Travelling Policy Reforms Reconfiguring the Work of Early Childhood Educators in Australia
ERIC Educational Resources Information Center
Nuttall, Joce; Thomas, Louise; Wood, Elizabeth
2014-01-01
Interventions in the field of early childhood education policy, drawn from global policy flows, are reconfiguring the work of early childhood educators in Australia. One such intervention is the requirement to designate an "educational leader" (EL) in each service for young children and their families. This policy intervention has its…
ERIC Educational Resources Information Center
Zhao, Guoping
2015-01-01
Biesta has suggested that education after humanism should be interested in existence, not essence, in what the subject can do, not in what the subject is--the truth about the subject--and this is the way inspired by Foucault and Levinas. In this article, I analyze Foucault's alleged deconstruction and reconfiguration of the subject and Levinas'…
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Karayanidis, Frini; Nicholson, Rebecca; Schall, Ulrich; Meem, Lydia; Fulham, Ross; Michie, Patricia T
2006-10-01
The present study used behavioral and event-related potential (ERP) indices of task-switching to examine whether schizophrenia patients have a specific deficit in anticipatory task-set reconfiguration. Participants switched between univalent tasks in an alternating runs paradigms with blocked response-stimulus interval (RSI) manipulation (150, 300, 600, and 1200ms). Nineteen high functioning people with schizophrenia were compared to controls that were matched for age, gender, education and premorbid IQ estimate. Schizophrenia patients had overall increased RT, but no increase in corrected RT switch cost. In the schizophrenia group, ERPs showed reduced activation of the differential positivity in anticipation of switch trial at the optimal 600ms RSI and reduced activation of the frontal post-stimulus switch negativity at both 600 and 1200ms RSI compared to the control group. Despite no behavioral differences in task switching performance, anticipatory and stimulus-triggered ERP indices of task-switching suggest group differences in processing of switch and repeat trials, especially at longer RSI conditions that for control participants provide opportunity for anticipatory activation of task-set reconfiguration processes. These results are compatible with impaired implementation of endogenously driven processes in schizophrenia and greater reliance on external task cues, especially at long preparation intervals.
Young People and Sexuality Education: Rethinking Key Debates
ERIC Educational Resources Information Center
Allen, Louisa
2011-01-01
This book innovatively re-envisions the possibilities of sexuality education. Utilizing student critiques of programs it reconfigures key debates in sexuality education including: Should pleasure be part of the curriculum? Who makes the best educators? Do students prefer single or mixed gender classes?
Using instability to reconfigure smart structures in a spring-mass model
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; McInnes, Colin R.
2017-07-01
Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.
A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON
NASA Astrophysics Data System (ADS)
Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai
2010-12-01
We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.
Core story creation: analysing narratives to construct stories for learning.
Petty, Julia; Jarvis, Joy; Thomas, Rebecca
2018-03-16
Educational research uses narrative enquiry to gain and interpret people's experiences. Narrative analysis is used to organise and make sense of acquired narrative. 'Core story creation' is a way of managing raw data obtained from narrative interviews to construct stories for learning. To explain how core story creation can be used to construct stories from raw narratives obtained by interviewing parents about their neonatal experiences and then use these stories to educate learners. Core story creation involves reconfiguration of raw narratives. Reconfiguration includes listening to and rereading transcribed narratives, identifying elements of 'emplotment' and reordering these to form a constructed story. Thematic analysis is then performed on the story to draw out learning themes informed by the participants. Core story creation using emplotment is a strategy of narrative reconfiguration that produces stories which can be used to develop resources relating to person-centred education about the patient experience. Stories constructed from raw narratives in the context of constructivism can provide a medium or an 'end product' for use in learning resource development. This can then contribute to educating students or health professionals about patients' experiences. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.
Using partial reconfiguration for SoC design and implementation
NASA Astrophysics Data System (ADS)
Krasteva, Yana E.; Portilla, Jorge; Tobajas Guerrero, Félix; de la Torre, Eduardo
2009-05-01
Most reconfigurable systems rely on FPGA technology. Among these ones, those which permit dynamic and partial reconfiguration, offer added benefits in flexibility, in-field device upgrade, improved design and manufacturing time, and even, in some cases, power consumption reductions. However, dynamic reconfiguration is a complex task, and the real benefits of its use in real applications have been often questioned. This paper presents an overview of the partial reconfiguration technique application, along with four original applications. The main goal of these applications is to test several architectures with different flexibility and, to search for the partial reconfiguration "killing application", that is, the application that better demonstrates the benefits of today reconfigurable systems based on commercial FPGAs. Therefore, the presented applications are rather a proof of concept, than fully operative and closed systems. First, a brief introduction to the partial reconfigurable systems application topic has been included. After that, the descriptions of the created reconfigurable systems are presented: first, an on-chip communications emulation framework, second, an on chip debugging system, third, a wireless sensor network reconfigurable node and finally, a remote reconfigurable client-server device. Each application is described in a separate section of the paper along with some test and results. General conclusions are included at the end of the paper.
Out of Asia: Learning Re-Examined, Teacher Education Re-Configured
ERIC Educational Resources Information Center
Dobinson, Toni
2012-01-01
The impetus for this argumentative paper is anecdotal evidence overheard in West Australian educational settings indicating that there continues to be "othering" of learners from Asian backgrounds. Exploring prevailing Western social, theoretical and educational discourses associated with Asia, the author argues that teacher education in…
Cloud-Based Virtual Laboratory for Network Security Education
ERIC Educational Resources Information Center
Xu, Le; Huang, Dijiang; Tsai, Wei-Tek
2014-01-01
Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…
Critical Frames in Educational Research: Feminist and Post-structural Perspectives.
ERIC Educational Resources Information Center
Lather, Patti
1992-01-01
Explores how qualitative and feminist inquiry are reconfiguring educational research, focusing on methodological issues involved in moving it into the postpositivist era. The article examines contributions of the transdisciplinary movements of feminism and poststructuralism in the development of critical frames in educational research. (SM)
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
NASA Astrophysics Data System (ADS)
Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei
2008-12-01
Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.
ERIC Educational Resources Information Center
Gran, Warren; Krudwig, Kevin
2007-01-01
The small-schools movement has revolutionized educational concepts, design and construction. By reconfiguring large high schools into smaller learning academies, districts believe they can educate students more effectively. However, planners face numerous challenges in creating or renovating small schools, especially in urban environments where…
The Influence of Values and Policy Vocabularies on Understandings of Leadership Effectiveness
ERIC Educational Resources Information Center
Carpenter, Bradley W.; Diem, Sarah; Young, Michelle D.
2014-01-01
During the past two decades, shifting discourses have significantly altered professional expectations for educational leaders. Driven by a globalized reconfiguration of the values defining educational purpose, definitions of effective leadership, processes for evaluating them, and the very boundaries of educational policy have narrowed and…
Reconfiguring the Higher Education Value Chain
ERIC Educational Resources Information Center
Pathak, Virendra; Pathak, Kavita
2010-01-01
Forces of demand and supply are changing the dynamics of the higher education market. Transformation of institutions of higher learning into competitive enterprise is underway. Higher education institutions are seemingly under intense pressure to create value and focus their efforts and scarce funds on activities that drive up value for their…
Trading Places: The Role of Agents in International Student Recruitment from Africa
ERIC Educational Resources Information Center
Hulme, Moira; Thomson, Alex; Hulme, Rob; Doughty, Guy
2014-01-01
As state subsidies to higher education contract, the recruitment of international students is becoming a strategic priority for many UK universities. Academic roles are reconfigured as the commercialisation of higher education and the commodification of education services re-position the student as consumer, academic as entrepreneur, and…
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Go reconfigure: how fish change shape as they swim and evolve.
Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai
2010-12-01
The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine yaw turns. When structural stiffness and undulatory frequency are modeled as determining the tail's undulatory wave speed, both factors evolve under selection for enhanced foraging behavior in the digital fish-like robots. The methods used in making these distinctions between kinds of reconfiguration have broad applicability in fish biology, especially for quantifying complex motor behaviors in the wild and for simulating selection on behavior that leads to directional evolution of functional phenotypes.
The Sphere of Authority: Governing Education Policy in Pakistan Amidst Global Pressures
ERIC Educational Resources Information Center
Ali, Sajid
2017-01-01
The authority of the nation states and their capacity to govern their education policy has been reconfigured by the processes of globalisation. This paper examines recent education policy in Pakistan in order to reveal the nature of national authority in education policy-making in a challenging context. The central piece of analysis is the…
Citizenship Education and the EFL Standards: A Critical Reflection
ERIC Educational Resources Information Center
Calle Díaz, Luzkarime
2017-01-01
The reconfiguration of geographical and cultural boundaries has caused a growing concern among countries in regard to raising awareness of the importance of educating people to become "citizens of the world." The language classroom seems to be the ideal place to incorporate the teaching and learning of global citizenship education, given…
ERIC Educational Resources Information Center
Youngs, Howard
2017-01-01
Since the turn of the millennium, interest in collaborative and distributed conceptualisations of leadership has gathered momentum, particularly in education. During the same period, higher education institutions have been embedded in practices shaped by New Public Management. The resultant reconfiguration of structural arrangements within…
Customization of user interfaces to reduce errors and enhance user acceptance.
Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram
2014-03-01
Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Reconfiguration parameters for drag of flexible cylindrical elements
NASA Astrophysics Data System (ADS)
John, Chapman; Wilson, Bruce; Gulliver, John
2015-11-01
This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.
ERIC Educational Resources Information Center
Cole, Peter
2012-01-01
First Nations tricksters, Coyote and Raven, work to indigenize Environmental Education but run up against mainstream languages, technologies, and educational practices. They try to do an end-run around the cognitive backfield, then portage through marginal spaces, but find that working between Indigenous languages and mainstream ones can work best…
Special Educational Needs: A Public Issue
ERIC Educational Resources Information Center
Liasidou, Anastasia
2010-01-01
This article explores the contribution of sociological scholarship to understanding and analysing the notions of "special educational needs" and "disability" and the ways in which the two notions have been reconfigured and theorised as "public issues" rather than "personal troubles". Barton's contribution is signified both in terms of his…
ERIC Educational Resources Information Center
Weyer, Frederique
2011-01-01
Based on an approach focusing on actors and in particular on educational trajectories, this paper analyses the effects of diversification of educational provision on inequalities in rural Mali. It shows that there are considerable gaps in the skills acquired by students, including within formal education. These gaps are perceived as illegitimate…
Survey of reconfigurable architectures for multimedia applications
NASA Astrophysics Data System (ADS)
Cervero, T.; López, S.; Callicó, G. M.; Tobajas, F.; de Armas, V.; López, J.; Sarmiento, R.
2009-05-01
In a short period of time, the multimedia sector has quickly progressed trying to overcome the exigencies of the customers in terms of transfer speeds, storage memory, image quality, and functionalities. In order to cope with this stringent situation, different hardware devices have been developed as possible choices. Despite of the fact that not every device is apt for implementing the high computational demands associated to multimedia applications; reconfigurable architectures appear as ideal candidates to achieve these necessities. As a direct consequence, worldwide universities and industries have incremented their research activity into this area, generating an important know-how base. In order to sort all the information generated about this issue, this paper reviews the most recent reconfigurable architectures for multimedia applications. As a result, this paper establishes the benefits and drawbacks of the different dynamically reconfigurable architectures for multimedia applications according to their system-level design.
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
Improving America's Schools: Lessons from Abroad.
ERIC Educational Resources Information Center
McAdams, Richard P.
