Southern Ocean vertical iron fluxes; the ocean model effect
NASA Astrophysics Data System (ADS)
Schourup-Kristensen, V.; Haucke, J.; Losch, M. J.; Wolf-Gladrow, D.; Voelker, C. D.
2016-02-01
The Southern Ocean plays a key role in the climate system, but commonly used large-scale ocean general circulation biogeochemical models give different estimates of current and future Southern Ocean net primary and export production. The representation of the Southern Ocean iron sources plays an important role for the modeled biogeochemistry. Studies of the iron supply to the surface mixed layer have traditionally focused on the aeolian and sediment contributions, but recent work has highlighted the importance of the vertical supply from below. We have performed a model study in which the biogeochemical model REcoM2 was coupled to two different ocean models, the Finite Element Sea-ice Ocean Model (FESOM) and the MIT general circulation model (MITgcm) and analyzed the magnitude of the iron sources to the surface mixed layer from below in the two models. Our results revealed a remarkable difference in terms of mechanism and magnitude of transport. The mean iron supply from below in the Southern Ocean was on average four times higher in MITgcm than in FESOM and the dominant pathway was entrainment in MITgcm, whereas diffusion dominated in FESOM. Differences in the depth and seasonal amplitude of the mixed layer between the models affect on the vertical iron profile, the relative position of the base of the mixed layer and ferricline and thereby also on the iron fluxes. These differences contribute to differences in the phytoplankton composition in the two models, as well as in the timing of the onset of the spring bloom. The study shows that the choice of ocean model has a significant impact on the iron supply to the Southern Ocean mixed layer and thus on the modeled carbon cycle, with possible implications for model runs predicting the future carbon uptake in the region.
Drivers of Arctic Ocean warming in CMIP5 models
NASA Astrophysics Data System (ADS)
Burgard, Clara; Notz, Dirk
2017-05-01
We investigate changes in the Arctic Ocean energy budget simulated by 26 general circulation models from the Coupled Model Intercomparison Project Phase 5 framework. Our goal is to understand whether the Arctic Ocean warming between 1961 and 2099 is primarily driven by changes in the net atmospheric surface flux or by changes in the meridional oceanic heat flux. We find that the simulated Arctic Ocean warming is driven by positive anomalies in the net atmospheric surface flux in 11 models, by positive anomalies in the meridional oceanic heat flux in 11 models, and by positive anomalies in both energy fluxes in four models. The different behaviors are mainly characterized by the different changes in meridional oceanic heat flux that lead to different changes in the turbulent heat loss to the atmosphere. The multimodel ensemble mean is hence not representative of a consensus across the models in Arctic climate projections.
Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model
NASA Astrophysics Data System (ADS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-02-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10%) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34%, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model
NASA Technical Reports Server (NTRS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-01-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
NASA Technical Reports Server (NTRS)
Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.;
2013-01-01
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).
NASA Astrophysics Data System (ADS)
Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy
2018-03-01
During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate the capacity for increased carbon storage by artificially maximising the efficiency of the biological pump in our ensemble members. We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon pumps in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable. The drawdown experiment highlights the importance of the strength of the biological pump in the control state for model studies of increased biological efficiency.
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Galton-Fenzi, B.; Gwyther, D.; Jourdain, N.; Martin, D. F.; Nakayama, Y.; Seroussi, H. L.
2016-12-01
MISMIP+ (the third Marine Ice Sheet MIP), ISOMIP+ (the second Ice Shelf-Ocean MIP) and MISOMIP1 (the first Marine Ice Sheet-Ocean MIP) prescribe a set of idealized experiments for marine ice-sheet models, ocean models with ice-shelf cavities, and coupled ice sheet-ocean models, respectively. Here, we present results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among the ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (the heat- and salt-transfer coefficients across the sub-ice-shelf boundary layer) for each model. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to tuning the models to match observed melt rates. We compare the evolution of ocean temperature transects, melt rate, friction velocity and thermal driving between ocean models for the five ISOMIP+ experiments (Ocean0-4), which have prescribed ice-shelf topography. We find that melt patterns differ between models based on the relative importance of overturning strength and vertical mixing of temperature even when the models have been tuned to achieve similar melt rates near the grounding line. For the two MISOMIP1 experiments (IceOcean1 without dynamic calving and IceOcean2 with a simple calving parameterization), we compare temperature transects, melt rate, ice-shelf topography and grounded area across models and for several model configurations. Consistent with preliminary results from MISMIP+, we find that for a given coupled model, the use of a Coulomb-limited basal friction parameterization below grounded ice and the application of dynamic calving both significantly increase the rate of grounding-line retreat, whereas the rate of retreat appears to be less sensitive to the ice stress approximation (shallow-shelf approximation, higher-order, etc.). We show that models with similar mean melt rates, stress approximations and basal friction parameterizations produce markedly different rates of grounding-line retreat, and we investigate possible sources of these disparities (e.g. differences in coupling strategy or melt distribution).
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
Evaluating the Ocean Component of the US Navy Earth System Model
NASA Astrophysics Data System (ADS)
Zamudio, L.
2017-12-01
Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.
NASA Astrophysics Data System (ADS)
Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.
2018-04-01
The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
On the sensitivity of the global ocean circulation to reconstructions of paleo-bathymetry
NASA Astrophysics Data System (ADS)
Weber, Tobias; Thomas, Maik
2013-04-01
The ability to model the long-term evolution of the climate does considerably depend on the accuracy of ocean models and their interaction with the atmosphere. Thereby, the ocean model's behavior with respect to uncertain and changing boundary conditions is of crucial importance. One of the remaining questions is, how different reconstructions of the ocean floor influence the model. Although of general interest, this effect has mostly been neglected, so far. We modeled Pliocene and pre-industrial ocean currents with the Max-Planck-Institute Ocean Model (MPIOM), forced by climatologies derived from an atmospheric and vegetational Global Circulation Model (GCM). We equipped it with different reconstructions of the bathymetry, what allowed us to study the model's sensitivity regarding changes in bathymetry. On the one hand we examined the influence of reconstructions with different locations of major ridges, but the same treatment of the shelf. On the other hand, reconstruction techniques that treated the shelf areas differently were taken into consideration. This leads to different oceanic circulation realizations, which induce changes in deep ocean temperature and salinity. Some of the simulations result in unrealistic behavior, such as an increase in surface temperature by several degrees. Most important, small bathymetric changes in the areas of deep water formation near Greenland and the Antarctic alter the thermohaline circulation strongly. This leads to its complete cessation in some of the simulations and therefore to stationary deep laying ocean masses. This shows that not all bathymetric reconstruction sequences are applicable for the generation of boundary conditions for GCMs. In order to obtain reliable and physically realistic data from the models, the reconstruction method to be used for the paleo-bathymetry also needs to be applied to the present day bathymetry. This reconstruction can then be used in a control simulation which can be validated against measurements. Hereby systematic errors introduced by the reconstruction technique are identified.
Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
2000-01-01
Our three year investigation, carried out over the period 18-19 Nov 2000, focused on the study of the variability in ocean angular momentum and mass signals and their relation to the Earth's variable rotation and gravity field. This final report includes a summary description of our work and a list of related publications and presentations. One thrust of the investigation was to determine and interpret the changes in the ocean mass field, as they impact on the variable gravity field and Earth rotation. In this regard, the seasonal cycle in local vertically-integrated ocean mass was analyzed using two ocean models of different complexity: (1) the simple constant-density, coarse resolution model of Ponte; and (2) the fully stratified, eddy-resolving model of Semtner and Chervin. The dynamics and thermodynamics of the seasonal variability in ocean mass were examined in detail, as well as the methodologies to calculate those changes under different model formulations. Another thrust of the investigation was to examine signals in ocean angular momentum (OAM) in relation to Earth rotation changes. A number of efforts were undertaken in this regard. Sensitivity of the oceanic excitation to different assumptions about how the ocean is forced and how it dissipates its energy was explored.
Assessment of ocean models in Mediterranean Sea against altimetry and gravimetry measurements
NASA Astrophysics Data System (ADS)
Fenoglio-Marc, Luciana; Uebbing, Bernd; Kusche, Jürgen
2017-04-01
This work aims at assessing in a regional study in the Mediterranean Sea the agreement between ocean model outputs and satellite altimetry and satellite gravity observations. Satellite sea level change are from altimeter data made available by the Sea Level Climate Change Initiative (SLCCI) and from satellite gravity data made available by GRACE. We consider two ocean simulations not assimilating satellite altimeter data and one ocean model reanalysis assimilating satellite altimetry. Ocean model simulations can provide some insight on the ocean variability, but they are affected by biases due to errors in model formulation, specification of initial states and forcing, and are not directly constrained by observations. Their trend can be quite different from the altimetric observations due to surface radiation biases, however they are physically consistent. Ocean reanalyses are the combination of ocean models, atmospheric forcing fluxes and ocean observations via data assimilation methods and have the potential to provide more accurate information than observation-only or model-only based ocean estimations. They will be closer to altimetry at long and short timescales, but assimilation may destroy mass consistency. We use two ocean simulations which are part of the Med-CORDEX initiative (https://www.medcordex.eu). The first is the CNRM-RCM4 fully-coupled Regional Climate System Model (RCMS) simulation developed at METEOFRANCE for 1980-2012. The second is the PROTHEUS standalone hindcast simulation developed at ENEA and covers the interval 1960-2012. The third model is the regional model MEDSEA_REANALYSIS_PHIS_006_004 assimilating satellite altimeter data (http://marine.copernicus.eu/) and available over 1987-2014. Comparison at basin and regional scale are made. First the steric, thermo-steric, halosteric and dynamic components output of the models are compared. Then the total sea level given by the models is compared to the altimeter observations. Finally the mass component derived from GRACE is compared to the difference between the total sea level and the steric component. We observe large differences between the ocean models and discuss the model which best agrees with the CCI sea level product at short and at longer timescales. We consider departure in sea level trends, inter-annual variability and seasonal cycle. The work is part of the Sea Level Climate Change Initiative project.
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-06-01
atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical
NASA Astrophysics Data System (ADS)
Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.
2018-04-01
An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.
NASA Astrophysics Data System (ADS)
Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.
2012-12-01
The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater Horizon oil spill. OSSE evaluation and calibration is then performed by repeating these two OSEs with synthetic observations and comparing the resulting observing system impact to determine if it differs from the OSE results. OSSEs are first run to evaluate different airborne sampling strategies with respect to temporal frequency of flights and the horizontal separation of upper-ocean profiles during each flight. They are then run to assess the impact of releasing multiple floats and gliders. Evaluation strategy focuses on error reduction in fields important for hurricane forecasting such as the structure of ocean currents and eddies, upper ocean heat content distribution, and upper-ocean stratification.
Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative
NASA Astrophysics Data System (ADS)
Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.
2016-02-01
Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.
NASA Astrophysics Data System (ADS)
Jungclaus, J. H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J. S.
2013-06-01
MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.
NASA Astrophysics Data System (ADS)
Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans
2018-05-01
The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.
NASA Astrophysics Data System (ADS)
Men, Guang; Wan, Xiuquan; Liu, Zedong
2016-10-01
Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.
NASA Technical Reports Server (NTRS)
Bettadpur, Srinivas V.; Eanes, Richard J.
1994-01-01
In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean tides. At each location these perturbations are seen to be coherent with the tide height variations. The study of this singularity is of obvious importance to the estimation of ocean tides from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean tide models to the ocean tide force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean tide model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean tide model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean tide induced errors in the TOPEX/POSEIDON-derived tide models is also discussed.
NASA Astrophysics Data System (ADS)
Li, Hui; Sriver, Ryan L.
2018-01-01
High-resolution Atmosphere General Circulation Models (AGCMs) are capable of directly simulating realistic tropical cyclone (TC) statistics, providing a promising approach for TC-climate studies. Active air-sea coupling in a coupled model framework is essential to capturing TC-ocean interactions, which can influence TC-climate connections on interannual to decadal time scales. Here we investigate how the choices of ocean coupling can affect the directly simulated TCs using high-resolution configurations of the Community Earth System Model (CESM). We performed a suite of high-resolution, multidecadal, global-scale CESM simulations in which the atmosphere (˜0.25° grid spacing) is configured with three different levels of ocean coupling: prescribed climatological sea surface temperature (SST) (ATM), mixed layer ocean (SLAB), and dynamic ocean (CPL). We find that different levels of ocean coupling can influence simulated TC frequency, geographical distributions, and storm intensity. ATM simulates more storms and higher overall storm intensity than the coupled simulations. It also simulates higher TC track density over the eastern Pacific and the North Atlantic, while TC tracks are relatively sparse within CPL and SLAB for these regions. Storm intensification and the maximum wind speed are sensitive to the representations of local surface flux feedbacks in different coupling configurations. Key differences in storm number and distribution can be attributed to variations in the modeled large-scale climate mean state and variability that arise from the combined effect of intrinsic model biases and air-sea interactions. Results help to improve our understanding about the representation of TCs in high-resolution coupled Earth system models, with important implications for TC-climate applications.
Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands
NASA Astrophysics Data System (ADS)
Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge
2013-11-01
The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.
"One-Stop Shopping" for Ocean Remote-Sensing and Model Data
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook
2006-01-01
OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the simulation period, and the output variables and submit the model to run on a backend parallel computer. When the run is complete, the output will be added to the LAS server for
An overview of the South Atlantic Ocean climate variability and air-sea interaction processes
NASA Astrophysics Data System (ADS)
Pezzi, L. P.; Parise, C. K.; Souza, R.; Gherardi, D. F.; Camargo, R.; Soares, H. C.; Silveira, I.
2013-05-01
The Ocean Modeling Group at the National Institute of Space Research (INPE) in Brazil has been developing several studies to understand the role of the Atlantic ocean on the South America climate. Studies include simulating the dynamics of the Tropical South-Atlantic Ocean and Southern Ocean. This is part of an ongoing international cooperation, in which Brazil participates with in situ observations, numerical modeling and statistical analyses. We have focused on the understanding of the impacts of extreme weather events over the Tropical South Atlantic Ocean and their prediction on different time-scales. One such study is aimed at analyzing the climate signal generated by imposing an extreme condition on the Antarctic sea ice and considering different complexities of the sea ice model. The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is also investigated through in situ data analysis of different cruises and numerical experiments with a regional numerical model. There is also an ongoing investigation that revealed basin-scale interannual climate variation with impacts on the Brazilian Large Marine Ecosystems (LMEs), which are strongly correlated with climate indices such as ENSO, AAO and PDO.
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-05-31
heat between the atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and...precipitation at the ocean surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by...timescales of about 10–200 days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.; ...
2016-08-02
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less
Arctic Ocean Model Intercomparison Using Sound Speed
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Johnson, M. A.
2002-05-01
The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
NASA Technical Reports Server (NTRS)
Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.
2011-01-01
An isotope-enabled ocean-atmosphere general circulation model (GISS ModelE -R) is used to estimate the spatial gradients of the oxygen isotopic composition of seawater (delta O-18(sub sw), where delta is the deviation from a known reference material in per mil) during the early Paleogene (45.65 Ma). Understanding the response of delta O-18(sub sw) to changes in climatic and tectonic boundary conditions is important because records of carbonate delta O-18 document changes in hydrology, as well as changes in temperature and global ice -volume. We present results from an early Paleogene configuration of ModelE -R which indicate that spatial gradients of surface ocean delta O-18(sub sw) during this period could have been significantly different to those in the modern ocean. The differences inferred from ModelE -R are sufficient to change early Paleogene sea surface temperature estimates derived from primary carbonate delta O-18 signatures by more than +/-2 C in large areas of the ocean. In the North Atlantic, Indian, and Southern Oceans, the differences in d18Osw inferred from our simulation with ModelE -R are in direct contrast with those from another d18O ]tracing model study which used different, but equally plausible, early Paleogene boundary conditions. The large differences in delta O-18(sub sw) between preindustrial and early Paleogene simulations, and between models, emphasizes the sensitivity of d18Osw to climatic and tectonic boundary conditions. For this reason, absolute estimates of Eocene/ Paleocene temperature derived from carbonate delta O-18 alone are likely to have larger uncertainties than are usually assumed.
Effects of Long Period Ocean Tides on the Earth's Rotation
NASA Technical Reports Server (NTRS)
Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.
1996-01-01
The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.
NASA Astrophysics Data System (ADS)
Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter
2015-04-01
The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.
NASA Technical Reports Server (NTRS)
Zlotnicki, V.; Stammer, D.; Fukumori, I.
2003-01-01
Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
Change of ocean circulation in the East Asian Marginal Seas under different climate conditions
NASA Astrophysics Data System (ADS)
Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho
2010-05-01
Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.
NASA Astrophysics Data System (ADS)
Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.
2017-12-01
Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
NASA Astrophysics Data System (ADS)
Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey
2018-05-01
General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.
NASA Astrophysics Data System (ADS)
Einspigel, D.; Sachl, L.; Martinec, Z.
2014-12-01
We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.
Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations
NASA Astrophysics Data System (ADS)
Goodman, J. C.; Vance, S.
2011-12-01
The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"
The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less
The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming
Luo, Yiyong; Lu, Jian; Liu, Fukai; ...
2016-02-04
Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less
Biogeochemical modelling of dissolved oxygen in a changing ocean.
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-09-13
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of p CO 2 -sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a p CO 2 -sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Biogeochemical modelling of dissolved oxygen in a changing ocean
NASA Astrophysics Data System (ADS)
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-08-01
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
An introduction to three-dimensional climate modeling
NASA Technical Reports Server (NTRS)
Washington, W. M.; Parkinson, C. L.
1986-01-01
The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.
Physics-based coastal current tomographic tracking using a Kalman filter.
Wang, Tongchen; Zhang, Ying; Yang, T C; Chen, Huifang; Xu, Wen
2018-05-01
Ocean acoustic tomography can be used based on measurements of two-way travel-time differences between the nodes deployed on the perimeter of the surveying area to invert/map the ocean current inside the area. Data at different times can be related using a Kalman filter, and given an ocean circulation model, one can in principle now cast and even forecast current distribution given an initial distribution and/or the travel-time difference data on the boundary. However, an ocean circulation model requires many inputs (many of them often not available) and is unpractical for estimation of the current field. A simplified form of the discretized Navier-Stokes equation is used to show that the future velocity state is just a weighted spatial average of the current state. These weights could be obtained from an ocean circulation model, but here in a data driven approach, auto-regressive methods are used to obtain the time and space dependent weights from the data. It is shown, based on simulated data, that the current field tracked using a Kalman filter (with an arbitrary initial condition) is more accurate than that estimated by the standard methods where data at different times are treated independently. Real data are also examined.
NASA Astrophysics Data System (ADS)
Seviour, W.; Waugh, D.; Gnanadesikan, A.
2016-02-01
It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.
On the origin of the marine zinc-silicon correlation
NASA Astrophysics Data System (ADS)
de Souza, Gregory F.; Khatiwala, Samar P.; Hain, Mathis P.; Little, Susan H.; Vance, Derek
2018-06-01
The close linear correlation between the distributions of dissolved zinc (Zn) and silicon (Si) in seawater has puzzled chemical oceanographers since its discovery almost forty years ago, due to the apparent lack of a mechanism for coupling these two nutrient elements. Recent research has shown that such a correlation can be produced in an ocean model without any explicit coupling between Zn and Si, via the export of Zn-rich biogenic particles in the Southern Ocean, consistent with the observation of elevated Zn quotas in Southern Ocean diatoms. Here, we investigate the physical and biological mechanisms by which Southern Ocean uptake and export control the large-scale marine Zn distribution, using suites of sensitivity simulations in an ocean general circulation model (OGCM) and a box-model ensemble. These simulations focus on the sensitivity of the Zn distribution to the stoichiometry of Zn uptake relative to phosphate (PO4), drawing directly on observations in culture. Our analysis reveals that OGCM model variants that produce a well-defined step between relatively constant, high Zn:PO4 uptake ratios in the Southern Ocean and low Zn:PO4 ratios at lower latitudes fare best in reproducing the marine Zn-Si correlation at both the global and the regional Southern Ocean scale, suggesting the presence of distinct Zn-biogeochemical regimes in the high- and low-latitude oceans that may relate to differences in physiology, ecology or (micro-)nutrient status. Furthermore, a study of the systematics of both the box model and the OGCM reveals that regional Southern Ocean Zn uptake exerts control over the global Zn distribution via its modulation of the biogeochemical characteristics of the surface Southern Ocean. Specifically, model variants with elevated Southern Ocean Zn:PO4 uptake ratios produce near-complete Zn depletion in the Si-poor surface Subantarctic Zone, where upper-ocean water masses with key roles in the global oceanic circulation are formed. By setting the main preformed covariation trend within the ocean interior, the subduction of these Zn- and Si-poor water masses produces a close correlation between the Zn and Si distributions that is barely altered by their differential remineralisation during low-latitude cycling. We speculate that analogous processes in the high-latitude oceans may operate for other trace metal micronutrients as well, splitting the ocean into two fundamentally different biogeochemical, and thus biogeographic, regimes.
Numerical Modeling of Ocean Circulation
NASA Astrophysics Data System (ADS)
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
A boundary condition for layer to level ocean model interaction
NASA Astrophysics Data System (ADS)
Mask, A.; O'Brien, J.; Preller, R.
2003-04-01
A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
Ocean modelling on the CYBER 205 at GFDL
NASA Technical Reports Server (NTRS)
Cox, M.
1984-01-01
At the Geophysical Fluid Dynamics Laboratory, research is carried out for the purpose of understanding various aspects of climate, such as its variability, predictability, stability and sensitivity. The atmosphere and oceans are modelled mathematically and their phenomenology studied by computer simulation methods. The present state-of-the-art in the computer simulation of large scale oceans on the CYBER 205 is discussed. While atmospheric modelling differs in some aspects, the basic approach used is similar. The equations of the ocean model are presented along with a short description of the numerical techniques used to find their solution. Computational considerations and a typical solution are presented in section 4.
NASA Astrophysics Data System (ADS)
de Wet, P. D.; Bentsen, M.; Bethke, I.
2016-02-01
It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.
Coarsening of physics for biogeochemical model in NEMO
NASA Astrophysics Data System (ADS)
Bricaud, Clement; Le Sommer, Julien; Madec, Gurvan; Deshayes, Julie; Chanut, Jerome; Perruche, Coralie
2017-04-01
Ocean mesoscale and submesoscale turbulence contribute to ocean tracer transport and to shaping ocean biogeochemical tracers distribution. Representing adequately tracer transport in ocean models therefore requires to increase model resolution so that the impact of ocean turbulence is adequately accounted for. But due to supercomputers power and storage limitations, global biogeochemical models are not yet run routinely at eddying resolution. Still, because the "effective resolution" of eddying ocean models is much coarser than the physical model grid resolution, tracer transport can be reconstructed to a large extent by computing tracer transport and diffusion with a model grid resolution close to the effective resolution of the physical model. This observation has motivated the implementation of a new capability in NEMO ocean model (http://www.nemo-ocean.eu/) that allows to run the physical model and the tracer transport model at different grid resolutions. In a first time, we present results obtained with this new capability applied to a synthetic age tracer in a global eddying model configuration. In this model configuration, ocean dynamic is computed at ¼° resolution but tracer transport is computed at 3/4° resolution. The solution obtained is compared to 2 reference setup ,one at ¼° resolution for both physics and passive tracer models and one at 3/4° resolution for both physics and passive tracer model. We discuss possible options for defining the vertical diffusivity coefficient for the tracer transport model based on information from the high resolution grid. We describe the impact of this choice on the distribution and one the penetration of the age tracer. In a second time we present results obtained by coupling the physics with the biogeochemical model PISCES. We look at the impact of this methodology on some tracers distribution and dynamic. The method described here can found applications in ocean forecasting, such as the Copernicus Marine service operated by Mercator-Ocean, and in Earth System Models for climate applications.
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, Wenqing; Wentz, Frank J.
1992-01-01
Global fields of precipitable water W from the special sensor microwave imager were compared with those from the European Center for Medium Range Weather Forecasts (ECMWF) model. They agree over most ocean areas; both data sets capture the two annual cycles examined and the interannual anomalies during an ENSO episode. They show significant differences in the dry air masses over the eastern tropical-subtropical oceans, particularly in the Southern Hemisphere. In these regions, comparisons with radiosonde data indicate that overestimation by the ECMWF model accounts for a large part of the differences. As a check on the W differences, surface-level specific humidity Q derived from W, using a statistical relation, was compared with Q from the ECMWF model. The differences in Q were found to be consistent with the differences in W, indirectly validating the Q-W relation. In both W and Q, SSMI was able to discern clearly the equatorial extension of the tongues of dry air in the eastern tropical ocean, while both ECMWF and climatological fields have reduced spatial gradients and weaker intensity.
NASA Astrophysics Data System (ADS)
Bracco, Annalisa; Kucharski, Fred; Molteni, Franco; Hazeleger, Wilco; Severijns, Camiel
2007-04-01
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.
Smart Climatology Applications for Undersea Warfare
2008-09-01
Comparisons of these climatologies with existing Navy climatologies based on the Generalized Digital Environmental Model ( GDEM ) reveal differences in sonic...undersea warfare. 15. NUMBER OF PAGES 117 14. SUBJECT TERMS antisubmarine warfare, climate variations, climatology, GDEM , ocean, re...climatologies based on the Generalized Digital Environmental Model ( GDEM ) to our smart ocean climatologies reveal a number of differences. The
The Impact of Ocean Observations in Seasonal Climate Prediction
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena
2010-01-01
The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.
Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System
NASA Astrophysics Data System (ADS)
Olabarrieta, M.; Warner, J. C.; Armstrong, B. N.
2010-12-01
Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.
Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M
2017-09-13
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.
2017-08-01
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Crustal control of dissipative ocean tides in Enceladus and other icy moons
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Subsurface Ocean Tides in Enceladus and Other Icy Moons
NASA Astrophysics Data System (ADS)
Beuthe, M.
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Ocean biogeochemistry modeled with emergent trait-based genomics
NASA Astrophysics Data System (ADS)
Coles, V. J.; Stukel, M. R.; Brooks, M. T.; Burd, A.; Crump, B. C.; Moran, M. A.; Paul, J. H.; Satinsky, B. M.; Yager, P. L.; Zielinski, B. L.; Hood, R. R.
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.
Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)
NASA Astrophysics Data System (ADS)
Kirtman, B. P.
2009-12-01
A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
Manifestation of remote response over the equatorial Pacific in a climate model
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu; Marx, L.
2007-10-01
In this paper we examine the simulations over the tropical Pacific Ocean from long-term simulations of two different versions of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model that have a different global distribution of the inversion clouds. We find that subtle changes made to the numerics of an empirical parameterization of the inversion clouds can result in a significant change in the coupled climate of the equatorial Pacific Ocean. In one coupled simulation of this study we enforce a simple linear spatial filtering of the diagnostic inversion clouds to ameliorate its spatial incoherency (as a result of the Gibbs effect) while in the other we conduct no such filtering. It is found from the comparison of these two simulations that changing the distribution of the shallow inversion clouds prevalent in the subsidence region of the subtropical high over the eastern oceans in this manner has a direct bearing on the surface wind stress through surface pressure modifications. The SST in the warm pool region responds to this modulation of the wind stress, thus affecting the convective activity over the warm pool region and also the large-scale Walker and Hadley circulation. The interannual variability of SST in the eastern equatorial Pacific Ocean is also modulated by this change to the inversion clouds. Consequently, this sensitivity has a bearing on the midlatitude height response. The same set of two experiments were conducted with the respective versions of the atmosphere general circulation model uncoupled to the ocean general circulation model but forced with observed SST to demonstrate that this sensitivity of the mean climate of the equatorial Pacific Ocean is unique to the coupled climate model where atmosphere, ocean and land interact. Therefore a strong case is made for adopting coupled ocean-land-atmosphere framework to develop climate models as against the usual practice of developing component models independent of each other.
Seasonal Variability of Salt Transports in the Northern Indian Ocean
NASA Astrophysics Data System (ADS)
D'Addezio, J. M.; Bulusu, S.
2016-02-01
Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...
2005-06-29
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. Furthermore, it is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.« less
NASA Astrophysics Data System (ADS)
Kettle, Helen; Merchant, Chris J.
2008-08-01
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton ( α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ - as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403-1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.
Anisotropic models of the upper mantle
NASA Technical Reports Server (NTRS)
Regan, J.; Anderson, D. L.
1983-01-01
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, were not simultaneously satisfied by an isotropic structure. Available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, an elastic dispersion, sphericity, and gravity. The resulting models, for the average Earth, average ocean and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggested.
Global ocean tide models on the eve of Topex/Poseidon
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1993-01-01
Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.
Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM
NASA Technical Reports Server (NTRS)
Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia
2015-01-01
Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian
2015-04-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere DA systems. This is despite the fact that the assimilation error covariances have not yet been tuned for coupled DA. In addition, the coupled model also exhibits some biases which do not affect the uncoupled models. An example is precipitation and run off errors affecting the ocean salinity. This of course impacts the performance of the ocean data assimilation. This does, however, highlight a particular benefit of data assimilation in that it can help to identify short term model biases by using, for example, the differences between the observations and model background (innovations) and the mean increments. Coupled DA has the distinct advantage that this gives direct information about the coupled model short term biases. By identifying the biases and developing solutions this will improve the short range coupled forecasts, and may also improve the coupled model on climate timescales.
Ocean color modeling: Parameterization and interpretation
NASA Astrophysics Data System (ADS)
Feng, Hui
The ocean color as observed near the water surface is determined mainly by dissolved and particulate substances, known as "optically-active constituents," in the upper water column. The goal of ocean color modeling is to interpret an ocean color spectrum quantitatively to estimate the suite of optically-active constituents near the surface. In recent years, ocean color modeling efforts have been centering upon three major optically-active constituents: chlorophyll concentration, colored dissolved organic matter, and scattering particulates. Many challenges are still being faced in this arena. This thesis generally addresses and deals with some critical issues in ocean color modeling. In chapter one, an extensive literature survey on ocean color modeling is given. A general ocean color model is presented to identify critical candidate uncertainty sources in modeling the ocean color. The goal for this thesis study is then defined as well as some specific objectives. Finally, a general overview of the dissertation is portrayed, defining each of the follow-up chapters to target some relevant objectives. In chapter two, a general approach is presented to quantify constituent concentration retrieval errors induced by uncertainties in inherent optical property (IOP) submodels of a semi-analytical forward model. Chlorophyll concentrations are retrieved by inverting a forward model with nonlinear IOPs. The study demonstrates how uncertainties in individual IOP submodels influence the accuracy of the chlorophyll concentration retrieval at different chlorophyll concentration levels. The important finding for this study shows that precise knowledge of spectral shapes of IOP submodels is critical for accurate chlorophyll retrieval, suggesting an improvement in retrieval accuracy requires precise spectral IOP measurements. In chapter three, three distinct inversion techniques, namely, nonlinear optimization (NLO), principal component analysis (PCA) and artificial neural network (ANN) are compared to assess their inversion performances to retrieve optically-active constituents for a complex nonlinear bio-optical system simulated by a semi-analytical ocean color model. A well-designed simulation scheme was implemented to simulate waters of different bio-optical complexity, and then the three inversion methods were applied to these simulated datasets for performance evaluation. In chapter four, an approach is presented for optimally parameterizing an irradiance reflectance model on the basis of a bio-optical dataset made at 45 stations in the Tokyo Bay and nearby regions between 1982 and 1984. (Abstract shortened by UMI.)
A Two-Timescale Response to Ozone Depletion: Importance of the Background State
NASA Astrophysics Data System (ADS)
Seviour, W.; Waugh, D.; Gnanadesikan, A.
2015-12-01
It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.
Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow
NASA Astrophysics Data System (ADS)
Wajsowicz, R. C.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.
NASA Astrophysics Data System (ADS)
Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.
2017-12-01
The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.
Effect of Ocean Tide Models on the Precise Orbit Determination of Geodetic Satellites
NASA Astrophysics Data System (ADS)
Kubo-Oka, T.; Matsumoto, K.; Otsubo, T.; Gotoh, T.
2005-12-01
Several ocean tide models are tested with precise observation data of satellite laser ranging to geodetic satellites, Starlette and Stella. Four ocean models, NAO.99b, CSR 3.0 (standard model in IERS Conventions 2003), CSR 4.0, and GOT99.2b were implemented in our orbit analysis software "concerto ver. 4". NAO.99b model was developed by assimilating tidal solutions from TOPEX/POSEIDON altimeter data into hydrodynamical model. Eight constituents (M2, S2, K1, O1, N2, P1, K2, Q1) were taken into account in each ocean tide model. Moreover, eight additional constituents (M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) can be included in NAO.99b model. Effect of ocean tides on geopotential coefficients were computed to 20th order. SLR data to Starlette and Stella were divided into arcs of 7 days length and 52 arcs (Jan. 2 - Dec. 30, 2004) were analyzed. Using different ocean tide model, orbits of these satellites were determined and weighted rms of postfit residuals are compared. We found that the NAO.99b model with 16 constituents can reduce weighted rms of postfit residuals using to the level of about 6.0 cm (Starlette) and 9.6 cm (Stella). These values are about 3-5 % smaller compared to other ocean tide models.
