubing wellbore system. A series of validation and test works are performed in hot water injection, steam injection, real filed data, a horizontal well, a double-tubing well and comparison with the Ramey method. The program in this study also performs well in matching with real measured field data, simulation in horizontal wells and double-tubing wells.
NASA Astrophysics Data System (ADS)
Papoutsis-Kiachagias, E. M.; Zymaris, A. S.; Kavvadias, I. S.; Papadimitriou, D. I.; Giannakoglou, K. C.
2015-03-01
The continuous adjoint to the incompressible Reynolds-averaged Navier-Stokes equations coupled with the low Reynolds number Launder-Sharma k-ε turbulence model is presented. Both shape and active flow control optimization problems in fluid mechanics are considered, aiming at minimum viscous losses. In contrast to the frequently used assumption of frozen turbulence, the adjoint to the turbulence model equations together with appropriate boundary conditions are derived, discretized and solved. This is the first time that the adjoint equations to the Launder-Sharma k-ε model have been derived. Compared to the formulation that neglects turbulence variations, the impact of additional terms and equations is evaluated. Sensitivities computed using direct differentiation and/or finite differences are used for comparative purposes. To demonstrate the need for formulating and solving the adjoint to the turbulence model equations, instead of merely relying upon the 'frozen turbulence assumption', the gain in the optimization turnaround time offered by the proposed method is quantified.
Testing the new BPS method in some models of nonabelian magnetic monopole
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Atmaja, A. N.; Ramadhan, H. S.
2018-03-01
The proposed method in [Phys. Lett. B768 351-358 (2017)], which can obtain BPS equations of some models of vortices, is used here to see whether it is still usable for some models of magnetic monopole. Other than the standard Yang-Mills-Higgs, here we report that the method is able to give us the BPS equations from two different magnetic monopole models.
Efecto de la difusión y la velocidad en la ionización del átomo de Carbono
NASA Astrophysics Data System (ADS)
Rovira, M. G.; Fontenla, J. M.
The equations of statistical equilibrium for all ionization states of the atom are solved. The effects of diffusion and center of mass velocity are included. In order to estimate the modifications of the ionization curves, they were applied to the Carbon atom. To solve these equations, solar prominences' models obtained in a previous paper were adopted. They were extended to reach a temperature of 1.5 × 106 K and the complete model of the prominence was calculated. Ionization curves for different values of velocity, diffusion and medium models were obtained. The different models represent structures with different densities. Considerable modifications due to these effects are found.
Interpreting experimental data on egg production--applications of dynamic differential equations.
France, J; Lopez, S; Kebreab, E; Dijkstra, J
2013-09-01
This contribution focuses on applying mathematical models based on systems of ordinary first-order differential equations to synthesize and interpret data from egg production experiments. Models based on linear systems of differential equations are contrasted with those based on nonlinear systems. Regression equations arising from analytical solutions to linear compartmental schemes are considered as candidate functions for describing egg production curves, together with aspects of parameter estimation. Extant candidate functions are reviewed, a role for growth functions such as the Gompertz equation suggested, and a function based on a simple new model outlined. Structurally, the new model comprises a single pool with an inflow and an outflow. Compartmental simulation models based on nonlinear systems of differential equations, and thus requiring numerical solution, are next discussed, and aspects of parameter estimation considered. This type of model is illustrated in relation to development and evaluation of a dynamic model of calcium and phosphorus flows in layers. The model consists of 8 state variables representing calcium and phosphorus pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in layers fed different calcium concentrations during shell-forming days are used to evaluate the model. In addition to providing a useful management tool, such a simulation model also provides a means to evaluate feeding strategies aimed at reducing excretion of potential pollutants in poultry manure to the environment.
NASA Astrophysics Data System (ADS)
Kamai, Tamir; Nassar, Mohamed K.; Nelson, Kirk E.; Ginn, Timothy R.
2017-04-01
Colloid filtration in porous media spans across many disciplines and includes scenarios such as in-situ bioremediation, colloid-facilitated transport, water treatment of suspended particles and pathogenic bacteria, and transport of natural and engineered nanoparticles in the environment. Transport and deposition of colloid particles in porous media are determined by a combination of complex processes and forces. Given the convoluted physical, chemical, and biological processes involved, and the complexity of porous media in natural settings, it should not come as surprise that colloid filtration theory does not always sufficiently predict colloidal transport, and that there is still a pressing need for improved predictive capabilities. Here, instead of developing the macroscopic equation from pore-scale models, we parametrize the different terms in the macroscopic collection equation through fitting it to experimental data, by optimizing the parameters in the different terms of the equation. This way we combine a mechanistically-based filtration-equation with empirical evidence. The impact of different properties of colloids and porous media are studied by comparing experimental properties with different terms of the correlation equation. This comparison enables insight about different processes that occur during colloid transport and retention under in porous media under favorable conditions, and provides directions for future theoretical developments.
Personal computer study of finite-difference methods for the transonic small disturbance equation
NASA Technical Reports Server (NTRS)
Bland, Samuel R.
1989-01-01
Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.
Relativistic proton-nucleus scattering and one-boson-exchange models
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Gross, Franz; Tjon, J. A.; Townsend, L. W.; Wallace, S. J.
1993-01-01
Relativistic p-(Ca-40) elastic scattering observables are calculated using four sets of relativistic NN amplitudes obtained from different one-boson-exchange (OBE) models. The first two sets are based upon a relativistic equation in which one particle is on mass shell and the other two sets are obtained from a quasipotential reduction of the Bethe-Salpeter equation. Results at 200, 300, and 500 MeV are presented for these amplitudes. Differences between the predictions of these models provide a study of the uncertainty in constructing Dirac optical potentials from OBE-based NN amplitudes.
General Navier–Stokes-like momentum and mass-energy equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monreal, Jorge, E-mail: jmonreal@mail.usf.edu
2015-03-15
A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.
Examination of various turbulence models for application in liquid rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hung, R. J.
1991-01-01
There is a large variety of turbulence models available. These models include direct numerical simulation, large eddy simulation, Reynolds stress/flux model, zero equation model, one equation model, two equation k-epsilon model, multiple-scale model, etc. Each turbulence model contains different physical assumptions and requirements. The natures of turbulence are randomness, irregularity, diffusivity and dissipation. The capabilities of the turbulence models, including physical strength, weakness, limitations, as well as numerical and computational considerations, are reviewed. Recommendations are made for the potential application of a turbulence model in thrust chamber and performance prediction programs. The full Reynolds stress model is recommended. In a workshop, specifically called for the assessment of turbulence models for applications in liquid rocket thrust chambers, most of the experts present were also in favor of the recommendation of the Reynolds stress model.
[Comparison of three stand-level biomass estimation methods].
Dong, Li Hu; Li, Feng Ri
2016-12-01
At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Using Structural Equation Models with Latent Variables to Study Student Growth and Development.
ERIC Educational Resources Information Center
Pike, Gary R.
1991-01-01
Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…
NASA Astrophysics Data System (ADS)
Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo
2017-09-01
A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
NASA Astrophysics Data System (ADS)
Schilling, Oleg
2016-11-01
Two-, three- and four-equation, single-velocity, multicomponent Reynolds-averaged Navier-Stokes (RANS) models, based on the turbulent kinetic energy dissipation rate or lengthscale, are used to simulate At = 0 . 5 Rayleigh-Taylor turbulent mixing with constant and complex accelerations. The constant acceleration case is inspired by the Cabot and Cook (2006) DNS, and the complex acceleration cases are inspired by the unstable/stable and unstable/neutral cases simulated using DNS (Livescu, Wei & Petersen 2011) and the unstable/stable/unstable case simulated using ILES (Ramaprabhu, Karkhanis & Lawrie 2013). The four-equation models couple equations for the mass flux a and negative density-specific volume correlation b to the K- ɛ or K- L equations, while the three-equation models use a two-fluid algebraic closure for b. The lengthscale-based models are also applied with no buoyancy production in the L equation to explore the consequences of neglecting this term. Predicted mixing widths, turbulence statistics, fields, and turbulent transport equation budgets are compared among these models to identify similarities and differences in the turbulence production, dissipation and diffusion physics represented by the closures used in these models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Local dynamics and spatiotemporal chaos. The Kuramoto- Sivashinsky equation: A case study
NASA Astrophysics Data System (ADS)
Wittenberg, Ralf Werner
The nature of spatiotemporal chaos in extended continuous systems is not yet well-understood. In this thesis, a model partial differential equation, the Kuramoto- Sivashinsky (KS) equation ut+uxxxx+uxx+uux =0 on a large one-dimensional periodic domain, is studied analytically, numerically, and through modeling to obtain a more detailed understanding of the observed spatiotemporally complex dynamics. In particular, with the aid of a wavelet decomposition, the relevant dynamical interactions are shown to be localized in space and scale. Motivated by these results, and by the idea that the attractor on a large domain may be understood via attractors on smaller domains, a spatially localized low- dimensional model for a minimal chaotic box is proposed. A (de)stabilized extension of the KS equation has recently attracted increased interest; for this situation, dissipativity and analyticity areproven, and an explicit shock-like solution is constructed which sheds light on the difficulties in obtaining optimal bounds for the KS equation. For the usual KS equation, the spatiotemporally chaotic state is carefully characterized in real, Fourier and wavelet space. The wavelet decomposition provides good scale separation which isolates the three characteristic regions of the dynamics: large scales of slow Gaussian fluctuations, active scales containing localized interactions of coherent structures, and small scales. Space localization is shown through a comparison of various correlation lengths and a numerical experiment in which different modes are uncoupled to estimate a dynamic interaction length. A detailed picture of the contributions of different scales to the spatiotemporally complex dynamics is obtained via a Galerkin projection of the KS equation onto the wavelet basis, and an extensive series of numerical experiments in which different combinations of wavelet levels are eliminated or forced. These results, and a formalism to derive an effective equation for periodized subsystems externally forced from a larger system, motivate various models for spatially localized forced systems. There is convincing evidence that short periodized systems, internally forced at the largest scales, form a minimal model for the observed extensively chaotic dynamics in larger domains.
Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures
NASA Technical Reports Server (NTRS)
Scott, R. K.
1972-01-01
A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
NASA Technical Reports Server (NTRS)
Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.
1994-01-01
High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.
Dynamics in a Maximally Symmetric Universe
NASA Astrophysics Data System (ADS)
Bewketu, Asnakew
2016-03-01
Our present understanding of the evolution of the universe relies upon the Friedmann- Robertson- Walker cosmological models. This model is so successful that it is now being considered as the Standard Model of Cosmology. So in this work we derive the Fried- mann equations using the Friedmann-Robertson-Walker metric together with Einstein field equation and then we give a simple method to reduce Friedmann equations to a second order linear differential equation when it is supplemented with a time dependent equation of state. Furthermore, as illustrative examples, we solve this equation for some specific time dependent equation of states. And also by using the Friedmann equations with some time dependent equation of state we try to determine the cosmic scale factor(the rate at which the universe expands) and age of the Friedmann universe, for the matter dominated era, radiation dominated era and for both matter and radiation dominated era by considering different cases. We have finally discussed the observable quantities that can be evidences for the accelerated expansion of the Friedmann universe. I would like to acknowledge Addis Ababa University for its financial and material support to my work on the title mentioned above.
Note: equation of state and the freezing point in the hard-sphere model.
Robles, Miguel; López de Haro, Mariano; Santos, Andrés
2014-04-07
The merits of different analytical equations of state for the hard-sphere system with respect to the recently computed high-accuracy value of the freezing-point packing fraction are assessed. It is found that the Carnahan-Starling-Kolafa and the branch-point approximant equations of state yield the best performance.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Investigation of flood routing by a dynamic wave model in trapezoidal channels
NASA Astrophysics Data System (ADS)
Sulistyono, B. A.; Wiryanto, L. H.
2017-08-01
The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.
Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
NASA Astrophysics Data System (ADS)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
NASA Astrophysics Data System (ADS)
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.
2017-03-01
Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The second step in development of MODEL III is summarized. It combines the four radiative transfer equations of the first step with the equations for a geostrophic and hydrostatic atmosphere. This step is intended to bring radiance into a three dimensional balance with wind, height, and temperature. The use of the geostrophic approximation in place of the full set of primitive equations allows for an easier evaluation of how the inclusion of the radiative transfer equation increases the complexity of the variational equations. Seven different variational formulations were developed for geostrophic, hydrostatic, and radiative transfer equations. The first derivation was too complex to yield solutions that were physically meaningful. For the remaining six derivations, the variational method gave the same physical interpretation (the observed brightness temperatures could provide no meaningful input to a geostrophic, hydrostatic balance) at least through the problem solving methodology used in these studies. The variational method is presented and the Euler-Lagrange equations rederived for the geostrophic, hydrostatic, and radiative transfer equations.
Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael
2005-03-21
Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less
NASA Technical Reports Server (NTRS)
Srivastava, R. C.; Coen, J. L.
1992-01-01
The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.
Integral Equation for the Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, Robert L.
2002-11-11
We study a nonlinear integral equation for the equilibrium phase distribution of stored colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. We prove existence of a unique solution, thus the existence of a unique equilibrium state, for sufficiently small current. This is done for the Chao-Ruth model of the beam-beam interaction in one degree of freedom. We expect no difficulty in generalizing the argument to more realistic models.
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.
2015-12-01
The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.