1994-01-01
A recent study of schooling in five nations with well-developed educational systems (Canada, Denmark, England, Germany, and Japan) reveals that most of them share important characteristics not generally found in American schools. Results suggest that U.S. elementary educators should reconfigure school-year length, vacation time, and the pace of…
Reconfiguring Higher Education: The Case of Foundation Degrees
ERIC Educational Resources Information Center
Wilson, John P.; Blewitt, John; Moody, Daphne
2005-01-01
Purpose - This paper aims to explore the policy background, educational rationale, developmental stages, and the introduction and piloting of a foundation degree FD. Design/methodology/approach - The approach is a description and discussion. The paper draws together, for the first time, the main policy documents and reviews and relates these to…
Reconfiguring Bruner: Compressing the Spiral Curriculum
ERIC Educational Resources Information Center
Gibbs, Brian C.
2014-01-01
This article addresses the work of Jerome Bruner, a famed psychologist of education, who is considered to be very responsible for how education and learning are conceived today. In 1959, Bruner brought together scholars from many academic disciplines to focus on redesigning curriculum and thus redesigning the foundation of American schools. Bruner…
An Exploration of the Development of Academic Identity in a School of Education
ERIC Educational Resources Information Center
White, Elizabeth; Roberts, Amanda; Rees, Mary; Read, Mary
2014-01-01
This paper explores the complex processes involved in the self-construction of academic identity in a UK School of Education. Building on seminal literature in this field and drawing on the research of four academics, it begins by discussing teacher educators' varying perceptions of the need to re-configure their identity to meet the expectations…
ERIC Educational Resources Information Center
Pelletier, Caroline
2005-01-01
Digital or computer games have recently attracted the interest of education researchers and policy-makers for two main reasons: their interactivity, which is said to allow greater agency, and their inherent pleasures, which are linked to increased motivation to learn. However, the relationship between pleasure, agency and motivation in educational…
Methods and systems for providing reconfigurable and recoverable computing resources
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A method for optimizing the use of digital computing resources to achieve reliability and availability of the computing resources is disclosed. The method comprises providing one or more processors with a recovery mechanism, the one or more processors executing one or more applications. A determination is made whether the one or more processors needs to be reconfigured. A rapid recovery is employed to reconfigure the one or more processors when needed. A computing system that provides reconfigurable and recoverable computing resources is also disclosed. The system comprises one or more processors with a recovery mechanism, with the one or more processors configured to execute a first application, and an additional processor configured to execute a second application different than the first application. The additional processor is reconfigurable with rapid recovery such that the additional processor can execute the first application when one of the one more processors fails.
Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
Khor, Kang Xiang; Chin, Patrick Jun Hua; Yeong, Che Fai; Su, Eileen Lee Ming; Narayanan, Aqilah Leela T; Abdul Rahman, Hisyam; Khan, Qamer Iqbal
2017-10-01
Rehabilitation robots have become increasingly popular for stroke rehabilitation. However, the high cost of robots hampers their implementation on a large scale. This paper implements the concept of a modular and reconfigurable robot, reducing its cost and size by adopting different therapeutic end effectors for different training movements using a single robot. The challenge is to increase the robot's portability and identify appropriate kinds of modular tools and configurations. Because literature on the effectiveness of this kind of rehabilitation robot is still scarce, this paper presents the design of a portable and reconfigurable rehabilitation robot and describes its use with a group of post-stroke patients for wrist and forearm training. Seven stroke subjects received training using a reconfigurable robot for 30 sessions, lasting 30 min per session. Post-training, statistical analysis showed significant improvement of 3.29 points (16.20%, p = 0.027) on the Fugl-Meyer assessment scale for forearm and wrist components. Significant improvement of active range of motion was detected in both pronation-supination (75.59%, p = 0.018) and wrist flexion-extension (56.12%, p = 0.018) after the training. These preliminary results demonstrate that the developed reconfigurable robot could improve subjects' wrist and forearm movement.
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
NASA Technical Reports Server (NTRS)
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
An Analysis of the Joint Modular Intermodal Distribution System
2007-06-01
the differing airframes. “Two methods are available to move a CROP-load of ammunition: 1. Reconfigure the load from the CROP onto multiple 463L...used among the services lack: • Transportability across different modes without re-handling/packaging • Quick reconfiguration for onward movement...numerous linkages among different channels of distribution. In the world of integrated logistics, that means that ground, rail, air, and sea modes of
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
ERIC Educational Resources Information Center
Morgan, Rosemary; Blackmore, Jill
2013-01-01
Market principles now dominate the education and social policies of many Anglophone countries, including Australia, but articulate differentially within specific contexts. Existing historical legacies, local economic and social conditions, and geographical settings interact with federal and state funding and transport policies to shape the nature…
ERIC Educational Resources Information Center
Wärvik, Gun-Britt
2013-01-01
The aim of this paper is to examine the introduction of a quality assurance scheme as a regulating technology that is part of adult education restructuring occurring currently, and to examine the subsequent tensions in the work of the VET teachers. The scheme implies a standardisation of educational content and of assessment procedures. It is a…
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
Curriculum Policy in Portugal (1995-2007): Global Agendas and Regional and National Reconfigurations
ERIC Educational Resources Information Center
Teodoro, Antonio; Estrela, Elsa
2010-01-01
This paper undertakes a critical analysis of recent education and curriculum policies in Portugal, focusing on the relationship between globalization, international agencies, and the curriculum. It aims to highlight not only changes in the organization of schools, but also the setting of a agenda structured at a global level for education in which…
Community Education: An Essential Dimension in the Prevention of Violence against Women
ERIC Educational Resources Information Center
Fairbairn-Dunlop, Peggy
2011-01-01
This paper explores how global aid agendas impact NGO responsibility for Violence Against Women (VAW) community education programmes. VAW is a critical issue in the Pacific region. A reconfiguration of the NGO sector is taking place whereby larger NGOs receive more resources than smaller, more diverse NGOs. This paper examines a regional-national…
Globalisation and Science Education: The Case of "Sustainability by the Bay"
ERIC Educational Resources Information Center
Carter, Lyn; Dediwalage, Ranjith
2010-01-01
It is impossible to consider contemporary science education in isolation from globalisation as the dominant logic, rethinking and reconfiguring social and cultural life in which it is located. Carter (J Res Sci Teach 42, 561-580, "2005") calls for a close reading of policy documents, curriculum projects, research studies and a range of other…
Yang, Chunrong; Zou, Dan; Chen, Jianchi; Zhang, Linyan; Miao, Jiarong; Huang, Dan; Du, Yuanyuan; Yang, Shu; Yang, Qianfan; Tang, Yalin
2018-03-15
Plenty of molecular circuits with specific functions have been developed; however, logic units with reconfigurability, which could simplify the circuits and speed up the information process, are rarely reported. In this work, we designed a novel reconfigurable logic unit based on a DNA-templated, potassium-concentration-dependent, supramolecular assembly, which could respond to the input stimuli of H + and K + . By inputting different concentrations of K + , the logic unit could implement three significant functions, including a half adder, a half subtractor, and a 2-to-4 decoder. Considering its reconfigurable ability and good performance, the novel prototypes developed here may serve as a promising proof of principle in molecular computers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ling; Chen, Dong; Gutierrez-Cuevas, Karla G; Bisoyi, Hari Krishna; Fan, Jing; Zola, Rafael S; Li, Guoqiang; Urbas, Augustine M; Bunning, Timothy J; Weitz, David A; Li, Quan
2017-01-01
Optically reconfigurable monodisperse chiral microspheres of self-organized helical superstructures with dynamic chirality were fabricated via a capillary-based microfluidic technique. Light-driven handedness-invertible transformations between different configurations of microspheres were vividly observed and optically tunable RGB photonic cross-communications among the microspheres were demonstrated.
Antennas and Electromagnetics Instrumentation for Research and Education
2016-06-01
Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support
Planned Policy Transfer: The Impact of the German Model on Chinese Vocational Education
ERIC Educational Resources Information Center
Barabasch, Antje; Huang, Sui; Lawson, Robert
2009-01-01
In the realm of reconfiguring Chinese vocational education and training (VET) the country is collaborating with Germany which provides guidance and support for the development of a dual system in China. The article outlines the circumstances that need to be considered in such a policy transfer and possible scenarios for the development of a modern…
ERIC Educational Resources Information Center
Johnson, Eugene G.; Lazer, Stephen; O'Sullivan, Christine Y.
Chapters in this report outline the potential plans for the redesign of the National Assessment of Educational Progress (NAEP). It is argued that any successful redesign must consider the NAEP as a whole. This report reviews overall NAEP designs and discusses the implications that each of the designs has for various functional areas. The following…
A distributed fault-tolerant signal processor /FTSP/
NASA Astrophysics Data System (ADS)
Bonneau, R. J.; Evett, R. C.; Young, M. J.
1980-01-01
A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
Optical beamforming based on microwave photonic signal processing
NASA Astrophysics Data System (ADS)
Anzalchi, J.; Perrott, R.; Latunde-Dada, K.; Oldenbeuving, R. M.; Roeloffzen, C. G. H.; Van Dijk, P. W. L.; Hoekman, M.; Leeuwis, H.; Leinse, A.
2017-09-01
Over the past few years considerable attention has been focussed on the inclusion of flexibility in communication satellite payloads. The purpose of this flexibility is to enable a given satellite on command to support different frequency plans, re-configure coverage in response to changing traffic demands and re-configure interconnectivity between coverages.
The Complete Reconfiguration of Dendritic Gold
NASA Astrophysics Data System (ADS)
Paneru, Govind; Flanders, Bret
2014-03-01
Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.
Application-specific coarse-grained reconfigurable array: architecture and design methodology
NASA Astrophysics Data System (ADS)
Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu
2015-06-01
Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method
NASA Astrophysics Data System (ADS)
Li, Jing
2016-07-01
This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.
Reconfigurable, Cognitive Software-Defined Radio
NASA Technical Reports Server (NTRS)
Bhat, Arvind
2015-01-01
Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.
García, Gabriel J.; Jara, Carlos A.; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M.; Torres, Fernando
2014-01-01
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field. PMID:24691100
García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando
2014-03-31
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Reconfigurable Carbon Nanotube Multiplexed Sensing Devices.
Xu, Xinzhao; Clément, Pierrick; Eklöf-Österberg, Johnas; Kelley-Loughnane, Nancy; Moth-Poulsen, Kasper; Chávez, Jorge L; Palma, Matteo
2018-06-26
Here we report on the fabrication of reconfigurable and solution processable nanoscale biosensors with multisensing capability, based on single-walled carbon nanotubes (SWCNTs). Distinct DNA-wrapped (hence water-soluble) CNTs were immobilized from solution onto different prepatterned electrodes on the same chip, via a low-cost dielectrophoresis (DEP) methodology. The CNTs were functionalized with specific, and different, aptamer sequences that were employed as selective recognition elements for biomarkers indicative of stress and neuro-trauma conditions. Multiplexed detection of three different biomarkers was successfully performed, and real-time detection was achieved in serum down to physiologically relevant concentrations of 50 nM, 10 nM, and 500 pM for cortisol, dehydroepiandrosterone-sulfate (DHEAS), and neuropeptide Y (NPY), respectively. Additionally, the fabricated nanoscale devices were shown to be reconfigurable and reusable via a simple cleaning procedure. The general applicability of the strategy presented, and the facile device fabrication from aqueous solution, hold great potential for the development of the next generation of low power consumption portable diagnostic assays for the simultaneous monitoring of different health parameters.