Importance of ocean salinity for climate and habitability
Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.
2016-01-01
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090
Importance of ocean salinity for climate and habitability.
Cullum, Jodie; Stevens, David P; Joshi, Manoj M
2016-04-19
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.
NASA Astrophysics Data System (ADS)
Wagner, Hannes; Koeve, Wolfgang; Kriest, Iris; Oschlies, Andreas
2015-04-01
Simulated deep ocean natural radiocarbon is frequently used to assess model performance of deep ocean ventilation in Ocean General Circulation Models (OGCMs). It has been shown to be sensitive to a variety of model parameters, such as the mixing parameterization, convection scheme and vertical resolution. Here we use three different ocean models (MIT2.8, ECCO, UVic) to evaluate the sensitivity of simulated deep ocean natural radiocarbon to two other factors, while keeping the model physics constant: (1) the gas exchange velocity and (2) historic variations in atmospheric Δ^1^4C boundary conditions. We find that simulated natural Δ^1^4C decreases by 14-20 ‰ throughout the deep ocean and consistently in all three models, if the gas exchange velocity is lowered by 30 % with respect to the OCMIP-2 protocol, to become more consistent with newer estimates of the oceans uptake of bomb derived ^1^4C. Simulated deep ocean natural Δ^1^4C furthermore decreases by 3-9 ‰ throughout the deep Pacific, Indian and Southern Oceans and consistently in all three models, if the models are forced with the observed atmospheric Δ^1^4C history, instead of an often made pragmatic assumption of a constant atmospheric Δ^1^4C value of zero. Applying both improvements (gas exchange reduction, as well as atmospheric Δ^1^4C history implementation) concomitantly and accounting for the present uncertainty in gas exchange velocity estimates (between 10 and 40 % reduction with respect to the OCMIP-2 protocol) simulated deep ocean Δ^1^4C decreases by 10-30 ‰ throughout the deep Pacific, Indian and Southern Ocean. This translates to a ^1^4C-age increase of 100-300 years and indicates, that models, which in former assessments (based on the OCMIP-2 protocol) had been identified to have an accurate deep ocean ventilation, should now be regarded as rather having a bit too sluggish a ventilation. Models, which on the other hand had been identified to have a bit too fast a deep ocean ventilation, should now be regarded as rather having a more accurate ventilation.
Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean
NASA Astrophysics Data System (ADS)
Albani, S.; Mahowald, N. M.; Murphy, L. N.; Raiswell, R.; Moore, J. K.; Anderson, R. F.; McGee, D.; Bradtmiller, L. I.; Delmonte, B.; Hesse, P. P.; Mayewski, P. A.
2016-04-01
Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).
NASA Astrophysics Data System (ADS)
Cohen-Solal, E.; Le Treut, H.
We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.
Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling
NASA Astrophysics Data System (ADS)
Girihagama, L. N.; Nof, D.
2016-02-01
We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
Enhanced deep ocean ventilation and oxygenation with global warming
NASA Astrophysics Data System (ADS)
Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.
2014-12-01
Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
NASA Astrophysics Data System (ADS)
Curcic, M.; Chen, S. S.
2016-02-01
The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.
Atmospheric Models for Over-Ocean Propagation Loss
2015-05-15
Atmospheric Models For Over-Ocean Propagation Loss Bruce McGuffin1 MIT Lincoln Laboratory Introduction Air -to-surface radio links differ from...from radiosonde profiles collected along the Atlantic coast of the United States, in order to accurately estimate high-reliability SHF/EHF air -to...predict required link performance to achieve high reliability at different locations and times of year. Data Acquisition Radiosonde balloons are
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
NASA Astrophysics Data System (ADS)
Kunii, M.; Ito, K.; Wada, A.
2015-12-01
An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.
Do the Brazilian sardine commercial landings respond to local ocean circulation?
Gouveia, Mainara B; Gherardi, Douglas F M; Lentini, Carlos A D; Dias, Daniela F; Campos, Paula C
2017-01-01
It has been reported that sea surface temperature (SST) anomalies, flow intensity and mesoscale ocean processes, all affect sardine production, both in eastern and western boundary current systems. Here we tested the hypothesis whether extreme high and low commercial landings of the Brazilian sardine fisheries in the South Brazil Bight (SBB) are sensitive to different oceanic conditions. An ocean model (ROMS) and an individual based model (Ichthyop) were used to assess the relationship between oceanic conditions during the spawning season and commercial landings of the Brazilian sardine one year later. Model output was compared with remote sensing and analysis data showing good consistency. Simulations indicate that mortality of eggs and larvae by low temperature prior to maximum and minimum landings are significantly higher than mortality caused by offshore advection. However, when periods of maximum and minimum sardine landings are compared with respect to these causes of mortality no significant differences were detected. Results indicate that mortality caused by prevailing oceanic conditions at early life stages alone can not be invoked to explain the observed extreme commercial landings of the Brazilian sardine. Likely influencing factors include starvation and predation interacting with the strategy of spawning "at the right place and at the right time".
How well-connected is the surface of the global ocean?
Froyland, Gary; Stuart, Robyn M; van Sebille, Erik
2014-09-01
The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches.
How ocean lateral mixing changes Southern Ocean variability in coupled climate models
NASA Astrophysics Data System (ADS)
Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.
2016-02-01
The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.
NASA Astrophysics Data System (ADS)
Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna
2016-04-01
The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the global scale the physically motivated methods (i) and (iv) provide probabilistic hindcasts with a consistently higher reliability than the lagged initialization methods (ii)/(iii) despite the large uncertainties in the verifying observations and in the simulations.
Surface wind mixing in the Regional Ocean Modeling System (ROMS)
NASA Astrophysics Data System (ADS)
Robertson, Robin; Hartlipp, Paul
2017-12-01
Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.
NASA Astrophysics Data System (ADS)
Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.
2015-12-01
Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.
Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations
NASA Astrophysics Data System (ADS)
Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios
2016-04-01
Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A.; Gruszczynski, M.; Malkowski, K.
1991-05-01
The phenomena of (i) inverse correlation between the oceanic carbon and sulfur isotopic curves, and (ii) covariation between the oceanic carbon and oxygen isotopic curves at all their major excursions appear as paradoxes in the current paradigm of global biogeochemical cycles. These phenomena, however, are fully explicable by a model proposing that the ocean alternates between two general modes: stagnant, stratified, and net autotrophic (overfed) ocean, on the one hand, and vigorously mixed and net heterotrophic (hungry) ocean, on the other. This model is in fact strongly supported by the carbon isotopic evidence. The directions of change in the isotopicmore » ratios of carbon, oxygen, and sulfur should be different in the lower, anoxic box of a stratified ocean than in the upper, oxic box; whereas ocean destratification and mixing of the two boxes should lead to coeval shifts in the oceanic isotopic curves of these elements. The model has far-reaching implications for (i) the causal explanation of both secular trends and major shifts in the oceanic isotopic curves, and (ii) for the application of oxygen isotopic data for paleotemperature and paleoenvironment determinations.« less
NASA Technical Reports Server (NTRS)
Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.
2003-01-01
Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.
Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Pant, V.; Prakash, K. R.
2016-02-01
Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.
NASA Astrophysics Data System (ADS)
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate biogeochemical processes in the sediments. The performance of the respective mathematical representations in constraining the importance of carbon pump feedbacks on marine biogeochemical dynamics is then compared and evaluated under different extreme climate scenarios (e.g. OAE2, Eocene) using the Earth system model 'GENIE' and proxy records. The compiled mathematical descriptions and the model results underline the lack of a complete and mechanistic framework to represent the short-term carbon cycle in most EMICs which seriously limits the ability of these models to constrain the response of the ocean's carbon cycle to past and in particular future climate change. In conclusion, this presentation will critically evaluate the approaches currently used in marine biogeochemical modelling and outline key research directions concerning model development in the future.
Particle transport model sensitivity on wave-induced processes
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
A conceptual model of oceanic heat transport in the Snowball Earth scenario
NASA Astrophysics Data System (ADS)
Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.
2016-12-01
Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.
Ocean carbon and heat variability in an Earth System Model
NASA Astrophysics Data System (ADS)
Thomas, J. L.; Waugh, D.; Gnanadesikan, A.
2016-12-01
Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.
Kawase & McDermott revisited with a proper ocean model.
NASA Astrophysics Data System (ADS)
Jochum, Markus; Poulsen, Mads; Nuterman, Roman
2017-04-01
A suite of experiments with global ocean models is used to test the hypothesis that Southern Ocean (SO) winds can modify the strength of the Atlantic Meridional Overturning Circulation (AMOC). It is found that for 3 and 1 degree resolution models the results are consistent with Toggweiler & Samuels (1995): stronger SO winds lead to a slight increase of the AMOC. In the simulations with 1/10 degree resolution, however, stronger SO winds weaken the AMOC. We show that these different outcomes are determined by the models' representation of topographic Rossby and Kelvin waves. Consistent with previous literature based on theory and idealized models, first baroclinic waves are slower in the coarse resolution models, but still manage to establish a pattern of global response that is similar to the one in the eddy-permitting model. Because of its different stratification, however, the Atlantic signal is transmitted by higher baroclinic modes. In the coarse resolution model these higher modes are dissipated before they reach 30N, whereas in the eddy-permitting model they reach the subpolar gyre undiminished. This inability of non-eddy-permitting ocean models to represent planetary waves with higher baroclinic modes casts doubt on the ability of climate models to represent non-local effects of climate change. Ideas on how to overcome these difficulties will be discussed.
Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice
NASA Astrophysics Data System (ADS)
Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean
2016-08-01
Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.
NASA Astrophysics Data System (ADS)
Nikurashin, Maxim; Gunn, Andrew
2017-04-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.
Ocean biogeochemistry modeled with emergent trait-based genomics.
Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The circulation of a baroclinic ocean around planetary scale islands with topography
NASA Astrophysics Data System (ADS)
Pedlosky, J.
2010-12-01
The circulation around planetary-scale islands is considered for an island with a topographic skirt for a stratified ocean. The simplest model of the ocean is a two layer ocean in a circular domain with the island in the center. When the girdling topography is steep, closed geostrophic contours guide the flow in each of the two layers although that guiding occurs at different horizontal locations in each layer. For flows with weak dissipation, modeled as bottom and interfacial friction, explicit formulae are given for the dependence of the streamfunction in each layer on the ambient potential vorticity, f/(layer depth). Numerical model calculations will be presented to supplement the analytical results.
Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate
NASA Astrophysics Data System (ADS)
Shen, Mao-Lin; Keenlyside, Noel; Bhatt, Bhuwan C.; Duane, Gregory S.
2017-12-01
The supermodel strategy interactively combines several models to outperform the individual models comprising it. A key advantage of the approach is that nonlinear improvements can be achieved, in contrast to the linear weighted combination of individual unconnected models. This property is found in a climate supermodel constructed by coupling two versions of an atmospheric model differing only in their convection scheme to a single ocean model. The ocean model receives a weighted combination of the momentum and heat fluxes. Optimal weights can produce a supermodel with a basic state similar to observations: a single Intertropical Convergence zone (ITCZ), with a western Pacific warm pool and an equatorial cold tongue. This is in stark contrast to the erroneous double ITCZ pattern simulated by both of the two stand-alone coupled models. By varying weights, we develop a conceptual scheme to explain how combining the momentum fluxes of the two different atmospheric models affects equatorial upwelling and surface wind feedback so as to give a realistic basic state in the tropical Pacific. In particular, we propose a mechanism based on the competing influences of equatorial zonal wind and off-equatorial wind stress curl in driving equatorial upwelling in the coupled models. Our results show how nonlinear ocean-atmosphere interaction is essential in combining these two effects to build different sea surface temperature structures, some of which are realistic. They also provide some insight into observed and modelled tropical Pacific climate.
Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate.
Shen, Mao-Lin; Keenlyside, Noel; Bhatt, Bhuwan C; Duane, Gregory S
2017-12-01
The supermodel strategy interactively combines several models to outperform the individual models comprising it. A key advantage of the approach is that nonlinear improvements can be achieved, in contrast to the linear weighted combination of individual unconnected models. This property is found in a climate supermodel constructed by coupling two versions of an atmospheric model differing only in their convection scheme to a single ocean model. The ocean model receives a weighted combination of the momentum and heat fluxes. Optimal weights can produce a supermodel with a basic state similar to observations: a single Intertropical Convergence zone (ITCZ), with a western Pacific warm pool and an equatorial cold tongue. This is in stark contrast to the erroneous double ITCZ pattern simulated by both of the two stand-alone coupled models. By varying weights, we develop a conceptual scheme to explain how combining the momentum fluxes of the two different atmospheric models affects equatorial upwelling and surface wind feedback so as to give a realistic basic state in the tropical Pacific. In particular, we propose a mechanism based on the competing influences of equatorial zonal wind and off-equatorial wind stress curl in driving equatorial upwelling in the coupled models. Our results show how nonlinear ocean-atmosphere interaction is essential in combining these two effects to build different sea surface temperature structures, some of which are realistic. They also provide some insight into observed and modelled tropical Pacific climate.
NASA Astrophysics Data System (ADS)
María Palomares, Ana; Navarro, Jorge; Grifoll, Manel; Pallares, Elena; Espino, Manuel
2016-04-01
This work shows the main results of the HAREAMAR project (including HAREMAR, ENE2012-38772-C02-01 and DARDO, ENE2012-38772-C02-02 projects), concerning the local Wind, Wave and Current simulation at St. Jordi Bay (NW Mediterranean Sea). Offshore Wind Energy has become one of the main topics within the research in Wind Energy research. Although there are quite a few models with a high level of reliability for wind simulation and prediction in onshore places, the wind prediction needs further investigations for adaptation to the Offshore emplacements, taking into account the interaction atmosphere-ocean. The main problem in these ocean areas is the lack of wind data, which neither allows for characterizing the energy potential and wind behaviour in a particular place, nor validating the forecasting models. The main objective of this work is to reduce the local prediction errors, in order to make the meteo-oceanographic hindcast and forecast more reliable. The COAWST model (Coupled-Ocean-Atmosphere-Wave Sediment Transport Model; Warner et al., 2010) system has been implemented in the region considering a set of downscaling nested meshes to obtain high-resolution outputs in the region. The adaptation to this particular area, combining the different wind, wave and ocean model domains has been far from simple, because the grid domains for the three models differ significantly. This work shows the main results of the COAWST model implementation to this particular area, including both monthly and other set of tests in different atmospheric situations, especially chosen for their particular interest. The time period considered for the validation is the whole year 2012. A comparative study between the WRF, SWAN and ROMS model outputs (without coupling), the COWAST model outputs, and a buoy measurements moored in the region was performed for this year. References Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, 35 (3), 230-244.
Surface Energy Budget Disruption in the Northeast Pacific in Response to a Marine Heat Wave
NASA Astrophysics Data System (ADS)
Schmeisser, L.; Siedlecki, S. A.; Ackerman, T. P.; Bond, N. A.
2016-12-01
The surface energy budget of the ocean varies greatly over space and time as a result of ocean-atmosphere interactions. Changes in the budget due to variability in incident shortwave radiation can alter the thermal structure of the upper ocean, influence photosynthetic processes, and ultimately affect marine biogeochemistry. Thus, accurate representation of the surface energy budget over the oceans is essential for successfully modeling ocean processes and ocean-atmosphere interactions. Siedlecki et al. [Scientific Reports 6 (2016): 27203] show that NOAA's Climate Forecast System (CFS) shortwave radiation fields are biased high relative to CFS reanalysis data by about 50 W/m2 in the study area off the coast of Washington and Oregon. This bias varies in space and time and is known to exist in large scale climate models. The bias results in reduced skill in ocean forecasts at the surface, with specific impacts on sea surface temperature and biogeochemistry. In order to better understand the surface radiation balance over the ocean and the biases present in large scale climate models, we use several data sets to analyze an anomalous sea surface temperature event (marine heat wave, MHW) in the Northeast Pacific during 2014-2015. This `blob' of warm water disrupted ocean-atmosphere feedbacks in the region and altered the surface energy balance; thus, it provides a case study to better understand physical mechanisms at play in the surface radiation balance. CERES SYN1deg satellite data are compared to model output from CFS (1°x1° resolution) and WRF (12km resolution). We use all three fields to assess the impact of model resolution on the surface energy budget, as well as identify feedbacks in ocean-atmosphere processes that may differ between the observations and the models. Observational time series from 2009-15 of shortwave radiation, longwave radiation, and cloud parameters across 3 latitudinal lines (44.5N, 47N, 50N) in the Northeast Pacific (150W to 125W) clearly show disruption in cloud fraction, water content, and radiative fluxes during the MHW. The timing and spatial extent of the disruption differ in the models. The surface radiation budget for the Northeast Pacific over this time period from the observations and models is compared and discussed.
Application of a Topological Metric for Assessing Numerical Ocean Models with Satellite Observations
NASA Astrophysics Data System (ADS)
Morey, S. L.; Dukhovskoy, D. S.; Hiester, H. R.; Garcia-Pineda, O. G.; MacDonald, I. R.
2015-12-01
Satellite-based sensors provide a vast amount of observational data over the world ocean. Active microwave radars measure changes in sea surface height and backscattering from surface waves. Data from passive radiometers sensing emissions in multiple spectral bands can directly measure surface temperature, be combined with other data sources to estimate salinity, or processed to derive estimates of optically significant quantities, such as concentrations of biochemical properties. Estimates of the hydrographic variables can be readily used for assimilation or assessment of hydrodynamic ocean models. Optical data, however, have been underutilized in ocean circulation modeling. Qualitative assessments of oceanic fronts and other features commonly associated with changes in optically significant quantities are often made through visual comparison. This project applies a topological approach, borrowed from the field of computer image recognition, to quantitatively evaluate ocean model simulations of features that are related to quantities inferred from satellite imagery. The Modified Hausdorff Distance (MHD) provides a measure of the similarity of two shapes. Examples of applications of the MHD to assess ocean circulation models are presented. The first application assesses several models' representation of the freshwater plume structure from the Mississippi River, which is associated with a significant expression of color, using a satellite-derived ocean color index. Even though the variables being compared (salinity and ocean color index) differ, the MHD allows contours of the fields to be compared topologically. The second application assesses simulations of surface oil transport driven by winds and ocean model currents using surface oil maps derived from synthetic aperture radar backscatter data. In this case, maps of time composited oil coverage are compared between the simulations and satellite observations.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
NASA Astrophysics Data System (ADS)
Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh
2015-12-01
Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of-the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. These results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate "sub-ecosystem-scale" parameterizations.
Dausman, A.M.; Langevin, C.D.; Sukop, M.C.
2007-01-01
A hydrological analysis using a numerical simulation was done to identify the transient response of the salinity and temperature of submarine groundwater discharge (SGD) and utilize the results to guide data collection. Results indicate that the amount of SGD fluctuates depending on the ocean stage and geology, with the greatest amount of SGD delivered at low tide when the aquifer is in direct hydraulic contact with the ocean. The salinity of SGD remains lower than the ocean throughout the year; however, the salinity difference between the aquifer and ocean is inversely proportional to the ocean stage. The temperature difference between the ocean and SGD fluctuates seasonally, with the greatest temperature differences occurring in summer and winter. The outcome of this research reveals that numerical modelling could potentially be used to guide data collection including aerial surveys using electromagnetic (EM) resistivity and thermal imagery.
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.
2016-02-01
A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).
Ocean haline skin layer and turbulent surface convections
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, X.
2012-04-01
The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.
Studies of oceanic tectonics based on GEOS-3 satellite altimetry
NASA Technical Reports Server (NTRS)
Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.
1979-01-01
Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.
NASA Technical Reports Server (NTRS)
Parke, M. E.
1978-01-01
Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.
Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.
Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza
2015-09-15
The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.
2018-04-01
The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less
NASA Astrophysics Data System (ADS)
Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin
2018-05-01
It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N. Hemisphere storm tracks, but strengthens the storm track over the southern Indian Ocean. A note of caution is that the results are sensitive to the choice of storm track metric. The results are contrasted with those from a high resolution coupled simulation where the SST is smoothed for the purposes of computing air-sea fluxes, an alternative method of testing sensitivity to SST gradients.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Influence Of Momentum Excess On The Pattern And Dynamics Of Intermediate-Range Stratified Wakes
2016-06-01
excess in order to model the fundamental differences between signatures generated by towed and self- propelled bodies in various ocean states. In cases...which can be used on the operational level for developing and improving algorithms for non- acoustic signature prediction and detection. 14. SUBJECT...order to model the fundamental differences between signatures generated by towed and self- propelled bodies in various ocean states. In cases where
NASA Astrophysics Data System (ADS)
Francisco, R. V.; Argete, J.; Giorgi, F.; Pal, J.; Bi, X.; Gutowski, W. J.
2006-09-01
The latest version of the Abdus Salam International Centre for Theoretical Physics (ICTP) regional model RegCM is used to investigate summer monsoon precipitation over the Philippine archipelago and surrounding ocean waters, a region where regional climate models have not been applied before. The sensitivity of simulated precipitation to driving lateral boundary conditions (NCEP and ERA40 reanalyses) and ocean surface flux scheme (BATS and Zeng) is assessed for 5 monsoon seasons. The ability of the RegCM to simulate the spatial patterns and magnitude of monsoon precipitation is demonstrated, both in response to the prominent large scale circulations over the region and to the local forcing by the physiographical features of the Philippine islands. This provides encouraging indications concerning the development of a regional climate modeling system for the Philippine region. On the other hand, the model shows a substantial sensitivity to the analysis fields used for lateral boundary conditions as well as the ocean surface flux schemes. The use of ERA40 lateral boundary fields consistently yields greater precipitation amounts compared to the use of NCEP fields. Similarly, the BATS scheme consistently produces more precipitation compared to the Zeng scheme. As a result, different combinations of lateral boundary fields and surface ocean flux schemes provide a good simulation of precipitation amounts and spatial structure over the region. The response of simulated precipitation to using different forcing analysis fields is of the same order of magnitude as the response to using different surface flux parameterizations in the model. As a result it is difficult to unambiguously establish which of the model configurations is best performing.
NASA Astrophysics Data System (ADS)
Rimac, A.; Eden, C.; von Storch, J.
2012-12-01
Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.
NASA Technical Reports Server (NTRS)
Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie;
2014-01-01
NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.
Do the Brazilian sardine commercial landings respond to local ocean circulation?
Gherardi, Douglas F. M.; Lentini, Carlos A. D.; Dias, Daniela F.; Campos, Paula C.
2017-01-01
It has been reported that sea surface temperature (SST) anomalies, flow intensity and mesoscale ocean processes, all affect sardine production, both in eastern and western boundary current systems. Here we tested the hypothesis whether extreme high and low commercial landings of the Brazilian sardine fisheries in the South Brazil Bight (SBB) are sensitive to different oceanic conditions. An ocean model (ROMS) and an individual based model (Ichthyop) were used to assess the relationship between oceanic conditions during the spawning season and commercial landings of the Brazilian sardine one year later. Model output was compared with remote sensing and analysis data showing good consistency. Simulations indicate that mortality of eggs and larvae by low temperature prior to maximum and minimum landings are significantly higher than mortality caused by offshore advection. However, when periods of maximum and minimum sardine landings are compared with respect to these causes of mortality no significant differences were detected. Results indicate that mortality caused by prevailing oceanic conditions at early life stages alone can not be invoked to explain the observed extreme commercial landings of the Brazilian sardine. Likely influencing factors include starvation and predation interacting with the strategy of spawning “at the right place and at the right time”. PMID:28489925
Multi-model attribution of upper-ocean temperature changes using an isothermal approach.
Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook
2016-06-01
Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.
Multi-model attribution of upper-ocean temperature changes using an isothermal approach
NASA Astrophysics Data System (ADS)
Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook
2016-06-01
Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.
Zhai, Peng-Wang; Hu, Yongxiang; Trepte, Charles R; Lucker, Patricia L
2009-02-16
A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The delta - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
Impact of Seawater Nonlinearities on Nordic Seas Circulation
NASA Astrophysics Data System (ADS)
Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.
2017-12-01
The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.
NASA Astrophysics Data System (ADS)
Ličer, Matjaž; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Strajnar, Benedikt; Cedilnik, Jure; Jeromel, Maja; Jerman, Jure; Petan, Sašo; Benetazzo, Alvise; Carniel, Sandro; Malačič, Vlado; Sofianos, Sarantis
2016-04-01
We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic Bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmosphere side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes (computed using modified Louis scheme) and sea temperatures from both setups to platform and CTD measurements of fluxes (computed using COARE scheme) and temperatures from three observational platforms (Vida, Paloma, Acqua Alta) in the Northern Adriatic. We show that turbulent fluxes from both setups differ up to 20% during the Bora but not significantly before and after the event. The impact of the coupling on the ocean is significant while the impact on the atmosphere is less pronounced. When compared to observations, two way coupling ocean temperatures exhibit a four times lower RMSE than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.
2013-01-01
MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.
Configuration and Assessment of the GISS ModelE2 Contributions to the CMIP5 Archive
NASA Technical Reports Server (NTRS)
Schmidt, Gavin A.; Kelley, Max; Nazarenko, Larissa; Ruedy, Reto; Russell, Gary L.; Aleinov, Igor; Bauer, Mike; Bauer, Susanne E.; Bhat, Maharaj K.; Bleck, Rainer;
2014-01-01
We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Bourassa, Mark
2017-04-01
Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.
Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM
NASA Astrophysics Data System (ADS)
Luo, Hao; Zheng, Fei; Zhu, Jiang
2017-12-01
Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.
NASA Astrophysics Data System (ADS)
Arteaga, Lionel; Haëntjens, Nils; Boss, Emmanuel; Johnson, Kenneth S.; Sarmiento, Jorge L.
2018-04-01
Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net primary production (NPP) that is exported out of the surface productive layer of the ocean. Recent observations for the Southern Ocean suggest a negative e-ratio versus NPP relationship, and a reduced dependency of export efficiency on temperature, different than in the global domain. In this study, we complement information from a passive satellite sensor with novel space-based lidar observations of ocean particulate backscattering to infer NPP over the entire annual cycle, and estimate Southern Ocean export rates from five different empirical models of export efficiency. Inferred Southern Ocean NPP falls within the range of previous studies, with a mean estimate of 15.8 (± 3.9) Pg C yr-1 for the region south of 30°S during the 2005-2016 period. We find that an export efficiency model that accounts for silica(Si)-ballasting, which is constrained by observations with a negative e-ratio versus NPP relationship, shows the best agreement with in situ-based estimates of annual net community production (annual export of 2.7 ± 0.6 Pg C yr-1 south of 30°S). By contrast, models based on the analysis of global observations with a positive e-ratio versus NPP relationship predict annually integrated export rates that are ˜ 33% higher than the Si-dependent model. Our results suggest that accounting for Si-induced ballasting is important for the estimation of carbon export in the Southern Ocean.
NASA Astrophysics Data System (ADS)
Prakash, Kumar Ravi; Pant, Vimlesh
2017-01-01
A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.
2015-01-01
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed. PMID:25945497
Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C
2015-01-01
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.
Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.
2013-12-01
The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.
The Uptake of Heat and Carbon by the Southern Ocean in the CMIP5 Earth System Models
NASA Astrophysics Data System (ADS)
Russell, J. L.; Stouffer, R. J.; Dunne, J. P.; John, J. G.
2011-12-01
The Southern Ocean surrounding the Antarctic continent accounts for a disproportionate share of the heat and carbon dioxide that is removed from contact with the atmosphere into the ocean. The vigorous air-sea exchange driven by the Southern Hemisphere Westerlies, combined with the dearth of observations, makes the Southern Ocean a major source of uncertainty in projecting the rate of warming of our atmosphere, especially considering that the vertical mixing of the ocean and the corollary air-sea fluxes may be vulnerable to climate change. We assess the heat and carbon uptake by the Southern Ocean in future simulations by the IPCC-AR5 Earth System Models (ESMs), focusing on the GFDL simulations. Using the 1860 control simulation as our baseline, we explore the differences in heat and carbon uptake between the major "Representative Concentration Pathways" (RCPs) as simulated by the various ESMs in order to quantify the uncertainties in the climate projections related to the Southern Ocean window into the deep ocean reservoir.
Refine of Regional Ocean Tide Model Using GPS Data
NASA Astrophysics Data System (ADS)
Wang, F.; Zhang, P.; Sun, Z.; Jiang, Z.; Zhang, Q.
2018-04-01
Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional ocean tide model. We first process the four offshore GPS tracking station's observation data which located in Guangdong province of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean Tidal Loading. We get the estimated value of not only 12hour period tide wave (M2, S2, N2, K2) but also 24hour period tide wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.
Crystallization and Cooling of a Deep Silicate Magma Ocean
NASA Astrophysics Data System (ADS)
Bower, Dan; Wolf, Aaron
2016-04-01
Impact and accretion simulations of terrestrial planet formation suggest that giant impacts are both common and expected to produce extensive melting. The moon-forming impact, for example, likely melted the majority of Earth's mantle to produce a global magma ocean that subsequently cooled and crystallised. Understanding the cooling process is critical to determining magma ocean lifetimes and recognising possible remnant signatures of the magma ocean in present-day mantle heterogeneities. Modelling this evolution is challenging, however, due to the vastly different timescales and lengthscales associated with turbulent convection (magma ocean) and viscous creep (present-day mantle), in addition to uncertainties in material properties and chemical partitioning. We consider a simplified spherically-symmetric (1-D) magma ocean to investigate both its evolving structure and cooling timescale. Extending the work of Abe (1993), mixing-length theory is employed to determine convective heat transport, producing a high resolution model that parameterises the ultra-thin boundary layer (few cms) at the surface of the magma ocean. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting. This model is used to determine the cooling timescale for a variety of plausible thermodynamic models, with special emphasis on comparing the center-outwards vs bottom-up cooling scenarios that arise from the assumed EOS.
The evolution of a coupled ice shelf-ocean system under different climate states
NASA Astrophysics Data System (ADS)
Grosfeld, Klaus; Sandhäger, Henner
2004-07-01
Based on a new approach for coupled applications of an ice shelf model and an ocean general circulation model, we investigate the evolution of an ice shelf-ocean system and its sensitivity to changed climatic boundary conditions. Combining established 3D models into a coupled model system enabled us to study the reaction and feedbacks of each component to changes at their interface, the ice shelf base. After calculating the dynamics for prescribed initial ice shelf and bathymetric geometries, the basal mass balance determines the system evolution. In order to explore possible developments for given boundary conditions, an idealized geometry has been chosen, reflecting basic features of the Filchner-Ronne Ice Shelf, Antarctica. The model system is found to be especially sensitive in regions where high ablation or accretion rates occur. Ice Shelf Water formation as well as the build up of a marine ice body, resulting from accretion of marine ice, is simulated, indicating strong interaction processes. To improve consistency between modeled and observed ice shelf behavior, we incorporate the typical cycle of steady ice front advance and sudden retreat due to tabular iceberg calving in our time-dependent simulations. Our basic hypothesis is that iceberg break off is associated with abrupt crack propagation along elongated anomalies of the inherent stress field of the ice body. This new concept yields glaciologically plausible results and represents an auspicious basis for the development of a thorough calving criterion. Experiments under different climatic conditions (ocean warming of 0.2 and 0.5 °C and doubled surface accumulation rates) show the coupled model system to be sensitive especially to ocean warming. Increased basal melt rates of 100% for the 0.5 °C ocean warming scenario and an asymmetric development of ice shelf thicknesses suggest a high vulnerability of ice shelf regions, which represent pivotal areas between the Antarctic Ice Sheet and the Southern Ocean.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
Modeling ocean wave propagation under sea ice covers
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Spurious sea ice formation caused by oscillatory ocean tracer advection schemes
NASA Astrophysics Data System (ADS)
Naughten, Kaitlin A.; Galton-Fenzi, Benjamin K.; Meissner, Katrin J.; England, Matthew H.; Brassington, Gary B.; Colberg, Frank; Hattermann, Tore; Debernard, Jens B.