Valdes-Abellan, Javier; Pachepsky, Yakov; Martinez, Gonzalo
2018-01-01
Data assimilation is becoming a promising technique in hydrologic modelling to update not only model states but also to infer model parameters, specifically to infer soil hydraulic properties in Richard-equation-based soil water models. The Ensemble Kalman Filter method is one of the most widely employed method among the different data assimilation alternatives. In this study the complete Matlab© code used to study soil data assimilation efficiency under different soil and climatic conditions is shown. The code shows the method how data assimilation through EnKF was implemented. Richards equation was solved by the used of Hydrus-1D software which was run from Matlab. •MATLAB routines are released to be used/modified without restrictions for other researchers•Data assimilation Ensemble Kalman Filter method code.•Soil water Richard equation flow solved by Hydrus-1D.
Computation of oscillating airfoil flows with one- and two-equation turbulence models
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Menter, F. R.
1994-01-01
The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds-averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. One- and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading-edge and where natural transition was allowed to occur naturally are considered. The more recently developed turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are observed. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading-edge transitional flow region to capture the correct physical mechanism that leads to dynamic stall.
Runkel, Robert L.
1998-01-01
OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.
2000-04-01
natural systems (King 1993). Population modelers have used certain difference equations, sometimes called the Lotka - Volterra system of equations...environment 28 Step 5 - Simulate the hydraulic and/or water quality field 29 Step 6 - Generate biota response data for decision support 29 Step 7...Quality and Contaminant Modeling Branch (WQCMB), and Mr. R. Andrew Goodwin, contract student, WQCMB, under the general supervision of Dr. Mark S. Dortch
NASA Astrophysics Data System (ADS)
Osczevski, Randall J.
2014-08-01
Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2012-01-01
Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.
Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System
NASA Astrophysics Data System (ADS)
Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.
2008-05-01
In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.
Signature modelling and radiometric rendering equations in infrared scene simulation systems
NASA Astrophysics Data System (ADS)
Willers, Cornelius J.; Willers, Maria S.; Lapierre, Fabian
2011-11-01
The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction, the development of surveillance and missile sensors, signal/image processing algorithm development and aircraft self-protection countermeasure system development and evaluation. Even the most cursory investigation reveals a multitude of factors affecting the infrared signatures of realworld objects. Factors such as spectral emissivity, spatial/volumetric radiance distribution, specular reflection, reflected direct sunlight, reflected ambient light, atmospheric degradation and more, all affect the presentation of an object's instantaneous signature. The signature is furthermore dynamically varying as a result of internal and external influences on the object, resulting from the heat balance comprising insolation, internal heat sources, aerodynamic heating (airborne objects), conduction, convection and radiation. In order to accurately render the object's signature in a computer simulation, the rendering equations must therefore account for all the elements of the signature. In this overview paper, the signature models, rendering equations and application frameworks of three infrared simulation systems are reviewed and compared. The paper first considers the problem of infrared scene simulation in a framework for simulation validation. This approach provides concise definitions and a convenient context for considering signature models and subsequent computer implementation. The primary radiometric requirements for an infrared scene simulator are presented next. The signature models and rendering equations implemented in OSMOSIS (Belgian Royal Military Academy), DIRSIG (Rochester Institute of Technology) and OSSIM (CSIR & Denel Dynamics) are reviewed. In spite of these three simulation systems' different application focus areas, their underlying physics-based approach is similar. The commonalities and differences between the different systems are investigated, in the context of their somewhat different application areas. The application of an infrared scene simulation system towards the development of imaging missiles and missile countermeasures are briefly described. Flowing from the review of the available models and equations, recommendations are made to further enhance and improve the signature models and rendering equations in infrared scene simulators.
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
On one solution of Volterra integral equations of second kind
NASA Astrophysics Data System (ADS)
Myrhorod, V.; Hvozdeva, I.
2016-10-01
A solution of Volterra integral equations of the second kind with separable and difference kernels based on solutions of corresponding equations linking the kernel and resolvent is suggested. On the basis of a discrete functions class, the equations linking the kernel and resolvent are obtained and the methods of their analytical solutions are proposed. A mathematical model of the gas-turbine engine state modification processes in the form of Volterra integral equation of the second kind with separable kernel is offered.
Nonlinear Poisson Equation for Heterogeneous Media
Hu, Langhua; Wei, Guo-Wei
2012-01-01
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937
Instability of turing patterns in reaction-diffusion-ODE systems.
Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako
2017-02-01
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.
NASA Astrophysics Data System (ADS)
La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia
2014-05-01
Volcanoes exhibit a wide range of eruption styles, from relatively slow effusive eruptions, generating lava flows and lava domes, to explosive eruptions, in which very large volumes of fragmented magma and volcanic gas are ejected high into the atmosphere. During an eruption, much information regarding the magma ascent dynamics can be gathered: melt and exsolved gas composition, crystal content, mass flow rate and ballistic velocities, to name just a few. Due to the lack of direct observations of the conduit itself, mathematical models for magma ascent provide invaluable tools for a better comprehension of the system. The complexity of the multiphase multicomponent gas-magma-solid system is reflected in the corresponding mathematical model; a set of non-linear hyperbolic partial differential and constitutive equations, which describe the physical system, has to be formulated and solved. The standard approach to derive governing equations for two-phase flow is based on averaging procedures, which leads to a system of governing equations in the form of mass, momentum and energy balance laws for each phase coupled with algebraic and differential source terms which represent phase interactions. For this work, we used the model presented by de' Michieli Vitturi et al. (EGU General Assembly Conference Abstracts, 2013), where a different approach based on the theory of thermodynamically compatible systems has been adopted to write the governing multiphase equations for two-phase compressible flow (with two velocities and two pressures) in the form of a conservative hyperbolic system of partial differential equations, coupled with non-differential source terms. Here, in order to better describe the multicomponent nature of the system, we extended the model adding several transport equations to the system for different crystal components and different gas species, and implementing appropriate equations of state. The constitutive equations of the model are chosen to reproduce both effusive and explosive eruptive activities at Stromboli volcano. Three different crystal components (olivine, pyroxene and feldspar) and two different gas species (water and carbon dioxide) are taken into account. The equilibrium profiles of crystallization as function of pressure, temperature and water content are modeled using the numerical codes AlphaMELTS and DAKOTA. The equilibrium of dissolved gas content, instead, is obtained using a non-linear fitting of data computed using VolatileCALC. With these data, we simulate numerically the lava effusion that occurred at Stromboli between 27 February and 2 April 2007, and find good agreement with the observed data (vesicularity, exsolved gas composition, crystal content and mass flow rate) at the vent. We find that the model is highly sensitive to input magma temperature, going from effusive to explosive eruption with temperature changes by just 20 °C. We thoroughly investigated through a sensitivity analysis the control of the temperature of magma chamber and of the radius of the conduit on the mass flow rate, obtaining also a set of admissible temperatures and conduit radii that produce results in agreement with the real observations.
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana V.
2013-11-01
Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.
NASA Astrophysics Data System (ADS)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.
2017-10-01
This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.
Exact Solutions for Stokes' Flow of a Non-Newtonian Nanofluid Model: A Lie Similarity Approach
NASA Astrophysics Data System (ADS)
Aziz, Taha; Aziz, A.; Khalique, C. M.
2016-07-01
The fully developed time-dependent flow of an incompressible, thermodynamically compatible non-Newtonian third-grade nanofluid is investigated. The classical Stokes model is considered in which the flow is generated due to the motion of the plate in its own plane with an impulsive velocity. The Lie symmetry approach is utilised to convert the governing nonlinear partial differential equation into different linear and nonlinear ordinary differential equations. The reduced ordinary differential equations are then solved by using the compatibility and generalised group method. Exact solutions for the model equation are deduced in the form of closed-form exponential functions which are not available in the literature before. In addition, we also derived the conservation laws associated with the governing model. Finally, the physical features of the pertinent parameters are discussed in detail through several graphs.
Dynamic reduction with applications to mathematical biology and other areas.
Sacker, Robert J; Von Bremen, Hubertus F
2007-10-01
In a difference or differential equation one is usually interested in finding solutions having certain properties, either intrinsic properties (e.g. bounded, periodic, almost periodic) or extrinsic properties (e.g. stable, asymptotically stable, globally asymptotically stable). In certain instances it may happen that the dependence of these equations on the state variable is such that one may (1) alter that dependency by replacing part of the state variable by a function from a class having some of the above properties and (2) solve the 'reduced' equation for a solution having the remaining properties and lying in the same class. This then sets up a mapping Τ of the class into itself, thus reducing the original problem to one of finding a fixed point of the mapping. The procedure is applied to obtain a globally asymptotically stable periodic solution for a system of difference equations modeling the interaction of wild and genetically altered mosquitoes in an environment yielding periodic parameters. It is also shown that certain coupled periodic systems of difference equations may be completely decoupled so that the mapping Τ is established by solving a set of scalar equations. Periodic difference equations of extended Ricker type and also rational difference equations with a finite number of delays are also considered by reducing them to equations without delays but with a larger period. Conditions are given guaranteeing the existence and global asymptotic stability of periodic solutions.
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
ℤ3 parafermionic chain emerging from Yang-Baxter equation.
Yu, Li-Wei; Ge, Mo-Lin
2016-02-23
We construct the 1D ℤ3 parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the ℤ3 parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the ℤ3 parafermionic model is a direct generalization of 1D ℤ2 Kitaev model. Both the ℤ2 and ℤ3 model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian H123 based on Yang-Baxter equation. Different from the Majorana doubling, the H123 holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, ω-parity P [formula in text] and emergent parafermionic operator Γ, which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, respectively. Both the ℤ3 parafermionic model and H123 can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2001-01-01
It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.
High-frequency sound waves to eliminate a horizon in the mixmaster universe.
NASA Technical Reports Server (NTRS)
Chitre, D. M.
1972-01-01
From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
ERIC Educational Resources Information Center
Museus, Samuel D.; Vue, Rican
2013-01-01
The purpose of this study is to examine socioeconomic differences in the interpersonal factors that influence college access among Asian Americans and Pacific Islanders (AAPIs). Data on 1,460 AAPIs from the Education Longitudinal Study (ELS: 02/06) were analyzed using structural equation modeling techniques. Findings suggest that parental…
Asymptotic Standard Errors of Observed-Score Equating with Polytomous IRT Models
ERIC Educational Resources Information Center
Andersson, Björn
2016-01-01
In observed-score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response…
A whole stand basal area projection model for Appalachian hardwoods
John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma
2008-01-01
Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
NASA Astrophysics Data System (ADS)
Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried
2000-06-01
In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.
Dynamical analysis of cigarette smoking model with a saturated incidence rate
NASA Astrophysics Data System (ADS)
Zeb, Anwar; Bano, Ayesha; Alzahrani, Ebraheem; Zaman, Gul
2018-04-01
In this paper, we consider a delayed smoking model in which the potential smokers are assumed to satisfy the logistic equation. We discuss the dynamical behavior of our proposed model in the form of Delayed Differential Equations (DDEs) and show conditions for asymptotic stability of the model in steady state. We also discuss the Hopf bifurcation analysis of considered model. Finally, we use the nonstandard finite difference (NSFD) scheme to show the results graphically with help of MATLAB.
CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY
NASA Astrophysics Data System (ADS)
Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong
2013-07-01
The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.
MX Survivability: Passive and Active Defense.
1982-03-01
coefficient of determination (K2) and model parameters (i.e., bo, b1 , b2 , and b3 ) significantly different from zero: MX Survivability = 0 + b1X1...following equation was chosen as the best fit for the data: MX Survivability - b° + blX1 , - 0.881 where F-Ratio b = .2884 49.26 b1 - .02695 112.46 X1...that all of the model parameters estimated (i.e., b and b1 ) are significantly different from zero. Substituting 60% MX survivability into this equation
Parallel But Not Equivalent: Challenges and Solutions for Repeated Assessment of Cognition over Time
Gross, Alden L.; Inouye, Sharon K.; Rebok, George W.; Brandt, Jason; Crane, Paul K.; Parisi, Jeanine M.; Tommet, Doug; Bandeen-Roche, Karen; Carlson, Michelle C.; Jones, Richard N.
2013-01-01
Objective Analyses of individual differences in change may be unintentionally biased when versions of a neuropsychological test used at different follow-ups are not of equivalent difficulty. This study’s objective was to compare mean, linear, and equipercentile equating methods and demonstrate their utility in longitudinal research. Study Design and Setting The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE, N=1,401) study is a longitudinal randomized trial of cognitive training. The Alzheimer’s Disease Neuroimaging Initiative (ADNI, n=819) is an observational cohort study. Nonequivalent alternate versions of the Auditory Verbal Learning Test (AVLT) were administered in both studies. Results Using visual displays, raw and mean-equated AVLT scores in both studies showed obvious nonlinear trajectories in reference groups that should show minimal change, poor equivalence over time (ps≤0.001), and raw scores demonstrated poor fits in models of within-person change (RMSEAs>0.12). Linear and equipercentile equating produced more similar means in reference groups (ps≥0.09) and performed better in growth models (RMSEAs<0.05). Conclusion Equipercentile equating is the preferred equating method because it accommodates tests more difficult than a reference test at different percentiles of performance and performs well in models of within-person trajectory. The method has broad applications in both clinical and research settings to enhance the ability to use nonequivalent test forms. PMID:22540849
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
NASA Astrophysics Data System (ADS)
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
ERIC Educational Resources Information Center
Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen
2017-01-01
In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…
Immersed boundary method for Boltzmann model kinetic equations
NASA Astrophysics Data System (ADS)
Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina
2012-11-01
Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.
Equation-free modeling unravels the behavior of complex ecological systems
DeAngelis, Donald L.; Yurek, Simeon
2015-01-01
Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.
HYDRODYNAMIC SIMULATION OF THE UPPER POTOMAC ESTUARY.
Schaffranck, Raymond W.