Perceptions of a Middle School Reconfiguration: A Descriptive Case Study
ERIC Educational Resources Information Center
Lasker, Karen
2012-01-01
The purpose of this qualitative research study was to follow 1 principal's journey to assist the district in its reconfiguration goals, and help the school change through deep examination of district personnel's and parents' perceptions of the change process. This was done by acknowledging distinctions and differences between junior…
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-04-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55-4.60 GHz and 4.54-4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications.
NASA Astrophysics Data System (ADS)
Whittaker, Peter; Wilson, Catherine A. M. E.; Aberle, Jochen
2015-09-01
An improved model to describe the drag and reconfiguration of flexible riparian vegetation is proposed. The key improvement over previous models is the use of a refined 'vegetative' Cauchy number to explicitly determine the magnitude and rate of the vegetation's reconfiguration. After being derived from dimensional consideration, the model is applied to two experimental data sets. The first contains high-resolution drag force and physical property measurements for twenty-one foliated and defoliated full-scale trees, including specimens of Alnus glutinosa, Populus nigra and Salix alba. The second data set is independent and of a different scale, consisting of drag force and physical property measurements for natural and artificial branches of willow and poplar, under partially and fully submerged flow conditions. Good agreement between the measured and predicted drag forces is observed for both data sets, especially when compared to a more typical 'rigid' approximation, where the effects of reconfiguration are neglected.
Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin
2016-04-01
A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-01-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098
ERIC Educational Resources Information Center
Higgins, Marc
2018-01-01
The purpose of this article is to explore what Michel Foucault refers to as "the" critical attitude and its relationship to science education, drawing from Foucault's (The politics of truth. Semiotext(e), New York, 1997) insight that "the" critical attitude is but "a" critical attitude. This article is a rejoinder to…
ERIC Educational Resources Information Center
Gisolfi, Peter
2006-01-01
In this article, the author talks about legibility as an essential component of education facility design. Legibility is concerned not only with stylistic consistency, but also with other design factors that help make a building understandable. Reconfigured interiors and multiple additions can create confusing paths. Illogical assortments of…
Martín, Ferran; Bonache, Jordi
2014-01-01
In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378
Software-Defined Radio for Space-to-Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.
2011-01-01
A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.
Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin
2018-04-01
A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.
Core networks and their reconfiguration patterns across cognitive loads.
Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi
2018-04-20
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.
Framework for architecture-independent run-time reconfigurable applications
NASA Astrophysics Data System (ADS)
Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.
2000-10-01
Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.
Architectural evaluation of dynamic and partial reconfigurable systems designed with DREAMS tool
NASA Astrophysics Data System (ADS)
Otero, Andrés.; Gallego, Ángel; de la Torre, Eduardo; Riesgo, Teresa
2013-05-01
Benefits of dynamic and partial reconfigurable systems are increasingly being more accepted by the industry. For this reason, SRAM-based FPGA manufacturers have improved, or even included for the first time, the support they offer for the design of this kind of systems. However, commercial tools still offer a poor flexibility, which leads to a limited efficiency. This is witnessed by the overhead introduced by the communication primitives, as well as by the inability to relocate reconfigurable modules, among others. For this reason, authors have proposed an academic design tool called DREAMS, which targets the design of dynamically reconfigurable systems. In this paper, main features offered by DREAMS are described, comparing them with existing commercial and academic tools. Moreover, a graphic user interface (GUI) is originally described in this work, with the aim of simplifying the design process, as well as to hide the low level device dependent details to the system designer. The overall goal is to increase the designer productivity. Using the graphic interface, different reconfigurable architectures are provided as design examples. Among them, both conventional slot-based architectures and mesh type designs have been included.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
Reconfigurable Model Execution in the OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Hwang, John T.
2017-01-01
NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the time discretization are adaptively refined, resulting in computational savings of roughly 10% and the elimination of oscillations in the optimized altitude profile.
Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap
NASA Astrophysics Data System (ADS)
Dewan, Raimi; Rahim, M. K. A.; Himdi, Mohamed; Hamid, M. R.; Majid, H. A.; Jalil, M. E.
2017-01-01
A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.
Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José
2007-12-10
This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.
Virtual Egalitarianism, Critical Pedagogy, and Geographic Education
ERIC Educational Resources Information Center
Lukinbeal, Chris; Allen, Casey D.
2007-01-01
This article explores the implementation of critical pedagogic practices into a graduate level landscape seminar Web site. Critical pedagogy seeks to reconfigure student-teacher relationships and disrupt embedded power regimes within academia and society. Critical pedagogic practices create a dialogue amongst learners, where everyone has a stake…
Toward a Reconstitution of Academic Governance
ERIC Educational Resources Information Center
Balch, Stephen H.
2003-01-01
In the humanities and social sciences--where partisan passions color research and teaching--higher education tends to become an intellectually closed shop. Stephen Balch recommends that, in such fields, the intellectual marketplace be reopened through a reconfiguring of academic governance informed by Madisonian principles. He contends that policy…
Re-configuring Aristotle's Dialogics through Reader-Response.
ERIC Educational Resources Information Center
Khawaja, Mabel
In her literature and composition classes, an educator encourages students to correlate their memory and imagination to the rhetorical elements of logos, pathos, and ethos and construct regenerative structures of knowledge through a comprehensive and objective understanding of a contextualized problem. She employs Bakhtin's dialogic method of…
Rational design of reconfigurable prismatic architected materials.
Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia
2017-01-18
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2017-01-01
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Redesigning Learning Spaces: What Do Teachers Want for Future Classrooms?
ERIC Educational Resources Information Center
Pedro, Neuza
2017-01-01
The concepts of future classrooms, multimedia labs or active learning space has recently gained prominence in educational research. Evidence-based research has found that well-designed primary school classrooms can boost students' learning. Also, schools' principals, teachers and students are requesting for more flexible, reconfigurable and modern…
Course Evaluation: Reconfigurations for Learning with Learning Management Systems
ERIC Educational Resources Information Center
Park, Ji Yong
2014-01-01
The introduction of online delivery platforms such as learning management systems (LMS) in tertiary education has changed the methods and modes of curriculum delivery and communication. While course evaluation methods have also changed from paper-based in-class-administered methods to largely online-administered methods, the data collection…
Towards Decolonial Praxis: Reconfiguring the Human and the Curriculum
ERIC Educational Resources Information Center
Desai, Karishma; Sanya, Brenda Nyandiko
2016-01-01
This theoretical inquiry applies threads of Sylvia Wynter's intellectual project to scholarship in curriculum studies to consider how Wynter's insights might urge new potential in educational theorising and practice. The central concern driving Wynter's intellectual project is that our present understanding about what it means to be human is…
Increasing Students' Interest with Low-Cost CellBots
ERIC Educational Resources Information Center
Aroca, R. V.; Gomes, R. B.; Tavares, D. M.; Souza, A. A. S; Burlamaqui, A. M. F.; Caurin, G. A. P.; Goncalves, L. M. G.
2013-01-01
This paper introduces the use of a flexible and affordable educational robot specifically developed for the practical experimentation inherent to technological disciplines. The robot has been designed to be reconfigurable and extendible, serving as an experimental platform across several undergraduate courses. As most students have a mobile cell…
Facilitating preemptive hardware system design using partial reconfiguration techniques.
Dondo Gazzano, Julio; Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration.
Facilitating Preemptive Hardware System Design Using Partial Reconfiguration Techniques
Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration. PMID:24672292
Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin
2017-08-29
For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.
Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.
Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A
2010-08-16
The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.
Tunable Polarization Conversion and Rotation based on a Reconfigurable Metasurface.
Zhang, M; Zhang, W; Liu, A Q; Li, F C; Lan, C F
2017-09-21
Polarization is an important property of electromagnetic (EM) wave and different polarization manipulations are required for varied optical applications. Here we report a reconfigurable metasurface which achieves both the polarization conversion and the polarization rotation in THz regime. The metasurface is reconfigured through the micro-electro-mechanical-systems (MEMS) actuation. The cross polarization transmittance from a linear polarized incidence is experimentally tuned from 0 to 28% at 2.66 THz. In addition, the polarization rotation angle is effectively changed from -12.8° to 13.1° at 1.78 THz. The tunable bi-functional metasurface for polarization conversion and the polarization rotation can be flexibly applied in various applications such as imaging, polarization microscopy and material analysis, etc.
Globalisation and science education: the case of Sustainability by the Bay
NASA Astrophysics Data System (ADS)
Carter, Lyn; Dediwalage, Ranjith
2010-06-01
It is impossible to consider contemporary science education in isolation from globalisation as the dominant logic, rethinking and reconfiguring social and cultural life in which it is located. Carter (J Res Sci Teach 42, 561-580, 2005) calls for a close reading of policy documents, curriculum projects, research studies and a range of other science education texts using key concepts from globalisation theory to elucidate the ways in which globalisation shapes and is expressed within science education. In this paper, we consider an example from our own practice of a school-based curriculum project, Sustainable Living by the Bay, as one such instance. The first section reviews neoliberalism and neoconservativism necessary to understand how globalisation penetrates education, while the second outlines aspects of the curriculum project itself. As there were many different facets to the development and implementation of a project like Sustainable Living by the Bay, there is space only to elaborate two examples of the globalisation discourse. The first example concerns the government policy initiative that funded the project while the second example focuses on learner- centred pedagogies as globalisation's pedagogies of choice.
Optimal reconfiguration strategy for a degradable multimodule computing system
NASA Technical Reports Server (NTRS)
Lee, Yann-Hang; Shin, Kang G.
1987-01-01
The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.
Reconfigurable radio-over-fiber system based on optical switch and tunable filter
NASA Astrophysics Data System (ADS)
Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng
2017-09-01
As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.
Comparison of two reconfigurable N×N interconnects for a recurrent neural network
NASA Astrophysics Data System (ADS)
Berger, Christoph; Collings, Neil; Pourzand, Ali R.; Volkel, Reinnard
1996-11-01
Two different methods of pattern replication (conventional and interlaced fan-out) have been investigated and experimentally tested in a reconfigurable 5X5 optical interconnect. Similar alignment problems due to imaging errors (field curvature) were observed in both systems. We conclude that of the two methods the interlaced fan-out is better suited to avoid these imaging errors, to reduce system size and to implement an optical feedback loop.
Adapting Online Learning Resources for All: Planning for Professionalism in Accessibility
ERIC Educational Resources Information Center
McAndrew, Patrick; Farrow, Robert; Cooper, Martyn
2012-01-01
Online resources for education offer opportunities for those with disabilities but also raise challenges on how to best adjust resources to accommodate accessibility. Automated reconfiguration could in principle remove the need for expensive and time-consuming discussions about adaptation. On the other hand, human-based systems provide much needed…
ERIC Educational Resources Information Center
Stromquist, Nelly P.