2017-08-01
Tracer advection schemes used by ocean models are susceptible to artificial oscillations: a form of numerical error whereby the advected field alternates between overshooting and undershooting the exact solution, producing false extrema. Here we show that these oscillations have undesirable interactions with a coupled sea ice model. When oscillations cause the near-surface ocean temperature to fall below the freezing point, sea ice forms for no reason other than numerical error. This spurious sea ice formation has significant and wide-ranging impacts on Southern Ocean simulations, including the disappearance of coastal polynyas, stratification of the water column, erosion of Winter Water, and upwelling of warm Circumpolar Deep Water. This significantly limits the model's suitability for coupled ocean-ice and climate studies. Using the terrain-following-coordinate ocean model ROMS (Regional Ocean Modelling System) coupled to the sea ice model CICE (Community Ice CodE) on a circumpolar Antarctic domain, we compare the performance of three different tracer advection schemes, as well as two levels of parameterised diffusion and the addition of flux limiters to prevent numerical oscillations. The upwind third-order advection scheme performs better than the centered fourth-order and Akima fourth-order advection schemes, with far fewer incidents of spurious sea ice formation. The latter two schemes are less problematic with higher parameterised diffusion, although some supercooling artifacts persist. Spurious supercooling was eliminated by adding flux limiters to the upwind third-order scheme. We present this comparison as evidence of the problematic nature of oscillatory advection schemes in sea ice formation regions, and urge other ocean/sea-ice modellers to exercise caution when using such schemes.
A baroclinic quasigeostrophic open ocean model
NASA Technical Reports Server (NTRS)
Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.
1983-01-01
A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.
Sensitivity studies with a coupled ice-ocean model of the marginal ice zone
NASA Technical Reports Server (NTRS)
Roed, L. P.
1983-01-01
An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.
NASA Astrophysics Data System (ADS)
Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.
2015-09-01
Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.
Quantifying spatial distribution of spurious mixing in ocean models.
Ilıcak, Mehmet
2016-12-01
Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.
2004-01-01
One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.
NASA Technical Reports Server (NTRS)
Watson, Gregg W.
2000-01-01
The Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) has observed 2.5 years of routine global chlorophyll observations from space. The mission was launched into a record El Nino event, which eventually gave way to one of the most intensive and longest-lasting La Nina events ever recorded. The SeaWiFS chlorophyll record captured the response of ocean phytoplankton to these significant events in the tropical Indo-Pacific basins, but also indicated significant interannual variability unrelated to the El Nino/La Nina events. This included large variability in the North Atlantic and Pacific basins, in the North Central and equatorial Atlantic, and milder patterns in the North Central Pacific. This SeaWiFS record was tracked with a coupled physical/biogeochemical/radiative model of the global oceans using near-real-time forcing data such as wind stresses, sea surface temperatures, and sea ice. This provided an opportunity to offer physically and biogeochemically meaningful explanations of the variability observed in the SeaWiFS data set, since the causal mechanisms and interrelationships of the model are completely understood. The coupled model was able to represent the seasonal distributions of chlorophyll during the SeaWiFS era, and was capable of differentiating among the widely different processes and dynamics occurring in the global oceans. The model was also reasonably successful in representing the interannual signal, especially when it was large, such as, the El Nino and La Nina events in the tropical Pacific and Indian Oceans. The model provided different phytoplankton group responses for the different events in these regions: diatoms were predominant in the tropical Pacific during the La Nina but other groups were predominant during El Nino. The opposite condition occurred in the tropical Indian Ocean. Both situations were due to the different responses of the basins to El Nino. The interannual variability in the North Atlantic, which was exhibited in SeaWiFS data as a decline in the spring/summer bloom in 1999 relative to 1998, resulted in the model from a more slowly shoaling mixed layer, allowing herbivore populations to keep pace with increasing phytoplankton populations. However, several aspects of the interannual cycle were not well-represented by the model. Explanations ranged from inherent model deficiencies, to monthly averaging of forcing fields, to biases in SeaWiFS atmospheric correction procedures.
A low-order model of the equatorial ocean-atmosphere system
NASA Astrophysics Data System (ADS)
Legnani, Roberto
A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short wave and long wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severly truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.
a Low-Order Model of the Equatorial Ocean-Atmosphere System.
NASA Astrophysics Data System (ADS)
Legnani, Roberto
A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short -wave and long-wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severely truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.
A four-dimensional primitive equation model for coupled coastal-deep ocean studies
NASA Technical Reports Server (NTRS)
Haidvogel, D. B.
1981-01-01
A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.
Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; ...
2015-12-21
Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded inmore » the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.« less
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; Martin, Matthew; Hines, Adrian; Guiavarch, Catherine; Shelly, Ann
2014-05-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HADGEM3 (Hadley Centre Global Environment Model, version 3). This model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modeling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To show the impact of coupled DA, one-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day forecast runs, started twice a day, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA data. These all show the coupled DA system functioning well. Evidence of imbalances and initialisation shocks has also been looked for.
CMIP5 Historical Simulations (1850-2012) with GISS ModelE2
NASA Technical Reports Server (NTRS)
Miller, Ronald Lindsay; Schmidt, Gavin A.; Nazarenko, Larissa S.; Tausnev, Nick; Bauer, Susanne E.; DelGenio, Anthony D.; Kelley, Max; Lo, Ken K.; Ruedy, Reto; Shindell, Drew T.;
2014-01-01
Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations.
NASA Astrophysics Data System (ADS)
Sahoo, S. K.; Jin, H.
2017-12-01
The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.
Early detection of ocean acidification effects on marine calcification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyina, T.; Zeebe, R. E.; E. Maier-Reimer
Ocean acidification is likely to impact calcification rates in many pelagic organisms, which may in turn cause significant changes in marine ecosystem structure. We examine effects of changes in marine CaCO3 production on total alkalinity (TA) in the ocean using the global biogeochemical ocean model HAMOCC. We test a variety of future calcification scenarios because experimental studies with different organisms have revealed a wide range of calcification sensitivities to CaCO3 saturation state. The model integrations start at a preindustrial steady state in the year 1800 and run until the year 2300 forced with anthropogenic CO2 emissions. Calculated trends in TAmore » are evaluated taking into account the natural variability in ocean carbonate chemistry, as derived from repeat hydrographic transects. We conclude that the data currently available does not allow discerning significant trends in TA due to changes in pelagic calcification caused by ocean acidification. Given different calcification scenarios, our model calculations indicate that the TA increase over time will start being detectable by the year 2040, increasing by 5–30 umol/kg compared to the present-day values. In a scenario of extreme reductions in calcification, large TA changes relative to preindustrial conditions would have occurred at present, which we consider very unlikely. However, the time interval of reliable TA observations is too short to disregard this scenario. The largest increase in surface ocean TA is predicted for the tropical and subtropical regions. In order to monitor and quantify possible early signs of acidification effects, we suggest to specifically target those regions during future ocean chemistry surveys.« less
NASA Astrophysics Data System (ADS)
Garry, Freya; McDonagh, Elaine; Blaker, Adam; Roberts, Chris; Desbruyères, Damien; King, Brian
2017-04-01
Estimates of heat content change in the deep oceans (below 2000 m) over the last thirty years are obtained from temperature measurements made by hydrographic survey ships. Cruises occupy the same tracks across an ocean basin approximately every 5+ years. Measurements may not be sufficiently frequent in time or space to allow accurate evaluation of total ocean heat content (OHC) and its rate of change. It is widely thought that additional deep ocean sampling will also aid understanding of the mechanisms for OHC change on annual to decadal timescales, including how OHC varies regionally under natural and anthropogenically forced climate change. Here a 0.25˚ ocean model is used to investigate the magnitude of uncertainties and biases that exist in estimates of deep ocean temperature change from hydrographic sections due to their infrequent timing and sparse spatial distribution during 1990 - 2010. Biases in the observational data may be due to lack of spatial coverage (not enough sections covering the basin), lack of data between occupations (typically 5-10 years apart) and due to occupations not closely spanning the time period of interest. Between 1990 - 2010, the modelled biases globally are comparatively small in the abyssal ocean below 3500 m although regionally certain biases in heat flux into the 4000 - 6000 m layer can be up to 0.05 Wm-2. Biases in the heat flux into the deep 2000 - 4000 m layer due to either temporal or spatial sampling uncertainties are typically much larger and can be over 0.1 Wm-2 across an ocean. Overall, 82% of the warming trend below 2000 m is captured by observational-style sampling in the model. However, at 2500 m (too deep for additional temperature information to be inferred from upper ocean Argo) less than two thirds of the magnitude of the global warming trend is obtained, and regionally large biases exist in the Atlantic, Southern and Indian Oceans, highlighting the need for widespread improved deep ocean temperature sampling. In addition to bias due to infrequent sampling, moving the timings of occupations by a few months generates relatively large uncertainty due to intra-annual variability in deep ocean model temperature, further strengthening the case for high temporal frequency observations in the deep ocean (as could be achieved using deep ocean autonomous float technologies). Biases due to different uncertainties can have opposing signs and differ in relative importance both regionally and with depth revealing the importance of reducing all uncertainties (both spatial and temporal) simultaneously in future deep ocean observing design.
Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.
2015-01-01
Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.
Evaluation of the CFSv2 CMIP5 decadal predictions
NASA Astrophysics Data System (ADS)
Bombardi, Rodrigo J.; Zhu, Jieshun; Marx, Lawrence; Huang, Bohua; Chen, Hua; Lu, Jian; Krishnamurthy, Lakshmi; Krishnamurthy, V.; Colfescu, Ioana; Kinter, James L.; Kumar, Arun; Hu, Zeng-Zhen; Moorthi, Shrinivas; Tripp, Patrick; Wu, Xingren; Schneider, Edwin K.
2015-01-01
Retrospective decadal forecasts were undertaken using the Climate Forecast System version 2 (CFSv2) as part of Coupled Model Intercomparison Project 5. Decadal forecasts were performed separately by the National Center for Environmental Prediction (NCEP) and by the Center for Ocean-Land-Atmosphere Studies (COLA), with the centers using two different analyses for the ocean initial conditions the NCEP Climate Forecast System Reanalysis (CFSR) and the NEMOVAR-COMBINE analysis. COLA also examined the sensitivity to the inclusion of forcing by specified volcanic aerosols. Biases in the CFSv2 for both sets of initial conditions include cold midlatitude sea surface temperatures, and rapid melting of sea ice associated with warm polar oceans. Forecasts from the NEMOVAR-COMBINE analysis showed strong weakening of the Atlantic Meridional Overturning Circulation (AMOC), eventually approaching the weaker AMOC associated with CFSR. The decadal forecasts showed high predictive skill over the Indian, the western Pacific, and the Atlantic Oceans and low skill over the central and eastern Pacific. The volcanic forcing shows only small regional differences in predictability of surface temperature at 2m (T2m) in comparison to forecasts without volcanic forcing, especially over the Indian Ocean. An ocean heat content (OHC) budget analysis showed that the OHC has substantial memory, indicating potential for the decadal predictability of T2m; however, the model has a systematic drift in global mean OHC. The results suggest that the reduction of model biases may be the most productive path towards improving the model's decadal forecasts.
NASA Astrophysics Data System (ADS)
Sandvig Mariegaard, Jesper; Huiban, Méven Robin; Tornfeldt Sørensen, Jacob; Andersson, Henrik
2017-04-01
Determining the optimal domain size and associated position of open boundaries in local high-resolution downscaling ocean models is often difficult. As an important input data set for downscaling ocean modelling, the European Copernicus Marine Environment Monitoring Service (CMEMS) provides baroclinic initial and boundary conditions for local ocean models. Tidal dynamics is often neglected in CMEMS services at large scale but tides are generally crucial for coastal ocean dynamics. To address this need, tides can be superposed via Flather (1976) boundary conditions and the combined flow downscaled using unstructured mesh. The surge component is also only partially represented in selected CMEMS products and must be modelled inside the domain and modelled independently and superposed if the domain becomes too small to model the effect in the downscaling model. The tide and surge components can generally be improved by assimilating water level from tide gauge and altimetry data. An intrinsic part of the problem is to find the limitations of local scale data assimilation and the requirement for consistency between the larger scale ocean models and the local scale assimilation methodologies. This contribution investigates the impact of domain size and associated positions of open boundaries with and without data assimilation of water level. We have used the baroclinic ocean model, MIKE 3 FM, and its newly re-factored built-in data assimilation package. We consider boundary conditions of salinity, temperature, water level and depth varying currents from the Global CMEMS 1/4 degree resolution model from 2011, where in situ ADCP velocity data is available for validation. We apply data assimilation of in-situ tide gauge water levels and along track altimetry surface elevation data from selected satellites. The MIKE 3 FM data assimilation model which use the Ensemble Kalman filter have recently been parallelized with MPI allowing for much larger applications running on HPC. The success of the downscaling is to a large degree determined by the ability to realistically describe and dynamically model the errors on the open boundaries. Three different sizes of downscaling model domains in the Northern North Sea have been examined and two different strategies for modelling the uncertainties on the open Flather boundaries are investigated. The combined downscaling and local data assimilation skill is assessed and the impact on recommended domain size is compared to pure downscaling.
The Buoyancy Budget With a Nonlinear Equation of State
NASA Astrophysics Data System (ADS)
Hieronymus, M. H.; Nycander, J.
2012-12-01
There has been a number of studies focusing on different aspects of having a nonlinear equation of state for seawater. Amongst other things it has been shown that the nonlinear equation of state has implications for the oceanic energy budget and that nonlinear processes can be a significant source of dense water production. This presentation will focus on the oceanic buoyancy budget. The nonlinear equation of state of seawater can introduce a sink or source of buoyancy when water parcels of unequal salinities and temperatures are mixed. A common example is the process known as cabbeling, which is responsible for forming a water mass that is denser than the original constituents in a mixture of two water masses with equal densities but different salinities and temperatures. This presentation will contain quantitative estimates of these nonlinear effects on the buoyancy budget of the global ocean. Because of these nonlinear effects there is a net sink of buoyancy in the oceans interior and the size of this sink can be determined from the buoyancy fluxes at the ocean boundaries. These boundary buoyancy fluxes are calculated using two surface heat flux climatologies one based on in situ measurements, the other on a reanalysis and in both cases using a nonlinear equation of state. The presentation also treats the buoyancy budget in the State of the art ocean model Nucleus for European Modelling of the Ocean (NEMO) and the results from NEMO are seen to be in good agreement with the buoyancy budgets based on the heat flux climatologies. Using the ocean model is a good complement to the surface flux climatologies, because in NEMO the buoyancy fluxes can be evaluated at all vertical model levels. This means that the vertical distribution of the buoyancy sink can be looked into. The results from NEMO shows that in large parts of the ocean the nonlinear buoyancy sink is the largest contribution to the buoyancy budget.
NASA Technical Reports Server (NTRS)
Song, Y. T.
2002-01-01
It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Jacob, D. J.; Dutkiewicz, S.; Amos, H. M.; Long, M. S.; Sunderland, E. M.
2014-12-01
Rivers are estimated to deliver 27 Mmol a-1 of mercury (Hg) to ocean margins, which is comparable to the global atmospheric deposition flux of Hg to the ocean. Previous studies presumed that most of this riverine Hg is sequestered by settling to the coastal regions. However, there has been little investigation of the mechanism and efficiency with which this sequestration takes place, and the implications for riverine influence in different ocean regions. Here we develop a global 3-D chemical transport model for Hg in the ocean (MITgcm-Hg) with ecology (DARWIN model). We track offshore export of the discharged Hg from heterogeneous river systems over different ocean regions, and how it is influenced by the interaction of Hg in a variety of geochemical forms with carbon and suspended particles. We constrain our model assumptions with available offshore observations that bear strong riverine signals. Modeling results suggest that some of the riverine Hg is highly refractory, sorbs strongly to particles and does not follow equilibrium partitioning with the dissolved phase. Simulated global Hg evasion from riverine sources is 50 times larger without this refractory particulate pool, which results in a total evasion flux two times larger than our current best estimate. Based on a typology system of global rivers, we calculate that 10% to 60% of the particulate Hg from different rivers settles in ocean margin sediments because of subgrid sedimentation processes. The remaining 7.5 Mmol a-1 (28% of total river discharge) is available for offshore transport, where it undergoes further sedimentation to the shelf (5.3 Mmol a-1) as well as evasion to the atmosphere (0.44 Mmol a-1). Only 1.7 Mmol a-1 (6.4% of the global riverine Hg) reaches the open ocean, although that fraction varies from 2.6% in East Asia because of the blockage of Korean Peninsula to 25% in east North America facilitated by the Gulf Stream. We find large riverine influences over coastal oceans off East Asia, and the contributions elsewhere are much smaller due to less riverine Hg discharge. We find the transport of riverine Hg is most influenced by its release rates from organic carbon pools and particle sinking velocities. Varying these parameters changes the contribution of riverine sources to the Hg concentrations over the open ocean for a factor of 2.
NASA Astrophysics Data System (ADS)
Bayr, Tobias; Wengel, Christian; Latif, Mojib
2016-04-01
Dommenget (2010) found that El Niño-like variability, termed Slab Ocean El Niño, can exist in the absence of ocean dynamics and is driven by the interaction of the atmospheric surface heat fluxes and the heat content of the upper ocean. Further, Dommenget et al. (2014) report the Slab Ocean El Niño is not an artefact of the ECHAM5-AGCM coupled to a slab ocean model. In fact, atmospheric feedbacks crucial to the Slab Ocean El Niño can also be found in many state-of-the-art coupled climate models participating in CMIP3 and CMIP5, so that ENSO in many CMIP models can be understood as a mixed recharge oscillator/Slab Ocean El Niño mode. Here we show further analysis of the Slab Ocean El Niño atmospheric feedbacks in coupled models. The BCCR_CM2.0 climate model from the CMIP3 data base, which has a very large equatorial cold bias, has an El Niño that is mostly driven by Slab Ocean El Niño atmospheric feedbacks and is used as an example to describe Slab Ocean El Niño atmospheric feedbacks in a coupled model. In the BCCR_CM2.0, the ENSO-related variability in the 20°C isotherm (Z20), a measure of upper ocean heat content, is decoupled from the first mode of the seasonal cycle-related variability, while the two are coupled in observations, with ENSO being phase-locked to the seasonal cycle. Further analysis of the seasonal cycle in Z20 using SODA Ocean Reanalysis reveals two different regimes in the seasonal cycle along the equator: The first regime, to which ENSO is phase-locked, extends over the west and central equatorial Pacific and is driven by subsurface ocean dynamics. The second regime, extending in observations only over the cold tongue region, is driven by the seasonal cycle at the sea surface and is shifted by roughly six months relative to the first regime. In a series of experiments with the Kiel Climate Model (KCM) with different mean states due to tuning in the convection parameters, we can show that the strength of the equatorial cold bias and the coupling strength between the seasonal cycle of Z20 and ENSO are anti-correlated, i.e. a strong equatorial cold bias suppresses recharge oscillator dynamics and enhances Slab Ocean El Niño atmospheric feedbacks, supporting the results from the BCCR_CM2.0. This can be explained as with a stronger cold bias the second regime of the seasonal cycle in Z20, which extends in observations only over the small cold tongue region, expands westward and becomes more important, so that it decouples ENSO from the seasonal cycle in Z20. This has implications for some major characteristics of the ENSO like the propagation of SST anomalies, the phase locking of SST to the seasonal cycle, or the nonlinearity of ENSO. Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888. - - , S. Haase, T. Bayr, and C. Frauen, 2014: Analysis of the Slab Ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Clim. Dyn., doi:10.1007/s00382-014-2057-0.
Irreducible Uncertainty in Terrestrial Carbon Projections
NASA Astrophysics Data System (ADS)
Lovenduski, N. S.; Bonan, G. B.
2016-12-01
We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.
Oceanic Loading and Local Distortions at the Baksan, Russia, and Gran Sasso, Italy, Strain Stations
NASA Astrophysics Data System (ADS)
Milyukov, V. K.; Amoruso, A.; Crescentini, L.; Mironov, A. P.; Myasnikov, A. V.; Lagutkina, A. V.
2018-03-01
Reliable use of strain data in geophysical studies requires their preliminary correction for ocean loading and various local distortions. These effects, in turn, can be estimated from the tidal records which are contributed by solid and oceanic loading. In this work, we estimate the oceanic tidal loading at two European strain stations (Baksan, Russia, and Gran Sasso, Italy) by analyzing the results obtained with the different Earth and ocean models. The influence of local distortions on the strain measurements at the two stations is estimated.
Role of the ocean's AMOC in setting the uptake efficiency of transient tracers
NASA Astrophysics Data System (ADS)
Romanou, A.; Marshall, J.; Kelley, M.; Scott, J. R.
2017-12-01
The central role played by the ocean's Atlantic Meridional Overturning Circulation (AMOC) in the uptake and sequestration of transient tracers is studied in a series of experiments with the Goddard Institute for Space Studies and Massachusetts Institute of Technology ocean circulation models. Forced by observed atmospheric time series of CFC-11, both models exhibit realistic distributions in the ocean, with similar surface biases but different response over time. To better understand what controls uptake, we ran idealized forcing experiments in which the AMOC strength varied over a wide range, bracketing the observations. We found that differences in the strength and vertical scale of the AMOC largely accounted for the different rates of CFC-11 uptake and vertical distribution thereof. A two-box model enables us to quantify and relate uptake efficiency of passive tracers to AMOC strength and how uptake efficiency decreases in time. We also discuss the relationship between passive tracer and heat uptake efficiency, of which the latter controls the transient climate response to anthropogenic forcing in the North Atlantic. We find that heat uptake efficiency is substantially less (by about a factor of 5) than that for a passive tracer.
Customised search and comparison of in situ, satellite and model data for ocean modellers
NASA Astrophysics Data System (ADS)
Hamre, Torill; Vines, Aleksander; Lygre, Kjetil
2014-05-01
For the ocean modelling community, the amount of available data from historical and upcoming in situ sensor networks and satellite missions, provides an rich opportunity to validate and improve their simulation models. However, the problem of making the different data interoperable and intercomparable remains, due to, among others, differences in terminology and format used by different data providers and the different granularity provided by e.g. in situ data and ocean models. The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. In the project, one specific objective has been to improve the technology for accessing historical plankton and associated environmental data sets, along with earth observation data and simulation outputs. To this end, we have developed a web portal enabling ocean modellers to easily search for in situ or satellite data overlapping in space and time, and compare the retrieved data with their model results. The in situ data are retrieved from a geo-spatial repository containing both historical and new physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic. The satellite-derived quantities of similar parameters from the same areas are retrieved from another geo-spatial repository established in the project. Both repositories are accessed through standard interfaces, using the Open Geospatial Consortium (OGC) Web Map Service (WMS) and Web Feature Service (WFS), and OPeNDAP protocols, respectively. While the developed data repositories use standard terminology to describe the parameters, especially the measured in situ biological parameters are too fine grained to be immediately useful for modelling purposes. Therefore, the plankton parameters were grouped according to category, size and if available by element. This grouping was reflected in the web portal's graphical user interface, where the groups and subgroups were organized in a tree structure, enabling the modeller to quickly get an overview of available data, going into more detail (subgroups) if needed or staying at a higher level of abstraction (merging the parameters below) if this provided a better base for comparison with the model parameters. Once a suitable level of detail, as determined by the modeller, was decided, the system would retrieve available in situ parameters. The modellers could then select among the pre-defined models or upload his own model forecast file (in NetCDF/CF format), for comparison with the retrieved in situ data. The comparison can be shown in different kinds of plots (e.g. scatter plots), through simple statistical measures or near-coincident values of in situ of model points can be exported for further analysis in the modeller's own tools. During data search and presentation, the modeller can determine both query criteria and what associated metadata to include in the display and export of the retrieved data. Satellite-derived parameters can be queried and compared with model results in the same manner. With the developed prototype system, we have demonstrated that a customised tool for searching, presenting, comparing and exporting ocean data from multiple platforms (in situ, satellite, model), makes it easy to compare model results with independent observations. With further enhancement of functionality and inclusion of more data, we believe the resulting system can greatly benefit the wider community of ocean modellers looking for data and tools to validate their models.
New insights into ocean tide loading corrections on tidal gravity data in Canary Islands
NASA Astrophysics Data System (ADS)
Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.
2009-04-01
The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the case of M2 and O1 waves at three sites. However, the scatter between oceanic models seen at final residual vectors does not indicate clearly if tidal observations are close to elastic or inelastic body tide model. Finally, after computing misfits of gravity tide observations and ocean tide loading calculations the level of agreement between the five global oceanic models is below 0.2 Gal (1 Gal=10-8ms-2), except for the solar harmonic K1, which reaches a large value that reflects the thermal instability at three sites because the period of K1 is very close to that of S1. None of the five global models seems to give results that are clearly better than the other models.
NASA Astrophysics Data System (ADS)
Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.
2008-12-01
The sensitivity of sea-ice export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and sea-ice state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/sea-ice adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of sea-ice export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic sea-ice model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The sea-ice model's performance in the presence of narrow straits is assessed with different sea-ice lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/sea-ice state estimation at basin to global scales as part of the ECCO efforts.
NASA Astrophysics Data System (ADS)
Hartin, C.
2016-02-01
Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.
A New Approach for Coupled GCM Sensitivity Studies
NASA Astrophysics Data System (ADS)
Kirtman, B. P.; Duane, G. S.
2011-12-01
A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1992-01-01
The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.
Using a Very Large Ensemble to Examine the Role of the Ocean in Recent Warming Trends.
NASA Astrophysics Data System (ADS)
Sparrow, S. N.; Millar, R.; Otto, A.; Yamazaki, K.; Allen, M. R.
2014-12-01
Results from a very large (~10,000 member) perturbed physics and perturbed initial condition ensemble are presented for the period 1980 to present. A set of model versions that can shadow recent surface and upper ocean observations are identified and the range of uncertainty in the Atlantic Meridional Overturning Circulation (AMOC) assessed. This experiment uses the Met Office Hadley Centre Coupled Model version 3 (HadCM3), a coupled model with fully dynamic atmosphere and ocean components as part of the climateprediction.net distributive computing project. Parameters are selected so that the model has good top of atmosphere radiative balance and simulations are run without flux adjustments that "nudge" the climate towards a realistic state, but have an adverse effect on important ocean processes. This ensemble provides scientific insights on the possible role of the AMOC, among other factors, in climate trends, or lack thereof, over the past 20 years. This ensemble is also used to explore how the occurrence of hiatus events of different durations varies for models with different transient climate response (TCR). We show that models with a higher TCR are less likely to produce a 15-year warming hiatus in global surface temperature than those with a lower TCR.
Quantifying the role of ocean initial conditions in decadal prediction
NASA Astrophysics Data System (ADS)
Matei, D.; Pohlmann, H.; Müller, W.; Haak, H.; Jungclaus, J.; Marotzke, J.
2009-04-01
The forecast skill of decadal climate predictions is investigated using two different initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. The results show promising skill up to decadal time scales particularly over the North Atlantic (see also Pohlmann et al. 2009). However, mismatches between the ocean climates of GECCO and the MPI-OM model may lead to inconsistencies in the representation of water masses. Therefore, we pursue an alternative approach to the representation of the observed North Atlantic climate for the period 1948-2007. Using the same MPI-OM ocean model as in the coupled system, we perform an ensemble of four NCEP integrations. The ensemble mean temperature and salinity anomalies are then nudged into the coupled model, followed by hindcast/forecast experiments. The model gives dynamically consistent three-dimensional temperature and salinity fields, thereby avoiding the problems of model drift that were encountered when the assimilation experiment was only driven by reconstructed SSTs (Keenlyside et al. 2008, Pohlmann et al. 2009). Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes, such as North Atlantic and Tropical Pacific climate, MOC variability, Subpolar Gyre variability.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
NASA Astrophysics Data System (ADS)
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.
Modeling the Gulf Stream System: How Far from Reality?
NASA Technical Reports Server (NTRS)
Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.
1996-01-01
Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.
Atmosphere-ocean feedbacks in a coastal upwelling system
NASA Astrophysics Data System (ADS)
Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.
2018-03-01
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.
Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.
Salama, Mhd Suhyb; Su, Zhongbo
2010-01-01
A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2011-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2013-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis
NASA Astrophysics Data System (ADS)
Liu, M.; Filina, I.
2017-12-01
Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos
2016-04-01
The balances and fluxes of greenhouse gases and aerosols between atmosphere and ocean are fundamental for Earth's heat budget. Hence, the scientific community needs to know and simulate them with accuracy in order to monitor climate change from Earth-Observation satellites and to produce reliable estimates of climate change using Earth-System Models (ESM). So far, ESM have represented earth's surface with coarser resolutions so that each cell of the marine domain is dominated by the open ocean. In such case it is enough to use simple algorithms considering the wind speed 10m above sea-surface (u10) as sole driver of the gas transfer velocity. The formulation by Wanninkhof (1992) is broadly accepted as the best. However, the ESM community is becoming increasingly aware of the need to model with finer resolutions. Then, it is no longer enough to only consider u10 when modelling gas transfer velocities across the coastal oceans' surfaces. More comprehensive formulations are required that adjust better to local conditions by also accounting for the effects of sea-surface agitation, wave breaking, atmospheric stability of the Surface Boundary Layer, current drag with the bottom, surfactants and rain. Accurate algorithms are also fundamental to monitor atmosphere and ocean greenhouse gas concentrations using satellite data and reverse modelling. Past satellite missions ERS, Envisat, Jason-2, Aqua, Terra and Metop, have already been remotely sensing the ocean's surface at much finer resolutions than ESM using instruments like MERIS, MODIS, AMR, AATSR, MIPAS, Poseidon-3, SCIAMACHY, SeaWiFS, and IASI. The planned new satellite missions Sentinel-3, OCO-2 and GOSAT will further increase the resolutions. We developed a framework to congregate competing formulations for the estimation of the solubility and transfer velocity of virtually any gas on the biosphere taking into consideration the atmosphere and ocean fundamental variables and their derived geophysical processes mentioned above. First, we tested with measured data from the Baltic. Then, we adapted it to a coupler for atmosphere (WRF) and ocean (WW3-NEMO) model components and tested with simulated data relative to the Mediterranean and coastal North Atlantic. Computational speed was greatly improved by calculus vectorization and parallelization. The classical solubility formulation was compared to a recent alternative relying in a different chemistry background. Differences between solubility formulations resulted in a bias of 3.86×106 ton of CO2, 880.7 ton of CH4 and 401 ton of N2O dissolved in the first meter below the sea-surface of the modelled region, corresponding to 5.9% of the N2O yearly discharged by European estuaries. These differences concentrated in sensitive areas for Earth-System dynamics: the cooler polar waters and warmer less-saline coastal waters. The classical transfer velocity formulation using solely u10 was compared to alternatives using the friction velocity, atmospheric stability, sea-surface agitation and wave breaking. Differences between estimated transfer velocities concentrated at the coastal ocean and resulted in 55.82% of the gas volume transferred over the sea-surface of the modelled region during the 66h simulated period.
NASA Astrophysics Data System (ADS)
Golbeck, Inga; Li, Xin; Janssen, Frank
2014-05-01
Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In addition, some preliminary results based on the statistical analysis of the uncertainty measures provide first estimates of the regional and temporal performance of the ocean models for each parameter. ²Northwest European Shelf Operational Oceanography System ³High-resolution Operational Model of the Baltic / Baltic Operational Oceanographic System
On the role of mantle depletion and small-scale convection in post rift basin evolution (Invited)
NASA Astrophysics Data System (ADS)
Petersen, K.; Nielsen, S. B.
2013-12-01
Subsidence and heat flow evolution of the oceanic lithosphere appears to be consistent with the conductive cooling of a ~100 km plate overlying asthenospheric mantle of constant entropy. The physical mechanism behind plate-like subsidence has been suggested to be the result of small-scale convective instabilities which transport heat energy to the base of the lithosphere and cause an eventual departure from half space-like cooling by inhibiting subsidence of old ocean floor and causing an asymptotic surface heat flow of ~50 mW/m^2. Here, we conduct a number of numerical thermo-mechanical experiments of oceanic lithosphere cooling for different models of temperature- and pressure-dependent viscosity. We show that uniform (P, T-dependent) mantle viscosity cannot both explain half space-like subsidence for young (<70 Mr) lithosphere as well as a relatively high (>50 mW/m^2) surface heat flow which is observed above old (>100 Myr) lithosphere. The latter requires vigorous sub lithospheric convection which would lead to early (~1Myr) onset of convective instability at shallow depth (<60 km) and therefore insufficient initial subsidence. To resolve this paradox, we employ models which account for the density decrease and viscosity increase due to depletion during mid-ocean ridge melting. We demonstrate that the presence of a mantle restite layer within the lithosphere hinders convection at shallow depth and therefore promotes plate-like cooling. A systematic parameter search among 280 different numerical experiments indicates that models with 60-80 km depletion thickness minimize misfit with subsidence and heat flow data. This is consistent with existing petrological models of mid-ocean ridge melting. Our models further indicate that the post-rift subsidence pattern where little or no melting occurred during extension (e.g. non-volcanic margins and continental rifts) may differ from typical oceanic plate-like subsidence by occurring at a nearly constant rate rather than at an exponentially decaying rate. Model comparison with subsidence histories inferred from backstripping analysis implies that this is indeed often the case. Accordingly, existing thermal models of continental rifting which assume plate-like cooling (and is often calibrated from oceanic data) are likely to yield inaccurate predictions in terms of subsidence and heat flow evolution.