1986-01-01
Hydrodynamics of the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. , are simulated using a two-dimensional model. The model computes water-surface elevations and depth-averaged velocities by numerically integrating finite-difference forms of the equations of mass and momentum conservation using the alternating direction implicit method. The fundamental, non-linear, unsteady-flow equations, upon which the model is formulated, include additional terms to account for Coriolis acceleration and meteorological influences. Preliminary model/prototype data comparisons show agreement to within 9% for tidal flow volumes and phase differences within the measured-data-recording interval. Use of the model to investigate the hydrodynamics and certain aspects of transport within this Potomac Estuary reach is demonstrated. Refs.
Aircraft Airframe Cost Estimation Using a Random Coefficients Model
1979-12-01
approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
NASA Astrophysics Data System (ADS)
Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang; Duan, Huijuan
2017-07-01
A rational melting model is indispensable to address the fundamental issue regarding the melting of nanoparticles. To ascertain the rationality and the application scopes of the three classical thermodynamic models, namely Pawlow, Rie, and Reiss melting models, corresponding accurate equations for size-dependent melting temperature of nanoparticles were derived. Comparison of the melting temperatures of Au, Al, and Sn nanoparticles calculated by the accurate equations with available experimental results demonstrates that both Reiss and Rie melting models are rational and capable of accurately describing the melting behaviors of nanoparticles at different melting stages. The former (surface pre-melting) is applicable to the stage from initial melting to critical thickness of liquid shell, while the latter (solid particles surrounded by a great deal of liquid) from the critical thickness to complete melting. The melting temperatures calculated by the accurate equation based on Reiss melting model are in good agreement with experimental results within the whole size range of calculation compared with those by other theoretical models. In addition, the critical thickness of liquid shell is found to decrease with particle size decreasing and presents a linear variation with particle size. The accurate thermodynamic equations based on Reiss and Rie melting models enable us to quantitatively and conveniently predict and explain the melting behaviors of nanoparticles at all size range in the whole melting process. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H.
2018-03-01
In this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein-Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein-Gordon equations driven by a harmonic perturbation at the boundary.
NASA Technical Reports Server (NTRS)
Hah, C.; Lakshminarayana, B.
1982-01-01
Turbulent wakes of turbomachinery rotor blades, isolated airfoils, and a cascade of airfoils were investigated both numerically and experimentally. Low subsonic and incompressible wake flows were examined. A finite difference procedure was employed in the numerical analysis utilizing the continuity, momentum, and turbulence closure equations in the rotating, curvilinear, and nonorthogonal coordinate system. A nonorthogonal curvilinear coordinate system was developed to improve the accuracy and efficiency of the numerical calculation. Three turbulence models were employed to obtain closure of the governing equations. The first model was comprised to transport equations for the turbulent kinetic energy and the rate of energy dissipation, and the second and third models were comprised of equations for the rate of turbulent kinetic energy dissipation and Reynolds stresses, respectively. The second model handles the convection and diffusion terms in the Reynolds stress transport equation collectively, while the third model handles them individually. The numerical results demonstrate that the second and third models provide accurate predictions, but the computer time and memory storage can be considerably saved with the second model.
Data-driven discovery of partial differential equations.
Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan
2017-04-01
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.
Existence and stability of periodic solutions of quasi-linear Korteweg — de Vries equation
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu; Preobrazhenskaia, M. M.
2017-01-01
We consider the scalar nonlinear differential-difference equation with two delays, which models electrical activity of a neuron. Under some additional suppositions for this equation well known method of quasi-normal forms can be applied. Its essence lies in the formal normalization of the Poincare - Dulac obtaining quasi-normal form and the subsequent application of the theorems of conformity. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which can be turned into a boundary value problem of the Korteweg - de Vries equation. The investigation of this boundary value problem allows us to draw a conclusion about the behaviour of the original equation. Namely, for a suitable choice of parameters in the framework of this equation is implemented buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.
Light aircraft sound transmission studies - Noise reduction model
NASA Technical Reports Server (NTRS)
Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.
1987-01-01
Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.
Newtonian nudging for a Richards equation-based distributed hydrological model
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model
NASA Astrophysics Data System (ADS)
Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.
In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
NASA Trapezoidal Wing Simulation Using Stress-w and One- and Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Rodio, J. J.; Xiao, X; Hassan, H. A.; Rumsey, C. L.
2014-01-01
The Wilcox 2006 stress-omega model (also referred to as WilcoxRSM-w2006) has been implemented in the NASA Langley code CFL3D and used to study a variety of 2-D and 3-D configurations. It predicted a variety of basic cases reasonably well, including secondary flow in a supersonic rectangular duct. One- and two-equation turbulence models that employ the Boussinesq constitutive relation were unable to predict this secondary flow accurately because it is driven by normal turbulent stress differences. For the NASA trapezoidal wing at high angles of attack, the WilcoxRSM-w2006 model predicted lower maximum lift than experiment, similar to results of a two-equation model.
Imprint of thawing scalar fields on the large scale galaxy overdensity
NASA Astrophysics Data System (ADS)
Dinda, Bikash R.; Sen, Anjan A.
2018-04-01
We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Cheng, R.T.; Casulli, V.; Gartner, J.W.
1993-01-01
A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
Going beyond the second virial coefficient in the hadron resonance gas model
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.
2018-02-01
We develop a novel formulation of the hadron resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.1-0.11. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and neither their number nor their form depend on the values of the hard-core radii used for different hadronic resonances. Such an advantage leads to a significant mathematical simplification compared to other versions of truly multi-component hadron resonance gas models. Using this equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at the center-of-mass energy 2.76 TeV per nucleon and we find that the dependence of χ2 / ndf on the temperature has a single global minimum in the traditional hadron resonance gas model with the multi-component hard-core repulsion. Also we find two local minima of χ2 / ndf in the model in which the proper volume of each hadron is proportional to its mass. However, it is shown that in the latter model a second local minimum located at higher temperatures always appears far above the limit of its applicability.
Differential equations with applications in cancer diseases.
Ilea, M; Turnea, M; Rotariu, M
2013-01-01
Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. The cancer modeling is a highly challenging problem at the frontier of applied mathematics. A variety of modeling strategies have been developed, each focusing on one or more aspects of cancer. The vast majority of mathematical models in cancer diseases biology are formulated in terms of differential equations. We propose an original mathematical model with small parameter for the interactions between these two cancer cell sub-populations and the mathematical model of a vascular tumor. We work on the assumption that, the quiescent cells' nutrient consumption is long. One the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. MATLAB simulations obtained for transition rate from the quiescent cells' nutrient consumption is long, we show a similar asymptotic behavior for two solutions of the perturbed problem. In this system, the small parameter is an asymptotic variable, different from the independent variable. The graphical output for a mathematical model of a vascular tumor shows the differences in the evolution of the tumor populations of proliferating, quiescent and necrotic cells. The nutrient concentration decreases sharply through the viable rim and tends to a constant level in the core due to the nearly complete necrosis in this region. Many mathematical models can be quantitatively characterized by ordinary differential equations or partial differential equations. The use of MATLAB in this article illustrates the important role of informatics in research in mathematical modeling. The study of avascular tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
FDDO and DSMC analyses of rarefied gas flow through 2D nozzles
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.
A lattice Boltzmann model for the Burgers-Fisher equation.
Zhang, Jianying; Yan, Guangwu
2010-06-01
A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.
2016-01-01
Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.
An assessment and application of turbulence models for hypersonic flows
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Viegas, J. R.; Huang, P. G.; Rubesin, M. W.
1990-01-01
The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models.
Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions
NASA Technical Reports Server (NTRS)
Lewis, J. P.; Pletcher, R. H.
1986-01-01
Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.
HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, R.A.; Lowery, P.S.
1987-10-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less
Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes
NASA Astrophysics Data System (ADS)
Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca
2018-01-01
Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.
A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model
NASA Astrophysics Data System (ADS)
Pouliot, George Antoine
2000-10-01
The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
Turbulence Model Selection for Low Reynolds Number Flows
2016-01-01
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil’s surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail. PMID:27104354
Turbulence Model Selection for Low Reynolds Number Flows.
Aftab, S M A; Mohd Rafie, A S; Razak, N A; Ahmad, K A
2016-01-01
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil's surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail.
Emergence of a complex and stable network in a model ecosystem with extinction and mutation.
Tokita, Kei; Yasutomi, Ayumu
2003-03-01
We propose a minimal model of the dynamics of diversity-replicator equations with extinction, invasion and mutation. We numerically study the behavior of this simple model and show that it displays completely different behavior from the conventional replicator equation and the generalized Lotka-Volterra equation. We reach several significant conclusions as follows: (1) a complex ecosystem can emerge when mutants with respect to species-specific interaction are introduced; (2) such an ecosystem possesses strong resistance to invasion; (3) a typical fixation process of mutants is realized through the rapid growth of a group of mutualistic mutants with higher fitness than majority species; (4) a hierarchical taxonomic structure (like family-genus-species) emerges; and (5) the relative abundance of species exhibits a typical pattern widely observed in nature. Several implications of these results are discussed in connection with the relationship of the present model to the generalized Lotka-Volterra equation.
Generalized constitutive equations for piezo-actuated compliant mechanism
NASA Astrophysics Data System (ADS)
Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin
2016-09-01
This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.
Modeling unsteady sound refraction by coherent structures in a high-speed jet
NASA Astrophysics Data System (ADS)
Kan, Pinqing; Lewalle, Jacques
2011-11-01
We construct a visual model for the unsteady refraction of sound waves from point sources in a Ma = 0.6 jet. The mass and inviscid momentum equations give an equation governing acoustic fluctuations, including anisotropic propagation, attenuation and sources; differences with Lighthill's equation will be discussed. On this basis, the theory of characteristics gives canonical equations for the acoustic paths from any source into the far field. We model a steady mean flow in the near-jet region including the potential core and the mixing region downstream of its collapse, and model the convection of coherent structures as traveling wave perturbations of this mean flow. For a regular distribution of point sources in this region, we present a visual rendition of fluctuating distortion, lensing and deaf spots from the viewpoint of a far-field observer. Supported in part by AFOSR Grant FA-9550-10-1-0536 and by a Syracuse University Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
ERIC Educational Resources Information Center
Badri, Masood; Alnuaimi, Ali; Mohaidat, Jihad; Al Rashedi, Asma; Yang, Guang; Al Mazroui, Karima
2016-01-01
Background: This study is about Abu Dhabi high school students' interest in science in different contexts. The survey was conducted in connection with the international project, the Relevance of Science Education (ROSE). The sample consists of 5650 students in public and private schools. A structural equation model (SEM) is developed to capture…
ERIC Educational Resources Information Center
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
Bankfull discharge and channel characteristics of streams in New York State
Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel
2009-01-01
Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to help define bankfull discharge and channel characteristics at ungaged sites and can be used in stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report seeks to increase understanding of the factors affecting bankfull discharge and channel characteristics to drainage-area size relations in New York State by providing an in-depth analysis of seven previously published regional bankfull-discharge and channel-characteristics curves.Stream-survey data and discharge records from 281 cross sections at 82 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull-channel width, depth, and cross-sectional area. The R2 and standard errors of estimate of each regional equation were compared to the R2 and standard errors of estimate for the statewide (pooled) model to determine if regionalizing data reduced model variability. It was found that regional models typically yield less variable results than those obtained using pooled statewide equations, which indicates statistically significant regional differences in bankfull-discharge and channel-characteristics relations.Statistical analysis of bankfull-discharge relations found that curves for regions 4 and 7 fell outside the 95-percent confidence interval bands of the statewide model and had intercepts that were significantly diferent (p≤0.10) from the other five hydrologic regions.Analysis of channel-characteristics relations found that the bankfull width, depth, and cross-sectional area curves for region 3 were significantly different p(≤0.05) from the other six regions.It was hypothesized that some regional variability could be reduced by creating models for streams with similar physiographic and climatic characteristics. Available data on streamflow patterns and previous regional-curve research suggested that mean annual runoff, Rosgen stream type, and water-surface slope were the variables most likely to influence regional bankfull discharge and channel characteristics to drainage-area size relations. Results showed that although all of these factors had an influence on regional relations, most stratified models have lower 2 values and higher standard errors of estimate than the regional models.The New York statewide (pooled) bankfull-discharge equation and equations for regions 4 and 7 were compared with equations for four other regions in the Northeast to evaluate region-to-region differences, and assess the ability of individual curves to produce results more accurate than those that would be obtained from one model of the northeastern United States. Results indicated that model slopes lack significant diferences, though intercepts are significantly different. Comparison of bankfull-discharge estimates using different models shows that results could vary by as much as 100 percent depending on which model was used and indicated that regionalization improved model accuracy.
Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter
1998-07-01
We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids
NASA Astrophysics Data System (ADS)
Tian, Jianxiang; Zhang, Laibin
2016-09-01
Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T
2017-11-01
The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.
Zhao, Xiaofeng; McGough, Robert J.
2016-01-01
The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2006-08-01
equations for the antimicrobial activities and the structural properties of the silanols, the alcohols, and the phenols against four bacteria.........59 4... equations in Table 4-3. ...................................69 ix 4-6 Comparison data of PRESS and RMSPE of different classes of external compounds against...manner as shown in Equation 1-1. Hansch and Fujita derived a correlation model Equation 1-2 based on the linear free energy approach using
A paradigm for modeling and computation of gas dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun; Liu, Chang
2017-02-01
In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct modeling methods, such as DSMC, particle in cell, and smooth particle hydrodynamics, play a dominant role to incorporate the flow physics into the algorithm construction directly. It is fully legitimate to combine the modeling and computation together without going through the process of constructing PDEs. In other words, the CFD research is not only to obtain the numerical solution of governing equations but to model flow dynamics as well. This methodology leads to the unified gas-kinetic scheme (UGKS) for flow simulation in all flow regimes. Based on UGKS, the boundary for the validation of the Navier-Stokes equations can be quantitatively evaluated. The combination of modeling and computation provides a paradigm for the description of multiscale transport process.