2015-01-01
Under the research radar, and yet highly influential in transformation of practices concerning the social understanding and enactment of gender, are women-led non-governmental organizations (WNGOs). Their continued efforts to reconfigure gender identities and their impact on public policy formation have expanded notions of citizenship and…
Beyond McPoetry: Contemporary American Poetry in the Institutionalized Creative Writing Program Era
ERIC Educational Resources Information Center
Porter, Julie LaRue
2012-01-01
This dissertation examines the rise of the creative writing program in American higher education and considers its influence on contemporary American poetry. I investigate how the patronage of the university has impacted American poetry and reconfigured the contemporary literary landscape. Using Mark McGurl's (2009) groundbreaking research on…
Reconfiguring Urban Environmental Education with "Shitgull" and a "Shop"
ERIC Educational Resources Information Center
Rautio, Pauliina; Hohti, Riikka; Leinonen, Riitta-Marja; Tammi, Tuure
2017-01-01
The worry over urban children having lost their connection to nature is most often addressed with either initiatives of reinserting the "child back to nature" or with evidence aiming to prove that the worry is unfounded to begin with. Neither approach furthers our understanding of child-nature relations as continuing transformation of…
ERIC Educational Resources Information Center
Yen, Cherng-Jyh; Abdous, M'hammed
2011-01-01
The confluence of technology convergence, market forces, and student demand for greater access is reshaping higher education institutions. Indeed, the convergence of technological innovations in hardware, software, and telecommunications, combined with the ubiquity of learning management systems, is reconfiguring and strengthening traditional…
Human Capital Formation in the Gulf and MENA Region.
ERIC Educational Resources Information Center
Shaw, Ken E.
2001-01-01
Recent developments in human capital formation theories are particularly relevant to the Gulf and Middle Eastern and North African regions. Discusses recent western reconfigurations of the theory, noting how much local work must be done to reshape theory appropriately in the Middle East and explaining how issues relating to employment, education,…
ERIC Educational Resources Information Center
Jiménez, Tomás R.; Horowitz, Adam L.
2013-01-01
Research on immigration, educational achievement, and ethnoraciality has followed the lead of racialization and assimilation theories by focusing empirical attention on the immigrant-origin population (immigrants and their children), while overlooking the effect of an immigrant presence on the third-plus generation (U.S.-born individuals of…
Metamaterial-inspired reconfigurable series-fed arrays
NASA Astrophysics Data System (ADS)
Ijaz, Bilal
One of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.
Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation
NASA Astrophysics Data System (ADS)
Thota, M.; Wang, K. W.
2017-10-01
An origami sonic barrier composed of cylindrical inclusions attached onto an origami sheet is proposed. The idea allows for tunable sound blocking properties for application in attenuating complex traffic noise spectra. Folding of the underlying origami sheet transforms the periodicity of the inclusions between different Bravais lattices, viz. between a square and a hexagonal lattice, and such significant lattice re-configuration leads to drastic tuning of dispersion characteristics. The wave tuning capabilities are corroborated via performing theoretical and numerical investigations using a plane wave expansion method and an acoustic simulation package of COMSOL, while experiments are performed on a one-seventh scaled-down model of origami sonic barrier to demonstrate the lattice re-configuration between different Bravais lattices and the associated bandgap adaptability. Good sound blocking performance in the frequency range of traffic noise spectra combined with less efforts, required for actuating one-degree of freedom folding mechanism, makes the origami sonic barrier a potential candidate for mitigating complex traffic noise.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Personal pervasive environments: practice and experience.
Ballesteros, Francisco J; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them.
Personal Pervasive Environments: Practice and Experience
Ballesteros, Francisco J.; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them. PMID:22969340
Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures
NASA Astrophysics Data System (ADS)
Russell, Francis P.; Düben, Peter D.; Niu, Xinyu; Luk, Wayne; Palmer, T. N.
2017-12-01
Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such architectures in their data centres. The computationally intensive nature of atmospheric modelling is an attractive target for hardware acceleration using reconfigurable computing. Performance of hardware designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to diverge quickly. The possibility of equally valid simulations having differing outcomes means that standard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting implementations. Our results show that with only a limited loss in accuracy corresponding to less than 10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more than doubled.
A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge
2014-04-01
We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.
A Reconfigurable Design and Architecture of the Ethernet and HomePNA3.0 MAC
NASA Astrophysics Data System (ADS)
Khalilydermany, M.; Hosseinghadiry, M.
In this paper a reconfigurable architecture for Ethernet and HomePNA MAC is presented. By using this new architecture, Ethernet and HomePNA reconfigurable network card can be produced. This architecture has been implemented using VHDL language and after that synthesized on a chip. The differences between HomePNA (synchronized and unsynchronized mode) and Ethernet in collision detection mechanism and priority access to media have caused the need to separate architectures for Ethernet and HomePNA, but by using similarities of them, both the Ethernet and the HomePNA can be implemented in a single chip with a little extra hardware. The number of logical elements of the proposed architecture is increased by 19% in compare to when only an Ethernet MAC is implemented
Evaluation of Advanced Computing Techniques and Technologies: Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Wells, B. Earl
2003-01-01
The focus of this project was to survey the technology of reconfigurable computing determine its level of maturity and suitability for NASA applications. To better understand and assess the effectiveness of the reconfigurable design paradigm that is utilized within the HAL-15 reconfigurable computer system. This system was made available to NASA MSFC for this purpose, from Star Bridge Systems, Inc. To implement on at least one application that would benefit from the performance levels that are possible with reconfigurable hardware. It was originally proposed that experiments in fault tolerance and dynamically reconfigurability would be perform but time constraints mandated that these be pursued as future research.
Acute hospital reconfiguration and self-harm presentations: a before-and-after study.
Griffin, Eve; Murphy, Catherine; Perry, Ivan J; Lynch, Brenda; Arensman, Ella; Corcoran, Paul
2018-03-27
The evidence for improved patient outcomes following acute hospital reconfiguration is limited. We assessed the impact of the reconfiguration of acute services within a hospital group in terms of the number and clinical management of self-harm presentations. The study was conducted across the three Mid-Western regional hospitals in Ireland during 2004-2014. Reconfiguration in April 2009 involved two hospitals reducing the operation of their emergency departments (EDs) from 24 to 12 h. We used Poisson regression analysis of data from the National Self-Harm Registry Ireland to assess change in the hospital burden and clinical management of self-harm associated with the reconfiguration. We observed that the cumulative decrease in self-harm presentations at the two reconfigured hospitals was of a similar magnitude to the increase observed at the larger hospital. Despite this large increase in presentations, there was only a small increase in admissions. Reconfiguration of hospital services was also associated with changes in the provision of assessments for self-harm patients. There is evidence to suggest that acute hospital reconfiguration of hospital services impacts on patterns of patient flow. Findings have implications for those implementing reconfiguration of acute services.
Use of Patterned CNT Arrays for Display Purposes
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)
2009-01-01
Method and system for providing a dynamically reconfigurable display having nanometer-scale resolution, using a patterned array of multi-wall carbon nanotube (MWCNT) clusters. A diode, phosphor or other light source on each MWCNT cluster is independently activated, and different color light sources (e.g., red, green, blue, grey scale, infrared) can be mixed if desired. Resolution is estimated to be 40-100 nm, and reconfiguration time for each MWCNT cluster is no greater than one microsecond.
NASA Astrophysics Data System (ADS)
Nasaruddin; Tsujioka, Tetsuo
An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.
Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.
Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras
2018-05-01
New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constrained simultaneous multi-state reconfigurable wing structure configuration optimization
NASA Astrophysics Data System (ADS)
Snyder, Matthew
A reconfigurable aircraft is capable of in-flight shape change to increase mission performance or provide multi-mission capability. Reconfigurability has always been a consideration in aircraft design, from the Wright Flyer, to the F-14, and most recently the Lockheed-Martin folding wing concept. The Wright Flyer used wing-warping for roll control, the F-14 had a variable-sweep wing to improve supersonic flight capabilities, and the Lockheed-Martin folding wing demonstrated radical in-flight shape change. This dissertation will examine two questions that aircraft reconfigurability raises, especially as reconfiguration increases in complexity. First, is there an efficient method to develop a light weight structure which supports all the loads generated by each configuration? Second, can this method include the capability to propose a sub-structure topology that weighs less than other considered designs? The first question requires a method that will design and optimize multiple configurations of a reconfigurable aerostructure. Three options exist, this dissertation will show one is better than the others. Simultaneous optimization considers all configurations and their respective load cases and constraints at the same time. Another method is sequential optimization which considers each configuration of the vehicle one after the other - with the optimum design variable values from the first configuration becoming the lower bounds for subsequent configurations. This process repeats for each considered configuration and the lower bounds update as necessary. The third approach is aggregate combination — this method keeps the thickness or area of each member for the most critical configuration, the configuration that requires the largest cross-section. This research will show that simultaneous optimization produces a lower weight and different topology for the considered structures when compared to the sequential and aggregate techniques. To answer the second question, the developed optimization algorithm combines simultaneous optimization with a new method for determining the optimum location of the structural members of the sub-structure. The method proposed here considers an over-populated structural model, one in which there are initially more members than necessary. Using a unique iterative process, the optimization algorithm removes members from the design if they do not carry enough load to justify their presence. The initial set of members includes ribs, spars and a series of cross-members that diagonally connect the ribs and spars. The final result is a different structure, which is lower weight than one developed from sequential optimization or aggregate combination, and suggests the primary load paths. Chapter 1 contains background information on reconfigurable aircraft and a description of the new reconfigurable air vehicle being considered by the Air Vehicles Directorate of the Air Force Research Laboratory. This vehicle serves as a platform to test the proposed optimization process. Chapters 2 and 3 overview the optimization method and Chapter 4 provides some background analysis which is unique to this particular reconfigurable air vehicle. Chapter 5 contains the results of the optimizations and demonstrates how changing constraints or initial configuration impacts the final weight and topology of the wing structure. The final chapter contains conclusions and comments on some future work which would further enhance the effectiveness of the simultaneous reconfigurable structural topology optimization process developed and used in this dissertation.
Model-based reconfiguration: Diagnosis and recovery
NASA Technical Reports Server (NTRS)
Crow, Judy; Rushby, John
1994-01-01
We extend Reiter's general theory of model-based diagnosis to a theory of fault detection, identification, and reconfiguration (FDIR). The generality of Reiter's theory readily supports an extension in which the problem of reconfiguration is viewed as a close analog of the problem of diagnosis. Using a reconfiguration predicate 'rcfg' analogous to the abnormality predicate 'ab,' we derive a strategy for reconfiguration by transforming the corresponding strategy for diagnosis. There are two obvious benefits of this approach: algorithms for diagnosis can be exploited as algorithms for reconfiguration and we have a theoretical framework for an integrated approach to FDIR. As a first step toward realizing these benefits we show that a class of diagnosis engines can be used for reconfiguration and we discuss algorithms for integrated FDIR. We argue that integrating recovery and diagnosis is an essential next step if this technology is to be useful for practical applications.
ERIC Educational Resources Information Center
Schrum, Lynne; Levin, Barbara B.
2013-01-01
The purpose of this research was to understand ways exemplary award winning secondary school leaders have transformed their schools for twenty-first-century education and student achievement. This article presents three diverse case studies and identifies ways that each school's leader and leadership team reconfigured its culture and expectations,…
Tracing the Flow of Human Resources across Organizational Units and Secondary School Subject Areas.
ERIC Educational Resources Information Center
Roellke, Christopher F.
Although New York State introduced its standards-based reform over a decade ago, it remains unclear as to how local education agencies (LEAs) have reconfigured their human resources in response to these initiatives. This paper demonstrates how state-collected personnel data can be used to generate longitudinal indicators of the kinds of…
ERIC Educational Resources Information Center
Clarke, Rachel; Lewis, Rosie M.