Tsunami Forecast Progress Five Years After Indonesian Disaster
NASA Astrophysics Data System (ADS)
Titov, Vasily V.; Bernard, Eddie N.; Weinstein, Stuart A.; Kanoglu, Utku; Synolakis, Costas E.
2010-05-01
Almost five years after the 26 December 2004 Indian Ocean tragedy, tsunami warnings are finally benefiting from decades of research toward effective model-based forecasts. Since the 2004 tsunami, two seminal advances have been (i) deep-ocean tsunami measurements with tsunameters and (ii) their use in accurately forecasting tsunamis after the tsunami has been generated. Using direct measurements of deep-ocean tsunami heights, assimilated into numerical models for specific locations, greatly improves the real-time forecast accuracy over earthquake-derived magnitude estimates of tsunami impact. Since 2003, this method has been used to forecast tsunamis at specific harbors for different events in the Pacific and Indian Oceans. Recent tsunamis illustrated how this technology is being adopted in global tsunami warning operations. The U.S. forecasting system was used by both research and operations to evaluate the tsunami hazard. Tests demonstrated the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models. Several examples also showed potential of distributed forecast tools. With IOC and USAID funding, NOAA researchers at PMEL developed the Community Model Interface for Tsunami (ComMIT) tool and distributed it through extensive capacity-building sessions in the Indian Ocean. Over hundred scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. These same inundation models can also be used for real-time tsunami forecasts as was demonstrated during several events. Contact Information Vasily V. Titov, Seattle, Washington, USA, 98115
NASA Technical Reports Server (NTRS)
Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw;
2012-01-01
Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
NASA Astrophysics Data System (ADS)
Halliwell, George R.
Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.
Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.
1999-01-01
A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
NASA Astrophysics Data System (ADS)
Krishna, Shubham; Schartau, Markus
2017-04-01
The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi was investigated in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our model approach, cellular calcite formation is sensitive to variations in CO2 at the organism level. We investigate the temporal changes and variability in observations, with a focus on resolving observed differences in total alkalinity and particulate inorganic carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium, and low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification. Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.
Shipborne LF-VLF oceanic lightning observations and modeling
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.
2015-10-01
Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.
Satellite-based Calibration of Heat Flux at the Ocean Surface
NASA Astrophysics Data System (ADS)
Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.
2016-02-01
Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Precise comparisons of bottom-pressure and altimetric ocean tides
NASA Astrophysics Data System (ADS)
Ray, R. D.
2013-09-01
A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.
Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides
NASA Technical Reports Server (NTRS)
Ray, Richard D.
2013-01-01
A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.
Optimization of Ocean Color Algorithms: Application to Satellite Data Merging
NASA Technical Reports Server (NTRS)
Ritorena, Stephane; Siegel, David A.; Morel, Andre
2004-01-01
The objective of the program is to develop and validate a procedure for ocean color data merging, which is one of the major goals of the SIMBIOS project. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances L((sub wN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) It works with single or multiple data sources regardless of their specific bands; 2) It exploits band redundancies and band differences; 3) It accounts for uncertainties in the L((sub wN)(lambda)) data; 4) It provides uncertainty estimates for the retrieved variables.
Intensified Indian Ocean climate variability during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.
2017-12-01
Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.
Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation
NASA Technical Reports Server (NTRS)
Ponte, Rui M.; Frey, H. (Technical Monitor)
2000-01-01
A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.
How Ocean Color Influences the Interplay Between Annual and Interannual Tropical Pacific Variability
NASA Astrophysics Data System (ADS)
Hammann, A. C.; Gnanadesikan, A.
2010-12-01
While the basic mechanisms responsible for ENSO have long been known, many details still evade our understanding. Since the behavior of the real climate system appears to be highly sensitive to such details, however, our ability to model, let alone predict it with any confidence has so far been rather restricted. Not only can small perturbations in many state variables lead to strongly amplified responses, but also do spatial and temporal scales of variability rarely occur in isolation from each other. Both points are born out in the study by Anderson et al. (2009), who removed surface chlorophyll in different regions of the tropical (but mostly off-equatorial) Pacific in a coupled ocean-atmosphere-land-ice model. Different removal patterns lead to large differences in the amplitudes of both ENSO and the equatorial annual cycle. Anderson et al.’s analysis focuses on ENSO and reveals that the transmission of off-equatorial perturbations to the equator happens mainly through a changed atmospheric response to SST anomalies. Here, we analyze the same data with respect to the annual cycle and how it interacts with ENSO. Guilyardi (2006) reports that observations and models alike show a zero-sum-type behavior of annual and ENSO-scale variability; increased spectral power in the annual band means decreased power in the ENSO band and vice versa. This is not the case for the different patterns of chlorophyll removal in our model, and hence it appears that this removal changes a fundamental part of its mean state. The dynamics of the annual cycle are likely influenced by oceanic meridional temperature advection, which provides another possible route for off-to-equatorial signal propagation. A common aspect of the tropical annual cycle in most coupled climate models is the presence of a double ITCZ instead of a single north-shifted one. Even though this appears to be unrelated to (albeit influenced by) the changes in ocean color, our model exhibits a much improved, dominantly northern ITCZ when compared with the GFDL CM2.1 model; all other components being the same, we use an isopycnal ocean model, whereas CM2.1 uses horizontal coordinates.
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
NASA Astrophysics Data System (ADS)
Gonzalez, M. F.; Ilyina, T.; Sonntag, S.
2016-02-01
In order to counterbalance the consequences of climate change, different climate engineering (CE) technologies have been suggested. Nonetheless, knowledge about their mitigation potential and side-effects remains sparse. Ocean alkalinization (OA) is an ocean-based carbon dioxide removal method, that aims at enhancing the natural process of weathering by which atmospheric CO2 is absorbed and stored in the ocean via chemical sequestration. Large-scale afforestation can also boost the uptake of CO2 by terrestrial biological systems and it is commonly considered as CE method. Stratospheric sulfur injection is a solar radiation management technique that has been proposed in order to enhance the Earth's albedo, mimicking the release of sulfur particles into the atmosphere during volcanic eruptions and the subsequent decrease in surface atmospheric temperatures. We explore the mitigation potential and side-effects of these CE technologies using the Max Planck Institute Earth System Model. Our scenarios are designed in order to test under what conditions it is possible to achieve a climate state that resembles the one of the representative concentration pathway (RCP) 4.5 under RCP8.5 greenhouse gas emissions. Direct and indirect effects of the OA method on the oceanic carbon cycle, differ strongly from those associated with afforestation and stratospheric sulfur injection. This is because they depend upon joint responses and synergies between different elements of the Earth system; thus, effects on the oceanic carbon cycle are not intuitively understood. Changes in the strength of the marine carbon sink, seawater pH and saturation state of carbonate minerals will be discussed. Additionally, collateral changes in marine biota and ocean biogeochemistry will be presented.
NASA Astrophysics Data System (ADS)
Muglia, J.; Skinner, L.; Schmittner, A.
2017-12-01
Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.
NASA Astrophysics Data System (ADS)
Solano, M.
2016-02-01
The present study discusses the accuracy of a high-resolution ocean forecasting system in predicting floating drifter trajectories and the uncertainty of modeled particle dispersion in coastal areas. Trajectories were calculated using an offline particle-tracking algorithm coupled to the operational model developed for the region of Puerto Rico by CariCOOS. Both, a simple advection algorithm as well as the Larval TRANSport (LTRANS) model, a more sophisticated offline particle-tracking application, were coupled to the ocean model. Numerical results are compared with 12 floating drifters deployed in the near-shore of Puerto Rico during February and March 2015, and tracked for several days using Global Positioning Systems mounted on the drifters. In addition the trajectories have also been calculated with the AmSeas Navy Coastal Ocean Model (NCOM). The operational model is based on the Regional Ocean Modeling System (ROMS) with a uniform horizontal resolution of 1/100 degrees (1.1km). Initial, surface and open boundary conditions are taken from NCOM, except for wind stress, which is computed using winds from the National Digital Forecasting Database. Probabilistic maps were created to quantify the uncertainty of particle trajectories at different locations. Results show that the forecasted trajectories are location dependent, with tidally active regions having the largest error. The predicted trajectories by both the ROMS and NCOM models show good agreement on average, however both perform differently at particular locations. The effect of wind stress on the drifter trajectories is investigated to account for wind slippage. Furthermore, a real case scenario is presented where simulated trajectories show good agreement when compared to the actual drifter trajectories.
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
NASA Astrophysics Data System (ADS)
Kröger, Jürgen; Pohlmann, Holger; Sienz, Frank; Marotzke, Jochem; Baehr, Johanna; Köhl, Armin; Modali, Kameswarrao; Polkova, Iuliia; Stammer, Detlef; Vamborg, Freja S. E.; Müller, Wolfgang A.
2017-12-01
Our decadal climate prediction system, which is based on the Max-Planck-Institute Earth System Model, is initialized from a coupled assimilation run that utilizes nudging to selected state parameters from reanalyses. We apply full-field nudging in the atmosphere and either full-field or anomaly nudging in the ocean. Full fields from two different ocean reanalyses are considered. This comparison of initialization strategies focuses on the North Atlantic Subpolar Gyre (SPG) region, where the transition from anomaly to full-field nudging reveals large differences in prediction skill for sea surface temperature and ocean heat content (OHC). We show that nudging of temperature and salinity in the ocean modifies OHC and also induces changes in mass and heat transports associated with the ocean flow. In the SPG region, the assimilated OHC signal resembles well OHC from observations, regardless of using full fields or anomalies. The resulting ocean transport, on the other hand, reveals considerable differences between full-field and anomaly nudging. In all assimilation runs, ocean heat transport together with net heat exchange at the surface does not correspond to OHC tendencies, the SPG heat budget is not closed. Discrepancies in the budget in the cases of full-field nudging exceed those in the case of anomaly nudging by a factor of 2-3. The nudging-induced changes in ocean transport continue to be present in the free running hindcasts for up to 5 years, a clear expression of memory in our coupled system. In hindcast mode, on annual to inter-annual scales, ocean heat transport is the dominant driver of SPG OHC. Thus, we ascribe a significant reduction in OHC prediction skill when using full-field instead of anomaly initialization to an initialization shock resulting from the poor initialization of the ocean flow.
NASA Astrophysics Data System (ADS)
Stock, Charles A.; Dunne, John P.; John, Jasmin G.
2014-01-01
Global-scale planktonic ecosystem models exhibit large differences in simulated net primary production (NPP) and assessment of planktonic food web fluxes beyond primary producers has been limited, diminishing confidence in carbon flux estimates from these models. In this study, a global ocean-ice-ecosystem model was assessed against a suite of observation-based planktonic food web flux estimates, many of which were not considered in previous modeling studies. The simulation successfully captured cross-biome differences and similarities in these fluxes after calibration of a limited number of highly uncertain yet influential parameters. The resulting comprehensive carbon budgets suggested that shortened food webs, elevated growth efficiencies, and tight consumer-resource coupling enable oceanic upwelling systems to support 45% of pelagic mesozooplankton production despite accounting for only 22% of ocean area and 34% of NPP. In seasonally stratified regions (42% of ocean area and 40% of NPP), weakened consumer-resource coupling tempers mesozooplankton production to 41% and enhances export below 100 m to 48% of the global total. In oligotrophic systems (36% of ocean area and 26% of NPP), the dominance of small phytoplankton and low consumer growth efficiencies supported only 14% of mesozooplankton production and 17% of export globally. Bacterial production, in contrast, was maintained in nearly constant proportion to primary production across biomes through the compensating effects of increased partitioning of NPP to the microbial food web in oligotrophic ecosystems and increased bacterial growth efficiencies in more productive areas. Cross-biome differences in mesozooplankton trophic level were muted relative to those invoked by previous work such that significant differences in consumer growth efficiencies and the strength of consumer-resource coupling were needed to explain sharp cross-biome differences in mesozooplankton production. Lastly, simultaneous consideration of multiple flux constraints supports a highly distributed view of respiration across the planktonic food web rather than one dominated by heterotrophic bacteria. The solution herein is unlikely unique in its ability to explain observed cross-biome energy flow patterns and notable misfits remain. Resolution of existing uncertainties in observed biome-scale productivity and increasingly mechanistic physical and biological model components should yield significant refinements to estimates herein.
Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Gornitz, Vivien; Miller, James R.
1999-01-01
Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
A hybrid model of the CO2 geochemical cycle and its application to large impact events
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.
1986-01-01
The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-01-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-06-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
NASA Technical Reports Server (NTRS)
Subrahmanyam, Bulusu; Heffner, David M.; Cromwell, David; Shriver, Jay F.
2009-01-01
Rossby waves are difficult to detect with in situ methods. However, as we show in this paper, they can be clearly identified in multi-parameters in multi-mission satellite observations of sea surface height (SSH), sea surface temperature (SST) and ocean color observations of chlorophyll-a (chl-a), as well as 1/12-deg global HYbrid Coordinate Ocean Model (HYCOM) simulations of SSH, SST and sea surface salinity (SSS) in the Indian Ocean. While the surface structure of Rossby waves can be elucidated from comparisons of the signal in different sea surface parameters, models are needed to gain direct information about how these waves affect the ocean at depth. The first three baroclinic modes of the Rossby waves are inferred from the Fast Fourier Transform (FFT), and two-dimensional Radon Transform (2D RT). At many latitudes the first and second baroclinic mode Rossby wave phase speeds from satellite observations and model parameters are identified.
Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.
2012-01-01
Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with observations. Our analysis focuses initially on probing the inter-model differences in energy fluxes / transports and Walker Circulation response to forcing. We then attempt to identify statistically the El Nino- / La Nina-related ocean heat content variability unique to each model and regress out the associated energy flux, ocean heat transport and Walker response on these shorter time scales for comparison to that of the anthropogenic signals.
NASA Astrophysics Data System (ADS)
Nastula, Jolanta; Winska, Malgorzata; Salstein, David A.
2015-08-01
One can estimate the hydrological signal in polar motion excitation as a residual, namely the difference between observed geodetic excitation functions (Geodetic Angular Momentum, GAM) and the sum of Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM).The aim of this study is to find the optimal model and results for hydrological excitation functions in terms of their agreement with the computed difference between GAM and atmospheric and oceanic signals.The atmospheric and oceanic model-based data that we use in this study are the geophysical excitation functions of AAM, OAM available from the Special Bureaus for the Atmosphere and Oceans of the Geophysical Global Fluids Center (GGFC) of the International Earth Rotation and Reference Systems Service (IERS). For the atmosphere and ocean, these functions are based on the mass and motion fields of the fluids.Global models of land hydrology are used to estimate hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM). These HAM series are the mass of water substance determined from the various types of land-based hydrological reservoirs. In addition the HAM are estimated from spherical harmonic coefficients of the Earth’s gravity field. We use several sets of degree-2, order-1 harmonics of the Earth’s gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE), Satellite Laser Ranging (SLR), and Global Navigation Satellite Systems (GNSS) data.Finally, these several different HAM series are used to determine the best model of hydrological excitation of polar motion. The model is found by looking for the combination of these series that fits the geodetic residuals using the least-square method.In addition, we will access model results from the Coupled Model Intercomparison Project, fifth experiment (CMIP-5) to examine atmospheric excitations from the twentieth century and estimates for the twenty-first century to see the possible signals and trends of these excitation series to help understand the potential range in the derived of hydrological excitation results.
Regional variability of sea level change using a global ocean model.
NASA Astrophysics Data System (ADS)
Lombard, A.; Garric, G.; Cazenave, A.; Penduff, T.; Molines, J.
2007-12-01
We analyse different runs of a global eddy-permitting (1/4 degree) ocean model driven by atmospheric forcing to evaluate regional variability of sea level change over 1993-2001, 1998-2006 and over the long period 1958-2004. No data assimilation is performed in the model, contrarily to previous similar studies (Carton et al., 2005; Wunsch et al., 2007; Koehl and Stammer, 2007). We compare the model-based regional sea level trend patterns with the one deduced from satellite altimetry data. We examine respective contributions of steric and bottom pressure changes to total regional sea level changes. For the steric component, we analyze separately the contributions of temperature and salinity changes as well as upper and lower ocean contributions.
Predicting plankton net community production in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Serret, Pablo; Robinson, Carol; Fernández, Emilio; Teira, Eva; Tilstone, Gavin; Pérez, Valesca
2009-07-01
We present, test and implement two contrasting models to predict euphotic zone net community production (NCP), which are based on 14C primary production (PO 14CP) to NCP relationships over two latitudinal (ca. 30°S-45°N) transects traversing highly productive and oligotrophic provinces of the Atlantic Ocean (NADR, CNRY, BENG, NAST-E, ETRA and SATL, Longhurst et al., 1995 [An estimation of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245-1271]). The two models include similar ranges of PO 14CP and community structure, but differ in the relative influence of allochthonous organic matter in the oligotrophic provinces. Both models were used to predict NCP from PO 14CP measurements obtained during 11 local and three seasonal studies in the Atlantic, Pacific and Indian Oceans, and from satellite-derived estimates of PO 14CP. Comparison of these NCP predictions with concurrent in situ measurements and geochemical estimates of NCP showed that geographic and annual patterns of NCP can only be predicted when the relative trophic importance of local vs. distant processes is similar in both modeled and predicted ecosystems. The system-dependent ability of our models to predict NCP seasonality suggests that trophic-level dynamics are stronger than differences in hydrodynamic regime, taxonomic composition and phytoplankton growth. The regional differences in the predictive power of both models confirm the existence of biogeographic differences in the scale of trophic dynamics, which impede the use of a single generalized equation to estimate global marine plankton NCP. This paper shows the potential of a systematic empirical approach to predict plankton NCP from local and satellite-derived P estimates.
Crystallization and Cooling of a Deep Silicate Magma Ocean
NASA Astrophysics Data System (ADS)
Wolf, A. S.; Bower, D. J.
2015-12-01
Impact and accretion simulations of terrestrial planet formation suggest that giant impacts are both common and expected to produce extensive melting. The moon-forming impact, for example, likely melted the majority of Earth's mantle to produce a global magma ocean that subsequently cooled and crystallized (e.g. Nakajima and Stevenson, 2015). Understanding the cooling process is critical to determining magma ocean lifetimes and recognizing possible remnant signatures of the magma ocean in present-day mantle heterogeneities (i.e. Labrosse et al., 2007). Modeling this evolution is challenging, however, due to the vastly different timescales and lengthscales associated with turbulent convection (magma ocean) and viscous creep (present-day mantle), in addition to uncertainties in material properties and chemical partitioning. We consider a simplified spherically-symmetric (1-D) magma ocean to investigate both its evolving structure and cooling timescale. Extending the work of Abe (1993), mixing-length theory is employed to determine convective heat transport, producing a high resolution model that captures the ultra-thin boundary layer (few cms) at the surface of the magma ocean. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). We derive a new high P-T equation of state (EOS) formulation designed to capture the energetics and physical properties of the partially molten system using parameters that are readily interpreted in the context of magma ocean crystallization. This model is used to determine the cooling timescale for a variety of plausible thermodynamic models, with special emphasis on comparing the center-outwards vs bottom-up cooling scenarios that arise from the assumed EOS (e.g., Mosenfelder et al., 2009; Stixrude et al., 2009).
Automated sensor networks to advance ocean science
NASA Astrophysics Data System (ADS)
Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.
2010-12-01
The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.
21st Century Carbon-Climate Change as Simulated by the Canadian Earth System Model CanESM1
NASA Astrophysics Data System (ADS)
Curry, C.; Christian, J. R.; Arora, V.; Boer, G. J.; Denman, K. L.; Flato, G. M.; Scinocca, J. F.; Merryfield, W. J.; Lee, W. G.; Yang, D.
2009-12-01
The Canadian Earth System Model CanESM1 is a fully coupled climate/carbon-cycle model with prognostic ocean and terrestrial components. The model has been used to simulate the 1850-2000 climate using historical greenhouse gas emissions, and future climates using IPCC emission scenarios. Modelled globally averaged CO2 concentration, land and ocean carbon uptake compare well with observation-based values at year 2000, as do the annual cycle and latitudinal distribution of CO2, instilling confidence that the model is suitable for future projections of carbon cycle behaviour in a changing climate. Land use change emissions are calculated explicitly using an observation-based time series of fractional coverage of different plant functional types. A more complete description of the model may be found in Arora et al. (2009). Differences in the land-atmosphere CO2 flux from the present to the future period under the SRES A2 emissions scenario show an increase in land sinks by a factor of 7.5 globally, mostly the result of CO2 fertilization. By contrast, the magnitude of the global ocean CO2 sink increases by a factor of only 2.3 by 2100. Expressed as a fraction of total emissions, ocean carbon uptake decreases throughout the 2000-2100 period, while land carbon uptake increases until around 2050, then declines. The result is an increase in airborne CO2 fraction after the mid-21st century, reaching a value of 0.55 by 2100. The simulated decline in ocean carbon uptake over the 21st century occurs despite steadily rising atmospheric CO2. This behaviour is usually attributed to climate-induced changes in surface temperature and salinity that reduce CO2 solubility, and increasing ocean stratification that weakens the biological pump. However, ocean biological processes such as dinitrogen fixation and calcification may also play an important role. Although not well understood at present, improved parameterizations of these processes will increase confidence in projections of future trends in CO2 uptake.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe
2018-04-01
Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-10-01
In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.
Coupled Data Assimilation in Navy ESPC
NASA Astrophysics Data System (ADS)
Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.
2017-12-01
Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.
NASA Astrophysics Data System (ADS)
Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam
2017-04-01
Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John
2017-03-01
Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.
Multi-sensor Improved Sea-Surface Temperature (MISST) for IOOS - Navy Component
2013-09-30
application and data fusion techniques. 2. Parameterization of IR and MW retrieval differences, with consideration of diurnal warming and cool-skin effects...associated retrieval confidence, standard deviation (STD), and diurnal warming estimates to the application user community in the new GDS 2.0 GHRSST...including coral reefs, ocean modeling in the Gulf of Mexico, improved lake temperatures, numerical data assimilation by ocean models, numerical
Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith
2014-05-01
The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea
NASA Astrophysics Data System (ADS)
Stenchikov, G. L.; Osipov, S.
2017-12-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
Verification of the naval oceanic vertical aerosol model during FIRE
NASA Technical Reports Server (NTRS)
Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.
1990-01-01
The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).
Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors
Salama, Mhd. Suhyb; Su, Zhongbo
2010-01-01
A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors. PMID:22163615
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.
NASA Astrophysics Data System (ADS)
Eide, H.; Stamnes, K.; Ottaviani, M.
2004-12-01
The specular reflection of the Sun off the ocean, or sun glint, is of major concern for ocean remote sensing. Typically, data from in and around the sunglint region are discarded because of the unknown contribution to the measured radiances or because of sensor saturation. On the other hand, accurate knowledge of the sunglint properties enables retrievals of atmospheric parameters. The challenge of the ocean retrieval problem is to get the ``water leaving radiance'', Lw, by subtracting the Rayleigh scattering, aerosol scattering, water vapor, ozone, and sun glint from the measured radiances at the top of the atmosphere (TOA). Thus, the task is to correct for both the atmospheric contribution and for surface effects. Two simplifying assumptions that are frequently employed in ocean remote sensing are that the ocean BRDF is isotropic and that one can de-couple the radiative properties of the atmosphere from those of the surface. Our previous studies have shown that neglecting the inherit coupling between the atmosphere and surface can lead to large errors in the retrievals. In order to do retrievals over bright, as well as darker surfaces, it is necessary to account for this coupling between the surface and the atmosphere. In the present study we use models for the reflection of light off the ocean surface to calculate the ocean BRDF. The differences between the various models are investigated as is the effect of using different types of wave statistics (e.g. Cox Munk). We present results from calculations where we vary the wind speed and direction as well as other parameters affecting the ocean surface. The error introduced in ocean retrievals by assuming an isotropic BRDF is assessed, and methods for improved treatment of sunglint are suggested.
Thermal Models of the Ocean Floor: from Wegener to Cerro Prieto
NASA Astrophysics Data System (ADS)
Sclater, J. G.; Negrete-Aranda, R.
2017-12-01
Wegener (1925) argued that hot rock could explain the shallower depths of ridges in the center of the Atlantic Ocean. Hess (1963) proposed that the intrusion of molten rock occurred at a world encircling mid-ocean ridge system. However, he accounted for the elevation of the ridges by the formation of serpentinite and thermal convection. Langseth et al. (1966) provided the major advance by using a 100 km thick plate to argue such a concept could not explain the depth, heat flow versus distance relations. They had the correct model but misinterpreted the data. Reformulating theoretically, McKenzie (1967) created the generally accepted thermal model for the ocean floor. Unfortunately, in attempting to match erroneously low heat flow data, he used a 50 km thick plate. Addition of the effect of water and the realization of the importance of advective flow, enabled various groups to create thermal plate models that accounted for the heat flow and depth age relations. From this came the understanding of hydrothermal circulation in the oceanic crust, the thermal boundary layer concept of the oceanic plate and the realization that all thermal models differed only in the way the different groups had chosen to analyze the data. During the past 40 years many have applied similar concepts to continental margins: (1) Measurement of subsidence of the Atlantic margin, continental stretching and a Time Temperature, Depth and Maturation analysis of continental basins have created the field of Basin Analysis; (2) Changes in heat flow at ocean continent boundaries have determined the position of the transition and (3) In attempting to examine the ocean continent transition process in the northernmost basin of the Gulf of California, Neumann et al (in press) observed conductive heat flow values greater than 0.75 Watts, at a depth of < 150 m, along a 10 km section of a profile across the southern extension of the Cerro Prieto fault. The magnitude of these values overwhelms local environmental effects and indicates a very large thermal output. Their full potential depends upon the amount of advective flow. Whatever the case, these measurements have opened up shallow continental margins as a new area for geothermic investigation.
Modeling the sediment transport induced by deep sea mining in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Purkiani, Kaveh; Paul, André; Schulz, Michael; Vink, Annemiek; Walter, Maren
2017-04-01
A numerical modeling study is conducted in the German license area in northeastern Pacific Ocean to investigate the sediment dispersal of mining exploitation. A sediment transport module is implemented in a hydrodynamic model. All differently sized particles can aggregate and break up until equilibrium floc sizes are obtained. A nested model approach using the MITgcm (Massachusetts Institute of Technology general circulation model) is applied and validated against hydrographic and hydrodynamic measurements obtained in this region. Two different sediment discharge scenarios have been examined to investigate the effect of flocculation on sediment transport distribution in the deep ocean. The suspended sediment is mainly influenced by a dominant SW current far away from the sediment discharge location. Independent of initial particle size all initial particles larger than 30 μm attain similar floc size equilibrium. In contrast to coastal seas and estuaries where floc size equilibrium can be obtained in a few hours, due to low shear rate (G) the flocculation process at deep ocean is completed within 1˜2 days. Considering temporal evolution of the floc size in the model, an increase in floc sinking velocity consequently enhances the sediment deposition at seafloor. The analysis of different sediment concentration scenarios suggests that floc sinking velocity increases at higher suspended sediment concentration (SSC). The presence of a dominant current in this region induces a fine sediment plume in SW direction. The dispersed SSC plume at 20 km downstream the discharge location is able to form the flocculation process and induces a spatial variation of floc size and floc sinking velocity.
NASA Astrophysics Data System (ADS)
Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.
2016-12-01
Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.
Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology
NASA Technical Reports Server (NTRS)
Gregg, Watson
2011-01-01
The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected by solar zenith angle requirements and obscuration from clouds and aerosols. Combined with in situ dataenhanced satellite data, the model is forced into consistency using data assimilation. This approach eliminates sampling discrepancies from satellites. Combining the reduced differences of satellite data sets using in situ data, and the removal of sampling biases using data assimilation, we generate consistent data records of ocean color. These data records can support investigations of long-term effects of climate change on ocean biology over multiple satellites, and can improve the consistency of future satellite data sets.
Basin-scale estimates of oceanic primary production by remote sensing - The North Atlantic
NASA Technical Reports Server (NTRS)
Platt, Trevor; Caverhill, Carla; Sathyendranath, Shubha
1991-01-01
The monthly averaged CZCS data for 1979 are used to estimate annual primary production at ocean basin scales in the North Atlantic. The principal supplementary data used were 873 vertical profiles of chlorophyll and 248 sets of parameters derived from photosynthesis-light experiments. Four different procedures were tested for calculation of primary production. The spectral model with nonuniform biomass was considered as the benchmark for comparison against the other three models. The less complete models gave results that differed by as much as 50 percent from the benchmark. Vertically uniform models tended to underestimate primary production by about 20 percent compared to the nonuniform models. At horizontal scale, the differences between spectral and nonspectral models were negligible. The linear correlation between biomass and estimated production was poor outside the tropics, suggesting caution against the indiscriminate use of biomass as a proxy variable for primary production.
A flexible climate model for use in integrated assessments
NASA Astrophysics Data System (ADS)
Sokolov, A. P.; Stone, P. H.
Because of significant uncertainty in the behavior of the climate system, evaluations of the possible impact of an increase in greenhouse gas concentrations in the atmosphere require a large number of long-term climate simulations. Studies of this kind are impossible to carry out with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource requirements. Here we describe a two dimensional (zonally averaged) atmospheric model coupled with a diffusive ocean model developed for use in the integrated framework of the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. The 2-D model has been developed from the Goddard Institute for Space Studies (GISS) GCM and includes parametrizations of all the main physical processes. This allows it to reproduce many of the nonlinear interactions occurring in simulations with GCMs. Comparisons of the results of present-day climate simulations with observations show that the model reasonably reproduces the main features of the zonally averaged atmospheric structure and circulation. The model's sensitivity can be varied by changing the magnitude of an inserted additional cloud feedback. Equilibrium responses of different versions of the 2-D model to an instantaneous doubling of atmospheric CO2 are compared with results of similar simulations with different AGCMs. It is shown that the additional cloud feedback does not lead to any physically inconsistent results. On the contrary, changes in climate variables such as precipitation and evaporation, and their dependencies on surface warming produced by different versions of the MIT 2-D model are similar to those shown by GCMs. By choosing appropriate values of the deep ocean diffusion coefficients, the transient behavior of different AOGCMs can be matched in simulations with the 2-D model, with a unique choice of diffusion coefficients allowing one to match the performance of a given AOGCM for a variety of transient forcing scenarios. Both surface warming and sea level rise due to thermal expansion of the deep ocean in response to a gradually increasing forcing are reasonably reproduced on time scales of 100-150 y. However a wide range of diffusion coefficients is needed to match the behavior of different AOGCMs. We use results of simulations with the 2-D model to show that the impact on climate change of the implied uncertainty in the rate of heat penetration into the deep ocean is comparable with that of other significant uncertainties.
FREE TRANSLATIONAL OSCILLATIONS OF ICY BODIES WITH A SUBSURFACE OCEAN USING A VARIATIONAL APPROACH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escapa, A.; Fukushima, T.
2011-03-15
We analyze the influence of the interior structure of an icy body with an internal ocean on the relative translational motions of its solid constituents. We consider an isolated body differentiated into three homogeneous layers with spherical symmetry: an external ice-I layer, a subsurface ammonia-water ocean, and a rocky inner core. This composition represents icy bodies such as Europa, Titania, Oberon, and Triton, as well as Pluto, Eris, Sedna, and 2004 DW. We construct the equations of motion by assuming that the solid constituents are rigid and that the ocean is an ideal fluid, the internal motion being characterized bymore » the relative translations of the solids and the induced flow in the fluid. Then we determine the dynamics of the icy body using the methods of analytical mechanics, that is, we compute the kinetic energy and the gravitational potential energy, and obtain the Lagrangian function. The resulting solution of the Lagrange equations shows that the solid layers perform translational oscillations of different amplitudes with respect to the barycenter of the body. We derive the dependence of the frequency of the free oscillations of the system on the characteristics of each layer, expressing the period of the oscillations as a function of the densities and masses of the ocean and the rocky inner core, and the mass of the icy body. We apply these results to previously developed subsurface models and obtain numerical values for the period and the ratio between the amplitudes of the translational oscillations of the solid components. The features obtained are quite different from the cases of Earth and Mercury. Our analytical formulas satisfactorily explain the source of these differences. When models of the same icy body, compatible with the existence of an internal ocean, differ in the thickness of the ice-I layer, their associated periods experience a relative variation of at least 10%. In particular, the different models for Titania and Oberon exhibit a larger variation of about 37% and 30%. This indicates an absolute difference of the order of three and two hours, respectively. This suggests that the free period of the internal oscillations might provide a new procedure to constrain the internal structure of icy bodies with a subsurface ocean.« less
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...
2017-11-30
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.