Mean-field message-passing equations in the Hopfield model and its generalizations
NASA Astrophysics Data System (ADS)
Mézard, Marc
2017-02-01
Motivated by recent progress in using restricted Boltzmann machines as preprocessing algorithms for deep neural network, we revisit the mean-field equations [belief-propagation and Thouless-Anderson Palmer (TAP) equations] in the best understood of such machines, namely the Hopfield model of neural networks, and we explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the local polarizations of neurons. In the "retrieval phase", where neurons polarize in the direction of one memorized pattern, we point out a major difference between the belief propagation and TAP equations: The set of belief propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations. This makes the latter method much better suited for applications in the learning process of restricted Boltzmann machines. In the case where the patterns memorized in the Hopfield model are not independent, but are correlated through a combinatorial structure, we show that the TAP equations have to be modified. This modification can be seen either as an alteration of the reaction term in TAP equations or, more interestingly, as the consequence of message passing on a graphical model with several hidden layers, where the number of hidden layers depends on the depth of the correlations in the memorized patterns. This layered structure is actually necessary when one deals with more general restricted Boltzmann machines.
Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow
NASA Astrophysics Data System (ADS)
Zheng, Lin; Zheng, Song; Zhai, Qinglan
2016-02-01
In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.
Analysis of a diffuse interface model of multispecies tumor growth
NASA Astrophysics Data System (ADS)
Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
2017-04-01
We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.
Mercer, James W.; Larson, S.P.; Faust, Charles R.
1980-01-01
Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Relationships of models of the inner magnetosphere to the Rice Convection Model
NASA Astrophysics Data System (ADS)
Heinemann, M.; Wolf, R. A.
2001-08-01
Ideal magnetohydrodynamics is known to be inaccurate for the Earth's inner magnetosphere, where transport by gradient-curvature drift is nonnegligible compared to E×B drift. Most theoretical treatments of the inner plasma sheet and ring current, including the Rice Convection Model (RCM), treat the inner magnetospheric plasma in terms of guiding center drifts. The RCM assumes that the distribution function is isotropic, but particles with different energy invariants are treated as separate guiding center fluids. However, Peymirat and Fontaine [1994] developed a two-fluid picture of the inner magnetosphere, which utilizes modified forms of the conventional fluid equations, not guiding center drift equations. Heinemann [1999] argued theoretically that for inner magnetospheric conditions the fluid energy equation should include a heat flux term, which, in the case of Maxwellian plasma, was derived by Braginskii [1965]. We have now reconciled the Heinemann [1999] fluid approach with the RCM. The fluid equations, including the Braginskii heat flux, can be derived by taking appropriate moments of the RCM equations for the case of the Maxwellian distribution. The physical difference between the RCM formalism and the Heinemann [1999] fluid approach is that the RCM pretends that particles suffer elastic collisions that maintain the isotropy of the distribution function but do not change particle energies. The Heinemann [1999] fluid treatment makes a different physical approximation, namely that the collisions maintain local thermal equilibrium among the ions and separately among the electrons. For some simple cases, numerical results are presented that illustrate the differences in the predictions of the two formalisms, along with those of MHD, guiding center theory, and Peymirat and Fontaine [1994].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
A model for interpretation of brine-dependent spontaneous imbibition experiments
NASA Astrophysics Data System (ADS)
Evje, S.; Hiorth, A.
2011-12-01
Previous experimental results for spontaneous imbibition experiments in the context of chalk cores have revealed a rather puzzling behavior: the oil recovery curves, both the shape as well as the steady state level which is reached, depend strongly on the brine composition. In particular, it has been demonstrated that Mg,SO42-, and Ca 2+ play a central role in this physico-chemical system. A good theoretical understanding of these experimental results, in terms of mathematical models that can suggest possible explanations of the lab experiments as well as predict behavior not yet tested in the lab, seems to still be lacking. The purpose of this paper is to try to shed light on some important modeling aspects. The model we propose is an extended version of the classical Buckley-Leverett (BL) equation for two-phase spontaneous imbibition where the water saturation equation has been coupled to a system of reaction-diffusion (RD) equations describing water-rock chemistry relevant for chalk core plugs. As far as water-rock chemistry is concerned we focus in this work on the combined effect of transport and dissolution/precipitation of calcite, magnesite, and anhydrite. The line we pursue is to couple changes of the wetting state, expressed in terms of the relative permeability and capillary pressure functions, to the water-rock chemistry behavior. More precisely, we build into the model the mechanism that the rock surface will become more water-wet at the places where dissolution of calcite takes place. In particular, we illustrate and analyze how different compositions of the imbibing brine then lead to different water-rock interaction scenarios which in turn gives qualitative and quantitative differences in the solution of the saturation equation describing spontaneous imbibition. Comparison with relevant experimental behavior is included as well as illustration of some possible interesting and non-trivial characteristic features of the model reflecting the nonlinear coupling mechanisms between the RD model for the water-rock chemistry and the BL equation for the water-oil transport.
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
NASA Astrophysics Data System (ADS)
Troisi, Antonio
2017-03-01
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.
Jobson, Harvey E.; Keefer, Thomas N.
1979-01-01
A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)
On the time-splitting scheme used in the Princeton Ocean Model
NASA Astrophysics Data System (ADS)
Kamenkovich, V. M.; Nechaev, D. A.
2009-05-01
The analysis of the time-splitting procedure implemented in the Princeton Ocean Model (POM) is presented. The time-splitting procedure uses different time steps to describe the evolution of interacting fast and slow propagating modes. In the general case the exact separation of the fast and slow modes is not possible. The main idea of the analyzed procedure is to split the system of primitive equations into two systems of equations for interacting external and internal modes. By definition, the internal mode varies slowly and the crux of the problem is to determine the proper filter, which excludes the fast component of the external mode variables in the relevant equations. The objective of this paper is to examine properties of the POM time-splitting procedure applied to equations governing the simplest linear non-rotating two-layer model of constant depth. The simplicity of the model makes it possible to study these properties analytically. First, the time-split system of differential equations is examined for two types of the determination of the slow component based on an asymptotic approach or time-averaging. Second, the differential-difference scheme is developed and some criteria of its stability are discussed for centered, forward, or backward time-averaging of the external mode variables. Finally, the stability of the POM time-splitting schemes with centered and forward time-averaging is analyzed. The effect of the Asselin filter on solutions of the considered schemes is studied. It is assumed that questions arising in the analysis of the simplest model are inherent in the general model as well.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
Equation-based model for the stock market
NASA Astrophysics Data System (ADS)
Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco
2017-09-01
We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.
1984-10-12
MCYwWWm M& de4 l 8.id iW d by N1wk "wt Finite Difference Reference Wavenumber Interface Split-Step Ordinary Difference Equation Wide Angle Parabolic...Problems D. Lee and S. Praiser J. Comp. & Math. with Appls., 7(2), pp. 195-202 (1981) Finite - Difference Solution to the Parabolic Wave Equation D. Lee, G...was incorporated into the ODE and finite difference models. At that time, we did not have a better implementation of the ODE solution, but we
Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H
2014-01-01
The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.
Radiative interactions in chemically reacting supersonic internal flows
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chandrasekhar, R.
1991-01-01
The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with finite-rate chemistry and radiation for hydrogen-air systems. The chemistry source terms in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. The specific problem considered is the premixed flow in a channel with a ten-degree compression ramp. Three different chemistry models are used, accounting for increasing number of reactions and participating species. Two chemistry models assure nitrogen as inert, while the third model accounts for nitrogen reactions and NO(x) formation. The tangent slab approximation is used in the radiative flux formulation. A pseudo-gray model is used to represent the absorption-emission characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species and that this can have a significant influence on the flowfield.
Parametric reduced models for the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Harlim, John; Li, Xiantao
2015-05-01
Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.
Parametric reduced models for the nonlinear Schrödinger equation.
Harlim, John; Li, Xiantao
2015-05-01
Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.
Evolutionary prisoner's dilemma games coevolving on adaptive networks.
Lee, Hsuan-Wei; Malik, Nishant; Mucha, Peter J
2018-02-01
We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.
Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
Vorobev, Anatoliy
2010-11-01
We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
NASA Astrophysics Data System (ADS)
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.
On the breakup of viscous liquid threads
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.
1995-01-01
A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.
Finite-volume spectra of the Lee-Yang model
NASA Astrophysics Data System (ADS)
Bajnok, Zoltan; el Deeb, Omar; Pearce, Paul A.
2015-04-01
We consider the non-unitary Lee-Yang minimal model in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels ( r, s) = (1 , 1) , (1 , 2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ 1,3 integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ1,3 integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A 4 RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of ( m, n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
Validity of one-repetition maximum predictive equations in men with spinal cord injury.
Ribeiro Neto, F; Guanais, P; Dornelas, E; Coutinho, A C B; Costa, R R G
2017-10-01
Cross-sectional study. The study aimed (a) to test the cross-validation of current one-repetition maximum (1RM) predictive equations in men with spinal cord injury (SCI); (b) to compare the current 1RM predictive equations to a newly developed equation based on the 4- to 12-repetition maximum test (4-12RM). SARAH Rehabilitation Hospital Network, Brasilia, Brazil. Forty-five men aged 28.0 years with SCI between C6 and L2 causing complete motor impairment were enrolled in the study. Volunteers were tested, in a random order, in 1RM test or 4-12RM with 2-3 interval days. Multiple regression analysis was used to generate an equation for predicting 1RM. There were no significant differences between 1RM test and the current predictive equations. ICC values were significant and were classified as excellent for all current predictive equations. The predictive equation of Lombardi presented the best Bland-Altman results (0.5 kg and 12.8 kg for mean difference and interval range around the differences, respectively). The two created equation models for 1RM demonstrated the same and a high adjusted R 2 (0.971, P<0.01), but different SEE of measured 1RM (2.88 kg or 5.4% and 2.90 kg or 5.5%). All 1RM predictive equations are accurate to assess individuals with SCI at the bench press exercise. However, the predictive equation of Lombardi presented the best associated cross-validity results. A specific 1RM prediction equation was also elaborated for individuals with SCI. The created equation should be tested in order to verify whether it presents better accuracy than the current ones.
Numerical study of supersonic combustion using a finite rate chemistry model
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.
1986-01-01
The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarnykh, Dmitrii, E-mail: d.azarnykh@tum.de; Litvinov, Sergey; Adams, Nikolaus A.
2016-06-01
A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker–Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solvedmore » by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.« less
Development of an energy storage tank model
NASA Astrophysics Data System (ADS)
Buckley, Robert Christopher
A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.
Iontophoretic transdermal drug delivery: a multi-layered approach.
Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo
2017-12-11
We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Veneva, Milena; Ayriyan, Alexander
2018-04-01
A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
A model of a fishery with fish stock involving delay equations.
Auger, P; Ducrot, Arnaud
2009-12-13
The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.
Development of a Fuel Spill/Vapor Migration Modeling System.
1985-12-01
transforms resulting in a direct solution of the differential equation. A second order finite * difference approximation to the Poisson equation A2*j is...7 O-A64 043 DEVELOPMENT OF A FUEL SPILL/VPOR MIGRATION MODELING 1/2 SYSTEM(U) TRACER TECHNOLOGIES ESCONDIDO Cflo IL 0 ENGLAND ET AL. DEC 85 RFURL...AFWAL-TR-85-2089 DEVELOPMENT OF A FUEL SPILL/VAPOR MIGRATION MODELING SYSTEM W.G. England * L.H. Teuscher TRACER TECHNOLOGIES DTIC *2120 WEST MISSION
2017-01-01
Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R2adj and lowest MSE values). Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for enzyme inactivation by HHP. PMID:28880255
DRBEM solution of the acid-mediated tumour invasion model with time-dependent carrying capacities
NASA Astrophysics Data System (ADS)
Meral, Gülnihal
2017-07-01
It is known that the pH level of the extracellular tumour environment directly effects the progression of the tumour. In this study, the mathematical model for the acid-mediated tumour cell invasion consisting of a system of nonlinear reaction diffusion equations describing the interaction between the density of the tumour cells, normal cells and the concentration of ? protons produced by the tumour cells is solved numerically using the combined application of dual reciprocity boundary element method (DRBEM) and finite difference method. The space derivatives in the model are discretised by DRBEM using the fundamental solution of Laplace equation considering the time derivative and the nonlinearities as the nonhomogenity. The resulting systems of ordinary differential equations after the application of DRBEM are then discretised using forward difference. Because of the highly nonlinear character of the model, there arises difficulties in solving the model especially for two-dimensions and the boundary-only nature of DRBEM discretisation gives the advantage of having solutions with a lower computational cost. The proposed method is tested with different kinds of carrying capacities which also depend on time. The results of the numerical simulations are compared among each case and seen to confirm the expected behaviour of the model.
Theoretical and numerical study of axisymmetric lattice Boltzmann models
NASA Astrophysics Data System (ADS)
Huang, Haibo; Lu, Xi-Yun
2009-07-01
The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.