2016-01-01
This article explores an innovative model of adult education within museums developed from a Black feminist approach. BAM! Sistahood! is a community-led project with regional heritage organisations, universities and women's centres in the UK, that offers a holistic approach to heritage development. The ethos is to challenge the perpetuation of…
Blurring the Boundaries? Supporting Students and Staff within an Online Learning Environment
ERIC Educational Resources Information Center
Quinsee, Susannah; Hurst, Judith
2005-01-01
The inclusion of online learning technologies into the higher education (HE) curriculum is frequently associated with the design and development of new models of learning. One could argue that e-learning even demands a reconfiguration of traditional methods of learning and teaching. One of the key elements of this transformational process is…
ERIC Educational Resources Information Center
Penney, Dawn; Petrie, Kirsten; Fellows, Sam
2015-01-01
This paper centres on research that investigated the contemporary policy, curriculum and pedagogical landscape of Health and Physical Education (HPE) in Aotearoa New Zealand, in the light of increasing impressions that provision was moving to an "open market" situation. Publicly available information sourced via the Internet was used to…
Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.
Fegadolli, William S; Almeida, Vilson R; Oliveira, José Edimar Barbosa
2011-06-20
A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.
Spectrally reconfigurable integrated multi-spot particle trap.
Leake, Kaelyn D; Olson, Michael A B; Ozcelik, Damla; Hawkins, Aaron R; Schmidt, Holger
2015-12-01
Optical manipulation of small particles in the form of trapping, pushing, or sorting has developed into a vast field with applications in the life sciences, biophysics, and atomic physics. Recently, there has been increasing effort toward integration of particle manipulation techniques with integrated photonic structures on self-contained optofluidic chips. Here, we use the wavelength dependence of multi-spot pattern formation in multimode interference (MMI) waveguides to create a new type of reconfigurable, integrated optical particle trap. Interfering lateral MMI modes create multiple trapping spots in an intersecting fluidic channel. The number of trapping spots can be dynamically controlled by altering the trapping wavelength. This novel, spectral reconfigurability is utilized to deterministically move single and multiple particles between different trapping locations along the channel. This fully integrated multi-particle trap can form the basis of high throughput biophotonic assays on a chip.
Reconfigurable antenna pattern verification
NASA Technical Reports Server (NTRS)
Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)
2013-01-01
A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.
The SMS4 cryptographic system design based on dynamic partial self-reconfiguration technology
NASA Astrophysics Data System (ADS)
Wang, Jianxin; Gao, Xianwei; Li, Xiuying; Sui, Meili
2013-03-01
This paper describes SMS4 algorithm by using dynamic partial self-reconfiguration. The design is implemented on Xilinx VirtexII-Pro XC2VP30 FPGA devices. The partial self-reconfiguration encryption/decryption module data throughput is up to 50Mb/s, key expansion and encryption/decryption modules use 1606 and 1570 slices respectively, and the resource utilization ratio of the key expansion by using partial self-reconfiguration technology is less 32.03% and slices are less 757 than the non-reconfiguration technology. SMS4 implementation gets a good balance between high performance and low complexity in area. The theoretical and practical research of dynamic partial self-reconfiguration has a broad space for development and application prospect.
Reconfigurable microfluidic device with discretized sidewall
Oono, Masahiro; Yamaguchi, Keisuke; Rasyid, Amirul; Takano, Atsushi; Tanaka, Masato
2017-01-01
Various microfluidic features, such as traps, have been used to manipulate flows, cells, and other particles within microfluidic systems. However, these features often become undesirable in subsequent steps requiring different fluidic configurations. To meet the changing needs of various microfluidic configurations, we developed a reconfigurable microfluidic channel with movable sidewalls using mechanically discretized sidewalls of laterally aligned rectangular pins. The user can deform the channel sidewall at any time after fabrication by sliding the pins. We confirmed that the flow resistance of the straight microchannel could be reversibly adjusted in the range of 101–105 Pa s/μl by manually displacing one of the pins comprising the microchannel sidewall. The reconfigurable microchannel also made it possible to manipulate flows and cells by creating a segmented patterned culture of COS-7 cells and a coculture of human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (hLFs) inside the microchannel. The reconfigurable microfluidic device successfully maintained a culture of COS-7 cells in a log phase throughout the entire period of 216 h. Furthermore, we performed a migration assay of cocultured HUVEC and hLF spheroids within one microchannel and observed their migration toward each other. PMID:28503247
A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.
Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua
2018-06-01
A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.
Lunar Applications in Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Somervill, Kevin
2008-01-01
NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.
Deterministic Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.
1998-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Reconfigurable Control Design for the Full X-33 Flight Envelope
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.
2001-01-01
A reconfigurable control law for the full X-33 flight envelope has been designed to accommodate a failed control surface and redistribute the control effort among the remaining working surfaces to retain satisfactory stability and performance. An offline nonlinear constrained optimization approach has been used for the X-33 reconfigurable control design method. Using a nonlinear, six-degree-of-freedom simulation, three example failures are evaluated: ascent with a left body flap jammed at maximum deflection; entry with a right inboard elevon jammed at maximum deflection; and landing with a left rudder jammed at maximum deflection. Failure detection and identification are accomplished in the actuator controller. Failure response comparisons between the nominal control mixer and the reconfigurable control subsystem (mixer) show the benefits of reconfiguration. Single aerosurface jamming failures are considered. The cases evaluated are representative of the study conducted to prove the adequate and safe performance of the reconfigurable control mixer throughout the full flight envelope. The X-33 flight control system incorporates reconfigurable flight control in the existing baseline system.
Typology reconfigured: from the metaphysics of essentialism to the epistemology of representation.
Love, Alan C
2009-06-01
The goal of this paper is to encourage a reconfiguration of the discussion about typology in biology away from the metaphysics of essentialism and toward the epistemology of classifying natural phenomena for the purposes of empirical inquiry. First, I briefly review arguments concerning 'typological thinking', essentialism, species, and natural kinds, highlighting their predominantly metaphysical nature. Second, I use a distinction between the aims, strategies, and tactics of science to suggest how a shift from metaphysics to epistemology might be accomplished. Typological thinking can be understood as a scientific tactic that involves representing natural phenomena using idealizations and approximations, which facilitates explanation, investigation, and theorizing via abstraction and generalization. Third, a variety of typologies from different areas of biology are introduced to emphasize the diversity of this representational reasoning. One particular example is used to examine how there can be epistemological conflict between typology and evolutionary analysis. This demonstrates that alternative strategies of typological thinking arise due to the divergent explanatory goals of researchers working in different disciplines with disparate methodologies. I conclude with several research questions that emerge from an epistemological reconfiguration of typology.
Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform
Kim, Jongpal; Ko, Hyoungho
2016-01-01
A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004
ERIC Educational Resources Information Center
Taylor, Carol A.; Dunne, Mairead
2011-01-01
This article considers some of the ways in which the transformative power of Web 2.0 digital technology is reconfiguring learning, knowledge and academic identities in the contemporary university. Through a focus on five specific examples, we consider the impact of virtualization processes on spatiality, materiality and embodiment, and pedagogic…
ERIC Educational Resources Information Center
Holt, Dale; Palmer, Stuart; Challis, Di
2011-01-01
This article reports on a study of Australian teaching and learning centres to identify factors that contribute to their effective strategic leadership. These centres remain in a state of flux, with seemingly endless reconfiguration. The drivers for such change appear to lie in decision makers' search for their centres to add more strategic value…
The Rise of School Choice in Education Funding Reform: An Analysis of Two Policy Moments
ERIC Educational Resources Information Center
Windle, Joel
2014-01-01
This article contributes to the analysis of the global spread of support for school choice and to the understanding of how a particular form of policy development reflects and cements this support. It maps the growing dominance of school choice within a reconfiguration of politics, policy making, and research. To establish the nature of this…
ERIC Educational Resources Information Center
Hurst, Judith; Quinsee, Susannah
2005-01-01
The inclusion of online learning technologies into the higher education (HE) curriculum is frequently associated with the design and development of new models of learning. One could argue that e-learning even demands a reconfiguration of traditional methods of learning and teaching. However, this transformation in pedagogic methodology does not…
1994-01-01
with any relatively small research effort, caution must be exercised in making inferences beyond the population of specific courses taught and...Management). The adapted model is based on learning and instructionali theory. The five courses that were reconfigured in the FTP were assigned by the...distance education strategies, including audio teleconferencing, computer- based teleconferencing, and VTT. While the research is in its infancy and many
Application of adaptive antenna techniques to future commercial satellite communication
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
PCI-based WILDFIRE reconfigurable computing engines
NASA Astrophysics Data System (ADS)
Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.
1996-10-01
WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.
An Embedded Reconfigurable Logic Module
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
NASA Astrophysics Data System (ADS)
Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.
2017-08-01
Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.
[(Re)configuration of the nursing field in the new state (1937-1945)].
Barreira, Ieda de Alencar; Baptista, Suely de Souza
2002-01-01
The subject of this study is the changes the nursing field went through during the period called Novo Estado. Analyze the nursing environment in the Federal Capital during the period mentioned; discuss the effects of the influence of the Catholic Church and nurses of the American government in the Brazilian nursing environment. Documents obtained from the Documentation Center in Anna Nery/UFRJ School of Nursing and from literature on the topic. The interpretation of the findings was based on the Theory of the Social World by Pierre Bourdieu. Results showed deep changes in terms of professional education, labor market and institutionalization of the nursing assistance in a period (after the World War II) in which the Catholic Church and the United States had increased their power and influence. This new context determined the reconfiguration of the identity of Brazilian nurses and of the nursing field.
NASA Technical Reports Server (NTRS)
Srinivasan, J.; Farrington, A.; Gray, A.
2001-01-01
They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.
Evolutionary Technique for Automated Synthesis of Electronic Circuits
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)
2003-01-01
A method for evolving a circuit comprising configuring a plurality of transistors using a plurality of reconfigurable switches so that each of the plurality of transistors has a terminal coupled to a terminal of another of the plurality of transistors that is controllable by a single reconfigurable switch. The plurality of reconfigurable switches being controlled in response to a chromosome pattern. The plurality of reconfigurable switches may be controlled using an annealing function. As such, the plurality of reconfigurable switches may be controlled by selecting qualitative values for the plurality of reconfigurable switches in response to the chromosomal pattern, selecting initial quantitative values for the selected qualitative values, and morphing the initial quantitative values. Typically, subsequent quantitative values will be selected more divergent than the initial quantitative values. The morphing process may continue to partially or to completely polarize the quantitative values.
NASA Technical Reports Server (NTRS)
Shen, Wei-Min (Inventor); Kovac, Robert M. (Inventor)
2012-01-01
Designs of single-end-operative reconfigurable genderless connectors that include a base, a plurality of movable jaws that are formed on the base and can engage to the jaws of another connector, and an actuator that is mounted on the base and can engage and move the jaws of the reconfigurable connector to connect the reconfigurable connector with another connector.
NASA Astrophysics Data System (ADS)
Ogiwara, Akifumi; Maekawa, Hikaru; Watanabe, Minoru; Moriwaki, Retsu
2014-02-01
A holographic polymer-dispersed liquid crystal (HPDLC) memory to record multi-context information for an optically reconfigurable gate array is formed by the angle-multiplexing recording using a successive laser exposure in liquid crystal (LC) composites. The laser illumination system is constructed using the half mirror and photomask written by the different configuration contexts placed on the motorized stages under the control of a personal computer. The fabricated holographic memory implements a precise reconstruction of configuration contexts corresponding to the various logical circuits such as OR circuit and NOR circuit by the laser illumination at different incident angle in the HPDLC memory.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
Reconfigurable antenna using plasma reflector
NASA Astrophysics Data System (ADS)
Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan
2018-02-01
This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.
Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith
2014-01-01
The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Reconfigurable environmentally adaptive computing
NASA Technical Reports Server (NTRS)
Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)
2008-01-01
Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.
Full Envelope Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.; Lee, Seung-Hee (Technical Monitor)
2001-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. An Off-line Nonlinear General Constrained Optimization (ONCO) approach was used for the reconfigurable X-33 control design method. Three example failures are shown using a high fidelity 6 DOF simulation (case I ascent with a left body flap jammed at 25 deg.; case 2 entry with a right inboard elevon jam at 25 deg.; and case 3, landing (TAEM) with a left rudder jam at -30 deg.) Failure comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Design Tools for Reconfigurable Hardware in Orbit (RHinO)
NASA Technical Reports Server (NTRS)
French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian
2004-01-01
The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
Liu, Jun; Wang, Jian
2016-01-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications. PMID:27869133
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, Jian
2016-11-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
Demonstration of reconfigurable joint orbital angular momentum mode and space switching.
Liu, Jun; Wang, Jian
2016-11-21
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
Direction of Arrival Estimation Using a Reconfigurable Array
2005-05-06
civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm
Psychological and neural responses to art embody viewer and artwork histories.
Vartanian, Oshin; Kaufman, James C
2013-04-01
The research programs of empirical aesthetics and neuroaesthetics have reflected deep concerns about viewers' sensitivities to artworks' historical contexts by investigating the impact of two factors on art perception: viewers' developmental (and educational) histories and the contextual histories of artworks. These considerations are consistent with data demonstrating that art perception is underwritten by dynamically reconfigured and evolutionarily adapted neural and psychological mechanisms.
NASA Technical Reports Server (NTRS)
Allen, Gregory
2011-01-01
The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).
Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.
He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian
2018-04-01
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.
Contingent attentional capture across multiple feature dimensions in a temporal search task.
Ito, Motohiro; Kawahara, Jun I
2016-01-01
The present study examined whether attention can be flexibly controlled to monitor two different feature dimensions (shape and color) in a temporal search task. Specifically, we investigated the occurrence of contingent attentional capture (i.e., interference from task-relevant distractors) and resulting set reconfiguration (i.e., enhancement of single task-relevant set). If observers can restrict searches to a specific value for each relevant feature dimension independently, the capture and reconfiguration effect should only occur when the single relevant distractor in each dimension appears. Participants identified a target letter surrounded by a non-green square or a non-square green frame. The results revealed contingent attentional capture, as target identification accuracy was lower when the distractor contained a target-defining feature than when it contained a nontarget feature. Resulting set reconfiguration was also obtained in that accuracy was superior when the current target's feature (e.g., shape) corresponded to the defining feature of the present distractor (shape) than when the current target's feature did not match the distractor's feature (color). This enhancement was not due to perceptual priming. The present study demonstrated that the principles of contingent attentional capture and resulting set reconfiguration held even when multiple target feature dimensions were monitored. Copyright © 2015 Elsevier B.V. All rights reserved.
A novel optogenetically tunable frequency modulating oscillator
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936
A novel optogenetically tunable frequency modulating oscillator.
Mahajan, Tarun; Rai, Kshitij
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures
NASA Astrophysics Data System (ADS)
Marchiori, Estefani; Curran, Peter J.; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J.
2017-03-01
High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.
Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.
Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J
2017-03-24
High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
A fully reconfigurable photonic integrated signal processor
NASA Astrophysics Data System (ADS)
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2016-03-01
Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.
A Course on Reconfigurable Processors
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Huss, Sorin A.
2010-01-01
Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…
Mental health interventions in schools 1
Fazel, Mina; Hoagwood, Kimberly; Stephan, Sharon; Ford, Tamsin
2015-01-01
Mental health services embedded within school systems can create a continuum of integrative care that improves both mental health and educational attainment for children. To strengthen this continuum, and for optimum child development, a reconfiguration of education and mental health systems to aid implementation of evidence-based practice might be needed. Integrative strategies that combine classroom-level and student-level interventions have much potential. A robust research agenda is needed that focuses on system-level implementation and maintenance of interventions over time. Both ethical and scientific justifications exist for integration of mental health and education: integration democratises access to services and, if coupled with use of evidence-based practices, can promote the healthy development of children. PMID:26114092
Controlling Disorder by Electric Field Directed Reconfiguration of Nanowires to Tune Random Lasing.
Donahue, Philip P; Zhang, Chenji; Nye, Nicholas; Miller, Jennifer; Wang, Cheng-Yu; Tang, Rong; Christodoulides, Demetrios; Keating, Christine D; Liu, Zhiwen
2018-06-27
Top-down fabrication is commonly used to provide positioning control of optical structures; yet, it places stringent limitations on component materials and oftentimes, dynamic reconfigurability is challenging to realize. Here we present a reconfigurable nanoparticle platform that can integrate heterogeneous particle assembly of different shapes, sizes, and material compositions. We demonstrate dynamic manipulation of disorder in this platform and use it to controllably enhance or frustrate random laser emission for a suspension of titanium dioxide nanowires in a dye solution. Using an alternating current electric field, we control the nanowire orientation to dynamically control the collective scattering of the sample and thus light confinement. Our theoretical model indicates that an increase of 22% in scattering coefficient can be achieved for the experimentally determined nanowire length distribution upon alignment. As a result, a nearly 20-fold enhancement in lasing intensity was achieved. We illustrate the generality of the approach by demonstrating enhanced lasing for aligned nanowires of other materials including gold, mixed gold/dielectric and vanadium oxide (VxOy).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shecheng; Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060; Zhang, Weigang, E-mail: zhangwg@nankai.edu.cn, E-mail: haozhang@nankai.edu.cn
2015-02-23
A reconfigurable Mach-Zenhnder interferometer (MZI) based on a microfluidic cavity (MFC) constructed by embedding a microfiber between two segments of single-mode fibers with pre-designed lateral offset has been proposed and experimentally demonstrated. The MFC serves as an interference arm with an eccentric annular cross section and allows convenient sample (gas or liquids) replacement procedure. The microfiber works as the other interference arm that provides the proposed device with ease of reconstruction and also enhances the force sensitivity. The re-configurability and the ultra-wide tuning sensitivity range are demonstrated by immersing the MZI constructed with a 484 μm-long-MFC and a microfiber 44more » μm in diameter in different droplets. Ultrahigh sensitivities of 34.65 nm/°C (∼88 380 nm/RIU) and −493.7 nm/N (∼−590 pm/με) are experimentally achieved using a droplet with a refractive index of ∼1.44.« less
2004-03-01
with MySQL . This choice was made because MySQL is open source. Any significant database engine such as Oracle or MS- SQL or even MS Access can be used...10 Figure 6. The DoD vs . Commercial Life Cycle...necessarily be interested in SCADA network security 13. MySQL (Database server) – This station represents a typical data server for a web page
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
... DEPARTMENT OF STATE [Public Notice 7290] Culturally Significant Objects Imported for Exhibition Determinations: ``Reconfiguring an African Icon: Odes to the Mask by Modern and Contemporary Artists From Three... ``Reconfiguring an African Icon: Odes to the Mask by Modern and Contemporary Artists from Three Continents...
GPC-Based Stable Reconfigurable Control
NASA Technical Reports Server (NTRS)
Soloway, Don; Shi, Jian-Jun; Kelkar, Atul
2004-01-01
This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
Fulop, Naomi; Boaden, Ruth; Hunter, Rachael; McKevitt, Christopher; Morris, Steve; Pursani, Nanik; Ramsay, Angus Ig; Rudd, Anthony G; Tyrrell, Pippa J; DA Wolfe, Charles
2013-01-05
Significant changes in provision of clinical care within the English National Health Service (NHS) have been discussed in recent years, with proposals to concentrate specialist services in fewer centres. Stroke is a major public health issue, accounting for over 10% of deaths in England and Wales, and much disability among survivors. Variations have been highlighted in stroke care, with many patients not receiving evidence-based care. To address these concerns, stroke services in London and Greater Manchester were reorganised, although different models were implemented. This study will analyse processes involved in making significant changes to stroke care services over a short time period, and the factors influencing these processes. We will examine whether the changes have delivered improvements in quality of care and patient outcomes; and, in light of this, whether the significant extra financial investment represented good value for money. This study brings together quantitative data on 'what works and at what cost?' with qualitative data on 'understanding implementation and sustainability' to understand major system change in two large conurbations in England. Data on processes of care and their outcomes (e.g. morbidity, mortality, and cost) will be analysed to evidence services' performance before and after reconfiguration. The evaluation draws on theories related to the dissemination and sustainability of innovations and the 'social matrix' underlying processes of innovation. We will conduct a series of case studies based on stakeholder interviews and documentary analysis. These will identify drivers for change, how the reconfigurations were governed, developed, and implemented, and how they influenced service quality. The research faces challenges due to: the different timings of the reconfigurations; the retrospective nature of the evaluation; and the current organisational turbulence in the English NHS. However, these issues reflect the realities of major systems change and its evaluation. The methods applied in the study have been selected to account for and learn from these complexities, and will provide useful lessons for future reconfigurations, both in stroke care and other specialties.
Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)
NASA Technical Reports Server (NTRS)
Latino, Carl D.
2001-01-01
The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.
Dentistry and dental education in the context of the evolving health care system.
Anderson, Maxwell H
2007-08-01
This article is intended to stimulate dialogue within the intertwined dental practice and dental education communities about our evolving health care system and dentistry's role within this system as it reconfigures in response to a complex interplay of influences. The changing dental disease burden in the United States is analyzed with consideration of how evolution in disease prevalence influences societal need for dental services and the resulting potential impact on the types of services provided and the education of future dental practitioners. The article concludes with discussion of a potential future scenario for practice and education in which one or both of the two health abnormalities (dental caries and periodontal diseases) most closely associated with dentistry as an area of medical specialization go away as a consequence of transformational technologies.
Reconfigurable water-substrate based antennas with temperature control
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Abbosh, Amin
2017-06-01
We report an unexplored reconfigurable antenna development technique utilizing the concept of temperature variable electromagnetic properties of water. By applying this physical phenomena, we present highly efficient water-substrate based antennas whose operating frequencies can be continuously tuned. While taking the advantage of cost-effectiveness of liquid water, this dynamic tuning technique also alleviates the roadblocks to widespread use of reconfigurable liquid-based antennas for VHF and UHF bands. The dynamic reconfigurability is controlled merely via external thermal stimulus and does not require any physical change of the resonating structure. We demonstrate dynamic control of omnidirectional and directional antennas covering more than 14 and 12% fractional bandwidths accordingly, with more than 85% radiation efficiency. Our temperature control approach paves the intriguing way of exploring dynamic reconfigurability of water-based compact electromagnetic devices for non-static, in-motion and low-cost real-world applications.
Comparing Methods for Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Lai, Chok Fung
2011-01-01
This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Multipurpose silicon photonics signal processor core.
Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José
2017-09-21
Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Jiang, Huaiguang; Tan, Jin
This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less
Reconfigurable routing protocol for free space optical sensor networks.