2018-01-01
The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys
Sivareddy, S.; Paul, Arya; Sluka, Travis; Ravichandran, M.; Kalnay, Eugenia
2017-01-01
Assimilation methods, meant to constrain divergence of model trajectory from reality using observations, do not exactly satisfy the physical laws governing the model state variables. This allows mismatches in the analysis in the vicinity of observation locations where the effect of assimilation is most prominent. These mismatches are usually mitigated either by the model dynamics in between the analysis cycles and/or by assimilation at the next analysis cycle. However, if the observations coverage is limited in space, as it was in the ocean before the Argo era, these mechanisms may be insufficient to dampen the mismatches, which we call shocks, and they may remain and grow. Here we show through controlled experiments, using real and simulated observations in two different ocean models and assimilation systems, that such shocks are generated in the ocean at the lateral boundaries of the moored buoy network. They thrive and propagate westward as Rossby waves along these boundaries. However, these shocks are essentially eliminated by the assimilation of near-homogenous global Argo distribution. These findings question the fidelity of ocean reanalysis products in the pre-Argo era. For example, a reanalysis that ignores Argo floats and assimilates only moored buoys, wrongly represents 2008 as a negative Indian Ocean Dipole year. PMID:28429748
SAR observation and model tracking of an oil spill event in coastal waters.
Cheng, Yongcun; Li, Xiaofeng; Xu, Qing; Garcia-Pineda, Oscar; Andersen, Ole Baltazar; Pichel, William G
2011-02-01
Oil spills are a major contributor to marine pollution. The objective of this work is to simulate the oil spill trajectory of oil released from a pipeline leaking in the Gulf of Mexico with the GNOME (General NOAA Operational Modeling Environment) model. The model was developed by NOAA (National Oceanic and Atmospheric Administration) to investigate the effects of different pollutants and environmental conditions on trajectory results. Also, a Texture-Classifying Neural Network Algorithm (TCNNA) was used to delineate ocean oil slicks from synthetic aperture radar (SAR) observations. During the simulation, ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind data measured by an NDBC (National Data Buoy Center) buoy are used to drive the GNOME model. The results show good agreement between the simulated trajectory of the oil spill and synchronous observations from the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate and disperse. In addition, the effects from uncertainty of ocean currents and the diffusion coefficient on the trajectory results are also studied. Copyright © 2010 Elsevier Ltd. All rights reserved.
Simulation of Tropical Pacific and Atlantic Oceans Using a HYbrid Coordinate Ocean Model
2005-01-01
with respect to cotemporal 1m temperature measured by buoys. The cli- matology was created by averaging into monthly means, then calculating...inconsistency could result in part from the different temporal averaging intervals of the two temperature climatologies. This question is further assessed in...observational temperature datasets (drifter and Path- finder) have different temporal averaging intervals. This question is further assessed in
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Machetel, P.
2005-12-01
We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual flow lines. The distribution of ICR of gabbros along each flow line is then computed at their final off-axis emplacement as it is now observed in ophiolites. The main result of our model is that the variation of ICR with depth strongly constrains the accretion mode of the oceanic crust. The bimodal distribution of ICR with depth inferred from the crystal size distribution studies of gabbros from the Oman ophiolite (Garrido et al., 2001) can be only reproduced by accretion models with at least two melt lenses. The location of the jump in the bimodal distribution of ICR with depth observed at ca. 4 km above the MTZ in the Oman ophiolite implies that ca. 50% of the oceanic crust is accreted in an upper magma lens, while the 50% lower half is either accreted in one lens located at the MTZ or in several melt lenses with alike melt supply and evenly distributed along the lower half of the plutonic oceanic crust. Garrido, C. J., Kelemen, P. B. & Hirth, G.. G-cubed. 2, doi: 10.1029/2000GC000136 (2001).
Effect of tidal fluctuations on contaminant transfer to the ocean
Licata, I.L.; Langevin, C.D.; Dausman, A.M.
2007-01-01
Variable-density groundwater flow was simulated to examine the effects that tide has on the coastward migration of a contaminant through a freshwater/saltwater interface and toward a coastal ocean boundary. Simulated ocean tides did not significantly affect the total contaminant mass input to the ocean; however, the difference in tidal and non-tidal simulated concentrations could be as much as 15%. It may be possible to numerically approximate the tidal-driven hydraulic transients in transport models that do not explicitly include tides by locally increasing dispersivity. Copyright ?? 2007 IAHS Press.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-02-01
Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.
Numerical Modelling of Freshwater Inputs in the Shelf Area of the Ofanto River (Southern Italy)
NASA Astrophysics Data System (ADS)
Verri, G.; Pinardi, N.; Tribbia, J. J.; Gochis, D.; Bryan, F.; Tseng, Y. H.; Navarra, A.; Coppini, G.
2016-02-01
The aim of this study is to understand and to assess the effects of river freshwater release on the ocean circulation and dynamics focusing on the shelf area near estuaries. A sensitivity study to different modelling approaches, which point to the representation of the dynamics of the river inflow, are presented. The modeling strategy we chose consists of an integrated modeling chain including the atmosphere, the hydrology/hydraulics and the estuarine dynamics in order to force our regional ocean model at the Ofanto outlet in a reliable way. This meteo-hydrological modeling chain allows us to take into account all the physical processes involved in the local water cycle of the Ofanto catchment such as the rainfall, the land surface infiltration/evaporation, the partitioning of total runoff into surface and subsurface runoff and the channel streamflow. In order to achieve our goal, we chose the Ofanto river catchment and its estuary as case study. The Ofanto river is a torrential river flowing across the Southern Italy and ending in the Adriatic Sea; its annual averaged discharge is low (15 m3s-1 following Raicich, 1996) but may significantly increase when heavy rain events occur. In details our regional ocean model is a finite difference numerical model based on NEMO code (Madec, G., 2008) and implemented in the Central Mediterranean Sea with 2km as horizontal resolution. The meteo-hydrological modeling chain consists of: 1) the WRF-ARW model (Skamarock et al., 2008) including NOAH-MP as Land Surface Submodel,; 2) WRF-HYDRO model (Gochis D., et al., 2013) representing the hydrology/hydraulics component with 200m as horizontal resolution, simulating the streamflow discharge along the Ofanto river network.; 3) finally an estuarine box model (Garvine et al., 2006) is inserted downstream of WRF-Hydro and upstream of the regional ocean model. A set of sensitivity experiments has been performed aiming to evaluate the capability of the regional ocean model to decribe the Ofanto river plume by providing hindcast discharge and salinity from the estuary model at the river mouth with different methods. The time window of the simulations covers the first three months of year 2011, since 4 heavy rain events affected the Ofanto catchment in this period.
NASA Astrophysics Data System (ADS)
Wünnemann, K.; Collins, G. S.; Weiss, R.
2010-12-01
The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.
NASA Astrophysics Data System (ADS)
Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.
2011-01-01
Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.
Multiscale Approach to Small River Plumes off California
NASA Astrophysics Data System (ADS)
Basdurak, N. B.; Largier, J. L.; Nidzieko, N.
2012-12-01
While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.
A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)
2001-01-01
The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.
Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)
Jahn, A.; Lindsay, K.; Giraud, X.; ...
2015-08-05
Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, themore » 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. Lastly, at the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.« less
NASA Astrophysics Data System (ADS)
Bouttes, Nathaelle; Swingedouw, Didier; Roche, Didier M.; Sanchez-Goni, Maria F.; Crosta, Xavier
2018-03-01
Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ˜ 430 ka BP) were around 40 ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials.
The Evolution of Indian and Pacific Ocean Denitrification and Nitrogen Dynamcs since the Miocene
NASA Astrophysics Data System (ADS)
Ravelo, A. C.; Carney, C.; Rosenthal, Y.; Holbourn, A.; Kulhanek, D. K.
2017-12-01
The feedbacks between geochemical cycles and physical climate change are poorly understood; however, there has been tremendous progress in developing coupled models to help predict the direction and strength of these feedbacks. As such, there is a need for more data to validate and test these models. To this end, the nitrogen (N) cycle, and its links to the biological pump and to climate, is an active area of paleoceanographic research. Using N isotope records, Robinson et al. (2014) showed that pelagic denitrification in the Indian and Pacific Oceans intensified as climate cooled and subsurface ventilation decreased since the Pliocene. They pointed out that a more ventilated warm Pliocene contrasts with glacial-interglacial patterns wherein more ventilation occurs during cold phases, indicating that different mechanisms may occur at different timescales. Our objective is to better understand the nature of the feedbacks between the oceanic N cycle and climate by focusing on the large dynamic range of conditions that occurred during and since the Miocene. We used new cores drilled during IODP Expedition 363 to generate bulk sediment N isotope records at three western tropical Pacific sites (U1486, U1488, U1490) and one southeastern tropical Indian Ocean site (U1482). We find that the N isotope trends since the Pliocene are in agreement with previous studies showing increasing denitrification as climate cooled. In the Miocene, the Indian Ocean record shows no long-term N isotope trend whereas the Pacific Ocean records show a trend that is roughly coupled to changes in global climate suggesting that pelagic denitrification in the Pacific was strongly influenced by greater ventilation during global warmth. However, there are notable deviations from this coupling during several intervals in the Miocene, and there are site-to-site differences in trends. These deviations and differences can be explained by changes in tropical productivity (e.g., late Miocene biogenic bloom), which drove changes subsurface oxygenation and denitrification, and by changes in regional circulation. Our study provides fundamental data that can be used to validate conceptual and numerical models of the long-term coupling of climate, biological productivity and ocean chemistry.
NASA Technical Reports Server (NTRS)
Johnson, M. S.; Meskhidze, N.
2013-01-01
Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.
Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi
NASA Astrophysics Data System (ADS)
Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.
2017-12-01
In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.
NASA Astrophysics Data System (ADS)
Galbraith, Eric; de Lavergne, Casimir
2018-03-01
Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and salinity simulated under the most representative `glacial' state agree very well with reconstructions from the Last Glacial Maximum (LGM), which lends confidence in the ability of the model to estimate large-scale changes in water-mass geometry. The model also simulates a circulation-driven increase of preformed radiocarbon reservoir age, which could explain most of the reconstructed LGM-preindustrial ocean radiocarbon change. However, the radiocarbon content of the simulated glacial ocean is still higher than reconstructed for the LGM, and the model does not reproduce reconstructed LGM deep ocean oxygen depletions. These ventilation-related disagreements probably reflect unresolved physical aspects of ventilation and ecosystem processes, but also raise the possibility that the LGM ocean circulation was not in equilibrium. Finally, the simulations display an increased sensitivity of both surface air temperature and AABW volume to orbital forcing under low CO2. We suggest that this enhanced orbital sensitivity contributed to the development of the ice age cycles by amplifying the responses of climate and the carbon cycle to orbital forcing, following a gradual downward trend of CO2.
Analysis and Modeling of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2014-12-01
Recent studies using lightning data from geo-location networks such as GLD360 suggest that lightning strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land lightning. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of lightning waveforms close to deep oceanic lightning. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the lightning sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the lightning channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic lightning. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.
Role of ocean isopycnal mixing in setting the uptake of anthropogenic carbon
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M. A. S.; Abernathey, R. P.
2014-12-01
The magnitude of the isopycnal stirring coefficient ARedi is poorly constrained from data and varies greatly across Earth System Models. This paper documents the impact of such uncertainty on the oceanic carbon cycle. We compare six spatial representations of ARedi. Four constant values (400, 800, 1200 and 2400 m2/s) are used to explore the difference between using the low values found in many models and the higher values seen in observational estimates. Models are also run with two spatially dependent values of ARedi based on altimetry, one which captures the fully two-dimensional structure of the mixing coefficient, the other of which looks at the zonally averaged structure alone. Under global warming significant changes are seen in the biological pump in convective regions, but these changes are largely locally compensated by changes in preformed DIC. Instead, differences in anthropogenic uptake of carbon are largely centered in the tropics, and can be well described in terms of a relatively simple diffusive approximation. Using ideal age as a tracer can give insight into the expected behavior of the models. The rate of oceanic mixing represents a quantitatively significant uncertainty in future projections of the global carbon cycle, amounting to about 20% of the oceanic uptake.
The Southern Ocean's role in ocean circulation and climate transients
NASA Astrophysics Data System (ADS)
Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.
2017-12-01
The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2016-12-01
Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.
Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan
2017-04-01
Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
A global inventory of small floating plastic debris
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Lavender Law, Kara
2015-12-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
Tracing the drift of MH370 debris throughout the Indian Ocean
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Durgadoo, Jonathan V.; Rühs, Siren
2017-04-01
On 8 March 2014, a missing Boeing 777 of Malaysia Airlines (MH370) disappeared from radar screens. Since then, extensive search efforts aim to find the missing plane in the southeastern Indian Ocean. Starting with a flaperon washed up at La Réunion in July 2015, several pieces of debris were found at different shores at islands and African coasts in the southwestern Indian Ocean. Ocean currents were examined to understand the drift paths of debris throughout the Indian Ocean, and in consequence to identify the location of MH370. Here we present a series of Lagrangian analyses in which we follow particles representing virtual pieces of debris advected in an operational high-resolution ocean model. Of particular importance is the lare-scale influence of surface waves through Stokes drift. Large number of particles are analysed in statistical approaches to provide most likely starting locations. Different pieces of debris are combined to refine probability maps of their joint start positions. Forward vs. backward advection approaches are compared.
Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano
NASA Astrophysics Data System (ADS)
Le Corvec, N.; McGovern, P. J., Jr.
2014-12-01
Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of [Galgana et al., 2011] and [McGovern and Solomon, 1993], respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic basaltic volcanic edifices. Galgana, G. A., P. J. McGovern, and E. B. Grosfils (2011), J. Geophys. Res., 116(E3), E03009. McGovern, P. J., and S. C. Solomon (1993), Journal of Geophysical Research: Planets, 98(E12), 23553-23579.
Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia
NASA Astrophysics Data System (ADS)
Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.
2000-06-01
The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.
Tides at the east coast of Lanzarote Island
NASA Astrophysics Data System (ADS)
Benavent, M.; Arnoso, J.; Vélez, E. J.
2012-04-01
The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the REDMAR network of Puertos del Estado placed at the end of the same loading bay. Results obtained from the time series analysis at both locations, amplitude and phase of the main diurnal and semi-diurnal tidal waves, are compared with the most recent global ocean tide models, as TPXO7.2, EOT11a, HAMTIDE, FES2004, GOT4.7 and AG2006, and also with the high resolution regional ocean tide model for the Canaries CIAM2 (Arnoso et al., 2006, Benavent, 2011). Comparison of simulated harmonic constant (from global and local ocean tide model) with those obtained from tidal stations is done by means of the direct comparison between amplitudes and phase for each tidal wave and the root mean square (rms) of the differences in the complex plane. Finally the root sum square (rss) of residuals over all harmonic constituents considered is calculated.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
NASA Astrophysics Data System (ADS)
Yan, Banghua; Stamnes, Knut; Toratani, Mitsuhiro; Li, Wei; Stamnes, Jakob J.
2002-10-01
For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m-3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.
Schreppel, Heather A.; Cimitile, Matthew J.
2011-01-01
The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.
NASA Technical Reports Server (NTRS)
Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)
2001-01-01
This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption and backscattering coefficients and Chl-dependent parameterizations of these coefficients. With this model, libraries of expected reflectance spectra for various chlorophyll concentrations can be generated with high spectral resolution for specific oceanic regions. In addition, our semianalytical reflectance model provided insight into the mechanisms which drive the empirical relationships between the ocean color and chlorophyll concentration. Our optical approach to the study of pigment and carbon concentrations will be directly relevant to development of system models and long-term monitoring of the Southern Ocean.
NASA Astrophysics Data System (ADS)
Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.
2016-11-01
Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.
Southern Ocean eddy compensation in a forced eddy-resolving GCM
NASA Astrophysics Data System (ADS)
Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman
2017-04-01
Contemporary eddy-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale eddies are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an eddy parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised eddies have an overly strong compensating effect on the water mass transformation compared to the explicit eddies. Implications for eddy mixing parameterisations will be discussed.
Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model
NASA Astrophysics Data System (ADS)
Min, Ge; Hou, Guiting
2018-06-01
The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.
GLOBAL WARMING. Recent hiatus caused by decadal shift in Indo-Pacific heating.
Nieves, Veronica; Willis, Josh K; Patzert, William C
2015-07-31
Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature warming in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences when compared to model results from reanalyses and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated for by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003. Copyright © 2015, American Association for the Advancement of Science.
The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.
Thompson, Andrew F
2008-12-28
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian
2013-07-01
Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.
Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bange, H.W.; Bartell, U.H.; Rapsomanikis, S.
During three measurement campaigns on the Baltic and North Seas, atmospheric and dissolved methane was determined with an automated gas chromatographic system. Area-weighted mean saturation values in the sea surface waters were 113{+-}5% and 395{+-}82% and 126{+-}8%. On the bases of our data and a compilation of literature data the global oceanic emissions of methane were reassessed by introducing a concept of regional gas transfer coefficients. Our estimates computed with two different air-sea exchange models lie in the range of 11-18 Tg CH{sub 4} yr{sup -1}. Despite the fact that shelf areas and estuaries only represent a small part ofmore » the world`s ocean they contribute about 75% to the global oceanic emissions. We applied a simple, coupled, three-layer model to evaluate the time dependent variation of the oceanic flux to the atmosphere. The model calculations indicate that even with increasing tropospheric methane concentration, the ocean will remain a source of atmospheric methane. 72 refs., 7 figs., 7 tabs.« less
Operational use of high-resolution sst in a coupled sea ice-ocean model
NASA Astrophysics Data System (ADS)
Albretsen, A.
2003-04-01
A high-latitude, near real time, sea surface temperature (SST) product with 10 km resolution is developed at the Norwegian Meteorological Institute (met.no) through the EUMETSAT project OSI-SAF (Ocean and Sea Ice Satellite Application Facility). The product covers the Atlantic Ocean from 50N to 90N and is produced twice daily. A digitized SST and sea ice map is produced manually once a week at the Ice Mapping Service at met.no using all available information from the previous week. This map is the basis for a daily SST analysis, in which the most recent OSI-SAF SST products are successively overlaid. The resulting SST analysis field is then used in a simple data assimilation scheme in a coupled ice-ocean model to perform daily 10 days forecasts of ocean and sea ice variables. Also, the associated OSI-SAF sea ice concentration product, built from different polar orbiting satellites, is assimilated into the sea ice model. Preliminary estimates of impact on forecast skill and error statistics will be presented.
Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less
Southern Ocean Convection and tropical telleconnections
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gnanadesikan, A.
2014-12-01
We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the tantalizing possibility that such large-scale changes in SO deep convection might have tropical and indeed global implications via atmospheric teleconnections. We advocate the collection of both paleo and modern proxies that can verify these model-derived mechanisms and global teleconnections.
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
NASA Astrophysics Data System (ADS)
De Cruz, Lesley; Schubert, Sebastian; Demaeyer, Jonathan; Lucarini, Valerio; Vannitsem, Stéphane
2018-05-01
The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme, and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase in the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate function for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric timescale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated with the ocean dynamics, is not fully resolved because of its associated long timescales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrisation reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, we are not yet in the regime in which one can robustly define large deviation laws describing the statistics of the FTLEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations with the physical modes described using the formalism of the covariant Lyapunov vectors and considering long integrations in order to disentangle the dynamical processes occurring at all timescales.
Atmospheric inversion of the surface CO2 flux with 13CO2 constraint
NASA Astrophysics Data System (ADS)
Chen, J. M.; Mo, G.; Deng, F.
2013-10-01
Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.
How robust is the atmospheric circulation response to Arctic sea-ice loss in isolation?
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.
2017-12-01
It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-ice loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-ice loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-ice loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-ice loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-ice loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-ice loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-ice loss are driven in different ways (sea ice albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea ice/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-ice loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-ice loss effect acts to increase warming in the North American Sub-Arctic, decrease warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-ice loss. Less robust is the part of the response that scales with low-latitude warming, which, depending on the model, can reinforce or cancel the response to sea-ice loss. The extent to which a "tug of war" exists between tropical and high-latitude influences on the general circulation might thus be model dependent.
NASA Technical Reports Server (NTRS)
Xue, Yongkang; De Sales, Fernando; Lau, William K-M; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro;
2016-01-01
The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply prescribed observationally based anomaly forcing, i.e., idealized but realistic forcing, in simulations by climate models to test the relative impacts of such forcings in producingamplifying the Sahelian seasonal and decadal climate variability, including the great 20th century drought. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple external forcings to the Sahel decadal precipitation anomalies between the 1980s and the 1950s that is used to characterize the Sahel 1980s drought in this study. The WAMME II models have consistently demonstrated that SST is the major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, WAMME II model ensemble mean can produce up to 60 of the precipitation difference between the 1980s and the 1950s. The present paper also delineated the role of SSTs in triggering and maintaining the Sahel drought. The impact of SSTs in individual oceans is also examined and consensus and discrepancies are reported. Among the different ocean basins, the WAMME II models show the consensus that the Indian Ocean SST has the largest impact on the precipitation temporal evolution associated with the ITCZ movement before the WAM onset while the Pacific Ocean SST greatly contributes to the summer WAM drought. This paper also compares the SST effect with the LULCC effect. Results show that with prescribed land forcing the WAMME II model ensemble mean produces about 40 of the precipitation difference between the 1980s and the 1950s, which is less than the SST contribution but still of first order in the Sahel climate system. The role of land surface processes 61 in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. These preliminary WAMME results need to be further evaluated with different experimental designs and different models.
Global assessment of ocean carbon export by combining satellite observations and food-web models
NASA Astrophysics Data System (ADS)
Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.
2014-03-01
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
Observations and Modeling of the Transient General Circulation of the North Pacific Basin
NASA Technical Reports Server (NTRS)
McWilliams, James C.
2000-01-01
Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
Climate Model Tests of the Early Anthropogenic Hypothesis
NASA Astrophysics Data System (ADS)
Vavrus, S.; Kutzbach, J.; Philippon, G.
2008-12-01
We test the hypothesis that greenhouse gas emissions produced by the combination of early and recent human activities, augmented by additional rises in greenhouse gases through ocean feedbacks, have kept the climate warmer than its natural level and offset an incipient glaciation. We use four different configurations of NCAR's Community Climate System Model to investigate the natural climate that should exist today if CO2 and CH4 concentrations had fallen to their average levels reached during previous interglaciations. The model simulations consist of three using a coupled atmosphere-slab ocean configuration---fixed land cover at moderate (T42) and high (T85) model resolution and interactive vegetation composition at T42 resolution--and one employing a coupled atmosphere-dynamical ocean configuration and fixed land cover at T42 resolution. With greenhouse gas concentrations lowered to their estimated natural levels, global mean temperature falls by 2.5-3.0 K in all four experiments. Of the total global cooling with fixed land cover and moderate model resolution, 38% (62%) is attributable to early agricultural activities (industrialization), while early agriculture accounts for approximately half of the expanded permanent snow cover area. The greenhouse cooling triggers widespread glacial inception in the Northern Hemisphere, where permanent snow cover expands by at least 80% and even more with the addition of enhanced model processes: 130% with the dynamical ocean, 150% with high (T85) model resolution, and 200% with vegetation feedbacks included. The regional pattern of incipient glaciation is strongly influenced by atmospheric and circulation changes, sea ice feedbacks, and model resolution. The simulation with a dynamical ocean produces a decrease in vertically integrated global ocean temperature of 1.25 K, a 20% weakening of the Atlantic meridional overturning cell, and an expansion of sea ice and reduced upwelling in the Southern Ocean. Viewed from the perspective of explaining the unusual late-Holocene increases of CO2 that occurred prior to the Industrial Revolution, these simulated changes in ocean temperature, sea ice cover, and circulation (with sign reversed) support the hypothesis that early agriculture played a role in initiating anomalous warming that thwarted incipient glaciation beginning several thousand years ago. Decreased ocean solubility globally and positive ocean/sea-ice feedbacks in the Southern Hemisphere probably augmented the initial CO2 increase and caused additional warming.
CDEP Consortium on Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI)
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Zebiak, Stephen; Kinter, James; Behringer, David; Rosati, Antonio; Kaplan, Alexey
2005-01-01
The ODASI consortium is focused activity of the NOAA/OGP/Climate Diagnostics and Experimental Prediction Program with the goal of improving ocean data assimilation methods and their implementations in support of seasonal forecasts with coupled general circulation models. The consortium is undertaking coordinated assimilation experiments, with common forcing data sets and common input data streams. With different assimilation systems and different models, we aim to understand what approach works best in improving forecast skill in the equatorial Pacific. The presentation will provide an overview of the consortium goals and plans and recent results focused towards evaluating data impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
Annual net community production and the biological carbon flux in the ocean
NASA Astrophysics Data System (ADS)
Emerson, Steven
2014-01-01
The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m-2 yr-1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3-4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to "scale up" these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.
Modelling the global distribution and risk of small floating plastic debris
NASA Astrophysics Data System (ADS)
van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N. A.; Sherman, P.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. L.
2016-02-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements collated to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste available to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean. We then use this global distribution of small floating plastic debris to (i) map out where in the ocean the risk to marine life (seabirds, plankton growth) is greatest and to (ii) show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres.
NASA Astrophysics Data System (ADS)
Kawamura, Ryuichi; Aruga, Hiromitsu; Matsuura, Tomonori; Iizuka, Satoshi
Using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data aided by a coupled ocean-atmosphere model, we investigated two different regimes of anomalous Walker circulation system over the Pacific and Indian Oceans before and after a climate shift, which occurred in the late 1970s. During the period before the climate shift, an upper-level velocity potential anomaly systematically moves eastward from the tropical Indian Ocean to the warm pool region of the western Pacific during the growth phase of El Niño-Southern Oscillation (ENSO). In the meantime, the activities of South Asian and Australian summer monsoon systems are directly affected by the evolution of the anomalous Walker circulation. During the period after the climate shift, in contrast, an upperlevel velocity potential anomaly in the vicinity of the Philippine Sea and maritime continent is observed to expand westward into the northern Indian Ocean and South Asia during the decay phase of ENSO. This feature is identified with a major precursory signal of an anomalous South Asian summer monsoon in the preceding spring. The model captures a systematic eastward propagation similar to that observed prior to the late 1970s, but fails to reproduce the westward extension of the velocity potential anomaly observed to prevail after the late 1970s. The model results suggest that the cross-basin connection between the two oceans is a prerequisite for the turnabout of ENSO prior to the climate shift, in terms of the occurrence of westerly wind bursts.
NASA Astrophysics Data System (ADS)
Barantsrva, O.; Artemieva, I. M.; Thybo, H.
2015-12-01
We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.
The Ocean and Climate: Results from the TOPEX/POSEIDON Mission
NASA Technical Reports Server (NTRS)
Fu, L. -L.
1995-01-01
Since 1992, the TOPEX/POSEIDON satellite has been making altimetric sea surface observations with a sea level accuracy of 4.4 cm. This data can be used for studying regional and seasonal differences in sea level and for evaluating oceanic circulation models and tidal models. Longer term changes can also be studied, such as El Nino and overall sea level rising (although the latter is still within the margin of error).
Value of Bulk Heat Flux Parameterizations for Ocean SST Prediction
2008-03-01
Generalized Digital Environmental Model ( GDEM ) climatology (NAVO- CEANO, 2003). The density difference values were chosen so that the layers tend to...Monthly mean temperature and salinity from the GDEM climatology in August are used to initialize the model. There is a relaxation to monthly mean SSS...and European Remote Sensing Satellite (ERS) data are used in ERA-40. The SST/Ice data set produced by the Hadley Centre and National Oceanic and
Impact of hydrothermalism on the ocean iron cycle
Resing, Joseph
2016-01-01
As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256
Impact of hydrothermalism on the ocean iron cycle.
Tagliabue, Alessandro; Resing, Joseph
2016-11-28
As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).
The Response of the North Atlantic Bloom to NAO Forcing
NASA Technical Reports Server (NTRS)
Mizoguchi, Ken-Ichi; Worthen, Denise L.; Hakkinen, Sirpa; Gregg, Watson W.
2004-01-01
Results from the climatologically forced coupled ice/ocean/biogeochemical model that covers the Arctic and North Atlantic Oceans are presented and compared to the chlorophyll fields of satellite-derived ocean color measurements. Biogeochemical processes in the model are determined from the interactions among four phytoplankton functional groups (diatoms, chlorophytes, cyanobacteria and coccolithophores) and four nutrients (nitrate, ammonium, silicate and dissolved iron). The model simulates the general large-scale pattern in April, May and June, when compared to both satellite-derived and in situ observations. The subpolar North Atlantic was cool in the 1980s and warm in the latter 1990s, corresponding to the CZCS and SeaWiFS satellite observing periods, respectively. The oceanographic conditions during these periods resemble the typical subpolar upper ocean response to the NAO+ and NAO-phases, respectively. Thus, we use the atmospheric forcing composites from the two NAO phases to simulate the variability of the mid-ocean bloom during the satellite observing periods. The model results show that when the subpolar North Atlantic is cool, the NAO+ case, more nutrients are available in early spring than when the North Atlantic is warm, the NAO-case. However, the NAO+ simulation produces a later bloom than the NAO-simulation. This difference in the bloom times is also identified in SeaWiFS and CZCS satellite measurements. In the model results, we can trace the difference to the early diatom bloom due to a warmer upper ocean. The higher nutrient abundance in the NAO+ case did not provide larger total production than in the NAO- case, instead the two cases had a comparable area averaged amplitude. This leads us to conclude that in the subpolar North Atlantic, the timing of the spring phytoplankton bloom depends on surface temperature and the magnitude of the bloom is not significantly impacted by the nutrient abundance.
Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM
NASA Astrophysics Data System (ADS)
Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei
2018-02-01
To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.
NASA Astrophysics Data System (ADS)
Iakshina, D. F.; Golubeva, E. N.
2017-11-01
The vertical distribution of the hydrological characteristics in the upper ocean layer is mostly formed under the influence of turbulent and convective mixing, which are not resolved in the system of equations for large-scale ocean. Therefore it is necessary to include additional parameterizations of these processes into the numerical models. In this paper we carry out a comparative analysis of the different vertical mixing parameterizations in simulations of climatic variability of the Arctic water and sea ice circulation. The 3D regional numerical model for the Arctic and North Atlantic developed in the ICMMG SB RAS (Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Science) and package GOTM (General Ocean Turbulence Model1,2, http://www.gotm.net/) were used as the numerical instruments . NCEP/NCAR reanalysis data were used for determination of the surface fluxes related to ice and ocean. The next turbulence closure schemes were used for the vertical mixing parameterizations: 1) Integration scheme based on the Richardson criteria (RI); 2) Second-order scheme TKE with coefficients Canuto-A3 (CANUTO); 3) First-order scheme TKE with coefficients Schumann and Gerz4 (TKE-1); 4) Scheme KPP5 (KPP). In addition we investigated some important characteristics of the Arctic Ocean state including the intensity of Atlantic water inflow, ice cover state and fresh water content in Beaufort Sea.
Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity
NASA Astrophysics Data System (ADS)
Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.
2014-07-01
Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.
2016-09-01
The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). Since the fossil-fuel emissions did not decrease during the period, this stalling implies the persistence of a strong sink, perhaps sustained for as long as a decade or more. Double-deconvolution analyses have attributed this sink to the ocean, conceivably as a response to the very strong El Niño event in 1940-1942. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil-fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project to identify the most likely causes of the 1940s plateau. We find that they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s, in spite of giving a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940-1950 ranges between 0.9 and 2.0 Pg C yr-1, depending on the LUC dataset considered. This mismatch may be explained by (i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used, (ii) a further terrestrial sink currently missing in the estimates by land-surface models, or (iii) LUC processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr-1 uptake, but it is unlikely to be higher. The impact of the 1940-1942 El Niño on the observed stabilization of atmospheric CO2 cannot be confirmed nor discarded, as TRENDY models do not reproduce the expected concurrent strong decrease in terrestrial uptake. Nevertheless, this would further increase the mismatch between observed and modelled CO2 growth rate during the CO2 plateau epoch. Tests performed using the OSCAR (v2.2) model indicate that changes in land use not correctly accounted for during the period (coinciding with drastic socioeconomic changes during the Second World War) could contribute to the additional sink required. Thus, the previously proposed ocean hypothesis for the 1940s plateau cannot be confirmed by independent data. Further efforts are required to reduce uncertainty in the different terms of the carbon budget during the first half of the 20th century and to better understand the long-term variability of the ocean and terrestrial CO2 sinks.
NASA Astrophysics Data System (ADS)
He, R.; Zong, H.; Xue, Z. G.; Fennel, K.; Tian, H.; Cai, W. J.; Lohrenz, S. E.
2017-12-01
An integrated terrestrial-ocean ecosystem modeling system is developed and used to investigate marine physical-biogeochemical variabilities in the Gulf of Mexico and southeastern US shelf sea. Such variabilities stem from variations in the shelf circulation, boundary current dynamics, impacts of climate variability, as well as growing population and associated land use practices on transport of carbon and nutrients within terrestrial systems and their delivery to the coastal ocean. We will report our efforts in evaluating the performance of the coupled modeling system via extensive model and data comparisons, as well as findings from a suite of case studies and scenario simulations. Long-term model simulation results are used to quantify regional ocean circulation dynamics, nitrogen budget and carbon fluxes. Their corresponding sub-regional differences are also characterized and contrasted.
Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems
NASA Astrophysics Data System (ADS)
Allu Peddinti, Divya; McNamara, Allen
2017-04-01
Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.
NASA Astrophysics Data System (ADS)
Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.
2016-02-01
Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.
Mesoscale Atmosphere-Ocean Coupling Enhances the Transfer of Wind Energy into the Ocean.
NASA Astrophysics Data System (ADS)
Byrne, D.; Munnich, M.; Frenger, I.; Gruber, N.
2016-02-01
Ocean eddies receive their energy mainly from the atmospheric energy input at large scales, while it is thought that direct atmosphere-ocean interactions at this scale contribute little to the eddies' energy balance. If anything, the prevailing view is that mesoscale atmosphere-ocean interactions lead to a reduction of the energy transfer from the atmosphere to the ocean. From satellite observations, modelling studies and theory, we present results in contrast to this. Specifically, we describe a novel mechanism that provides a new energy pathway from the atmosphere into the ocean that directly injects energy at the mesoscale, shortcutting the classical main pathway from the larger scales. Our hypothesis is based upon recent evidence that the `coupling strength' i.e., the magnitude of the atmospheric response to underlying sea surface temperature anomalies associated with eddies, is dependent upon the background wind speed. We argue that ocean eddies rarely live in an area of constant background wind, particularly not in the Southern Ocean, and that the horizontal gradients in the wind across ocean eddies lead to an increased/decreased work on one side of the eddy that is not compensated for on the other. Essentially, this asymmetry provides a `spin up' or a `spin down' forcing such that the net result is an increase in kinetic energy for both warm and cold core eddies that reside in a negative wind gradient and a decrease in kinetic energy when they are located in a positive wind gradient. This result has strong implications for the Southern Ocean, where large regions of positive and negative wind gradients exist on both sides of the wind maximum. We show from diagnosing the local eddy scale and domain wide energy balance in a high-resolution coupled atmosphere-ocean regional model in the South Atlantic, there are different energy transfers in the two regions and due to the different eddy abundances that this mechanism increases the net kinetic energy contained in the ocean mesoscale eddy field by up to 10-15%.
Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings
NASA Astrophysics Data System (ADS)
Forest, C. E.; Stone, P. H.; Sokolov, A. P.
To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.
Testing for the linearity of responses to multiple anthropogenic climate forcings
NASA Astrophysics Data System (ADS)
Forest, C. E.; Stone, P. H.; Sokolov, A. P.
2001-12-01
To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.
Global Carbon Cycle Modeling in GISS ModelE2 GCM
NASA Astrophysics Data System (ADS)
Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Romanski, J.
2014-12-01
Consistent and accurate modeling of the Global Carbon Cycle remains one of the main challenges for the Earth System Models. NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM) was recently equipped with a complete Global Carbon Cycle algorithm, consisting of three integrated components: Ent Terrestrial Biosphere Model (Ent TBM), Ocean Biogeochemistry Module and atmospheric CO2 tracer. Ent TBM provides CO2 fluxes from the land surface to the atmosphere. Its biophysics utilizes the well-known photosynthesis functions of Farqhuar, von Caemmerer, and Berry and Farqhuar and von Caemmerer, and stomatal conductance of Ball and Berry. Its phenology is based on temperature, drought, and radiation fluxes, and growth is controlled via allocation of carbon from labile carbohydrate reserve storage to different plant components. Soil biogeochemistry is based on the Carnegie-Ames-Stanford (CASA) model of Potter et al. Ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. Atmospheric CO2 is advected with a quadratic upstream algorithm implemented in atmospheric part of ModelE2. Here we present the results for pre-industrial equilibrium and modern transient simulations and provide comparison to available observations. We also discuss the process of validation and tuning of particular algorithms used in the model.
Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano
NASA Astrophysics Data System (ADS)
Le Corvec, Nicolas; McGovern, Patrick
2015-04-01
Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of Galgana et al. (2011) and McGovern and Solomon (1993), respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic basaltic volcanic edifices. Galgana, G. A., P. J. McGovern, and E. B. Grosfils (2011), Evolution of large Venusian volcanoes: Insights from coupled models of lithospheric flexure and magma reservoir pressurization, J. Geophys. Res., 116(E3), E03009. McGovern, P. J., and S. C. Solomon (1993), State of stress, faulting, and eruption characteristics of large volcanoes on Mars, Journal of Geophysical Research: Planets, 98(E12), 23553-23579.
Secular trends and climate drift in coupled ocean-atmosphere general circulation models
NASA Astrophysics Data System (ADS)
Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.
2006-02-01
Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.
Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification
NASA Astrophysics Data System (ADS)
Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.
2014-01-01
Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.
A Unified Model for Methylmercury Formation and Bioaccumulation in the Global Ocean
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schartup, A. T.; Soerensen, A.; Dutkiewicz, S.; Sunderland, E. M.
2017-12-01
Marine fish consumption is the main exposure pathway for methylmercury (MeHg), a neurotoxin, in many countries. The Hg in the ocean is mainly from atmospheric deposition in inorganic forms. How the deposited Hg is methylated and accumulated in biota remain an open question. We develop a 3D model (MITgcm) for MeHg formation and bioaccumulation in the global ocean and evaluate the driving factors. The model is based on a previous published inorganic Hg model and is coupled with the bioaccumulation model for marine methylmercury (BAM3) with ocean biogeochemistry from DARWIN model. We develop a unified scheme that scales methylation by microbe activity and assumes demethylation a function of short wave radiation and temperature. The model result agrees well with currently available observations at the 0-100 m (mod.: 43±52 fM vs obs.: 69±67 fM, 1 fM = 10-15 mol/L), 500 m (360±280 fM vs 340±260 fM), and 1000 m depth (260±170 fM vs 290±210 fM). In the surface ocean, we find the MeHg concentrations are a function of latitude, resulting from photodemethylation. The model reproduces the high concentrations observed over the sub-thermocline of Pacific Subarctic Gyre, which is associated with active microbe activity. On the other hand, both the model and observations suggest low concentrations over oligotrophic regions such as Indian Ocean Gyre. In the tropical oceans, the model predicts the highest MeHg concentrations, consistent with observation, and it is caused by the overlapping high atmospheric deposition and active microbe activities. The model captures the high concentrations in the subsurface of the Arctic and Southern Ocean where low temperature slows down abiotic demethylation. The modeled global average MeHg concentration in phytoplankton is 2.0 ng/g (by wet weight), within the same range of observations. High concentrations are modeled over tropical and high-latitude regions due to the dominance of small sized prochlorococcus and high seawater concentrations, respectively. Due to the different palatability of phytoplankton to zooplankton, the small zooplankton has 96% of MeHg grazed from picoplankton, but the large zooplankton mainly from microplankton (92%). The MeHg concentrations are higher in large zooplankton (9.3 ng/g) than small ones (2.6 ng/g) with spatial patterns influenced by their main food sources.
NASA Astrophysics Data System (ADS)
Rienecker, M. M.; Adamec, D.
1995-01-01
An ensemble of fraternal-twin experiments is used to assess the utility of optimal interpolation and model-based vertical empirical orthogonal functions (eofs) of streamfunction variability to assimilate satellite altimeter data into ocean models. Simulated altimeter data are assimilated into a basin-wide 3-layer quasi-geostrophic model with a horizontal grid spacing of 15 km. The effects of bottom topography are included and the model is forced by a wind stress curl distribution which is constant in time. The simulated data are extracted, along altimeter tracks with spatial and temporal characteristics of Geosat, from a reference model ocean with a slightly different climatology from that generated by the model used for assimilation. The use of vertical eofs determined from the model-generated streamfunction variability is shown to be effective in aiding the model's dynamical extrapolation of the surface information throughout the rest of the water column. After a single repeat cycle (17 days), the analysis errors are reduced markedly from the initial level, by 52% in the surface layer, 41% in the second layer and 11% in the bottom layer. The largest differences between the assimilation analysis and the reference ocean are found in the nonlinear regime of the mid-latitude jet in all layers. After 100 days of assimilation, the error in the upper two layers has been reduced by over 50% and that in the bottom layer by 38%. The essence of the method is that the eofs capture the statistics of the dynamical balances in the model and ensure that this balance is not inappropriately disturbed during the assimilation process. This statistical balance includes any potential vorticity homogeneity which may be associated with the eddy stirring by mid-latitude surface jets.
NASA Astrophysics Data System (ADS)
Yao, Zhixiong; Tang, Youmin; Chen, Dake; Zhou, Lei; Li, Xiaojing; Lian, Tao; Ul Islam, Siraj
2016-12-01
This study examines the possible impacts of coupling processes on simulations of the Indian Ocean Dipole (IOD). Emphasis is placed on the atmospheric model resolution and physics. Five experiments were conducted for this purpose, including one control run of the ocean-only model, four coupled experiments using two different versions of the Community Atmosphere Model (CAM4 and CAM5) and two different resolutions. The results show that the control run could effectively simulate various features of the IOD. The coupled experiments run at the higher resolution yielded more realistic IOD period and intensity than their counterparts at the low resolution. The coupled experiments using CAM5 generally showed a better simulation skill in the tropical Indian SST climatology and phase-locking than those using CAM4, but the wind anomalies were stronger and the IOD period were longer in the former experiments than in the latter. In all coupled experiments, the IOD intensity was much stronger than the observed intensity, which is attributable to wind-thermocline depth feedback and thermocline depth-subsurface temperature feedback. The CAM5 physics seems beneficial for the simulation of summer rainfall over the eastern equatorial Indian Ocean and the CAM4 physics tends to produce less biases over the western equatorial Indian Ocean, whereas the higher resolution tends to generate unrealistically strong meridional winds. The IOD-ENSO relationship was captured reasonably well in coupled experiments, with improvements in CAM5 relative to CAM4. However, the teleconnection of the IOD-Indian summer monsoon and ENSO-Indian summer monsoon was not realistically simulated in all experiments.
Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)
NASA Astrophysics Data System (ADS)
Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia
2016-04-01
Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Statistical and dynamical assessment of land-ocean-atmosphere interactions across North Africa
NASA Astrophysics Data System (ADS)
Yu, Yan
North Africa is highly vulnerable to hydrologic variability and extremes, including impacts of climate change. The current understanding of oceanic versus terrestrial drivers of North African droughts and pluvials is largely model-based, with vast disagreement among models in terms of the simulated oceanic impacts and vegetation feedbacks. Regarding oceanic impacts, the relative importance of the tropical Pacific, tropical Indian, and tropical Atlantic Oceans in regulating the North African rainfall variability, as well as the underlying mechanism, remains debated among different modeling studies. Classic theory of land-atmosphere interactions across the Sahel ecotone, largely based on climate modeling experiments, has promoted positive vegetation-rainfall feedbacks associated with a dominant surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback with its underlying albedo mechanism, nor its relative importance compared with oceanic drivers, has been convincingly demonstrated up to now using observational data. Here, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied in order to identify the observed oceanic and terrestrial drivers of North African climate and quantify their impacts. The reliability of the statistical GEFA method is first evaluated against dynamical experiments within the Community Earth System Model (CESM). In order to reduce the sampling error caused by short data records, the traditional GEFA approach is refined through stepwise GEFA, in which unimportant forcings are dropped through stepwise selection. In order to evaluate GEFA's reliability in capturing oceanic impacts, the atmospheric response to a sea-surface temperature (SST) forcing across the tropical Pacific, tropical Indian, and tropical Atlantic Ocean is estimated independently through ensembles of dynamical experiments and compared with GEFA-based assessments. Furthermore, GEFA's performance in capturing terrestrial impacts is evaluated through ensembles of fully coupled CESM dynamical experiments, with modified leaf area index (LAI) and soil moisture across the Sahel or West African Monsoon (WAM) region. The atmospheric responses to oceanic and terrestrial forcings are generally consistent between the dynamical experiments and statistical GEFA, confirming GEFA's capability of isolating the individual impacts of oceanic and terrestrial forcings on North African climate. Furthermore, with the incorporation of stepwise selection, GEFA can now provide reliable estimates of the oceanic and terrestrial impacts on the North African climate with the typical length of observational datasets, thereby enhancing the method's applicability. After the successful validation of GEFA, the key observed oceanic and terrestrial drivers of North African climate are identified through the application of GEFA to gridded observations, remote sensing products, and reanalyses. According to GEFA, oceanic drivers dominate over terrestrial drivers in terms of their observed impacts on North African climate in most seasons. Terrestrial impacts are comparable to, or more important than, oceanic impacts on rainfall during the post-monsoon across the Sahel and WAM region, and after the short rain across the Horn of Africa (HOA). The key ocean basins that regulate North African rainfall are typically located in the tropics. While the observed impacts of SST variability across the tropical Pacific and tropical Atlantic Oceans on the Sahel rainfall are largely consistent with previous model-based findings, minimal impacts from tropical Indian Ocean variability on Sahel rainfall are identified in observations, in contrast to previous modeling studies. The current observational analysis verifies model-hypothesized positive vegetation-rainfall feedback across the Sahel and HOA, which is confined to the post-monsoon and post-short rains season, respectively. However, the observed positive vegetation feedback to rainfall in the semi-arid Sahel and HOA is largely due to moisture recycling, rather than the classic albedo mechanism. Future projections of Sahel rainfall remain highly uncertain in terms of both sign and magnitude within phases three and five of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The GEFA-based observational analyses will provide a benchmark for evaluating climate models, which will facilitate effective process-based model weighting for more reliable projections of regional climate, as well as model development.
The Challenge of Simulating the Regional Climate over Florida
NASA Astrophysics Data System (ADS)
Misra, V.; Mishra, A. K.
2015-12-01
In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.
NASA Astrophysics Data System (ADS)
Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise
2015-04-01
The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and cold states in the far-field ocean forcing. The MISOMIP experiment combines the MISMIP+ experiments with the third ISOMIP+ experiment. Changes in far-field ocean forcing lead to a rapid (over ~1-2 years) increase in sub-ice-shelf melting, which is allowed to drive ice-shelf retreat for ~100 years. Then, the far-field forcing is switched to a cold state, leading to a rapid decrease in melting and a subsequent advance over ~100 years. To illustrate, we present results from BISICLES and POP2x experiments for each of the three intercomparison exercises.
Optimizing dynamic downscaling in one-way nesting using a regional ocean model
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan; Ku, Hyeyun
2016-10-01
Dynamical downscaling with nested regional oceanographic models has been demonstrated to be an effective approach for both operationally forecasted sea weather on regional scales and projections of future climate change and its impact on the ocean. However, when nesting procedures are carried out in dynamic downscaling from a larger-scale model or set of observations to a smaller scale, errors are unavoidable due to the differences in grid sizes and updating intervals. The present work assesses the impact of errors produced by nesting procedures on the downscaled results from Ocean Regional Circulation Models (ORCMs). Errors are identified and evaluated based on their sources and characteristics by employing the Big-Brother Experiment (BBE). The BBE uses the same model to produce both nesting and nested simulations; so it addresses those error sources separately (i.e., without combining the contributions of errors from different sources). Here, we focus on discussing errors resulting from the spatial grids' differences, the updating times and the domain sizes. After the BBE was separately run for diverse cases, a Taylor diagram was used to analyze the results and recommend an optimal combination of grid size, updating period and domain sizes. Finally, suggested setups for the downscaling were evaluated by examining the spatial correlations of variables and the relative magnitudes of variances between the nested model and the original data.
A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion
NASA Astrophysics Data System (ADS)
Wirth, A.
2005-01-01
We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.
Global Paleobathymetry for the Cenomanian-Turonian (90 Ma)
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.
2014-12-01
We present a paleo-ocean bathymetry reconstruction for Cenomanian-Turonian (90 Ma) time in a 0.1°x0.1° resolution for use in paleo-climate studies. Age of the ocean floor for the Cenomanian-Turonian (90 Ma) is from Müller et al. (2008 a,b); coastlines are from the PALEOMAP Project (Scotese, 2011). To reconstruct paleo-ocean bathymetry, we use a plate model equation to model depth to basement (Turcotte and Schubert, 2002). We estimate plate model equation parameter values from measurements of modern oceans (Crosby et al., 2006). On top of the depth to basement, we isostatically add a multilayer sediment model derived from area-corrected sediment thickness data (Divins, 2003; Whittaker et al., 2013). Lastly, we parameterize the modern continental shelf, slope, and rise in a "sediment wedge model" to connect the coastline with the closest ocean crust as defined by Müller et al. (2008 a, b). These parameters are defined using empirical relationships obtained from study of modern ocean transects where a complete rifting history is preserved (Atlantic and Southern oceans), and the closest approach of the respective oceanic crust (Müller et al., 2008a,b) to the coastline. We use the modern ocean as a test, comparing maps and cross sections of modern ocean bathymetry modeled using our reconstruction method with that of ETOPO1 (Amante and Eakins, 2009). Adding sea plateaus and seamounts minimize the difference between our modeled bathymetry and ETOPO1. Finally, we also present a comparison of our reconstructed paleo-bathymetry to that of Müller et al. (2008 a,b) for the Cenomanian-Turonian (90 Ma). References: Amante, C., Eakins, B.W., 2009, NOAA Tech. Memo. NESDIS NGDC-24, 19 p. Crosby, A., McKenzie, D., Sclater, J.G., 2006, Geophysical Journal Int. 166.2, 553-573. Divins, D., 2003, NOAA NGDC, Boulder, CO. Müller, R., Sdrolias, M., Gaina, C., Roest, W., 2008b, Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743 Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008a, Science, 319, 1357-1362. Scotese, C., 2011, PALEOMAP Project, Arlington, Texas. Turcotte, D., Schubert, G., 2002, Cambridge University Press, Cambridge, 456 p. Whittaker, J., Goncharov, A., Williams, S., Müller, R., Leitchenkov, G., 2013, Geochemistry, Geophysics, Geosystems. DOI:10.1002/ggge.20181
Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.
Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less
Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results
Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; ...
2017-06-08
Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less
Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results
NASA Astrophysics Data System (ADS)
Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; Kauko, Hanna M.; Assmy, Philipp; Rösel, Anja; Itkin, Polona; Hudson, Stephen R.; Granskog, Mats A.; Gerland, Sebastian; Sundfjord, Arild; Steen, Harald; Hop, Haakon; Cohen, Lana; Peterson, Algot K.; Jeffery, Nicole; Elliott, Scott M.; Hunke, Elizabeth C.; Turner, Adrian K.
2017-07-01
Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Hamelin, Bruno; Dupré, Bernard; Allègre, Claude J.
1986-01-01
A Pb sbnd Sr sbnd Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the "central Indian Ocean" islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.
NASA Astrophysics Data System (ADS)
Voldoire, Aurore; Decharme, Bertrand; Pianezze, Joris; Lebeaupin Brossier, Cindy; Sevault, Florence; Seyfried, Léo; Garnier, Valérie; Bielli, Soline; Valcke, Sophie; Alias, Antoinette; Accensi, Mickael; Ardhuin, Fabrice; Bouin, Marie-Noëlle; Ducrocq, Véronique; Faroux, Stéphanie; Giordani, Hervé; Léger, Fabien; Marsaleix, Patrick; Rainaud, Romain; Redelsperger, Jean-Luc; Richard, Evelyne; Riette, Sébastien
2017-11-01
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere-surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.
The Southern Ocean biogeochemical divide.
Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L
2006-06-22
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.
NASA Astrophysics Data System (ADS)
Chen, Feng; Shapiro, Georgy; Thain, Richard
2013-04-01
The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as identifying the causes. The length scales of most energetic dynamic features in both ocean and atmosphere are defined by the Rossby radius of deformation, which is about 1000 km (a typical size of a cyclone) in the atmosphere while only 10-20 km (a size of a mesoscale eddy) in a shallow sea. However sub-mesoscale atmospheric patterns such as patchiness in the cloud cover could result in smaller scale variations of both the wind and solar radiation hence creating a direct link of these smaller atmospheric features with the ocean mesoscale variability. The simulation has been performed using a version of POLCOMS numerical model (Enriquez et al, 2005). Tidal boundary conditions were taken from the Oregon State University European Shelf Tidal Model (Egbert et al, 2010) and the temperature/ salinity initial fields and boundary conditions were taken from the World Ocean Database (Boyer et al, 2004). The paper discusses what elements of the circulation and water column structure are mostly sensitive to the meteo-fields resolution. References Kara, A.B., Wallcraft, A.J., Hurlburt, H.E., Loh, W.-Y., 2009. Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean? Journal of Geophysical Research, Vol. 114, D05101. Boyer, .T, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, T. Boyer, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, 2004. Objective Analyses of Annual, Seasonal, and Monthly Temperature and Salinity for the World Ocean on a ¼ Grid. International Journal of Climatology, 25, 931-945. Egbert, G. D., S. Y. Erofeeva, and R. D. Ray, 2010. Assimilation of altimetry data for nonlinear shallow-water tides: quarter-diurnal tides of the Northwest European Shelf, Continental Shelf Research, 30, 668-679. Enriquez, C. E., G. I. Shapiro, A. J. Souza, and A. G. Zatsepin, 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dyn., 55, 476-489. Georgy Shapiro, Dmitry Aleynik , Andrei Zatsepin , Valentina Khan, Valery Prostakishin , Tatiana Akivis , Vladimir Belokopytov , Anton Sviridov , and Vladimir Piotukh . 2011. Response of water temperature in the Black Sea to atmospheric forcing: the sensitivity study. Geophysical Research Abstracts. Vol. 13, EGU2011-933
Seasonal simulations using a coupled ocean-atmosphere model with data assimilation
NASA Astrophysics Data System (ADS)
Larow, Timothy Edward
1997-10-01
A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The coupled model is used for seasonal predictions of the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution triangular truncation 42 waves. The ocean general circulation model consists of a slightly modified version developed by Latif (1987). Coupling is synchronous with exchange of information every two model hours. Using daily analysis from ECMWF and observed monthly mean SSTs from NCEP, two - one year, time dependent, Newtonian relaxation were conducted using the coupled model prior to the seasonal forecasts. Relaxation was selectively applied to the atmospheric vorticity, divergence, temperature, and dew point depression equations, and to the ocean's surface temperature equation. The ocean's initial conditions are from a six year ocean-only simulation which used observed wind stresses and a relaxation towards observed SSTs for forcings. Coupled initialization was conducted from 1 June 1986 to 1 June 1987 for the 1987 boreal forecast and from 1 June 1987 to 1 June 1988 for the 1988 boreal forecast. Examination of annual means of net heat flux, freshwater flux and wind stress obtained by from the initialization show close agreement with Oberhuber (1988) climatology and the Florida State University pseudo wind stress analysis. Sensitivity of the initialization/assimilation scheme was tested by conducting two - ten member ensemble integrations. Each member was integrated for 90 days (June-August) of the respective year. Initial conditions for the ensembles consisted of the same ocean state as used by the initialize forecasts, while the atmospheric initial conditions were from ECMWF analysis centered on 1 June of the respective year. Root mean square error and anomaly correlations between observed and forecasted SSTs in the Nino 3 and Nino 4 regions show greater skill between the initialized forecasts than the ensemble forecasts. It is hypothesized that differences in the specific humidity within the planetary boundary layer are responsible for the large SST errors noted with the ensembles.
Factors controlling the Indian summer monsoon onset in a coupled model
NASA Astrophysics Data System (ADS)
Prodhomme, Chloé; Terray, Pascal; Masson, Sébastien; Izumo, Takeshi
2013-04-01
The observed Indian Summer Monsoon (ISM) onset occurs around 30 May and 2 June, with a standard deviation of 8 to 9 days, according to the estimates. The relationship between interannual variability of the ISM onset and SSTs (Sea Surface Temperature) remains controversial. The role of Indian Ocean SSTs remain unclear, some studies have shown a driving role while other suggests a passive relation between Indian Ocean SSTs and ISM. The intrinsic impact of ENSO (El Nino-Southern Oscillation) is also difficult to estimate from observations alone. Finally, the predictability of the ISM onset remains drastically limited by the inability of both forced and coupled model to reproduce a realistic onset date. In order to measure objectively the ISM onset, different methods have been developed based on rainfall or dynamical indices (Ananthakrishnan and Soman, 1988 ; Wang and Ho 2002 ; Joseph et al. 2006). In the study we use the Tropospheric Temperature Gradient (TTG), which is the difference between the tropospheric temperature in a northern and a southern box in the Indian areas (Xavier et al. 2007). This index measures the dynamical strength of the monsoon and provides a stable and precise onset date consistent with rainfall estimates. In the SINTEX-F2 coupled model, the ISM onset measured with the TTG is delayed of approximately 10 days and is in advance of 6 days in the atmosphere-only (ECHAM) model. The 16 days lag between atmospheric-only and coupled runs suggests a crucial role of the coupling, especially SST biases on the delayed onset. With the help of several sensitivity experiments, this study tries to identify the keys regions influencing the ISM onset. Many studies have shown a strong impact of the Arabian Sea and Indian Ocean SST on the ISM onset. Nevertheless, the correction of the SSTs, based on AVHRR, in the tropical Indian Ocean only slightly corrects the delayed onset in the coupled model, which suggests an impact of SST in others regions on the ISM onset. During May and June, the main tropical SST biases in the coupled model are a strong warm bias in the Atlantic Ocean and a warm bias in the tropical Pacific Ocean, except along the equator around 140°W-100°W, where there is a cold tongue bias. The correction of the warm bias in the Atlantic Ocean slightly improves the onset date. Conversely, the correction of SST biases in the tropical and equatorial Pacific Oceans advances the onset date of 12 and 10 days, respectively, compared to the control coupled run. This result suggests that, at least in this model, the ISM onset is mainly control by the Pacific Ocean SSTs. Even if ENSO has an impact on the onset date it does not explain the delay, which is related to the biased SST mean state in the Pacific Ocean.
NASA Astrophysics Data System (ADS)
Chowdhary, J.; Brian, C.; Stamnes, S.; Hostetler, C. A.; Cetinic, I.; Slade, W. H.; Hu, Y.
2017-12-01
Ocean spectra typically contribute less than 10% to top-of-atmosphere (TOA) radiance observations in the visible (VIS). The remaining 90% of TOA radiance originates from scattering in the atmosphere which needs to be removed (i.e. corrected) but varies substantially with the aerosol present at the time of observation. The traditional approach for atmospheric correction (AC), used for ocean color sensors such as SeaWiFS, MODIS, and VIIRS, estimates aerosol scattering properties from TOA radiance observations in the near-infrared/short-wave infrared (NIR/SWIR) where the ocean becomes dark. The aerosol model is subsequently used to compute the atmospheric scattering contribution to the TOA radiance in the VIS. The final step is to subtract this computed scattering contribution from the real (i.e. observed) TOA radiance. As an alternative to the traditional approach for AC, we retrieve the atmosphere (i.e., aerosol) and ocean (i.e., color) properties simultaneously from measurements in the VIS. To separate the information content for the atmosphere and ocean, we use lidar measurements and multi-angle polarization measurements. Lidar and polarimeter measurements are powerful tools to enhance the ocean product retrievals from conventional ocean color sensors, and are under consideration to accompany future generation ocean color sensors. Here, we present results of simultaneous atmosphere-ocean retrievals using collocated airborne lidar and polarimeter data that were acquired during the Ship-Aircraft Bio-Optical Research (SABOR) campaign. We discuss 2 hydrosol models (which differ in number of free parameters) that were used for these inversions. We then compare our ocean retrievals with measurements obtained from the accompanying cruise ship. Finally, we touch upon a next generation of hydrosol models that accommodates the unique sensitivity of ocean lidar profiles to plankton morphology.
NASA Astrophysics Data System (ADS)
Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.
2016-12-01
From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Krueger, Steven K.
1998-01-01
The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.
NASA Astrophysics Data System (ADS)
Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven
2017-11-01
State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
A 1-D model of sinking particles
NASA Astrophysics Data System (ADS)
Jokulsdottir, T.; Archer, D.
2006-12-01
Acidification of the surface ocean due to increased atmospheric CO2 levels is altering its saturation state with respect to calcium carbonate (Orr et al., 2005) and the ability of calcifying phytoplankton to calcify (Riebesell et al., 2000). Sequestration of atmospheric carbon dioxide into the deep ocean is affected by this, because calcite is the key component in ballasting sinking particles (Klaas and Archer, 2001). The settling velocity of particles is not explicitly modeled but often represented as a constant in climate models. That is clearly inaccurate as the composition of particles changes with depth as bacteria and dissolution processes act on its different components, changing their ratio with depth. An idealized, mechanistic model of particles has been developed where settling velocity is calculated from first principles. The model is forced 100m below the surface with export ratios (organic carbon/calcium carbonate) corresponding to different CO2 levels according to Riebesell et al. The resulting flux is compared to the flux generated by the same model where the settling velocity is held constant. The model produces a relatively constant rain ratio regardless of the amount of calcite available to ballast the particle, which is what data suggests (Conte et al., 2001), whereas a constant velocity model does not. Comparing the flux of particulate organic carbon to the seafloor with increasing CO2 levels, the outcome of the constant velocity model is an increase whereas when the velocity is calculated a decrease results. If so, the change in export ratio with an increase in CO2 concentrations acts as a positive feedback: as increased atmospheric CO2 levels lead to the ocean pH being lowered, reduced calcification of marine organisms results and a decrease in particulate organic carbon flux to the deep ocean, which again raises CO2 concentrations. Conte, M.,, N. Ralph, E. Ross, Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda, Deep-Sea Research II 48 1471-1505, 2001 Klaas, C., and D.E. Archer, Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochemical Cycles, 16, 2002. Orr, J. C. and et. al. Anthropogenic ocean acidification over calcifying organisms. Nature, 437(29):681 686, 2005. U. Riebesell, I. Zondervan, B. Rost, P.D. Tortell, R.E. Zeebe, and F.M.M.Morel. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407:364 368, 2000.
Adaptive scaling model of the main pycnocline and the associated overturning circulation
NASA Astrophysics Data System (ADS)
Fuckar, Neven-Stjepan
This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.
NASA Technical Reports Server (NTRS)
Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.
1995-01-01
A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.
NASA Astrophysics Data System (ADS)
Bondzio, J. H.; Morlighem, M.; Seroussi, H. L.
2017-12-01
Oceanic forcing is likely to have triggered the breakup of Jakobshavn Isbræ's floating ice tongue in the late 1990s, which led to ongoing dynamic changes such as widespread flow acceleration and mass loss. Our understanding of the link between ice dynamics, oceanic forcing, and calving is limited, yet crucial for prognostic simulations of Jakobshavn Isbræ. Here, we first reconstruct Jakobshavn's calving dynamics from 1985 to 2017, by relying on the model from Bondzio et al. 2017, but with a freely evolving ice front. We test different calving rate parameterizations implemented in the Ice Sheet System Model (ISSM) and determine the best law by comparing the modeled retreat to observations. We then identify the controls on calving rate and ice front retreat by varying the submarine melting rate and frontal melt rates as a function of subglacial water discharge and ocean thermal forcing. This sensitivity analysis is an important step toward performing prognostic simulations of JI and provides pathways for future data acquisition.
The Geoid: Effect of compensated topography and uncompensated oceanic trenches
Chase, C.G.; McNutt, Marcia K.
1982-01-01
The geoid is becoming increasingly important in interpretation of global tectonics. Most of the topography of the earth is isostatically compensated, so removal of its effect from the geoid is appropriate before tectonic modeling. The oceanic trenches, however, are dynamically depressed features and cannot be isostatically compensated in the classical way. Continental topography compensated at 35 km gives intracontinental geoidal undulations of up to 15 m over mountain ranges in a spherical harmonic expansion to order and degree 22. Oceanic topography compensated at 40 km, reasonable for the thermally supported long wavelengths, matches the +10 m difference between old continents and old oceans in a detailed NASA/GSFC geoid. Removing the assumed compensation for the oceanic trenches leaves negative anomalies of up to 9 m amplitude caused by their uncompensated mass deficit. This mass deficit acts as a partial "regional compensation" for the excess mass of the subducting slabs, and partly explains why geoidal (and gravity) anomalies over the cold slabs are less than thermal models predict.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.
2016-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival.
Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival. PMID:24752011
NASA Technical Reports Server (NTRS)
Bourras, D.; Eymard, L.; Liu, W. T.
2000-01-01
The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.
NASA Astrophysics Data System (ADS)
Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin
2018-03-01
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Brodeau, L.; Brandefelt, J.; Lundberg, P.; Döös, K.
2013-01-01
Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.