Hydrodynamics of bacterial colonies: A model
NASA Astrophysics Data System (ADS)
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
ERIC Educational Resources Information Center
Wei, Youhua; Morgan, Rick
2016-01-01
As an alternative to common-item equating when common items do not function as expected, the single-group growth model (SGGM) scaling uses common examinees or repeaters to link test scores on different forms. The SGGM scaling assumes that, for repeaters taking adjacent administrations, the conditional distribution of scale scores in later…
NASA Astrophysics Data System (ADS)
Kiafar, Hamed; Babazadeh, Hosssien; Marti, Pau; Kisi, Ozgur; Landeras, Gorka; Karimi, Sepideh; Shiri, Jalal
2017-10-01
Evapotranspiration estimation is of crucial importance in arid and hyper-arid regions, which suffer from water shortage, increasing dryness and heat. A modeling study is reported here to cross-station assessment between hyper-arid and humid conditions. The derived equations estimate ET0 values based on temperature-, radiation-, and mass transfer-based configurations. Using data from two meteorological stations in a hyper-arid region of Iran and two meteorological stations in a humid region of Spain, different local and cross-station approaches are applied for developing and validating the derived equations. The comparison of the gene expression programming (GEP)-based-derived equations with corresponding empirical-semi empirical ET0 estimation equations reveals the superiority of new formulas in comparison with the corresponding empirical equations. Therefore, the derived models can be successfully applied in these hyper-arid and humid regions as well as similar climatic contexts especially in data-lack situations. The results also show that when relying on proper input configurations, cross-station might be a promising alternative for locally trained models for the stations with data scarcity.
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Data-driven discovery of partial differential equations
Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan
2017-01-01
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044
Kilic, Mustafa Sabri; Bazant, Martin Z; Ajdari, Armand
2007-02-01
In situations involving large potentials or surface charges, the Poisson-Boltzman (PB) equation has shortcomings because it neglects ion-ion interactions and steric effects. This has been widely recognized by the electrochemistry community, leading to the development of various alternative models resulting in different sets "modified PB equations," which have had at least qualitative success in predicting equilibrium ion distributions. On the other hand, the literature is scarce in terms of descriptions of concentration dynamics in these regimes. Here, adapting strategies developed to modify the PB equation, we propose a simple modification of the widely used Poisson-Nernst-Planck (PNP) equations for ionic transport, which at least qualitatively accounts for steric effects. We analyze numerical solutions of these modified PNP equations on the model problem of the charging of a simple electrolyte cell, and compare the outcome to that of the standard PNP equations. Finally, we repeat the asymptotic analysis of Bazant, Thornton, and Ajdari [Phys. Rev. E 70, 021506 (2004)] for this new system of equations to further document the interest and limits of validity of the simpler equivalent electrical circuit models introduced in Part I [Kilic, Bazant, and Ajdari, Phys. Rev. E 75, 021502 (2007)] for such problems.
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.
AQUASOL: An efficient solver for the dipolar Poisson–Boltzmann–Langevin equation
Koehl, Patrice; Delarue, Marc
2010-01-01
The Poisson–Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available. PMID:20151727
AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.
Koehl, Patrice; Delarue, Marc
2010-02-14
The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available.
Guo, Qi; Shen, Shu-Ting
2016-04-29
There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.
Fisher equation for anisotropic diffusion: simulating South American human dispersals.
Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L
2007-09-01
The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.
Pepe, Daniele; Do, Jin Hwan
2015-12-16
Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.
Anisotropic neutron stars in R2 gravity
NASA Astrophysics Data System (ADS)
Folomeev, Vladimir
2018-06-01
We consider static neutron stars within the framework of R2 gravity. The neutron fluid is described by three different types of realistic equations of state (soft, moderately stiff, and stiff). Using the observational data on the neutron star mass-radius relation, it is demonstrated that the characteristics of the objects supported by the isotropic fluid agree with the observations only if one uses the soft equation of state. We show that the inclusion of the fluid anisotropy enables one also to employ more stiff equations of state to model configurations that will satisfy the observational constraints sufficiently. Also, using the standard thin accretion disk model, we demonstrate potentially observable differences, which allow us to distinguish the neutron stars constructed within the modified gravity framework from those described in Einstein's general relativity.
NASA Astrophysics Data System (ADS)
Thieme, Horst R.
The concept of asymptotic proportionality and conditional asymptotic equality which is presented here aims at making global asymptotic stability statements for time-heterogeneous difference and differential equations. For such non-autonomous problems (apart from special cases) no prominent special solutions (equilibra, periodic solutions) exist which are natural candidates for the asymptotic behaviour of arbitrary solutions. One way out of this dilemma consists in looking for conditions under which any two solutions to the problem (with different initial conditions) behave in a similar or even the same way as time tends to infinity. We study a general sublinear difference equation in an ordered Banach space and, for illustration, time-heterogeneous versions of several well-known differential equations modelling the spread of gonorrhea in a heterogeneous population, the spread of a vector-borne infectious disease, and the dynamics of a logistically growing spatially diffusing population.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca
2018-01-01
Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree k_{max} of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large k_{max}. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.
Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M
2017-09-18
A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Daugirdas, John T; Greene, Tom; Depner, Thomas A; Chumlea, Cameron; Rocco, Michael J; Chertow, Glenn M
2003-09-01
The modeled volume of urea distribution (Vm) in intermittently hemodialyzed patients is often compared with total body water (TBW) volume predicted from population studies of patient anthropometrics (Vant). Using data from the HEMO Study, we compared Vm determined by both blood-side and dialysate-side urea kinetic models with Vant as calculated by the Watson, Hume-Weyers, and Chertow anthropometric equations. Median levels of dialysate-based Vm and blood-based Vm agreed (43% and 44% of body weight, respectively). These volumes were lower than anthropometric estimates of TBW, which had median values of 52% to 55% of body weight for the three formulas evaluated. The difference between the Watson equation for TBW and modeled urea volume was greater in Caucasians (19%) than in African Americans (13%). Correlations between Vm and Vant determined by each of the three anthropometric estimation equations were similar; but Vant derived from the Watson formula had a slightly higher correlation with Vm. The difference between Vm and the anthropometric formulas was greatest with the Chertow equation, less with the Hume-Weyers formula, and least with the Watson estimate. The age term in the Watson equation for men that adjusts Vant downward with increasing age reduced an age effect on the difference between Vant and Vm in men. The findings show that kinetically derived values for V from blood-side and dialysate-side modeling are similar, and that these modeled urea volumes are lower by a substantial amount than anthropometric estimates of TBW. The higher values for anthropometry-derived TBW in hemodialyzed patients could be due to measurement errors. However, the possibility exists that TBW space is contracted in patients with end-stage renal disease (ESRD) or that the TBW space and the urea distribution space are not identical.
Three-dimensional wideband electromagnetic modeling on massively parallel computers
NASA Astrophysics Data System (ADS)
Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.
1996-01-01
A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V
2018-04-01
We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.
NASA Technical Reports Server (NTRS)
Mantel, T.
1993-01-01
Although the different regimes of premixed combustion are not well defined, most of the recent developments in turbulent combustion modeling are led in the so-called flamelet regime. The goal of these models is to give a realistic expression to the mean reaction rate (w). Several methods can be used to estimate (w). Bray and coworkers (Libby & Bray 1980, Bray 1985, Bray & Libby 1986) express the instantaneous reaction rate by means of a flamelet library and a frequency which describes the local interaction between the laminar flamelets and the turbulent flowfield. In another way, the mean reaction rate can be directly connected to the flame surface density (Sigma). This quantity can be given by the transport equation of the coherent flame model initially proposed by Marble & Broadwell 1977 and developed elsewhere. The mean reaction rate, (w), can also be estimated thanks to the evolution of an arbitrary scalar field G(x, t) = G(sub O) which represents the flame sheet. G(x, t) is obtained from the G-equation proposed by Williams 1985, Kerstein et al. 1988 and Peters 1993. Another possibility proposed in a recent study by Mantel & Borghi 1991, where a transport equation for the mean dissipation rate (epsilon(sub c)) of the progress variable c is used to determine (w). In their model, Mantel & Borghi 1991 considered a medium with constant density and constant diffusivity in the determination of the transport equation for (epsilon(sub c)). A comparison of different flamelet models made by Duclos et al. 1993 shows the realistic behavior of this model even in the case of constant density. Our objective in this present report is to present preliminary results on the study of this equation in the case of variable density and variable diffusivity. Assumptions of constant pressure and a Lewis number equal to unity allow us to significantly simplify the equation. A systematic order of magnitude analysis based on adequate scale relations is performed on each term of the equation. As in the case of constant density and constant diffusivity, the effects of stretching of the scalar field by the turbulent strain field, of local curvature, and of chemical reactions are predominant. In this preliminary work, we suggest closure models for certain terms, which will be validated after comparisons with DNS data.
Computational methods for vortex dominated compressible flows
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.
Sánchez, R; Carreras, B A; van Milligen, B Ph
2005-01-01
The fluid limit of a recently introduced family of nonintegrable (nonlinear) continuous-time random walks is derived in terms of fractional differential equations. In this limit, it is shown that the formalism allows for the modeling of the interaction between multiple transport mechanisms with not only disparate spatial scales but also different temporal scales. For this reason, the resulting fluid equations may find application in the study of a large number of nonlinear multiscale transport problems, ranging from the study of self-organized criticality to the modeling of turbulent transport in fluids and plasmas.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Shen, Shou-Feng; Zhu, Zuo-Nong
2017-10-01
In this paper, we prove that an integrable nonlocal complex modified Korteweg-de Vries (mKdV) equation introduced by Ablowitz and Musslimani [Nonlinearity 29, 915-946 (2016)] is gauge equivalent to a spin-like model. From the gauge equivalence, one can see that there exists significant difference between the nonlocal complex mKdV equation and the classical complex mKdV equation. Through constructing the Darboux transformation for nonlocal complex mKdV equation, a variety of exact solutions including dark soliton, W-type soliton, M-type soliton, and periodic solutions are derived.
NASA Astrophysics Data System (ADS)
Annenkov, Sergei; Shrira, Victor
2016-04-01
We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1993-01-01
New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.
Stochastic model of financial markets reproducing scaling and memory in volatility return intervals
NASA Astrophysics Data System (ADS)
Gontis, V.; Havlin, S.; Kononovicius, A.; Podobnik, B.; Stanley, H. E.
2016-11-01
We investigate the volatility return intervals in the NYSE and FOREX markets. We explain previous empirical findings using a model based on the interacting agent hypothesis instead of the widely-used efficient market hypothesis. We derive macroscopic equations based on the microscopic herding interactions of agents and find that they are able to reproduce various stylized facts of different markets and different assets with the same set of model parameters. We show that the power-law properties and the scaling of return intervals and other financial variables have a similar origin and could be a result of a general class of non-linear stochastic differential equations derived from a master equation of an agent system that is coupled by herding interactions. Specifically, we find that this approach enables us to recover the volatility return interval statistics as well as volatility probability and spectral densities for the NYSE and FOREX markets, for different assets, and for different time-scales. We find also that the historical S&P500 monthly series exhibits the same volatility return interval properties recovered by our proposed model. Our statistical results suggest that human herding is so strong that it persists even when other evolving fluctuations perturbate the financial system.
Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling.
Fu, Hao; Li, Xuebing; Wang, Jun; Lin, Pengfei; Chen, Chao; Zhang, Xiaojian; Suffet, I H Mel
2017-06-01
The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and π-π dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms. Copyright © 2016. Published by Elsevier B.V.
Estimating vapor pressures of pure liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1996-03-01
Calculating the vapor pressures for pure liquid chemicals is a key step in designing equipment for separation of liquid mixtures. Here is a useful way to develop an equation for predicting vapor pressures over a range of temperatures. The technique uses known vapor pressure points for different temperatures. Although a vapor-pressure equation is being showcased in this article, the basic method has much broader applicability -- in fact, users can apply it to develop equations for any temperature-dependent model. The method can be easily adapted for use in software programs for mathematics evaluation, minimizing the need for any programming. Themore » model used is the Antoine equation, which typically provides a good correlation with experimental or measured data.« less
Chai, Zhenhua; Zhao, T S
2014-07-01
In this paper, we propose a local nonequilibrium scheme for computing the flux of the convection-diffusion equation with a source term in the framework of the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Both the Chapman-Enskog analysis and the numerical results show that, at the diffusive scaling, the present nonequilibrium scheme has a second-order convergence rate in space. A comparison between the nonequilibrium scheme and the conventional second-order central-difference scheme indicates that, although both schemes have a second-order convergence rate in space, the present nonequilibrium scheme is more accurate than the central-difference scheme. In addition, the flux computation rendered by the present scheme also preserves the parallel computation feature of the LBM, making the scheme more efficient than conventional finite-difference schemes in the study of large-scale problems. Finally, a comparison between the single-relaxation-time model and the MRT model is also conducted, and the results show that the MRT model is more accurate than the single-relaxation-time model, both in solving the convection-diffusion equation and in computing the flux.
An Alternative to the Stay/Switch Equation Assessed When Using a Changeover-Delay
MacDonall, James S.
2015-01-01
An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. PMID:26299548
An alternative to the stay/switch equation assessed when using a changeover-delay.
MacDonall, James S
2015-11-01
An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. Copyright © 2015 Elsevier B.V. All rights reserved.
Multiple-generator errors are unavoidable under model misspecification.
Jewett, D L; Zhang, Z
1995-08-01
Model misspecification poses a major problem for dipole source localization (DSL) because it causes insidious multiple-generator errors (MulGenErrs) to occur in the fitted dipole parameters. This paper describes how and why this occurs, based upon simple algebraic considerations. MulGenErrs must occur, to some degree, in any DSL analysis of real data because there is model misspecification and mathematically the equations used for the simultaneously active generators must be of a different form than the equations for each generator active alone.