Xie, Rong; Yang, Won-Hyuk; Kim, Young-Chon
2012-01-01
Recently, free space optical sensor networks (FSOSNs), which are based on free space optics (FSO) instead of radio frequency (RF), have gained increasing visibility over traditional wireless sensor networks (WSNs) due to their advantages such as larger capacity, higher security, and lower cost. However, the performance of FSOSNs is restricted to the requirement of a direct line-of-sight (LOS) path between a sender and a receiver pair. Once a node dies of energy depletion, the network would probably suffer from a dramatic decrease of connectivity, resulting in a huge loss of data packets. Thus, this paper proposes a reconfigurable routing protocol (RRP) to overcome this problem by dynamically reconfiguring the network virtual topology. The RRP works in three phases: (1) virtual topology construction, (2) routing establishment, and (3) reconfigurable routing. When data transmission begins, the data packets are first routed through the shortest hop paths. Then a reconfiguration is initiated by the node whose residual energy falls below a threshold. Nodes affected by this dying node are classified into two types, namely maintenance nodes and adjustment nodes, and they are reconfigured according to the types. An energy model is designed to evaluate the performance of RRP through OPNET simulation. Our simulation results indicate that the RRP achieves better performance compared with the simple-link protocol and a direct reconfiguration scheme in terms of connectivity, network lifetime, packet delivery ratio and the number of living nodes.
Rivera, José; Carrillo, Mariano; Chacón, Mario; Herrera, Gilberto; Bojorquez, Gilberto
2007-01-01
The development of smart sensors involves the design of reconfigurable systems capable of working with different input sensors. Reconfigurable systems ideally should spend the least possible amount of time in their calibration. An autocalibration algorithm for intelligent sensors should be able to fix major problems such as offset, variation of gain and lack of linearity, as accurately as possible. This paper describes a new autocalibration methodology for nonlinear intelligent sensors based on artificial neural networks, ANN. The methodology involves analysis of several network topologies and training algorithms. The proposed method was compared against the piecewise and polynomial linearization methods. Method comparison was achieved using different number of calibration points, and several nonlinear levels of the input signal. This paper also shows that the proposed method turned out to have a better overall accuracy than the other two methods. Besides, experimentation results and analysis of the complete study, the paper describes the implementation of the ANN in a microcontroller unit, MCU. In order to illustrate the method capability to build autocalibration and reconfigurable systems, a temperature measurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.
External Environment Sensing by a Module on Self-reconfiguration Robot
NASA Astrophysics Data System (ADS)
Goto, Tomotsugu; Uchida, Masafumi; Onogaki, Hitoshi
In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, sensing function of external environment on a module was examined. A module is a component of the self-reconfiguration robot. A robot body vibrates when a module actuates an arm actively. This vibration is observed by using some acceleration sensors. Measured datas reflects a difference of objects that it touches a robot body. In this paper, the sensing technique of external environment which identifies this difference by using the neural network is proposed.
Filipovic, Nenad D.
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration. PMID:28611851
Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Reconfigurable and writable magnetic charge crystals
Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong
2017-07-18
Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.
NASA Astrophysics Data System (ADS)
Chen, Xuedong; Sun, Yi; Huang, Qingjiu; Jia, Wenchuan; Pu, Huayan
This paper focuses on the design of a modular multi-legged walking robot MiniQuad-I, which can be reconfigured into variety configurations, including quadruped and hexapod configurations for different tasks by changing the layout of modules. Critical design considerations when taking the adaptability, maintainability and extensibility in count simultaneously are discussed and then detailed designs of each module are presented. The biomimetic control architecture of MiniQuad-I is proposed, which can improve the capability of agility and independence of the robot. Simulations and experiments on crawling, object picking and obstacle avoiding are performed to verify functions of the MiniQuad-I.
Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James
2000-01-01
The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.
NASA Astrophysics Data System (ADS)
Yue, Yang; Wang, Qiang; Zhang, Bo; Vovan, Andre; Anderson, Jon
2017-01-01
DP-QAM is one of the most promising paths towards 400-Gb/s and 1-Tb/s commercial optical communications systems. For DP-QAM transmitter, different tributary channel powers lead to IQ or XY power imbalance. Large uncompensated IQ or XY power imbalance can significantly degrade the performance in the coherent optical communications system. In this work, we propose and experimentally demonstrate a technique to detect and compensate DP-QAM transmitter power imbalances for tributary channels. By reconfigurably interfering de-skewed identical BPSK channels, the optical powers of any two tributaries can be balanced by minimizing the output power from their optical interference.
Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Reconfiguration and Base Perimeter Fence Relocation in area A Wright-Patterson AF Base, Ohio, Final Environmental..., 2012, the United States Air Force signed the ROD for the Entry Control Reconfiguration and Base Perimeter Fence Relocation in Area A Wright-Patterson Air Force Base (WPAFB), Ohio Final Environmental...
ERIC Educational Resources Information Center
DelViscio, James J.
2013-01-01
At the beginning of the 20th century, there were essentially two types of organizational structures for primary and secondary education in the United States. There were either one-room K-12 schools or in larger systems K-8 buildings feeding into four-year high schools. Despite numerous experiments since then in reconfiguring schools resulting in a…
NASA Astrophysics Data System (ADS)
Cervero, T.; Gómez, A.; López, S.; Sarmiento, R.; Dondo, J.; Rincón, F.; López, J. C.
2013-05-01
One of the limiting factors that have prevented a widely dissemination of the reconfigurable technology is the absence of an appropriate model for certain target applications capable of offering a reliable control. Moreover, the lack of flexible and easy-to-use scheduling and management systems are also relevant drawbacks to be considered. Under static scenarios, it is relatively easy to schedule and manage the reconfiguration process since all the variations corresponding to predetermined and well-known tasks. However, the difficulty increases when the adaptation needs of the overall system change semi-randomly according to the environmental fluctuations. In this context, this work proposes a change in the paradigm of dynamically reconfigurable systems, by attending to the dynamically reconfigurable control problematic as a whole, in which the scheduling and the placement issues are packed together as a hierarchical management structure, interacting together as one entity from the system point of view, but performing their tasks with certain degree of independence each other. In this sense, the top hierarchical level corresponds with a dynamic scheduler in charge of planning and adjusting all the reconfigurable modules according to the variations of the external stimulus. The lower level interacts with the physical layer of the device by means of instantiating, relocating, removing a reconfigurable module following the scheduler's instructions. In regards to how fast is the proposed solution, the total partial reconfiguration time achieved with this proposal has been measured and compared with other two approaches: 1) using traditional Xilinx's tools; 2) using an optimized version of the Xilinx's drivers. The collected numbers demonstrate that our solution reaches a gain up to 10 times faster than the other approaches.
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot more time to make longer range decisions. This paper presents a baseline design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Non-reconfigured and reconfigured control laws are then evaluated, both analytically and by means of a digital airplane simulation, for three individual control element failures (stabilizer, elevator, spoilers). The simulation results are used to evaluate the effectiveness of the control reconfiguration on tracking ability during the approach and landing phase of flight with severe windshear and turbulence disturbing the airplane dynamics.
Multinode reconfigurable pipeline computer
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M. (Inventor); Littman, Michael G. (Inventor)
1989-01-01
A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly.
Circularly split-ring-resonator-based frequency-reconfigurable antenna
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.
2014-06-25
Metasurfaces with Reconfigurable Reflection Phase for High-Power Microwave Applications Kenneth L. Morgan, Clinton P. Scarborough, Micah D...TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power Microwave Applications 5a. CONTRACT NUMBER 5b...Examples that demonstrate theoretical methods for extending the operating power levels of metasurface reflectarrays have been given •The proposed
Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures
2016-01-05
reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff
A Novel Design of Frequency Reconfigurable Antenna for UWB Application
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao
2016-09-01
In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
NASA Astrophysics Data System (ADS)
Liu, Lintao; Gao, Yuhan; Deng, Jun
2017-11-01
This work presents a reconfigurable mixed-signal system-on-chip (SoC), which integrates switched-capacitor-based field programmable analog arrays (FPAA), analog-to-digital converter (ADC), digital-to-analog converter, digital down converter , digital up converter, 32-bit reduced instruction-set computer central processing unit (CPU) and other digital IPs on a single chip with 0.18 μm CMOS technology. The FPAA intellectual property could be reconfigured as different function circuits, such as gain amplifier, divider, sine generator, and so on. This single-chip integrated mixed-signal system is a complete modern signal processing system, occupying a die area of 7 × 8 mm 2 and consuming 719 mW with a clock frequency of 150 MHz for CPU and 200 MHz for ADC/DAC. This SoC chip can help customers to shorten design cycles, save board area, reduce the system power consumption and depress the system integration risk, which would afford a big prospect of application for wireless communication. Project supported by the National High Technology and Development Program of China (No. 2012AA012303).
Reconfigurable Optical Directed-Logic Circuits
2015-11-20
AFRL-AFOSR-VA-TR-2016-0053 Reconfigurable Optical Directed-Logic Circuits Jacob Robinson WILLIAM MARSH RICE UNIV HOUSTON TX Final Report 11/20/2015...2015 Reconfigurable Optical Directed-Logic Circuits FA9550-12-1-0261 FA9550-12-1-0261 Robinson, Jacob Rice University 6100 Main Street Houston...Optical Directed-Logic Circuits Jacob T. Robinson and Qianfan Xu Rice University 1. Motivation for Directed-Logic Circuits Directed-logic is
Reconfigurable Control Design with Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.
2007-01-01
The viewgraphs present background information about reconfiguration control design, design methods used for paper, control failure survivability results, and results and time histories of tests. Topics examined include control reconfiguration, general information about adaptive controllers, model reference adaptive control (MRAC), the utility of neural networks, radial basis functions (RBF) neural network outputs, neurons, and results of investigations of failures.
NASA Technical Reports Server (NTRS)
Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.
1992-01-01
The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.
On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems
García-Valls, Marisol; Touahria, Imad Eddine
2017-01-01
Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance. PMID:28594371
Inertial effects during irreversible meniscus reconfiguration in angular pores
NASA Astrophysics Data System (ADS)
Ferrari, Andrea; Lunati, Ivan
2014-12-01
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.
On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems.
García-Valls, Marisol; Touahria, Imad Eddine
2017-06-08
Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang
2017-02-28
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
2015-09-24
AFRL-AFOSR-VA-TR-2015-0304 Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and Neutralization Hae Chang...Contract/Grant Title: Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and...using multifunctional mechanized materials for threats precognition and neutralization. The main design
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B
2017-08-30
Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand. Copyright © 2017 the authors 0270-6474/17/378399-13$15.00/0.
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.
Kahnt, Thorsten; Tobler, Philippe N
2017-02-08
Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D 2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks. SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D 2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents. Copyright © 2017 the authors 0270-6474/17/371493-12$15.00/0.
Fraser, Alec; Baeza, Juan I; Boaz, Annette
2017-06-09
Health service reconfigurations are of international interest but remain poorly understood. This article focuses on the use of evidence by senior managerial decision-makers involved in the reconfiguration of stroke services in London 2008-2012. Recent work comparing stroke service reconfiguration in London and Manchester emphasises the ability of senior managerial decision-makers in London to 'hold the line' in the crucial early phases of the stroke reconfiguration programme. In this article, we explore in detail how these decision-makers 'held the line' and ask what the broader power implications of doing so are for the interaction between evidence, health policy and system redesign. The research combined semi-structured interviews (n = 20) and documentary analysis of historically relevant policy papers and contemporary stroke reconfiguration documentation published by NHS London and other interested parties (n = 125). We applied a critical interpretive and reflexive approach to the analysis of the data. We identified two forms of power which senior managerial decision-makers drew upon in order to 'hold the line'. Firstly, discursive power, which through an emphasis on evidence, better patient outcomes, professional support and clinical credibility alongside a tightly managed consultation process, helped to set an agenda that was broadly receptive to the overall decision to change stroke services in the capital in a radical way. Secondly, once the essential parameters of the decision to change services had been agreed, senior managerial decision-makers 'held the line' through hierarchical New Public Management style power to minimise the traditional pressures to de-radicalise the reconfiguration through 'top down' decision-making. We problematise the concept of 'holding the line' and explore the power implications of such managerial approaches in the early phases of health service reconfiguration. We highlight the importance of evidence for senior managerial decision-makers in agenda setting and the limitations of clinical research findings in guiding politically sensitive policy decisions which impact upon regional healthcare systems.