Description and evaluation of the Earth System Regional Climate Model (RegCM-ES)
NASA Astrophysics Data System (ADS)
Farneti, Riccardo; Sitz, Lina; Di Sante, Fabio; Fuentes-Franco, Ramon; Coppola, Erika; Mariotti, Laura; Reale, Marco; Sannino, Gianmaria; Barreiro, Marcelo; Nogherotto, Rita; Giuliani, Graziano; Graffino, Giorgio; Solidoro, Cosimo; Giorgi, Filippo
2017-04-01
The increasing availability of satellite remote sensing data, of high temporal frequency and spatial resolution, has provided a new and enhanced view of the global ocean and atmosphere, revealing strong air-sea coupling processes throughout the ocean basins. In order to obtain an accurate representation and better understanding of the climate system, its variability and change, the inclusion of all mechanisms of interaction among the different sub-components, at high temporal and spatial resolution, becomes ever more desirable. Recently, global coupled models have been able to progressively refine their horizontal resolution to attempt to resolve smaller-scale processes. However, regional coupled ocean-atmosphere models can achieve even finer resolutions and provide additional information on the mechanisms of air-sea interactions and feedbacks. Here we describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES). RegCM-ES presently includes the coupling between atmosphere, ocean, land surface and sea-ice components, as well as an hydrological and ocean biogeochemistry model. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains. RegCM-ES has shown improvements in the representation of precipitation and SST fields over the tested domains, as well as realistic representations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source making it suitable for usage by the large scientific community.
NASA Astrophysics Data System (ADS)
Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Font, J.
2012-12-01
Remote sensing platforms onboard satellites provide synoptic maps of ocean surface and thus an accurate picture of many processes taking place in the ocean at mesoscale and sub-mesoscale levels mainly can be gained. Since the first ocean observation satellites these images has been exploited to assess ocean processes; however, extracting further dynamic information from remote sensing maps generally implies a higher degree of processing complexity, involving the use of numerical models and assimilation schemes. A critical variable for the understanding the climate system is Sea Surface Salinity (SSS). The arrival of SMOS and Aquarius missions has given us access to SSS in a regular basis. However, those images still suffer of many acquisition and processing issues, what precludes gaining a complete picture of ocean surface dynamics. In order to favor the oceanographic exploitation of SMOS and Aquarius maps new filtering schemes need to be devised. During the last years a new branch of image processing techniques applied to ocean observation has arisen with force, namely multiscale/multifractal analysis. Different scalars submitted to the action of the ocean flow develop an identical inner structure (multifractal structure) that can be revealed by means of the appropriate analysis tools (singularity analysis). These tools allow for instance to characterize surface currents from snapshots of different scalars (Turiel et al, Ocean Sciences, 2009). In this work we go further away, with the introduction of a new method to blend different types of scalar in a single map of improved quality. The method does not imply the introduction of any parameter, nor relies in any numerical model, but in the assumption that the action of the oceanic flow leads to the same multifractal structure in any ocean variable. The method allows, for instance, to use the multifractal structure coming from SST images to improve the quality of SSS maps (as illustrated in the figure). It can also be applied to merge SMOS and Aquarius maps to increase the quality and spatial coverage.; Top row: 10-day MW SST (left), SMOS SSS (middle), and SSS resulting from fusing SST singularities (right). Bottom row: Associated singularity exponents. Brighter colors are associated to most singular (i.e., negative) exponents.
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe
2014-01-01
Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations
Development of Operational Wave-Tide-Storm surges Coupling Prediction System
NASA Astrophysics Data System (ADS)
You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.
2009-04-01
The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.
NASA Astrophysics Data System (ADS)
Rose, Brian E. J.
2015-02-01
Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.
NASA Astrophysics Data System (ADS)
Garnier, Valérie; Honnorat, Marc; Benshila, Rachid; Boutet, Martial; Cambon, Gildas; Chanut, Jérome; Couvelard, Xavier; Debreu, Laurent; Ducousso, Nicolas; Duhaut, Thomas; Dumas, Franck; Flavoni, Simona; Gouillon, Flavien; Lathuilière, Cyril; Le Boyer, Arnaud; Le Sommer, Julien; Lyard, Florent; Marsaleix, Patrick; Marchesiello, Patrick; Soufflet, Yves
2016-04-01
The COMODO group (http://www.comodo-ocean.fr) gathers developers of global and limited-area ocean models (NEMO, ROMS_AGRIF, S, MARS, HYCOM, S-TUGO) with the aim to address well-identified numerical issues. In order to evaluate existing models, to improve numerical approaches and methods or concept (such as effective resolution) to assess the behavior of numerical model in complex hydrodynamical regimes and to propose guidelines for the development of future ocean models, a benchmark suite that covers both idealized test cases dedicated to targeted properties of numerical schemes and more complex test case allowing the evaluation of the kernel coherence is proposed. The benchmark suite is built to study separately, then together, the main components of an ocean model : the continuity and momentum equations, the advection-diffusion of the tracers, the vertical coordinate design and the time stepping algorithms. The test cases are chosen for their simplicity of implementation (analytic initial conditions), for their capacity to focus on a (few) scheme or part of the kernel, for the availability of analytical solutions or accurate diagnoses and lastly to simulate a key oceanic processus in a controlled environment. Idealized test cases allow to verify properties of numerical schemes advection-diffusion of tracers, - upwelling, - lock exchange, - baroclinic vortex, - adiabatic motion along bathymetry, and to put into light numerical issues that remain undetected in realistic configurations - trajectory of barotropic vortex, - interaction current - topography. When complexity in the simulated dynamics grows up, - internal wave, - unstable baroclinic jet, the sharing of the same experimental designs by different existing models is useful to get a measure of the model sensitivity to numerical choices (Soufflet et al., 2016). Lastly, test cases help in understanding the submesoscale influence on the dynamics (Couvelard et al., 2015). Such a benchmark suite is an interesting bed to continue research in numerical approaches as well as an efficient tool to maintain any oceanic code and assure the users a stamped model in a certain range of hydrodynamical regimes. Thanks to a common netCDF format, this suite is completed with a python library that encompasses all the tools and metrics used to assess the efficiency of the numerical methods. References - Couvelard X., F. Dumas, V. Garnier, A.L. Ponte, C. Talandier, A.M. Treguier (2015). Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence. Ocean Modelling, Vol 96-2, p 243-253. doi:10.1016/j.ocemod.2015.10.004. - Soufflet Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu , R. Benshila (2016). On effective resolution in ocean models. Ocean Modelling, in press. doi:10.1016/j.ocemod.2015.12.004
NASA Astrophysics Data System (ADS)
Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen
2016-07-01
The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.
Optimization of Ocean Color Algorithms: Application to Satellite Data Merging
NASA Technical Reports Server (NTRS)
Maritorena, Stephane; Siegel, David A.; Morel, Andre
2003-01-01
The objective of our program is to develop and validate a procedure for ocean color data merging which is one of the major goals of the SIMBIOS project. The need for a merging capability is dictated by the fact that since the launch of MODIS on the Terra platform and over the next decade, several global ocean color missions from various space agencies are or will be operational simultaneously. The apparent redundancy in simultaneous ocean color missions can actually be exploited to various benefits. The most obvious benefit is improved coverage. The patchy and uneven daily coverage from any single sensor can be improved by using a combination of sensors. Beside improved coverage of the global Ocean the merging of Ocean color data should also result in new, improved, more diverse and better data products with lower uncertainties. Ultimately, ocean color data merging should result in the development of a unified, scientific quality, ocean color time series, from SeaWiFS to NPOESS and beyond. Various approaches can be used for ocean color data merging and several have been tested within the frame of the SIMBIOS program. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances (L(sub WN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) it works with single or multiple data sources regardless of their specific bands, 2) it exploits band redundancies and band differences, 3) it accounts for uncertainties in the (L(sub WN)(lambda)) data and, 4) it provides uncertainty estimates for the retrieved variables.
Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
NASA Astrophysics Data System (ADS)
Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.
2014-08-01
The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.
An Implementation of Icebergs in CICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comeau, Darin S.
2012-06-25
There is an estimated global iceberg calving flux of {approx} 2300 Gt yr{sup -1}, about 90% of which occurs in the Antarctic. Icebergs provide an important vehicle for freshwater injection into the polar oceans, an estimated 60-80% of net freshwater flux from land ice to oceans in the Antarctic. Icebergs interact dynamically with surrounding sea ice, potentially affecting marine eco systems. Icebergs lose mass primarily through three mechanisms, described by empirical relations: (1) Basal melting - turbulence due to differences in oceanic and iceberg motion (also function of difference in temperature between ocean and iceberg); (2) Lateral melting - buoyantmore » convection along sidewalls of iceberg (function of ocean temperature); and (3) Erosion due to waves (function of sea state and ocean temperature). We have incorporated an iceberg parameterization into the CICE model where sea ice responds to the icebergs, rather than being a static forcing term. Icebergs produce highly localized anomalies in sea ice concentration, thickness, and strength. Summer sea ice meltback limits these effects. Icebergs shed freshwater as they move, transporting freshwater away from the coast.« less
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
NASA Astrophysics Data System (ADS)
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
Modeling Vertical Structure and Heat Transport within the Oceans of Ice-covered Worlds (Invited)
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2010-12-01
Indirect observational evidence provides a strong case for liquid oceans beneath the icy crust of Europa and several other frozen moons in the outer solar system. However, little is known about the fluid circulation within these exotic oceans. As a first step toward understanding circulations driven by buoyancy (rather than mechanical forcing from tides), one must understand the typical vertical structure of temperature, salinity, and thus density within the ocean. Following a common approach from terrestrial oceanography, I have built a "single column convection model" for icy world oceans, which describes the density structure of the ocean as a function of depth only: horizontal variations are ignored. On Earth, this approach is of limited utility, because of the strong influence of horizontal wind-driven currents and sea-surface temperature gradients set in concert with the overlying atmosphere. Neither of these confounding issues is present in an icy world's ocean. In the model, mixing of fluid properties via overturning convection is modeled as a strong diffusive process which only acts when the ocean is vertically unstable. "Double diffusive" processes (salt fingering and diffusive layering) are included: these are mixing processes resulting from the unequal molecular diffusivities of heat and salt. Other important processes, such as heating on adiabatic compression, and freshwater fluxes from melting overlying ice, are also included. As a simple test case, I considered an ocean of Europa-like depth (~100 km) and gravity, heated from the seafloor. To simplify matters, I specified an equation of state appropriate to terrestrial seawater, and a simple isothermal ocean as an initial condition. As expected, convection gradually penetrates upward, warming the ocean to an adiabatic, unstratified equilibrium density profile on a timescale of 50 kyr if 4.5 TW of heat are emitted by the silicate interior; the same result is achieved in proportionally more/less time for weaker/stronger internal heating. Unlike Earth's oceans, I predict that since icy worlds' oceans are heated from below, they will generally be unstratified, with constant potential density from top to bottom. There will be no pycnocline as on Earth, so global ocean currents supported by large-scale density gradients seem unlikely. However, icy world oceans may be "weird" in ways which are unheard-of in terrestrial oceanography The density of sulfate brine has a very different equation of state than chloride brines: does this affect the vertical structure? If the ocean water is very pure, cold water can be less dense than warm. Can this lead to periodic catastrophic overturning, as proposed by other authors? These and other questions are currently being investigated using the single-column convection model as a primary tool.
NASA Astrophysics Data System (ADS)
Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.
2018-03-01
Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.
NASA Astrophysics Data System (ADS)
Fuentes-Franco, Ramon; Koenigk, Torben
2017-04-01
Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Meju, Max A.; Fontes, Sergio L.
2013-10-01
The commonest technique for determination of the continental-oceanic crustal boundary or transition (COB) zone is based on locating and visually correlating bathymetric and potential field anomalies and constructing crustal models constrained by seismic data. In this paper, we present a simple method for spatial correlation of bathymetric and potential field geophysical anomalies. Angular differences between gradient directions are used to determine different types of correlation between gravity and bathymetric or magnetic data. It is found that the relationship between bathymetry and gravity anomalies can be correctly identified using this method. It is demonstrated, by comparison with previously published models for the southwest African margin, that this method enables the demarcation of the zone of transition from oceanic to continental crust assuming that this it is associated with geophysical anomalies, which can be correlated using gradient directions rather than magnitudes. We also applied this method, supported by 2-D gravity modelling, to the more complex Liberia and Cote d'Ivoire-Ghana sectors of the West African transform margin and obtained results that are in remarkable agreement with past predictions of the COB in that region. We suggest the use of this method for a first-pass interpretation as a prelude to rigorous modelling of the COB in frontier areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithosphericmore » keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.« less
NASA Technical Reports Server (NTRS)
White, Warren B.; Tai, Chang-Kou; Holland, William R.
1990-01-01
The optimal interpolation method of Lorenc (1981) was used to conduct continuous assimilation of altimetric sea level differences from the simulated Geosat exact repeat mission (ERM) into a three-layer quasi-geostrophic eddy-resolving numerical ocean box model that simulates the statistics of mesoscale eddy activity in the western North Pacific. Assimilation was conducted continuously as the Geosat tracks appeared in simulated real time/space, with each track repeating every 17 days, but occurring at different times and locations within the 17-day period, as would have occurred in a realistic nowcast situation. This interpolation method was also used to conduct the assimilation of referenced altimetric sea level differences into the same model, performing the referencing of altimetric sea sevel differences by using the simulated sea level. The results of this dynamical interpolation procedure are compared with those of a statistical (i.e., optimum) interpolation procedure.
Analysis and geological interpretation of gravity data from GEOS-3 altimeter
NASA Technical Reports Server (NTRS)
Talwani, M.; Watts, A. B.; Chapman, M. E.
1978-01-01
A number of detailed gravimetric geoids of portions of the world's oceans from marine gravity measurements were constructed. The geoids were constructed by computing 1 x 1 deg or 10 x 10 deg averages of free-air anomaly data and subtracting these values from currently used satellite derived Earth models. The resulting difference gravity anomalies are then integrated over a sphere using a simplified form of Stoke's equation to obtain a difference geoid. This difference geoid is added to the satellite derived model to obtain a 1 x 1 deg or 10 x 10 deg total gravimetric geoid. The geoid undulations are studied by comparison of the altimeter measurements with the morphology of the ocean floor. Utilizing a combination of altimetry data, gravity and seismic reflection data, geophysical models of the earth can be constructed.
NASA Astrophysics Data System (ADS)
Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.
2017-12-01
Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.
Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions
NASA Astrophysics Data System (ADS)
Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.
2018-01-01
In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.
A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)
2001-01-01
A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5 W/sq m of UWM/COADS, except for some areas in the extratropical oceans, where the differences in wind speed have large impact on the difference in sensible heat flux. The dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models.
Decline in global oceanic oxygen content during the past five decades.
Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin
2017-02-15
Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
NASA Astrophysics Data System (ADS)
Leggett, L. Mark W.; Ball, David A.
2018-02-01
The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the (more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the single time series made from the subtraction of these two time series as the `global surface temperature gap'. We also develop an analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-difference CO2 (that is, the change in CO2 from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown. First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that, alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to continue into the future to keep the temperature lower than the level-of-CO2 models would suggest. It is shown that this means there can be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15(20):11571-11592, 2015) to forecast future global surface temperature.
Librations and tides of icy satellites: model comparison for Enceladus
NASA Astrophysics Data System (ADS)
Trinh, A.; Van Hoolst, T.; Baland, R. M.; Beuthe, M.; Rivoldini, A.; Dehant, V. M. A.
2015-12-01
The latest measurements of the librations of Enceladus suggest that it could have a global subsurface ocean or a non-hydrostatic core (Thomas et al. 2014). Further observations should constrain the properties of the ice shell, and similar insights are expected from future investigation of Europa and Ganymede.Detailed models of the librations and tides are therefore required to properly interpret these measurements in terms of interior structure. Here we compare the `classical', separate tide and libration models (where spherical symmetry is assumed to compute the tides, Van Hoolst et al. 2013) with our combined tide+libration model (Trinh et al. 2013), both extended to account for non-hydrostatic structure.Even with a global ocean, different mechanisms act to prevent Enceladus's shell from moving independently from the rest. Among those, pressure coupling across the flattened boundaries of the ocean requires special care if the shape is not fully relaxed. We discuss how it should be modelled in the classical approach to be consistent with the combined model.
Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?
NASA Technical Reports Server (NTRS)
Gregg, Watson
2012-01-01
Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink rather than the source indicated by the free-run model and data estimates.
Ocean modelling aspects for drift applications
NASA Astrophysics Data System (ADS)
Stephane, L.; Pierre, D.
2010-12-01
Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties over the initial position of the drifting material. Works in the near future will explore that concept with ensemble of currents obtained with different initial conditions, phase shifted boundary forcings or perturbed atmospheric surface forcings.
Boreal Summer ISO hindcast experiment: preliminary results from SNU
NASA Astrophysics Data System (ADS)
Heo, S.; Kang, I.; Kim, D.; Ham, Y.
2010-12-01
As a part of internationally coordinated research program, hindcast experiments with focus on boreal summer intraseasonal oscillation (ISO) have been done in Seoul National University (SNU). This study aims to show preliminary results from SNU’s efforts. The ISO prediction system used in the hindcast experiment consists of SNU coupled model and SNU initialization method. The SNU coupled model is an ocean-atmosphere coupled model which couples the SNU Atmospheric GCM (SNU AGCM) to the Modular Ocean Model ver.2.2 (MOM2.2) Ocean GCM developed at Geophysical Fluid Dynamics Laboratory (GFDL). In the SNU initialization method, both atmospheric and oceanic states are nudged toward reanalysis data (ERAinterim and GODAS) before prediction starting date. For the results here, 2 ensemble members are generated by using different nudging period, 8 and 9 days, respectively. The initial dates of 45-day predictions are the 1st, 11th, 21st of months during boreal summer season (May to October). Prediction skills and its dependency on the initial amplitude, the initial phase, and the number of ensemble members are investigated using the Real-time Multivariate MJO (RMM) index suggested by Wheeler and Hendon (2004). It is shown in our hindcast experiment that, after 13 forecast lead days (the forecast skill is about 0.7), the prediction skill does not depend on the strength of the initial state. Also, we found that the prediction skill has a phase dependency. The prediction skill is particularly low when the convective center related to the MJO is over the Indian Ocean (phase 2). The ensemble prediction has more improved correlation skill than each member. To better understand the phase dependency, we compared the observed and predicted behavior of the MJO that propagates from different starting phases. The phase speed of the prediction is slower than the observation. The MJO in the hindcast experiment propagates with weaker amplitudes than observed except for initial phase 3. Also investigated is the climatology and anomalies of precipitable water to understand the difference of the propagation. The difference between observed and predicted climatology shows strong dry bias over the eastern Indian Ocean, in where convective anomalies are not properly developed in hindcast data, especially those from initial phase 2. Our results suggest possible impacts of mean bias on prediction skills of the MJO.
A review of ocean chlorophyll algorithms and primary production models
NASA Astrophysics Data System (ADS)
Li, Jingwen; Zhou, Song; Lv, Nan
2015-12-01
This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.
Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability
NASA Astrophysics Data System (ADS)
Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.
2018-04-01
This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent deep-water formation in the Labrador Sea, resulting in overestimated North Atlantic SST variability. Concerning the influence of locally (isotropically) increased resolution, the ENSO pattern and index statistics improve significantly with higher resolution around the equator, illustrating the potential of the novel unstructured-mesh method for global climate modeling.
Multiple states in the late Eocene ocean circulation
NASA Astrophysics Data System (ADS)
Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.
2018-04-01
The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.
Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway
NASA Astrophysics Data System (ADS)
Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.
2011-12-01
During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.
NASA Astrophysics Data System (ADS)
Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.
2014-12-01
The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory
Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.
2014-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation. The figure shows eddy activity in the vertically integrated (barotropic) velocity nearly six years into a POPSICLES simulation of the Antarctic region.
Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study
NASA Astrophysics Data System (ADS)
Pfister, Patrik; Stocker, Thomas
2016-04-01
Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res. Lett., 41, 7306-7313 Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll (2014), The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake, Geophys. Res. Lett., 41, 1071-1078 Winton M., K. Takahashi and I. M. Held (2010), Importance of ocean heat uptake efficacy to transient climate change, J. Clim., 23, 2333-44 Winton, M., S. M. Griffies, B. Samuels, J. L. Sarmiento and T. L. Frölicher (2013) Connecting changing ocean circulation with changing climate, J. Clim., 26, 2268-78
What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?
NASA Astrophysics Data System (ADS)
Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.
2015-12-01
Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.
Quantifying the drivers of ocean-atmosphere CO2 fluxes
NASA Astrophysics Data System (ADS)
Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.
2016-07-01
A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.
Global Ocean Currents Database
NASA Astrophysics Data System (ADS)
Boyer, T.; Sun, L.
2016-02-01
The NOAA's National Centers for Environmental Information has released an ocean currents database portal that aims 1) to integrate global ocean currents observations from a variety of instruments with different resolution, accuracy and response to spatial and temporal variability into a uniform network common data form (NetCDF) format and 2) to provide a dedicated online data discovery, access to NCEI-hosted and distributed data sources for ocean currents data. The portal provides a tailored web application that allows users to search for ocean currents data by platform types and spatial/temporal ranges of their interest. The dedicated web application is available at http://www.nodc.noaa.gov/gocd/index.html. The NetCDF format supports widely-used data access protocols and catalog services such as OPeNDAP (Open-source Project for a Network Data Access Protocol) and THREDDS (Thematic Real-time Environmental Distributed Data Services), which the GOCD users can use data files with their favorite analysis and visualization client software without downloading to their local machine. The potential users of the ocean currents database include, but are not limited to, 1) ocean modelers for their model skills assessments, 2) scientists and researchers for studying the impact of ocean circulations on the climate variability, 3) ocean shipping industry for safety navigation and finding optimal routes for ship fuel efficiency, 4) ocean resources managers while planning for the optimal sites for wastes and sewages dumping and for renewable hydro-kinematic energy, and 5) state and federal governments to provide historical (analyzed) ocean circulations as an aid for search and rescue
Use of microwave satellite data to study variations in rainfall over the Indian Ocean
NASA Technical Reports Server (NTRS)
Hinton, Barry B.; Martin, David W.; Auvine, Brian; Olson, William S.
1990-01-01
The University of Wisconsin Space Science and Engineering Center mapped rainfall over the Indian Ocean using a newly developed Scanning Multichannel Microwave Radiometer (SMMR) rain-retrieval algorithm. The short-range objective was to characterize the distribution and variability of Indian Ocean rainfall on seasonal and annual scales. In the long-range, the objective is to clarify differences between land and marine regimes of monsoon rain. Researchers developed a semi-empirical algorithm for retrieving Indian Ocean rainfall. Tools for this development have come from radiative transfer and cloud liquid water models. Where possible, ground truth information from available radars was used in development and testing. SMMR rainfalls were also compared with Indian Ocean gauge rainfalls. Final Indian Ocean maps were produced for months, seasons, and years and interpreted in terms of historical analysis over the sub-continent.
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qing; Xu, Jing; Wei, Jun
2018-04-01
Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.
Initial tsunami signals in the lithosphere-ocean-atmosphere medium
NASA Astrophysics Data System (ADS)
Novik, O.; Ershov, S.; Mikhaylovskaya, I.
Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive
Response of the tropical Pacific Ocean to El Niño versus global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Luo, Yiyong; Lu, Jian
Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component, Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: 1) the phase locking of the seasonal cycle reduction is more notable under GW compared withmore » El Niño, implying more extreme El Niño events in the future; 2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; 3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and 4) the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.« less
NASA Astrophysics Data System (ADS)
Nick, F. M.; Vieli, A.; Pattyn, F.; Van de Wal, R.
2011-12-01
Oceanic forcing has been suggested as a major trigger for dynamic changes of Greenland outlet glaciers. Significant melting near their calving front or beneath the floating tongue and reduced support from sea ice or ice melange in front of their calving front can result in retreat of the terminus or the grounding line, and an increase in calving activities. Depending on the geometry and basal topography of the glacier, these oceanic forcing can affect the glacier dynamic differently. Here, we carry out a comparison study between three major outlet glaciers in Greenland and investigate the impact of a warmer ocean on glacier dynamics and ice discharge. We present results from a numerical ice-flow model applied to Petermann Glacier in the north, Jakobshavn Glacier in the west, and Helheim Glacier in the southeast of Greenland.
The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations
NASA Technical Reports Server (NTRS)
Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim
2003-01-01
The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.
NASA Technical Reports Server (NTRS)
Rau, G. H.; Takahashi, T.; Des Marais, D. J.; Repeta, D. J.; Martin, J. H.
1992-01-01
Consistent with the hypothesis that plankton delta C-14 and (CO2(aq)) are inversely related, increases in both sinking and suspended particulate organic matter (POM) delta C-13 detected by the Joint Global Ocean Flux Study (JGOFS) were highly negatively correlated with mixed-layer (CO2(aq)). A model of plant delta C-13 by Farquhar et al. (1982) is adapted to show that under a constant phytoplankton demand for CO2 an inverse nonlinear suspended POM delta C-13 response to ambient (CO2(aq)) is expected. Differences between predicted and observed suspended POM delta C-13 vs. (CO2(aq)) trends and among observed relationships can be reconciled if biological CO2 demand is allowed to vary.
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie
2000-09-01
The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahn, A.; Lindsay, K.; Giraud, X.
Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, themore » 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. Lastly, at the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.« less
Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2017-11-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
NASA Astrophysics Data System (ADS)
Sebera, Josef; Bezděk, Aleš; Kostelecký, Jan; Pešek, Ivan; Shum, C. K.
2016-01-01
The most important high-resolution geopotential models such as EGM96 and EGM2008 have been released approximately once per decade. In light of the ability of modern satellite, airborne or terrestrial techniques to provide new data sets every year (e.g., in polar and ocean areas), these data can be readily included in existing models without waiting for a new release. In this article, we present a novel ellipsoidal approach for updating high-resolution models over the oceans with new gridded data. The problem is demonstrated using the EGM2008 model updated with DTU10 geoid and gravity grids that provide additional signal over the Arctic oceans. The result of the procedure are the ellipsoidal and the spherical harmonic coefficients up to degree 4320 and 4400, respectively. These coefficients represent the input data set to within 0.08 mGal globally, with the largest differences located at the land-ocean boundaries, which is two orders of magnitude less than real accuracy of gravity data from satellite altimetry. Along with the harmonic coefficients a detailed map of the second vertical derivative of the anomalous potential (or vertical gravitational gradient) on 1 arc-min grid is anticipated to improve or complement the original DTU10 geoid model. Finally, an optimized set of Jekeli's functions is provided as they allow for computing oblate ellipsoidal harmonics up to a very high degree and order (>10,000) in terms of the hypergeometric formulation.
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
Calibrating the ECCO ocean general circulation model using Green's functions
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.
2002-01-01
Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.
South Atlantic meridional transports from NEMO-based simulations and reanalyses
NASA Astrophysics Data System (ADS)
Mignac, Davi; Ferreira, David; Haines, Keith
2018-02-01
The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.
231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)
NASA Astrophysics Data System (ADS)
Gu, Sifan; Liu, Zhengyu
2017-12-01
The sediment 231Pa / 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of the sediment 231Pa / 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa / 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa / 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa / 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.
A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño
NASA Astrophysics Data System (ADS)
Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu
2001-02-01
Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.
Modelling ocean-colour-derived chlorophyll a
NASA Astrophysics Data System (ADS)
Dutkiewicz, Stephanie; Hickman, Anna E.; Jahn, Oliver
2018-01-01
This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a) product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model) water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a
in this paper). We compare the derived Chl a to the actual
model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter). The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation and peak of the spring bloom in the derived Chl a lags the actual Chl a by days and sometimes weeks. These results indicate that care should also be taken when studying phenology through satellite-derived products of Chl a. This study also reemphasizes that ocean-colour-derived Chl a is not the same as the real in situ Chl a. In fact the model derived Chl a compares better to real-world satellite-derived Chl a than the model actual Chl a. Modellers should keep this is mind when evaluating model output with ocean colour Chl a and in particular when assimilating this product. Our goal is to illustrate the use of a numerical laboratory that (a) helps users of ocean colour, particularly modellers, gain further understanding of the products they use and (b) helps the ocean colour community to explore other ocean colour products, their biases and uncertainties, as well as to aid in future algorithm development.
Operational skill assessment of the IBI-MFC Ocean Forecasting System within the frame of the CMEMS.
NASA Astrophysics Data System (ADS)
Lorente Jimenez, Pablo; Garcia-Sotillo, Marcos; Amo-Balandron, Arancha; Aznar Lecocq, Roland; Perez Gomez, Begoña; Levier, Bruno; Alvarez-Fanjul, Enrique
2016-04-01
Since operational ocean forecasting systems (OOFSs) are increasingly used as tools to support high-stakes decision-making for coastal management, a rigorous skill assessment of model performance becomes essential. In this context, the IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). A comprehensive web validation tool named NARVAL (North Atlantic Regional VALidation) has been developed to routinely monitor IBI performance and to evaluate model's veracity and prognostic capabilities. Three-dimensional comparisons are carried out on a different time basis ('online mode' - daily verifications - and 'delayed mode' - for longer time periods -) using a broad variety of in-situ (buoys, tide-gauges, ARGO-floats, drifters and gliders) and remote-sensing (satellite and HF radars) observational sources as reference fields to validate against the NEMO model solution. Product quality indicators and meaningful skill metrics are automatically computed not only averaged over the entire IBI domain but also over specific sub-regions of particular interest from a user perspective (i.e. coastal or shelf areas) in order to determine IBI spatial and temporal uncertainty levels. A complementary aspect of NARVAL web tool is the intercomparison of different CMEMS forecast model solutions in overlapping areas. Noticeable efforts are in progress in order to quantitatively assess the quality and consistency of nested system outputs by setting up specific intercomparison exercises on different temporal and spatial scales, encompassing global configurations (CMEMS Global system), regional applications (NWS and MED ones) and local high-resolution coastal models (i.e. the PdE SAMPA system in the Gibraltar Strait). NARVAL constitutes a powerful approach to increase our knowledge on the IBI-MFC forecast system and aids us to inform CMEMS end users about the provided ocean forecasting products' confidence level by routinely delivering QUality Information Documents (QUIDs). It allows the detection of strengths and weaknesses in the modeling of several key physical processes and the understanding of potential sources of discrepancies in IBI predictions. Once the numerical model shortcomings are identified, potential improvements can be achieved thanks to reliable upgrades, making evolve IBI OOFS towards more refined and advanced versions.
Atmospheric correction of AVIRIS data in ocean waters
NASA Technical Reports Server (NTRS)
Terrie, Gregory; Arnone, Robert
1992-01-01
Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
The ocean carbon sink - impacts, vulnerabilities and challenges
NASA Astrophysics Data System (ADS)
Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.
2015-06-01
Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.
Development of a new model for short period ocean tidal variations of Earth rotation
NASA Astrophysics Data System (ADS)
Schuh, Harald
2015-08-01
Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.
Estimation of the uncertainty of a climate model using an ensemble simulation
NASA Astrophysics Data System (ADS)
Barth, A.; Mathiot, P.; Goosse, H.
2012-04-01
The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.
``Supemodeling" by Coupling Multiple Atmospheres to A Single Ocean Simulates Single-ITCZ Climatology
NASA Astrophysics Data System (ADS)
Duane, G. S.; Shen, M. L.; Keenlyside, N. S.
2017-12-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of individual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel" synchronizes with reality when observations are continuously assimilated, as in weather prediction. In climate-projection mode, the supermodel, after training, reproduces the attractor of the real system. We consider a variant of full supermodeling in which the models are only connected via the fluxes at the ocean-atmosphere interface. Two ECHAM atmospheres that differ in their convection parametrization schemes are thus connected to a single, shared ocean. The atmospheres partially synchronize at lower levels in the tropics, giving more realistic SST patterns than the constituent models: Although the constituent models both exhibit double ITCZ's, with cold tongues that extend too far west, the supermodel has the desired single ITCZ [Shen et al., Geophys. Res. Lett. 2016]. Here we explain the physical mechanism through which the supermodel removes even defects that are shared. One model (Nordeng) produces an unrealistically large zonal wind stress that results in upwelling of cold water and westward extension of the cold tongue. The other model (Tiedtke) produces an unrealistically small zonal wind stress that also implies a reduced wind stress curl off the equator because of Hadley-Walker coupling. The reduced wind stress curl leads to downwelling off the equator, and resultant upwelling of cold water at the equator through the tropical ocean cell. Thus the two constituent models give erroneous patterns of the same type, while the supermodel, which combines the models dynamically, avoids the error. If the models were linear, the errors of the two models would average; the success of the supermodel depends on nonlinearities in the east-west and north-south ocean-atmosphere feedbacks. It is argued that such behavior is widespread: supermodeling near-critical behavior in the coupled Earth System can give results that depend non-monotonically on the weights attached to the constituent models, thus surpassing those models, even when they err in the same way.
Modelling and parameterizing the influence of tides on ice-shelf melt rates
NASA Astrophysics Data System (ADS)
Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.