Dynamical modelling of river deltas on Titan and Earth
NASA Astrophysics Data System (ADS)
Witek, Piotr P.; Czechowski, Leszek
2015-01-01
The surface of Titan hosts a unique Earth-like environment with lakes and rivers, and active 'hydrologic' cycle of methane. We investigate sediment transport in Titanian rivers and deposition in Titanian lakes with particular attention to formation of river deltas. The obtained results are compared with analogous terrestrial processes. The numerical model based on Navier-Stokes equations for depth-integrated two dimensional turbulent flow and additional equations for bed-load and suspended-load sediment transport was used in our research. It is found that transport of icy grains in Titanian rivers is more effective than silicate grains of the same size in terrestrial rivers for the same assumed total discharge. This effect is explained theoretically using dimensionless form of equations or comparing forces acting on the grains. Our calculations confirm previous results (Burr et al., 2006. Icarus. 181, 235-242). We calculate also models with organic sediments of different densities, namely 1500 and 800 kg m-3. We found substantial differences between materials of varying densities on Titan, but they are less pronounced than differences between Titan and Earth.
NASA Astrophysics Data System (ADS)
Fadhil, Sadeem Abbas; Alrawi, Aoday Hashim; Azeez, Jazeel H.; Hassan, Mohsen A.
2018-04-01
In the present work, a multiscale model is presented and used to modify the Hall-Petch relation for different scales from nano to micro. The modified Hall-Petch relation is derived from a multiscale equation that determines the cohesive energy between the atoms and their neighboring grains. This brings with it a new term that was originally ignored even in the atomistic models. The new term makes it easy to combine all other effects to derive one modified equation for the Hall-Petch relation that works for all scales together, without the need to divide the scales into two scales, each scale with a different equation, as it is usually done in other works. Due to that, applying the new relation does not require a previous knowledge of the grain size distribution. This makes the new derived relation more consistent and easier to be applied for all scales. The new relation is used to fit the data for Copper and Nickel and it is applied well for the whole range of grain sizes from nano to micro scales.
Optimal control of CPR procedure using hemodynamic circulation model
Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok
2007-12-25
A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.
Modelling in vivo action potential propagation along a giant axon.
George, Stuart; Foster, Jamie M; Richardson, Giles
2015-01-01
A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.
Li, Libo; Bentler, Peter M
2011-06-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of approximation (RMSEA) pairs. In this article, we develop a new method that quantifies those chosen RMSEA pairs and allows a quantitative comparison of them. Our method proposes the use of single RMSEA values to replace the choice of RMSEA pairs for model comparison and power analysis, thus avoiding the differential meaning of the chosen RMSEA pairs inherent in the approach of MacCallum et al. (2006). With this choice, the conventional cutoff values in model overall evaluation can directly be transferred and applied to the evaluation and power analysis of model differences. © 2011 American Psychological Association
de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony
2016-08-01
A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.
NASA Astrophysics Data System (ADS)
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.
2018-02-01
A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.
Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.
Huang, Yuanyuan; Lu, Xingjie; Shi, Zheng; Lawrence, David; Koven, Charles D; Xia, Jianyang; Du, Zhenggang; Kluzek, Erik; Luo, Yiqi
2018-03-01
The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO 2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective. © 2017 John Wiley & Sons Ltd.
Sex and Self-Control Theory: The Measures and Causal Model May Be Different
ERIC Educational Resources Information Center
Higgins, George E.; Tewksbury, Richard
2006-01-01
This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling…
Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows
NASA Astrophysics Data System (ADS)
Roohi, Ehsan; Stefanov, Stefan
2016-10-01
The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia
2018-01-01
Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.
Mesoscale Modeling of LX-17 Under Isentropic Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Willey, T M; Friedman, G
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less
Quantum Black Hole Model and HAWKING’S Radiation
NASA Astrophysics Data System (ADS)
Berezin, Victor
The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.
Photonic band gap structure simulator
Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.
2006-10-03
A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
Spherically symmetric Einstein-aether perfect fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Alan A.; Latta, Joey; Leon, Genly
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less
Stability analysis for a delay differential equations model of a hydraulic turbine speed governor
NASA Astrophysics Data System (ADS)
Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.
2017-01-01
The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.
Fractional-order in a macroeconomic dynamic model
NASA Astrophysics Data System (ADS)
David, S. A.; Quintino, D. D.; Soliani, J.
2013-10-01
In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.
Patil, M P; Sonolikar, R L
2008-10-01
This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.
Activity interference and noise annoyance
NASA Astrophysics Data System (ADS)
Hall, F. L.; Taylor, S. M.; Birnie, S. E.
1985-11-01
Debate continues over differences in the dose-response functions used to predict the annoyance at different sources of transportation noise. This debate reflects the lack of an accepted model of noise annoyance in residential communities. In this paper a model is proposed which is focussed on activity interference as a central component mediating the relationship between noise exposure and annoyance. This model represents a departure from earlier models in two important respects. First, single event noise levels (e.g., maximum levels, sound exposure level) constitute the noise exposure variables in place of long-term energy equivalent measures (e.g., 24-hour Leq or Ldn). Second, the relationships within the model are expressed as probabilistic rather than deterministic equations. The model has been tested by using acoustical and social survey data collected at 57 sites in the Toronto region exposed to aircraft, road traffic or train noise. Logit analysis was used to estimate two sets of equations. The first predicts the probability of activity interference as a function of event noise level. Four types of interference are included: indoor speech, outdoor speech, difficulty getting to sleep and awakening. The second set predicts the probability of annoyance as a function of the combination of activity interferences. From the first set of equations, it was possible to estimate a function for indoor speech interference only. In this case, the maximum event level was the strongest predictor. The lack of significant results for the other types of interference is explained by the limitations of the data. The same function predicts indoor speech interference for all three sources—road, rail and aircraft noise. The results for the second set of equations show strong relationships between activity interference and the probability of annoyance. Again, the parameters of the logit equations are similar for the three sources. A trial application of the model predicts a higher probability of annoyance for aircraft than for road traffic situations with the same 24-hour Leq. This result suggests that the model may account for previously reported source differences in annoyance.
Flow model for open-channel reach or network
Schaffranek, R.W.
1987-01-01
Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
2013-01-01
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328
The picosecond structure of ultra-fast rogue waves
NASA Astrophysics Data System (ADS)
Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti
2018-02-01
We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.
Peer pressure and Generalised Lotka Volterra models
NASA Astrophysics Data System (ADS)
Richmond, Peter; Sabatelli, Lorenzo
2004-12-01
We develop a novel approach to peer pressure and Generalised Lotka-Volterra (GLV) models that builds on the development of a simple Langevin equation that characterises stochastic processes. We generalise the approach to stochastic equations that model interacting agents. The agent models recently advocated by Marsilli and Solomon are motivated. Using a simple change of variable, we show that the peer pressure model (similar to the one introduced by Marsilli) and the wealth dynamics model of Solomon may be (almost) mapped one into the other. This may help shed light in the (apparently) different wealth dynamics described by GLV and the Marsili-like peer pressure models.
Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1987-01-01
An artificial dissipation model, including boundary treatment, that is employed in many central difference schemes for solving the Euler and Navier-Stokes equations is discussed. Modifications of this model such as the eigenvalue scaling suggested by upwind differencing are examined. Multistage time stepping schemes with and without a multigrid method are used to investigate the effects of changes in the dissipation model on accuracy and convergence. Improved accuracy for inviscid and viscous airfoil flow is obtained with the modified eigenvalue scaling. Slower convergence rates are experienced with the multigrid method using such scaling. The rate of convergence is improved by applying a dissipation scaling function that depends on mesh cell aspect ratio.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.
Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
NASA Astrophysics Data System (ADS)
Wijsen, N.; Poedts, S.; Pomoell, J.
2017-12-01
Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.
Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D
2008-12-25
The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Atmospheric flow over two-dimensional bluff surface obstructions
NASA Technical Reports Server (NTRS)
Bitte, J.; Frost, W.
1976-01-01
The phenomenon of atmospheric flow over a two-dimensional surface obstruction, such as a building (modeled as a rectangular block, a fence or a forward-facing step), is analyzed by three methods: (1) an inviscid free streamline approach, (2) a turbulent boundary layer approach using an eddy viscosity turbulence model and a horizontal pressure gradient determined by the inviscid model, and (3) an approach using the full Navier-Stokes equations with three turbulence models; i.e., an eddy viscosity model, a turbulence kinetic-energy model and a two-equation model with an additional transport equation for the turbulence length scale. A comparison of the performance of the different turbulence models is given, indicating that only the two-equation model adequately accounts for the convective character of turbulence. Turbulence flow property predictions obtained from the turbulence kinetic-energy model with prescribed length scale are only insignificantly better than those obtained from the eddy viscosity model. A parametric study includes the effects of the variation of the characteristics parameters of the assumed logarithmic approach velocity profile. For the case of the forward-facing step, it is shown that in the downstream flow region an increase of the surface roughness gives rise to higher turbulence levels in the shear layer originating from the step corner.
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
Evaluation of the UnTRIM model for 3-D tidal circulation
Cheng, R.T.; Casulli, V.; ,
2001-01-01
A family of numerical models, known as the TRIM models, shares the same modeling philosophy for solving the shallow water equations. A characteristic analysis of the shallow water equations points out that the numerical instability is controlled by the gravity wave terms in the momentum equations and by the transport terms in the continuity equation. A semi-implicit finite-difference scheme has been formulated so that these terms and the vertical diffusion terms are treated implicitly and the remaining terms explicitly to control the numerical stability and the computations are carried out over a uniform finite-difference computational mesh without invoking horizontal or vertical coordinate transformations. An unstructured grid version of TRIM model is introduced, or UnTRIM (pronounces as "you trim"), which preserves these basic numerical properties and modeling philosophy, only the computations are carried out over an unstructured orthogonal grid. The unstructured grid offers the flexibilities in representing complex study areas so that fine grid resolution can be placed in regions of interest, and coarse grids are used to cover the remaining domain. Thus, the computational efforts are concentrated in areas of importance, and an overall computational saving can be achieved because the total number of grid-points is dramatically reduced. To use this modeling approach, an unstructured grid mesh must be generated to properly reflect the properties of the domain of the investigation. The new modeling flexibility in grid structure is accompanied by new challenges associated with issues of grid generation. To take full advantage of this new model flexibility, the model grid generation should be guided by insights into the physics of the problems; and the insights needed may require a higher degree of modeling skill.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
Semigroup theory and numerical approximation for equations in linear viscoelasticity
NASA Technical Reports Server (NTRS)
Fabiano, R. H.; Ito, K.
1990-01-01
A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.
2006-06-01
electron energy equation are solved semi-implicitly in a sequential manner. Each of the governing equations is solved by casting them onto a tridiagonal ...actuator for different device configurations and operating parameters. This will provide the Air Force with a low cost, quick turn around...Atmosphere (ATM) (20:8). Initially, the applied potential difference on the electrodes must be great enough to initiate gas breakdown. While
Slope And Equation of Line: Teach And Analysis In Terms of Emotional Intelligence
NASA Astrophysics Data System (ADS)
Dewi, A. C.; Budiyono; Riyadi
2017-09-01
Slope and equation of line is a sub-material of algebra and is one that is difficult for students to understand. The purpose of this study is to understand and explore the slope and equation so that students feel easy and ultimately improve their academic achievement. Experimental research was conducted by applying Jigsaw II learning model and Teams Games Tournament (TGT) and improvement in emotional intelligence (EI). The study sample was students from 3 different schools who were selected stratified cluster random sampling. The results showed that there is no influence of learning model and EI on academic achievement. This can happen even in the learning process students feel happy and interest. Although research shows different results with most theories, but it is expected that this research can be a good reference for students, teachers, and other researchers.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
BPS counting for knots and combinatorics on words
NASA Astrophysics Data System (ADS)
Kucharski, Piotr; Sułkowski, Piotr
2016-11-01
We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.
NASA Astrophysics Data System (ADS)
Bin Mansoor, Saad; Sami Yilbas, Bekir
2015-08-01
Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.
Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
de Groot-Hedlin, C
2008-09-01
Equations applicable to finite-difference time-domain (FDTD) computation of infrasound propagation through an absorbing atmosphere are derived and examined in this paper. It is shown that over altitudes up to 160 km, and at frequencies relevant to global infrasound propagation, i.e., 0.02-5 Hz, the acoustic absorption in dB/m varies approximately as the square of the propagation frequency plus a small constant term. A second-order differential equation is presented for an atmosphere modeled as a compressible Newtonian fluid with low shear viscosity, acted on by a small external damping force. It is shown that the solution to this equation represents pressure fluctuations with the attenuation indicated above. Increased dispersion is predicted at altitudes over 100 km at infrasound frequencies. The governing propagation equation is separated into two partial differential equations that are first order in time for FDTD implementation. A numerical analysis of errors inherent to this FDTD method shows that the attenuation term imposes additional stability constraints on the FDTD algorithm. Comparison of FDTD results for models with and without attenuation shows that the predicted transmission losses for the attenuating media agree with those computed from synthesized waveforms.
New perspectives on constant-roll inflation
NASA Astrophysics Data System (ADS)
Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro
2018-01-01
We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.
Characteristics code for shock initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partom, Y.
1986-10-01
We developed SHIN, a characteristics code for shock initiation studies. We describe in detail the equations of state, reaction model, rate equations, and numerical difference equations that SHIN incorporates. SHIN uses the previously developed surface burning reaction model which better represents the shock initiation process in TATB, than do bulk reaction models. A large number of computed simulations prove the code is a reliable and efficient tool for shock initiation studies. A parametric study shows the effect on build-up and run distance to detonation of (1) type of boundary condtion, (2) burning velocity curve, (3) shock duration, (4) rise timemore » in ramp loading, (5) initial density (or porosity) of the explosive, (6) initial temperature, and (7) grain size. 29 refs., 65 figs.« less
Modeling spatial competition for light in plant populations with the porous medium equation.
Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal
2015-02-01
We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.
Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations
NASA Astrophysics Data System (ADS)
Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens
2017-06-01
We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.
Nonlinear spherical perturbations in quintessence models of dark energy
NASA Astrophysics Data System (ADS)
Pratap Rajvanshi, Manvendra; Bagla, J. S.
2018-06-01
Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.
Quantifying the driving factors for language shift in a bilingual region.
Prochazka, Katharina; Vogl, Gero
2017-04-25
Many of the world's around 6,000 languages are in danger of disappearing as people give up use of a minority language in favor of the majority language in a process called language shift. Language shift can be monitored on a large scale through the use of mathematical models by way of differential equations, for example, reaction-diffusion equations. Here, we use a different approach: we propose a model for language dynamics based on the principles of cellular automata/agent-based modeling and combine it with very detailed empirical data. Our model makes it possible to follow language dynamics over space and time, whereas existing models based on differential equations average over space and consequently provide no information on local changes in language use. Additionally, cellular automata models can be used even in cases where models based on differential equations are not applicable, for example, in situations where one language has become dispersed and retreated to language islands. Using data from a bilingual region in Austria, we show that the most important factor in determining the spread and retreat of a language is the interaction with speakers of the same language. External factors like bilingual schools or parish language have only a minor influence.
Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.
2013-01-01
Gas holdup time (tM) is a basic parameter in isothermal gas chromatography (GC). Determination and evaluation of tM and retention behaviors of n-alkanes under isothermal GC conditions have been extensively studied since the 1950s, but still remains unresolved. The difference equation (DE) model [J. Chromatogr. A 1260:215–223] reveals retention behaviors of n-alkanes excluding tM, while the quadratic equation (QE) model [J. Chromatogr. A 1260:224–231] including tM is suitable for applications. In the present study, tM values were calculated with the QE model, which is referred to as tMT, evaluated and compared with other three typical nonlinear models. The QE model gives an accurate estimation of tM in isothermal GC. The tMT values are highly accurate, stable, and easy to calculate and use. There is only one tMT value at each GC condition. The proper classification of tM values can clarify their disagreement and facilitate GC retention data standardization for which tMT values are promising reference tM values. PMID:23726077
Alternative Analysis of the Michaelis-Menten Equations
ERIC Educational Resources Information Center
Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa
2011-01-01
Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…
Non-Equilibrium Turbulence and Two-Equation Modeling
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
A Four-parameter Budyko Equation for Mean Annual Water Balance
NASA Astrophysics Data System (ADS)
Tang, Y.; Wang, D.
2016-12-01
In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.
NASA Astrophysics Data System (ADS)
Coman, Paul T.; Rayman, Sean; White, Ralph E.
2016-03-01
This paper presents a mathematical model built for analyzing the intricate thermal behavior of a 18650 LCO (Lithium Cobalt Oxide) battery cell during thermal runaway when venting of the electrolyte and contents of the jelly roll (ejecta) is considered. The model consists of different ODEs (Ordinary Differential Equations) describing reaction rates and electrochemical reactions, as well as the isentropic flow equations for describing electrolyte venting. The results are validated against experimental findings from Golubkov et al. [1] [Andrey W. Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche, Christoph Stangl, Gisela Fauler, Gernot Voitice Alexander Thaler and Viktor Hacker, RSC Advances, 4:3633-3642, 2014] for two cases - with flow and without flow. The results show that if the isentropic flow equations are not included in the model, the thermal runaway is triggered prematurely at the point where venting should occur. This shows that the heat dissipation due to ejection of electrolyte and jelly roll contents has a significant contribution. When the flow equations are included, the model shows good agreement with the experiment and therefore proving the importance of including venting.
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Modelling of creep hysteresis in ferroelectrics
NASA Astrophysics Data System (ADS)
He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick
2018-05-01
In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.
Differential morphology and image processing.
Maragos, P
1996-01-01
Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.
Integrability from point symmetries in a family of cosmological Horndeski Lagrangians
NASA Astrophysics Data System (ADS)
Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos
2017-07-01
For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Wilson, John D.; Naff, Richard L.
2004-01-01
A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.
Tip Vortices of Isolated Wings and Helicopter Rotor Blades.
1987-12-01
root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in
Prague, Mélanie; Commenges, Daniel; Gran, Jon Michael; Ledergerber, Bruno; Young, Jim; Furrer, Hansjakob; Thiébaut, Rodolphe
2017-03-01
Highly active antiretroviral therapy (HAART) has proved efficient in increasing CD4 counts in many randomized clinical trials. Because randomized trials have some limitations (e.g., short duration, highly selected subjects), it is interesting to assess the effect of treatments using observational studies. This is challenging because treatment is started preferentially in subjects with severe conditions. This general problem had been treated using Marginal Structural Models (MSM) relying on the counterfactual formulation. Another approach to causality is based on dynamical models. We present three discrete-time dynamic models based on linear increments models (LIM): the first one based on one difference equation for CD4 counts, the second with an equilibrium point, and the third based on a system of two difference equations, which allows jointly modeling CD4 counts and viral load. We also consider continuous-time models based on ordinary differential equations with non-linear mixed effects (ODE-NLME). These mechanistic models allow incorporating biological knowledge when available, which leads to increased statistical evidence for detecting treatment effect. Because inference in ODE-NLME is numerically challenging and requires specific methods and softwares, LIM are a valuable intermediary option in terms of consistency, precision, and complexity. We compare the different approaches in simulation and in illustration on the ANRS CO3 Aquitaine Cohort and the Swiss HIV Cohort Study. © 2016, The International Biometric Society.
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Anderson, W. Kyle
1998-01-01
A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplifying approximations to the complete linearization of the residual are also presented, and the resulting accuracy of the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are given.
Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery
2015-01-01
In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.
Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell
NASA Astrophysics Data System (ADS)
Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.
2016-08-01
The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation
Gold, Heather Taffet; Sorbero, Melony E. S.; Griggs, Jennifer J.; Do, Huong T.; Dick, Andrew W.
2013-01-01
Analysis of observational cohort data is subject to bias from unobservable risk selection. We compared econometric models and treatment effectiveness estimates using the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare claims data for women diagnosed with ductal carcinoma in situ. Treatment effectiveness estimates for mastectomy and breast conserving surgery (BCS) with or without radiotherapy were compared using three different models: simultaneous-equations model, discrete-time survival model with unobserved heterogeneity (frailty), and proportional hazards model. Overall trends in disease-free survival (DFS), or time to first subsequent breast event, by treatment are similar regardless of the model, with mastectomy yielding the highest DFS over 8 years of follow-up, followed by BCS with radiotherapy, and then BCS alone. Absolute rates and direction of bias varied substantially by treatment strategy. DFS was underestimated by single-equation and frailty models compared to the simultaneous-equations model and RCT results for BCS with RT and overestimated for BCS alone. PMID:21602195
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.
2013-01-01
The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489
Effect of different implementations of the same ice history in GIA modeling
NASA Astrophysics Data System (ADS)
Barletta, V. R.; Bordoni, A.
2013-11-01
This study shows the effect of changing the way ice histories are implemented in Glacial Isostatic Adjustment (GIA) codes to solve the sea level equation. The ice history models are being constantly improved and are provided in different formats. The overall algorithmic design of the sea-level equation solver often forces to implement the ice model in a representation that differs from the one originally provided. We show that using different representations of the same ice model gives important differences and artificial contributions to the sea level estimates, both at global and at regional scale. This study is not a speculative exercise. The ICE-5G model adopted in this work is widely used in present day sea-level analysis, but discrepancies between the results obtained by different groups for the same ice models still exist, and it was the effort to set a common reference for the sea-level community that inspired this work. Understanding this issue is important to be able to reduce the artefacts introduced by a non-suitable ice model representation. This is especially important when developing new GIA models, since neglecting this problem can easily lead to wrong alignment of the ice and sea-level histories, particularly close to the deglaciation areas, like Antarctica.
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
NASA Astrophysics Data System (ADS)
Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang
2017-06-01
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
Multiscale Modeling of Angiogenesis and Predictive Capacity
NASA Astrophysics Data System (ADS)
Pillay, Samara; Byrne, Helen; Maini, Philip
Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.
Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus
2017-06-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.
Baumann, Fabian; Obermayer, Klaus
2017-01-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841
The Laguerre finite difference one-way equation solver
NASA Astrophysics Data System (ADS)
Terekhov, Andrew V.
2017-05-01
This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.
2015-10-01
We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.
Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad
2016-01-01
Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.
Anisotropic strange star with Tolman V potential
NASA Astrophysics Data System (ADS)
Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.
In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.
Grain formation around carbon stars. 1: Stationary outflow models
NASA Technical Reports Server (NTRS)
Egan, Michael P.; Leung, Chun Ming
1995-01-01
Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in grain properties. For small outflow velocities, grains form at lower supersaturation ratios and close to the stellar photosphere, resulting in larger but fewer grains. The reverse is true when grains form under high outflow velocities, i.e., they form at higher supersaturation ratios, farther from the star, and are much smaller but at larger quantities.
An efficient numerical method for solving the Boltzmann equation in multidimensions
NASA Astrophysics Data System (ADS)
Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas
2018-01-01
In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.
On the Importance of the Dynamics of Discretizations
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)
1995-01-01
It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-03-01
In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.
Toledo-Martín, Eva María; Font, Rafael; Obregón-Cano, Sara; De Haro-Bailón, Antonio; Villatoro-Pulido, Myriam; Del Río-Celestino, Mercedes
2017-05-20
The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket ( Eruca vesicaria ) leaves has been evaluated. Accessions of the E. vesicaria species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS) regression. The coefficients of determination in the external validation (R²VAL) for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.
Applicability of linear regression equation for prediction of chlorophyll content in rice leaves
NASA Astrophysics Data System (ADS)
Li, Yunmei
2005-09-01
A modeling approach is used to assess the applicability of the derived equations which are capable to predict chlorophyll content of rice leaves at a given view direction. Two radiative transfer models, including PROSPECT model operated at leaf level and FCR model operated at canopy level, are used in the study. The study is consisted of three steps: (1) Simulation of bidirectional reflectance from canopy with different leaf chlorophyll contents, leaf-area-index (LAI) and under storey configurations; (2) Establishment of prediction relations of chlorophyll content by stepwise regression; and (3) Assessment of the applicability of these relations. The result shows that the accuracy of prediction is affected by different under storey configurations and, however, the accuracy tends to be greatly improved with increase of LAI.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Patel, N.
1983-01-01
A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.
Viscoelastic tides: models for use in Celestial Mechanics
NASA Astrophysics Data System (ADS)
Ragazzo, C.; Ruiz, L. S.
2017-05-01
This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring-dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth-Moon distance increase.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
Drift-free kinetic equations for turbulent dispersion
NASA Astrophysics Data System (ADS)
Bragg, A.; Swailes, D. C.; Skartlien, R.
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
Drift-free kinetic equations for turbulent dispersion.
Bragg, A; Swailes, D C; Skartlien, R
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
Gurka, Matthew J; Kuperminc, Michelle N; Busby, Marjorie G; Bennis, Jacey A; Grossberg, Richard I; Houlihan, Christine M; Stevenson, Richard D; Henderson, Richard C
2010-02-01
To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I-V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. Slaughter's equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat -9.6/100 [SD 6.2]; 95% confidence interval [CI] -11.0 to -8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI -1.0 to 1.3) than existing equations. A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP.
Ordinary Differential Equation Models for Adoptive Immunotherapy.
Talkington, Anne; Dantoin, Claudia; Durrett, Rick
2018-05-01
Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.
DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS
Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...
Schüler, D; Alonso, S; Torcini, A; Bär, M
2014-12-01
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V
2017-04-01
We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.
Modeling of the spectral evolution in a narrow-linewidth fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-03-01
Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
NASA Astrophysics Data System (ADS)
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
SPIR: The potential spreaders involved SIR model for information diffusion in social networks
NASA Astrophysics Data System (ADS)
Rui, Xiaobin; Meng, Fanrong; Wang, Zhixiao; Yuan, Guan; Du, Changjiang
2018-09-01
The Susceptible-Infective-Removed (SIR) model is one of the most widely used models for the information diffusion research in social networks. Many researchers have devoted themselves to improving the classic SIR model in different aspects. However, on the one hand, the equations of these improved models are regarded as continuous functions, while the corresponding simulation experiments use discrete time, leading to the mismatch between numerical solutions got from mathematical method and experimental results obtained by simulating the spreading behaviour of each node. On the other hand, if the equations of these improved models are solved discretely, susceptible nodes will be calculated repeatedly, resulting in a big deviation from the actual value. In order to solve the above problem, this paper proposes a Susceptible-Potential-Infective-Removed (SPIR) model that analyses the diffusion process based on the discrete time according to simulation. Besides, this model also introduces a potential spreader set which solve the problem of repeated calculation effectively. To test the SPIR model, various experiments have been carried out from different angles on both artificial networks and real world networks. The Pearson correlation coefficient between numerical solutions of our SPIR equations and corresponding simulation results is mostly bigger than 0.95, which reveals that the proposed SPIR model is able to depict the information diffusion process with high accuracy.
White, Steven M; White, K A Jane
2005-08-21
Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.