2017-12-01
Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of tides representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, tides are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that tides can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of tides. Parameterizing the effect of tides is an alternative to the representation of explicit tides in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of tides on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a tide model. Then, we explore several aspects of parameterized tidal mixing to reproduce the tide-induced decrease in thermal forcing along the ice drafts.
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
NASA Astrophysics Data System (ADS)
Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat
2016-05-01
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.
Polar Motion Constraints on Models of the Fortnightly Tide
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)
2002-01-01
Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by oceanic effects than has hitherto been possible.
Increased ocean-induced melting triggers glacier retreat in northwest and southeast Greenland
NASA Astrophysics Data System (ADS)
Wood, M.; Rignot, E. J.; Fenty, I. G.; Menemenlis, D.; Millan, R.; Morlighem, M.; Mouginot, J.
2017-12-01
Over the past 30 years, the tidewater glaciers of northwest, central west, and southeast Greenland have exhibited widespread retreat, yet we observe different behaviors from one glacier to the next, sometimes within the same fjord. This retreat has been synchronous with oceanic warming in Baffin Bay and the Irminger Sea. Here, we estimate the ocean-induced melt rate of marine-terminating glaciers in these sectors of the Greenland Ice Sheet using simulations from the MITgcm ocean model for various water depths, ocean thermal forcing (TF) and subglacial water fluxes (SG). We use water depth from Ocean Melting Greenland (OMG) bathymetry and inverted airborne gravity, ocean thermal forcing from the Estimating the Circulation and Climate of the Ocean (Phase II, ECCO2) combined with CTD data from 2012 and 2015, and time series of subglacial water flux combining runoff production from the 1-km Regional Atmospheric Climate Model (RACMO2.3) with basal melt beneath land ice from the JPL/UCI ISSM model. Time series of melt rates are formed as a function of grounding line depth, SG flux and TF. We compare the results with the history of ice velocity and ice front retreat to quantify the impact of ice melt by the ocean over past three decades. We find that the timing of ice front retreat coincides with enhanced ocean-induced melt and that abrupt retreat is induced when additional ablation exceeds the magnitude of natural seasonal variations of the glacier front. Sverdrup Gletscher, Umiamako Isbrae, and the northern branch Puisortoq Gletscher in northwest, central west, and southwest Greenland, respectively, began multi-kilometer retreats coincident with ocean warming and enhanced melt. Limited retreat is observed where the bathymetry is shallow, on a prograde slope or glacier is stuck on a sill, e.g. Ussing Braeer in the northwest, Sermeq Avannarleq in central west, and Skinfaxe Gletscher in the southeast. These results illustrate the sensitivity of glaciers to changes in oceanic forcing and the modulating effect of bathymetry on their rate and magnitude of retreat. This work was carried out under a grant with NASA Cryosphere Program and for the EVS-2 Ocean Melting Greenland (OMG) mission.
Magnetically-driven oceans on Jovian satellites
NASA Astrophysics Data System (ADS)
Gissinger, C.; Petitdemange, L.
2017-12-01
During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.
Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model
NASA Astrophysics Data System (ADS)
Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.
2016-02-01
Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.
Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective
NASA Technical Reports Server (NTRS)
MacDonald, Alison Marguerite
1995-01-01
Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.
The seasonal cycle of diabatic heat storage in the Pacific Ocean
White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.
2005-01-01
This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.
2015-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.
2018-05-01
Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.
Investigating the Indian Ocean Geoid Low
NASA Astrophysics Data System (ADS)
Ghosh, A.; Gollapalli, T.; Steinberger, B. M.
2016-12-01
The lowest geoid anomaly on Earth lies in the Indian Ocean just south of the Indian peninsula.Several theories have been proposed to explain this geoid low, most of which invoke past subduction. Some recent studies have alsoargued that high velocity anomalies in the lower mantle coupled with low velocity anomalies in the upper mantle are responsible for these negative geoidanomalies. However, there is no general consensus regarding the source of the Indian Ocean negative geoid. We investigate the source of this geoid low by using forward models of density driven mantle convection using CitcomS. We test various tomography models in our flow calculations with different radial and lateral viscosity variations. Many tomography modelsproduce a fairly high correlation to the global geoid, however none could match the precise location of the geoid low in the Indian Ocean. Amerged P-wave model of LLNL-G3DV3 in the Indian Ocean region and S40rts elsewhere yields a good fit to the geoid anomaly, both in pattern and magnitude.The source of this geoid low seems to stem from a low velocity anomaly stretching from a depth of 300 km up to 700 km in the northern Indian Ocean region.This velocity anomaly could potentially arise from material rising along the edge of the African LLSVP and moving towards the northeast, facilitated by the movementof the Indian plate in the same direction.
Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Wen; Jung, Ki Won; Yang, Zhaoqing
An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generatedmore » by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.« less
Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...
2016-02-25
This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less
Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model
NASA Astrophysics Data System (ADS)
Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.
2015-07-01
The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assessment for a potential balance between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next-generation Earth system models.
Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene
NASA Astrophysics Data System (ADS)
Jacobs, P.; Dowsett, H. J.; de Mutsert, K.
2017-12-01
Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.
NASA Astrophysics Data System (ADS)
Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing
2018-04-01
The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.
The structure and evolution of plankton communities
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.
New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.
Asymmetric shock heating and the terrestrial magma ocean origin of the Moon
KARATO, Shun-ichiro
2014-01-01
One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon. PMID:24621956
Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.
Karato, Shun-ichiro
2014-01-01
One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.
NASA Technical Reports Server (NTRS)
Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.
1995-01-01
Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.
The Indian Ocean as a Connector
NASA Astrophysics Data System (ADS)
Durgadoo, J. V.; Biastoch, A.; Boning, C. W.
2016-02-01
The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Chao, Yi
1996-01-01
It has been demonstrated that current-generation global ocean general circulation models (OGCM) are able to simulate large-scale sea level variations fairly well. In this study, a GFDL/MOM-based OGCM was used to investigate its sensitivity to different wind forcing. Simulations of global sea level using wind forcing from the ERS-1 Scatterometer and the NMC operational analysis were compared to the observations made by the TOPEX/Poseidon (T/P) radar altimeter for a two-year period. The result of the study has demonstrated the sensitivity of the OGCM to the quality of wind forcing, as well as the synergistic use of two spaceborne sensors in advancing the study of wind-driven ocean dynamics.
Oceanic N2O emissions in the 21st century
NASA Astrophysics Data System (ADS)
Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.
2014-12-01
The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.
NASA Technical Reports Server (NTRS)
Grew, G. W.
1985-01-01
Characteristic vector analysis applied to inflection ratio spectra is a new approach to analyzing spectral data. The technique applied to remote data collected with the multichannel ocean color sensor (MOCS), a passive sensor, simultaneously maps the distribution of two different phytopigments, chlorophyll alpha and phycoerythrin, the ocean. The data set presented is from a series of warm core ring missions conducted during 1982. The data compare favorably with a theoretical model and with data collected on the same mission by an active sensor, the airborne oceanographic lidar (AOL).
Calculation of wind-driven surface currents in the North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Rees, T. H.; Turner, R. E.
1976-01-01
Calculations to simulate the wind driven near surface currents of the North Atlantic Ocean are described. The primitive equations were integrated on a finite difference grid with a horizontal resolution of 2.5 deg in longitude and latitude. The model ocean was homogeneous with a uniform depth of 100 m and with five levels in the vertical direction. A form of the rigid-lid approximation was applied. Generally, the computed surface current patterns agreed with observed currents. The development of a subsurface equatorial countercurrent was observed.
NASA Astrophysics Data System (ADS)
Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.
2016-02-01
Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave generation and propagation. The findings of this study will provide insight about the internal wave dynamics in the Gulf of Mexico and their potential impact on the marine ecosystem.
Dynamical balance in the Indonesian Seas circulation
NASA Astrophysics Data System (ADS)
Burnett, William H.; Kamenkovich, Vladimir M.; Jaffe, David A.; Gordon, Arnold L.; Mellor, George L.
2000-09-01
A high resolution, four-open port, non-linear, barotropic ocean model (2D POM) is used to analyze the Indonesian Seas circulation. Both local and overall momentum balances are studied. It is shown that geostrophy holds over most of the area and that the Pacific-Indian Ocean pressure difference is essentially balanced by the resultant of pressure forces acting on the bottom.
New Global Bathymetry and Topography Model Grids
NASA Astrophysics Data System (ADS)
Smith, W. H.; Sandwell, D. T.; Marks, K. M.
2008-12-01
A new version of the "Smith and Sandwell" global marine topography model is available in two formats. A one-arc-minute Mercator projected grid covering latitudes to +/- 80.738 degrees is available in the "img" file format. Also available is a 30-arc-second version in latitude and longitude coordinates from pole to pole, supplied as tiles covering the same areas as the SRTM30 land topography data set. The new effort follows the Smith and Sandwell recipe, using publicly available and quality controlled single- and multi-beam echo soundings where possible and filling the gaps in the oceans with estimates derived from marine gravity anomalies observed by satellite altimetry. The altimeter data have been reprocessed to reduce the noise level and improve the spatial resolution [see Sandwell and Smith, this meeting]. The echo soundings database has grown enormously with new infusions of data from the U.S. Naval Oceanographic Office (NAVO), the National Geospatial-intelligence Agency (NGA), hydrographic offices around the world volunteering through the International Hydrographic Organization (IHO), and many other agencies and academic sources worldwide. These new data contributions have filled many holes: 50% of ocean grid points are within 8 km of a sounding point, 75% are within 24 km, and 90% are within 57 km. However, in the remote ocean basins some gaps still remain: 5% of the ocean grid points are more than 85 km from the nearest sounding control, and 1% are more than 173 km away. Both versions of the grid include a companion grid of source file numbers, so that control points may be mapped and traced to sources. We have compared the new model to multi-beam data not used in the compilation and find that 50% of differences are less than 25 m, 95% of differences are less than 130 m, but a few large differences remain in areas of poor sounding control and large-amplitude gravity anomalies. Land values in the solution are taken from SRTM30v2, GTOPO30 and ICESAT data. GEBCO has agreed to adopt this model and begin updating it in 2009. Ongoing tasks include building an uncertainty model and including information from the latest IBCAO map of the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc
2018-05-01
The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.
Gravity Field Changes due to Long-Term Sea Level Changes
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.
2004-12-01
Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.
NASA Astrophysics Data System (ADS)
Kramer, S. J.; Sosik, H. M.; Roesler, C. S.
2016-02-01
Satellite remote sensing of ocean color allows for estimates of phytoplankton biomass on broad spatial and temporal scales. Recently, a variety of approaches have been offered for determining phytoplankton taxonomic composition or phytoplankton functional types (PFTs) from remote sensing reflectance. These bio-optical algorithms exploit spectral differences to discriminate waters dominated by different types of cells. However, the efficacy of these models remains difficult to constrain due to limited datasets for detailed validation. In this study, we examined the region around the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf with optically complex coastal waters. This site offers many methods for detailed validation of ocean color algorithms: an AERONET-OC above-water radiometry system provides sea-truth ocean color observations; time series of absorption and backscattering coefficients are measured; and phytoplankton composition is assessed with a combination of continuous in situ flow cytometry and intermittent discrete sampling for HPLC pigments. Our analysis showed that even models originally parameterized for the Northwest Atlantic perform poorly in capturing the variability in relationships between optical properties and water constituents at coastal sites such as MVCO. We refined models with local parameterizations of variability in absorption and backscattering coefficients, and achieved much better agreement of modeled and observed relationships between predicted spectral reflectance, chlorophyll concentration, and indices of phytoplankton composition such as diatom dominance. Applying these refined models to satellite remote sensing imagery offers the possibility of describing large-scale variations in phytoplankton community structure both at MVCO and on the surrounding shelf over space and time.
Madden-Julian Oscillation: Western Pacific and Indian Ocean
NASA Astrophysics Data System (ADS)
Fuchs, Z.; Raymond, D. J.
2016-12-01
The MJO has been and still remains a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e. why does it prefer long wavelengths or planetary wavenumbers 1-3? The MJO has the strongest signal in the Indian ocean and in the West Pacific, but the average vertical structure is very different in each of those basins. We look at the reanalysis/analysis FNL, ERAI vertical structure of temperature and moisture as well as the surface zonal winds for two ocean basins. We also look at data from DYNAMO and TOGA_COARE in great detail (saturation fraction, temperature, entropy, surface zonal winds, gross moist stability, etc). The findings from observations and field projects for the two ocean basins are then compared to a linear WISHE model on an equatorial beta plane. Though linear WISHE has long been discounted as a plausible model for the MJO, the version we have developed explains many of the observed features of this phenomenon, in particular, the preference for large zonal scale, the eastward propagation, the westward group velocity, and the thermodynamic structure. There is no need to postulate large-scale negative gross moist stability, as destabilization occurs via WISHE at long wavelengths only. This differs from early WISHE models because we take a moisture adjustment time scale of order one day in comparison to the much shorter time scales assumed in earlier models. Linear modeling cannot capture all of the features of the MJO, so we are in the process of adding nonlinearity.
NASA Astrophysics Data System (ADS)
Pisso, Ignacio; Myhre, Cathrine Lund; Platt, Stephen Matthew; Eckhardt, Sabine; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Vadakkepuliyambatta, Sunil; Bauguitte, Stephane; Pitt, Joseph; Allen, Grant; Bower, Keith; O'Shea, Sebastian; Gallagher, Martin; Percival, Carl; Pyle, John; Cain, Michelle; Stohl, Andreas
2017-04-01
Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (FAAM) and a ship (Helmer Hansen) during the Summer 2014, and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol / m s in the stability model scenario. The Zeppelin Observatory data for 2014 suggests CH4 fluxes from the Svalbard continental platform below 0.2 Tg/yr . All estimates are in the lower range of values previously reported.
A perspective on sustained marine observations for climate modelling and prediction
Dunstone, Nick J.
2014-01-01
Here, I examine some of the many varied ways in which sustained global ocean observations are used in numerical modelling activities. In particular, I focus on the use of ocean observations to initialize predictions in ocean and climate models. Examples are also shown of how models can be used to assess the impact of both current ocean observations and to simulate that of potential new ocean observing platforms. The ocean has never been better observed than it is today and similarly ocean models have never been as capable at representing the real ocean as they are now. However, there remain important unanswered questions that can likely only be addressed via future improvements in ocean observations. In particular, ocean observing systems need to respond to the needs of the burgeoning field of near-term climate predictions. Although new ocean observing platforms promise exciting new discoveries, there is a delicate balance to be made between their funding and that of the current ocean observing system. Here, I identify the need to secure long-term funding for ocean observing platforms as they mature, from a mainly research exercise to an operational system for sustained observation over climate change time scales. At the same time, considerable progress continues to be made via ship-based observing campaigns and I highlight some that are dedicated to addressing uncertainties in key ocean model parametrizations. The use of ocean observations to understand the prominent long time scale changes observed in the North Atlantic is another focus of this paper. The exciting first decade of monitoring of the Atlantic meridional overturning circulation by the RAPID-MOCHA array is highlighted. The use of ocean and climate models as tools to further probe the drivers of variability seen in such time series is another exciting development. I also discuss the need for a concerted combined effort from climate models and ocean observations in order to understand the current slow-down in surface global warming. PMID:25157195
NASA Astrophysics Data System (ADS)
Fu, W.; Randerson, J. T.; Moore, J. K.
2014-12-01
Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization. The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over the 21st century simulated under the RCP 8.5 scenario were likely conservative estimates, and may need to be revised as marine biogeochemistry in Earth System Models (ESMs) continues to be developed.
NASA Astrophysics Data System (ADS)
Rani, Sunita; Rani, Sunita
2017-11-01
The axisymmetric deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half-space due to surface loads has been obtained. The fluid and the solid constituents of the porous layer are compressible and the permeability in vertical direction is different from its permeability in horizontal direction. The displacements and pore-pressure are taken as basic state variables. An analytical solution for the pore-pressure, displacements and stresses has been obtained using the Laplace-Hankel transform technique. The case of normal disc loading is discussed in detail. Diffusion of pore-pressure is obtained in the space-time domain. The Laplace inversion is evaluated using the fixed Talbot algorithm and the Hankel inversion using the extended Simpson's rule. Two different models of the Earth have been considered: continental crust model and oceanic crust model. For continental crust model, the layer is assumed to be of Westerly Granite and for the oceanic crust model of Hanford Basalt. The effect of the compressibilities of the fluid as well as solid constituents and anisotropy in permeability has been studied on the diffusion of pore-pressure. Contour maps have been plotted for the diffusion of pore-pressure for both models. It is observed that the pore-pressure changes to compression for the continental crust model with time, which is not true for the oceanic crust.
Frequency Dependent Nudging of Hydrographic Data Into a Numerical Model of the North Atlantic
NASA Astrophysics Data System (ADS)
Thompson, K. R.; Wright, D. G.
2002-12-01
Nudging is one of the simplest ways of assimilating data into ocean models and it has been used for many years in studies of large-scale ocean circulation. One of its drawbacks is the suppression of eddies when nudging an eddy-permitting ocean model strongly toward an observed seasonal climatology. We propose a straightforward extension of nudging in which the model's climatology, rather than its instantaneous state, is nudged toward the observed seasonal climatology. In effect we propose nudging in specific frequency bands that are centered on the discrete frequencies evident in the observed climatology (e.g. 0, 1/12 and 1/6 cycles per month). This extension of conventional nudging allows the difference between the observed and modeled climatologies arbitrarily to be made small while allowing variations outside the selected frequency bands to evolve freely. We show how the method can be implemented efficiently in complex models using a Kalman filter and also discuss the benefits of spatially smoothing the nudges. We conclude with a demonstration of frequency dependent nudging using a 1/3 degree model of the North Atlantic.
Characteristics of the Nordic Seas overflows in a set of Norwegian Earth System Model experiments
NASA Astrophysics Data System (ADS)
Guo, Chuncheng; Ilicak, Mehmet; Bentsen, Mats; Fer, Ilker
2016-08-01
Global ocean models with an isopycnic vertical coordinate are advantageous in representing overflows, as they do not suffer from topography-induced spurious numerical mixing commonly seen in geopotential coordinate models. In this paper, we present a quantitative diagnosis of the Nordic Seas overflows in four configurations of the Norwegian Earth System Model (NorESM) family that features an isopycnic ocean model. For intercomparison, two coupled ocean-sea ice and two fully coupled (atmosphere-land-ocean-sea ice) experiments are considered. Each pair consists of a (non-eddying) 1° and a (eddy-permitting) 1/4° horizontal resolution ocean model. In all experiments, overflow waters remain dense and descend to the deep basins, entraining ambient water en route. Results from the 1/4° pair show similar behavior in the overflows, whereas the 1° pair show distinct differences, including temperature/salinity properties, volume transport (Q), and large scale features such as the strength of the Atlantic Meridional Overturning Circulation (AMOC). The volume transport of the overflows and degree of entrainment are underestimated in the 1° experiments, whereas in the 1/4° experiments, there is a two-fold downstream increase in Q, which matches observations well. In contrast to the 1/4° experiments, the coarse 1° experiments do not capture the inclined isopycnals of the overflows or the western boundary current off the Flemish Cap. In all experiments, the pathway of the Iceland-Scotland Overflow Water is misrepresented: a major fraction of the overflow proceeds southward into the West European Basin, instead of turning westward into the Irminger Sea. This discrepancy is attributed to excessive production of Labrador Sea Water in the model. The mean state and variability of the Nordic Seas overflows have significant consequences on the response of the AMOC, hence their correct representations are of vital importance in global ocean and climate modelling.
Cold Fronts in RegCM/HadGEM simulations over South America
NASA Astrophysics Data System (ADS)
Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio
2017-04-01
Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.
A comparison of linear and non-linear data assimilation methods using the NEMO ocean model
NASA Astrophysics Data System (ADS)
Kirchgessner, Paul; Tödter, Julian; Nerger, Lars
2015-04-01
The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.
The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification
NASA Astrophysics Data System (ADS)
Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.
2017-12-01
Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat transport is decomposed into the Pacific and Atlantic contributions.
Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2005-01-01
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
NASA Astrophysics Data System (ADS)
Hermann, A. J.; Moore, C.; Soreide, N. N.
2002-12-01
Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
NASA Astrophysics Data System (ADS)
Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.
2018-02-01
In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the observed surface and subsurface temperature variations from early spring to summer during the years 2014 and 2015 over the Indo-Pacific region. This study highlights the importance of maintaining observing systems such as ARGO for accurate monsoon forecast.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris;
2011-01-01
Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"
Effects of Drake Passage on a strongly eddying global ocean
NASA Astrophysics Data System (ADS)
Viebahn, Jan P.; von der Heydt, Anna S.; Le Bars, Dewi; Dijkstra, Henk A.
2016-05-01
The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid resolutions at which the impact of mesoscale eddies has to be parameterized. We present results of a state-of-the-art eddy-resolving global ocean model with a closed Drake Passage and compare with results of the same model at noneddying resolution. An analysis of the pathways of heat by decomposing the meridional heat transport into eddy, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface warming around Antarctica due to equatorward expansion of the subpolar gyres, (ii) the collapse of the overturning circulation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, and (iii) significant equatorward eddy heat transport near Antarctica. However, quantitative details significantly depend on the chosen resolution. The warming around Antarctica is substantially larger for the noneddying configuration (˜5.5°C) than for the eddying configuration (˜2.5°C). This is a consequence of the subpolar mean flow which partitions differently into gyres and circumpolar current at different resolutions. We conclude that for a deciphering of the different mechanisms active in Eocene-Oligocene climate change detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes actually at work.
Decoupling of Iron and Phosphate in the Global Ocean
NASA Technical Reports Server (NTRS)
Parekh, Payal
2003-01-01
Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.
NASA Astrophysics Data System (ADS)
Reith, F.; Keller, D. P.; Martin, T.; Oschlies, A.
2015-12-01
Marchetti [1977] proposed that CO2 could be directly injected into the deep ocean to mitigate its rapid build-up in the atmosphere. Although previous studies have investigated biogeochemical and climatic effects of injecting CO2 into the ocean, they have not looked at global carbon cycle feedbacks and backfluxes that are important for accounting. Using an Earth System Model of intermediate complexity we simulated the injection of CO2 into the deep ocean during a high CO2 emissions scenario. At seven sites 0.1 GtC yr-1 was injected at three different depths (3 separate experiments) between the years 2020 and 2120. After the 100-year injection period, our simulations continued until the year 3020 to assess the long-term dynamics. In addition, we investigated the effects of marine sediment feedbacks during the experiments by running the model with and without a sediment sub-model. Our results, in regards to efficiency (the residence time of injected CO2) and seawater chemistry changes, are similar to previous studies. However, from a carbon budget perspective the targeted cumulative atmospheric CO2 reduction of 70 GtC was never reached. This was caused by the atmosphere-to-terrestrial and/or atmosphere-to-ocean carbon fluxes (relative to the control run), which were effected by the reduction in atmospheric carbon. With respect to global oceanic carbon, the respective carbon cycle-climate feedbacks led to an even smaller efficiency than indicated by tracing the injected CO2. The ocean also unexpectedly took up carbon after the injection at 1500 m was stopped because of a deep convection event in the Southern Ocean. These findings highlighted that the accounting of CO2 injection would be challenging.
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Chameides, W. L.; Chen, G.
2002-12-01
Atmospheric transport is the only known means to deliver dissolved iron from the continents to remote oceanic areas. Dissolved iron is one of the necessary nutrients for photosynthesis of microscopic, single-celled marine organisms (phytoplankton) that grow abundantly in oceans around the world. Alteration of dissolved iron fluxes may substantially affect ocean ecosystem productivity and even exert a global-scale influence on climate by affecting the rate at which atmospheric CO2 is fixed by oceanic biota. On continents, iron mainly exists in forms of highly insoluble minerals (iron-oxides and iron-aluminosilicates) and the processes that can solubilize iron in mineral aerosols during their long-range transport remain poorly understood. In this work we attempt to elucidate the key processes that control the solubilization of iron in mineral aerosols using a simple Lagrangian box model to simulate the transport and chemical alteration of iron-containing mineral aerosols as they are transported from the east coast of China to the remote western North Pacific Ocean. Model parameters and initial conditions are set using a combination of soil and aerosol data from the Gobi Desert, as well as from measurements made during specific PEM-West B flights that encountered dust storm plumes over the Pacific Ocean that had originated in China. Our preliminary results indicate that the amount of acidic pollutants in the air along the dust transport pathways can have a significant effect on the amount of iron that is solubilized in advecting mineral aerosols. This suggests that there may be a link between the flux of the dissolved iron to the remote North Pacific Ocean and the rate at which pollutants such as sulfur dioxide, nitrogen oxides, and ammonia are emitted in East Asia.
A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2007-06-01
Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.
Impact of ocean phytoplankton diversity on phosphate uptake
Lomas, Michael W.; Bonachela, Juan A.; Levin, Simon A.; Martiny, Adam C.
2014-01-01
We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients. PMID:25422472
The relationship between cadmium and phosphate in the Atlantic Ocean unravelled
NASA Astrophysics Data System (ADS)
Middag, Rob; van Heuven, Steven M. A. C.; Bruland, Kenneth W.; de Baar, Hein J. W.
2018-06-01
Cadmium (Cd) is not generally considered a nutrient element, but behaves like a nutrient in the oceans and might play an important role in ocean biology after all. The relationship between Cd and the nutrient phosphate (PO4) has been studied for over 40 yrs, but the debate on the driving mechanism and reason behind the 'kink', a change in the steepness of the slope is ongoing. Using new data of high accuracy and spatial resolution covering the West-Atlantic Ocean from north to south, in combination with a robust extended optimum multiparameter (eOMP) water mass model, we show that mixing between different water masses is the dominant factor explaining the observed correlation and its kink. Regeneration of Cd via remineralisation explains the smaller scale variability, notably in the surface ocean. Observations imply the availability of Cd in surface waters determines the Cd-uptake and thus the Cd:PO4 remineralisation ratio. This ratio is variable between different ocean regions, notably between the northern and southern high latitude oceans. Due to their role in deep water formation, both the northern and southern high latitude oceans are a driving factor in the Atlantic and global Cd and PO4 relation. Outside the Atlantic Ocean, the classical kink is not expected, but the relationship is by no means linear. Most likely, this is due to the interaction between low latitude surface waters and subsurface waters from high latitude origin, but more data are required to assess this in detail.
Two new ways of mapping sea ice thickness using ocean waves
NASA Astrophysics Data System (ADS)
Wadhams, P.
2010-12-01
TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given storm, the time delay between the arrival of the same frequency at two sites gives the dispersion, and hence the modal ice thickness along the great circle route connecting the arrays. The two quite different methods thus share the use of ocean wave dispersion to infer sea ice thickness.
Global decadal climate variability driven by Southern Ocean convection
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.
2016-02-01
Here we suggest a set of new "teleconnections" by which the Southern Ocean (SO) can induce anomalies in the tropical oceans and atmosphere. A 5000-year long control simulation in a coupled atmosphere-ocean model (CM2Mc, a low-resolution GFDL model) shows a natural, highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process happens naturally, with different frequencies and durations of convection across the majority of CMIP5 under preindustrial forcing (deLavergne et al., 2014). In our model, oscillations in Weddell Sea convection drive multidecadal variability in SO and global SSTs, as well as SO heat storage, with convective decades warm due to the heat released from the Circumpolar Deep Water and non-convective decades cold due to subsurface heat storage. Convective pulses drive local SST and sea ice variations south of 60S, immediately triggering changes in the Ferrell and Hadley cells, atmospheric energy budget and cross-equatorial heat exchange, ultimately influencing the position of the Intertropical Convergence Zone and rain patterns in the tropics. Additionally, the SO convection pulse is propagated to the tropics and the North Atlantic MOC via oceanic pathways on relatively fast (decadal) timescales, in agreement with recent observational constraints. Open sea convection is the major mode of Antarctic Bottom Water (AABW) formation in the CMIP5 models. Future improvements in the representation of shelf convection and sea-ice interaction in the SO are a clear necessity. These model improvements should render the AABW representation more realistic, and might influence (a) the connectivity of the SO with the rest of the planet, as described above and (b) the oceanic and global carbon cycle, of which the AABW is a fundamental conduit.
Ocean Carbon States: Data Mining in Observations and Numerical Simulations Results
NASA Astrophysics Data System (ADS)
Latto, R.; Romanou, A.
2017-12-01
Advanced data mining techniques are rapidly becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from increasingly larger and more complex datasets. This is particularly important in studies of the global carbon cycle, where any lack of understanding of its combined physical and biogeochemical drivers is detrimental to our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major carbon reservoirs. The analysis presented here evaluates the use of cluster analysis as a means of identifying and comparing spatial and temporal patterns extracted from observational and model datasets. As the observational data is organized into various regimes, which we will call "ocean carbon states", we gain insight into the physical and/or biogeochemical processes controlling the ocean carbon cycle as well as how well these processes are simulated by a state-of-the-art climate model. We find that cluster analysis effectively produces realistic, dynamic regimes that can be associated with specific processes at different temporal scales for both observations and the model. In addition, we show how these regimes can be used to illustrate and characterize the model biases in the model air-sea flux of CO2. These biases are attributed to biases in salinity, sea surface temperature, wind speed, and nitrate, which are then used to identify the physical processes that are inaccurately reproduced by the model. In this presentation, we provide a proof-of-concept application using simple datasets, and we expand to more complex ones, using several physical and biogeochemical variable pairs, thus providing considerable insight into the mechanisms and phases of the ocean carbon cycle over different temporal and spatial scales.
Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling
NASA Astrophysics Data System (ADS)
Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.
2016-02-01
In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.
Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements
NASA Astrophysics Data System (ADS)
Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz
2017-08-01
Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.
NASA Technical Reports Server (NTRS)
Beal, Robert C. (Editor)
1987-01-01
Papers are presented on ocean-wave prediction; the quasi-universal form of the spectra of wind-generated gravity waves at different stages of their development; the limitations of the spectral measurements and observations of the group structure of surface waves; the effect of swell on the growth of wind wave; operational wave forecasting; ocean-wave models, and seakeeping using directional wave spectra. Consideration is given to microwave measurements of the ocean-wave directional spectra; SIR research; estimating wave energy spectra from SAR imagery, with the radar ocean-wave spectrometer, and SIR-B; the wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar; and SIR-B ocean-wave enhancement with fast-Fourier transform techniques. Topics discussed include wave-current interaction; the design and applicability of Spectrasat; the need for a global wave monitoring system; the age and source of ocean swell observed in Hurricane Josephine; and the use of satellite technology for insulin treatment.
NASA Astrophysics Data System (ADS)
Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin
2018-06-01
We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.
Using the Model Coupling Toolkit to couple earth system models
Warner, J.C.; Perlin, N.; Skyllingstad, E.D.
2008-01-01
Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Menviel, L.; Joos, F.
2012-03-01
The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.
NASA Astrophysics Data System (ADS)
Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.
2017-12-01
Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and radiative feedbacks derived from observational records. We find that these records are, as of yet, too short to be useful in constraining radiative feedbacks, and we provide estimates of how the uncertainty narrows as a function of record length.
NASA Astrophysics Data System (ADS)
Kuhn, A. M.; Fennel, K.; Bianucci, L.
2016-02-01
A key feature of the North Atlantic Ocean's biological dynamics is the annual phytoplankton spring bloom. In the region comprising the continental shelf and adjacent deep ocean of the northwest North Atlantic, we identified two patterns of bloom development: 1) locations with cold temperatures and deep winter mixed layers, where the spring bloom peaks around April and the annual chlorophyll cycle has a large amplitude, and 2) locations with warmer temperatures and shallow winter mixed layers, where the spring bloom peaks earlier in the year, sometimes indiscernible from the fall bloom. These patterns result from a combination of limiting environmental factors and interactions among planktonic groups with different optimal requirements. Simple models that represent the ecosystem with a single phytoplankton (P) and a single zooplankton (Z) group are challenged to reproduce these ecological interactions. Here we investigate the effect that added complexity has on determining spatio-temporal chlorophyll. We compare two ecosystem models, one that contains one P and one Z group, and one with two P and three Z groups. We consider three types of changes in complexity: 1) added dependencies among variables (e.g., temperature dependent rates), 2) modified structural pathways, and 3) added pathways. Subsets of the most sensitive parameters are optimized in each model to replicate observations in the region. For computational efficiency, the parameter optimization is performed using 1D surrogates of a 3D model. We evaluate how model complexity affects model skill, and whether the optimized parameter sets found for each model modify the interpretation of ecosystem functioning. Spatial differences in the parameter sets that best represent different areas hint at the existence of different ecological communities or at physical-biological interactions that are not represented in the simplest model. Our methodology emphasizes the combined use of observations, 1D models to help identifying patterns, and 3D models able to simulate the environment modre realistically, as a means to acquire predictive understanding of the ocean's ecology.