Discretization-dependent model for weakly connected excitable media
NASA Astrophysics Data System (ADS)
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
Scherer, Ronny; Nilsen, Trude; Jansen, Malte
2016-01-01
Students' perceptions of instructional quality are among the most important criteria for evaluating teaching effectiveness. The present study evaluates different latent variable modeling approaches (confirmatory factor analysis, exploratory structural equation modeling, and bifactor modeling), which are used to describe these individual perceptions with respect to their factor structure, measurement invariance, and the relations to selected educational outcomes (achievement, self-concept, and motivation in mathematics). On the basis of the Programme for International Student Assessment (PISA) 2012 large-scale data sets of Australia, Canada, and the USA (N = 26,746 students), we find support for the distinction between three factors of individual students' perceptions and full measurement invariance across countries for all modeling approaches. In this regard, bifactor exploratory structural equation modeling outperformed alternative approaches with respect to model fit. Our findings reveal significant relations to the educational outcomes. This study synthesizes different modeling approaches of individual students' perceptions of instructional quality and provides insights into the nature of these perceptions from an individual differences perspective. Implications for the measurement and modeling of individually perceived instructional quality are discussed.
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
Influence of grain boundaries on the distribution of components in binary alloys
NASA Astrophysics Data System (ADS)
L'vov, P. E.; Svetukhin, V. V.
2017-12-01
Based on the free-energy density functional method (the Cahn-Hilliard equation), a phenomenological model that describes the influence of grain boundaries on the distribution of components in binary alloys has been developed. The model is built on the assumption of the difference between the interaction parameters of solid solution components in the bulk and at the grain boundary. The difference scheme based on the spectral method is proposed to solve the Cahn-Hilliard equation with interaction parameters depending on coordinates. Depending on the ratio between the interaction parameters in the bulk and at the grain boundary, temperature, and alloy composition, the model can give rise to different types of distribution of a dissolved component, namely, either depletion or enrichment of the grain-boundary area, preferential grainboundary precipitation, competitive precipitation in the bulk and at the grain boundary, etc.
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
NASA Astrophysics Data System (ADS)
Oskouie, M. Faraji; Ansari, R.; Rouhi, H.
2018-04-01
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
Gundersen, Kenneth; Kvaløy, Jan Terje; Eftestøl, Trygve; Kramer-Johansen, Jo
2015-10-15
For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data. Copyright © 2015 John Wiley & Sons, Ltd.
Huang, Naiyan; Cheng, Gang; Li, Xiaosong; Gu, Ying; Liu, Fanguang; Zhong, Qiuhai; Wang, Ying; Zen, Jin; Qiu, Haixia; Chen, Hongxia
2008-06-01
We established mathematical models of photodynamic therapy (PDT) on port wine stains (PWS) to observe the effect of drug-light-interval (DLI) and optimize light dose. The mathematical simulations included determining (1) the distribution of laser light by Monte Carlo model, (2) the change of photosensitizer concentration in PWS vessels by a pharmacokinetics equation, (3) the change of photosensitizer distribution in tissue outside the vessels by a diffuse equation and photobleaching equation, and (4) the change of tissue oxygen concentration by the Fick's law with a consideration of the oxygen consumption during PDT. The concentration of singlet oxygen in the tissue model was calculated by the finite difference method. To validate those models, a PWS lesion of the same patient was divided into two areas and subjected to different DLIs and treated with different energy density. The color of lesion was assessed 8-12 weeks later. The simulation indicated the singlet oxygen concentration of the second treatment area (DLI=40 min) was lower than that of the first treatment area (DLI=0 min). However, it would be increased to a level similar to that of the first treatment area if the light irradiation time of the second treatment area was prolonged from 40 min to 55 min. Clinical results were consistent with the results predicted by the mathematical models. The mathematical models established in this study are helpful to optimize clinical protocol.
Finite difference and Runge-Kutta methods for solving vibration problems
NASA Astrophysics Data System (ADS)
Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi
2017-11-01
The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.
Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma
NASA Astrophysics Data System (ADS)
Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.
2017-09-01
By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.
Additive schemes for certain operator-differential equations
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2010-12-01
Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier-Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier-Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.
Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations
NASA Astrophysics Data System (ADS)
Brenier, Yann
2009-10-01
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61-97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge-Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375-417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141-1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131-151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20-31, 1991, Arch. Ration. Mech. Anal. 185:341-363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450-1461, 1998; Loeper in SIAM J. Math. Anal. 38:795-823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov-Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29-59, 2001) and of the Keller-Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225-234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819-824, 1992; Chalub et al. in Mon. Math. 142:123-141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier-Stokes-Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359-378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier-Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179-184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127-150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139-154, 2007).
Masses from an inhomogeneous partial difference equation with higher-order isospin contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, P.J.; Jaenecke, J.
In the present work, a mass equation obtained as the solution of an inhomogeneous partial difference equation is used to predict masses of unknown neutron-rich and proton-rich nuclei. The inhomogeneous source terms contain shell-dependent symmetry energy expressions (quadratic in isospin), and include, as well, an independently derived shell-model Coulomb energy equation which describes all known Coulomb displacement energies with a standarad deviation of sigma/sub c/ = 41 keV. Perturbations of higher order in isospin, previously recognized as a cause of systematic effects in long-range mass extrapolations, are also incorporated. The most general solutions of the inhomogeneous difference equation have beenmore » deduced from a chi/sup 2/-minimization procedure based on the recent atomic mass adjustment of Wapstra, Audi, and Hoekstra. Subjecting the solutions further to the condition of charge symmetry preserves the accuracy of Coulomb energies and allows mass predictions for nuclei with both Ngreater than or equal toZ and Z>N. The solutions correspond to a mass equation with 470 parameters. Using this equation, 4385 mass values have been calculated for nuclei with Agreater than or equal to16 (except N = Z = odd for A<40), with a standard deviation of sigma/sub m/ = 194 keV from the experimental masses. copyright 1988 Academic Press, Inc.« less
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
Khokhlov Zabolotskaya Kuznetsov type equation: nonlinear acoustics in heterogeneous media
NASA Astrophysics Data System (ADS)
Kostin, Ilya; Panasenko, Grigory
2006-04-01
The KZK type equation introduced in this Note differs from the traditional form of the KZK model known in acoustics by the assumptions on the nonlinear term. For this modified form, a global existence and uniqueness result is established for the case of non-constant coefficients. Afterwards the asymptotic behaviour of the solution of the KZK type equation with rapidly oscillating coefficients is studied. To cite this article: I. Kostin, G. Panasenko, C. R. Mecanique 334 (2006).
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
A Nonlinear differential equation model of Asthma effect of environmental pollution using LHAM
NASA Astrophysics Data System (ADS)
Joseph, G. Arul; Balamuralitharan, S.
2018-04-01
In this paper, we investigated a nonlinear differential equation mathematical model to study the spread of asthma in the environmental pollutants from industry and mainly from tobacco smoke from smokers in different type of population. Smoking is the main cause to spread Asthma in the environment. Numerical simulation is also discussed. Finally by using Liao’s Homotopy analysis Method (LHAM), we found that the approximate analytical solution of Asthmatic disease in the environmental.
Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira
2016-04-01
A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.
Stability of the accelerated expansion in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-02-01
This paper is devoted to the phase space analysis of an isotropic and homogeneous model of the universe by taking a noninteracting mixture of the electromagnetic and viscous radiating fluids whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. We establish an autonomous system of equations by introducing normalized dimensionless variables. In order to analyze the stability of the system, we find corresponding critical points for different values of the parameters. We also evaluate the power-law scale factor whose behavior indicates different phases of the universe in this model. It is concluded that the bulk viscosity as well as electromagnetic field enhances the stability of the accelerated expansion of the isotropic and homogeneous model of the universe.
Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H
2007-04-01
We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.
Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages
NASA Astrophysics Data System (ADS)
Forrester, P. J.; Witte, N. S.
2005-09-01
In a recent work, difference equations (Laguerre-Freud equations) for the bi-orthogonal polynomials and related quantities corresponding to the weight on the unit circle w(z)=\\prod^m_{j=1}(z-z_j(t))^{\\rho_j} were derived. It is shown here that in the case m = 3, these difference equations, when applied to the calculation of the underlying U(N) average, reduce to a coupled system identifiable with that obtained by Adler and van Moerbeke, using the methods of the Toeplitz lattice and Virasoro constraints. Moreover, it is shown that this coupled system can be reduced to yield the discrete fifth Painlevé equation dPV as it occurs in the theory of the sixth Painlevé system. Methods based on affine Weyl group symmetries of Bäcklund transformations have previously yielded the dPV equation, but with different parameters for the same problem. We find an explicit mapping between the two forms. Applications of our results are made to give recurrences for the gap probabilities and moments in the circular unitary ensemble of random matrices, and to the diagonal spin-spin correlation function of the square lattice Ising model.
Empirical improvements for estimating earthquake response spectra with random‐vibration theory
Boore, David; Thompson, Eric M.
2012-01-01
The stochastic method of ground‐motion simulation is often used in combination with the random‐vibration theory to directly compute ground‐motion intensity measures, thereby bypassing the more computationally intensive time‐domain simulations. Key to the application of random‐vibration theory to simulate response spectra is determining the duration (Drms) used in computing the root‐mean‐square oscillator response. Boore and Joyner (1984) originally proposed an equation for Drms , which was improved upon by Liu and Pezeshk (1999). Though these equations are both substantial improvements over using the duration of the ground‐motion excitation for Drms , we document systematic differences between the ground‐motion intensity measures derived from the random‐vibration and time‐domain methods for both of these Drms equations. These differences are generally less than 10% for most magnitudes, distances, and periods of engineering interest. Given the systematic nature of the differences, however, we feel that improved equations are warranted. We empirically derive new equations from time‐domain simulations for eastern and western North America seismological models. The new equations improve the random‐vibration simulations over a wide range of magnitudes, distances, and oscillator periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickens, Ronald E.
2008-12-22
This research examined the following items/issues: the NSFD methodology, technical achievements and applications, dissemination efforts and research related professional activities. Also a list of unresolved issues were identified that could form the basis for future research in the area of constructing and analyzing NSFD schemes for both ODE's and PDE's.
Using Least Squares to Solve Systems of Equations
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2016-01-01
The method of least squares (LS) yields exact solutions for the adjustable parameters when the number of data values n equals the number of parameters "p". This holds also when the fit model consists of "m" different equations and "m = p", which means that LS algorithms can be used to obtain solutions to systems of…
Erosion over time on severely disturbed granitic soils: a model
W. F. Megahan
1974-01-01
A negative exponential equation containing three parameters was derived to describe time trends in surface erosion on severely disturbed soils. Data from four different studies of surface erosion on roads constructed from the granitic materials found in the Idaho Batholith were used to develop equation parameters. The evidence suggests that surface "armoring...
Study of charged stellar structures in f(R, T) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Siddiqa, Aisha
2017-12-01
This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.
Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Deng, Guo; Li, Sitai; Biondini, Gino; Trillo, Stefano
2017-11-01
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrödinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
Exact general relativistic disks with magnetic fields
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-11-01
The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research
Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.
2017-01-01
Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557
On the Connection Between One-and Two-Equation Models of Turbulence
NASA Technical Reports Server (NTRS)
Menter, F. R.; Rai, Man Mohan (Technical Monitor)
1994-01-01
A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.
3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method
NASA Astrophysics Data System (ADS)
Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.
2017-12-01
In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20% compared with ADE method.
NASA Astrophysics Data System (ADS)
Zieniuk, Eugeniusz; Kapturczak, Marta; Sawicki, Dominik
2016-06-01
In solving of boundary value problems the shapes of the boundary can be modelled by the curves widely used in computer graphics. In parametric integral equations system (PIES) such curves are directly included into the mathematical formalism. Its simplify the way of definition and modification of the shape of the boundary. Until now in PIES the B-spline, Bézier and Hermite curves were used. Recent developments in the computer graphics paid our attention, therefore we implemented in PIES possibility of defining the shape of boundary using the NURBS curves. The curves will allow us to modeling different shapes more precisely. In this paper we will compare PIES solutions (with applied NURBS) with the solutions existing in the literature.
Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study
Ali, Abbod; Sharma, R. K.; Ganesan, P.
2014-01-01
A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.; Seth, D.L.; Ray, A.K.
A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guowei; Baker, Nathan A.
2016-11-11
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less
Results from the OH-PT model: a Kinetic-MHD Model of the Outer Heliosphere within SWMF
NASA Astrophysics Data System (ADS)
Michael, A.; Opher, M.; Tenishev, V.; Borovikov, D.; Toth, G.
2017-12-01
We present an update of the OH-PT model, a kinetic-MHD model of the outer heliosphere. The OH-PT model couples the Outer Heliosphere (OH) and Particle Tracker (PT) components within the Space Weather Modeling Framework (SWMF). The OH component utilizes the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) MHD code, a highly parallel, 3D, and block-adaptive solver. As a stand-alone model, the OH component solves the ideal MHD equations for the plasma and a separate set of Euler's equations for the different populations of neutral atoms. The neutrals and plasma in the outer heliosphere are coupled through charge-exchange. While this provides an accurate solution for the plasma, it is an inaccurate description of the neutrals. The charge-exchange mean free path is on the order of the size of the heliosphere; therefore the neutrals cannot be described as a fluid. The PT component is based on the Adaptive Mesh Particle Simulator (AMPS) model, a 3D, direct simulation Monte Carlo model that solves the Boltzmann equation for the motion and interaction of multi-species plasma and is used to model the neutral distribution functions throughout the domain. The charge-exchange process occurs within AMPS, which handles each event on a particle-by-particle basis and calculates the resulting source terms to the MHD equations. The OH-PT model combines the MHD solution for the plasma with the kinetic solution for the neutrals to form a self-consistent model of the heliosphere. In this work, we present verification and validation of the model as well as demonstrate the codes capabilities. Furthermore we provide a comparison of the OH-PT model to our multi-fluid approximation and detail the differences between the models in both the plasma solution and neutral distribution functions.
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.