NASA Astrophysics Data System (ADS)
Iannacci, J.; Tschoban, C.
2017-04-01
RF-MEMS technology is proposed as a key enabling solution for realising the high-performance and highly reconfigurable passive components that future communication standards will demand. In this work, we present, test and discuss a novel design concept for an 8-bit reconfigurable power attenuator, manufactured using the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches in order to select/deselect the resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. The fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated with Ansys HFSS. The device exhibits attenuation levels (S21) in the range from -10 dB to -60 dB, up to 110 GHz. In particular, S21 shows flatness from 15 dB down to 3-5 dB and from 10 MHz to 50 GHz, as well as fewer linear traces up to 110 GHz. A comprehensive discussion is developed regarding the voltage standing wave ratio, which is employed as a quality indicator for the attenuation levels. The margins of improvement at design level which are needed to overcome the limitations of the presented RF-MEMS device are also discussed.
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
Metasurface with Reconfigurable Reflection Phase for High-Power Microwave Applications
2014-01-07
Paper 3. DATES COVERED (From - To) 15-08-2012 to 07-01-2014 4. TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We propose a metasurface with reconfigurable reflection phase that can be utilized in high...the metasurface has a reflection phase tuning range of approximately 300 degrees with an associated change in capacitance of 2.7 pF. 15. SUBJECT
An FPGA-based reconfigurable DDC algorithm
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Kasprowicz, G.
2016-09-01
This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas
2014-06-30
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
Reconfigurable Polymer Networks for Improved Treatment of Intracranial Aneurysms
NASA Astrophysics Data System (ADS)
Ninh, Chi Suze Q.
Endovascular embolization of intracranial aneurysms is a minimally invasive treatment in which an implanted material forms a clot to isolate the weakened vessel. Current strategy suffers from long-term potential failure modes. These potential failure modes include (1) enzymatic degradation of the fibrin clot that leads to compaction of the embolic agent, (2) incomplete filling of the aneurysm sac by embolic agent, and (3) challenging geometry of wide neck aneurysms. In the case of wide neck aneurysms, usually an assisting metal stent is used to help open the artery. However, metal stents with much higher modulus in comparison to the soft blood vessel can cause biocompatibilities issues in the long term such as infection and scarring. Motivated to solve these challenges associated with endovascular embolization, strategies to synthesize and engineer reconfigurable and biodegradable polymers as alternative therapies are evaluated in this thesis. (1) Reconfiguration of fibrin gel's modulus was achieved through crosslinking with genipin released from a biodegradable polymer matrix. (2) Reconfigurability can also be achieved by transforming triblock co-polymer hydrogel into photoresponsive material through incorporation of melanin nanoparticles as efficient photosensitizers. (3) Finally, reconfigurability can be conferred on biodegradable polyester networks via Diels-Alder coupling of furan pendant groups and dimaleimide crosslinking agent. Taken all together, this thesis describes strategies to transform a broad class of polymer networks into reconfigurable materials for improved treatment of intracranial aneurysms as well as for other biomedical applications.
NASA Astrophysics Data System (ADS)
Teodor, F.; Marinescu, V.; Epureanu, A.
2016-11-01
Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.
NASA Astrophysics Data System (ADS)
Tellers, M. C.; Pulskamp, J. S.; Bedair, S. S.; Rudy, R. Q.; Kierzewski, I. M.; Polcawich, R. G.; Bergbreiter, S. E.
2018-03-01
As an alternative to highly constrained hard-wired reconfigurable RF circuits, a motion-enabled reconfigurable circuit (MERC) offers freedom from transmission line losses and homogeneous materials selection. The creation of a successful MERC requires a precise mechanical mechanism for relocating components. In this work, a piezoelectric MEMS actuator array is modeled and experimentally characterized to assess its viability as a solution to the MERC concept. Actuation and design parameters are evaluated, and the repeatability of high quality on-axis motion at greater than 1 mm s-1 is demonstrated with little positional error. Finally, an initial proof-of-concept circuit reconfiguration has been demonstrated using off-the-shelf RF filter components. Although initial feasibility tests show filter performance degradation with an additional insertion loss of 0.3 dB per contact, out-of-band rejection degradation as high as 10 dB, and ripple performance reduction from 0.25 dB to 1.5 dB, MERC is proven here as an alternative to traditional approaches used in reconfigurable RF circuit applications.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Computer image generation: Reconfigurability as a strategy in high fidelity space applications
NASA Technical Reports Server (NTRS)
Bartholomew, Michael J.
1989-01-01
The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.
Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices
NASA Astrophysics Data System (ADS)
Rana, Bivas; Otani, YoshiChika
2018-01-01
Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.
A triple-mode hexa-standard reconfigurable TI cross-coupled ΣΔ modulator
NASA Astrophysics Data System (ADS)
Prakash A. V, Jos; Jose, Babita R.; Mathew, Jimson; Jose, Bijoy A.
2017-07-01
Hardware reconfigurability is an attractive solution for modern multi-standard wireless systems. This paper analyses the performance and implementation of an efficient triple-mode hexa-standard reconfigurable sigma-delta (∑Δ) modulator designed for six different wireless communication standards. Enhanced noise-shaping characteristics and increased digitisation rate, obtained by time-interleaved cross-coupling of ∑Δ paths, have been utilised for the modulator design. Power/hardware efficiency and the capability to acclimate the requirements of wide hexa-standard specifications are achieved by introducing an advanced noise-shaping structure, the dual-extended architecture. Simulation results of the proposed architecture using Hspice shows that the proposed modulator obtains a peak signal-to-noise ratio of 83.4/80.2/67.8/61.5/60.8/51.03 dB for hexa-standards, i.e. GSM/Bluetooth/GPS/WCDMA/WLAN/WiMAX standards with significantly less hardware and low operating frequency. The proposed architecture is implemented in 45 nm CMOS process using a 1 V supply and 0.7 V input range with a power consumption of 1.93 mW. Both architectural- and transistor-level simulation results prove the effectiveness and feasibility of this architecture to accomplish multi-standard cellular communication characteristics.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Dynamically Reconfigurable Approach to Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Alexandrov, Natalie M.; Lewis, Robert Michael
2003-01-01
The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.
Bioinspired turbine blades offer new perspectives for wind energy
NASA Astrophysics Data System (ADS)
Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.
2017-02-01
Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.
Strategy and the art of reinventing value.
van der Heijden, K; Maccoby, M; Hama, N; Lundquist, J T; Collis, D J; Zeithaml, C; Martin, J E; Carroll, V P; Lurie, R
1993-01-01
In "From Value Chain to Value Constellation: Designing Interactive Strategy" (July-August 1993), Richard Normann and Rafael Ramírez argue that successful companies increasingly do not just add value, they reinvent it. The key strategic task is to reconfigure roles and relationships among a constellation of actors--suppliers, business partners, customers--in order to mobilize the creation of value in new forms and by new players. What is so different about this new logic of value? It breaks down the distinction between products and services and combines them into activity-based "offerings" from which customers can create value for themselves. But as potential offerings become more complex, so do the relationships necessary to create them. As a result, a company's strategic task becomes the reconfiguration and integration of its compentencies and customers. Normann and Ramírez provide three illustrations of these new rules of strategy. IKEA has blossomed into the world's largest retailer of home furnishings by redefining the relationships and organizational pratices of the furniture business. Danish pharmacies and their national organization have used the opportunity of health care reform to reconfigure their relationships with customers, doctors, hospitals, drug manufacturers, and with Danish and international health organizations.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics
NASA Astrophysics Data System (ADS)
Seto, Daisaku; Watanabe, Minoru
2015-09-01
In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
Methods and apparatus for controlling dispersions of nanoparticles
Lavrentovich, Oleg D; Golovin, Andrii B
2014-10-21
Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles with respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.
Han, Jason J; Vapiwala, Neha
2018-04-14
This essay provides a multidisciplinary discussion of the current medical education curriculum and the increasing need to adapt it to our rapidly evolving and expanding healthcare environment. Thorough literature search on the topic of medical school curriculum, ranging from its historical origins to contemporary practice as well as statistics, was conducted. The authors give a brief historical overview of and rationale behind the current structure of the medical education system in America. The recent trends towards information overload and rapid evolution of the evidence-base are discussed. Specialization, as a means of responding to the burgeoning abundance of information in medicine, is described. The authors further provide current as well as foreseeable limitations of today's medical training paradigm as the trend towards specialization continues. The potential negative influences of a specialist-focused training paradigm on the overall length of training and the degree of autonomy exercised by generalists are described. A proposal toward pre-specialization at the level of medical school is introduced and elaborated upon. The authors incorporate social psychology principles and analyze trends toward career specialization, highlighting potential benefits to a different-size-for-all approach. The importance of optionality and flexibility of such a curriculum is emphasized. The authors describe the inevitable trend toward specialization, and the need to fundamentally re-configure American medical education system to behoove trainees' experiences and quality of training during the 21st century.
2014-12-01
reconfigurable volumetric metamaterial, since the control circuits cannot be simply hidden behind a ground plane, as for a reconfigurable metasurface or...dielectric metasurfaces ," IEEE Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 1910-1920, Apr. 2012. [11] D.-H. Kwon and D. H. Werner...M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, vol. 93, no. 19, pp. 197401/1-4
Optimal Redundancy Management in Reconfigurable Control Systems Based on Normalized Nonspecificity
NASA Technical Reports Server (NTRS)
Wu, N.Eva; Klir, George J.
1998-01-01
In this paper the notion of normalized nonspecificity is introduced. The nonspecifity measures the uncertainty of the estimated parameters that reflect impairment in a controlled system. Based on this notion, a quantity called a reconfiguration coverage is calculated. It represents the likelihood of success of a control reconfiguration action. This coverage links the overall system reliability to the achievable and required control, as well as diagnostic performance. The coverage, when calculated on-line, is used for managing the redundancy in the system.
Evolvable circuit with transistor-level reconfigurability
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)
2004-01-01
An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.
Leo, Fabrizio; Cocchi, Elena; Brayda, Luca
2017-07-01
Vision loss has severe impacts on physical, social and emotional well-being. The education of blind children poses issues as many scholar disciplines (e.g., geometry, mathematics) are normally taught by heavily relying on vision. Touch-based assistive technologies are potential tools to provide graphical contents to blind users, improving learning possibilities and social inclusion. Raised-lines drawings are still the golden standard, but stimuli cannot be reconfigured or adapted and the blind person constantly requires assistance. Although much research concerns technological development, little work concerned the assessment of programmable tactile graphics, in educative and rehabilitative contexts. Here we designed, on programmable tactile displays, tests aimed at assessing spatial memory skills and shapes recognition abilities. Tests involved a group of blind and a group of low vision children and adolescents in a four-week longitudinal schedule. After establishing subject-specific difficulty levels, we observed a significant enhancement of performance across sessions and for both groups. Learning effects were comparable to raised paper control tests: however, our setup required minimal external assistance. Overall, our results demonstrate that programmable maps are an effective way to display graphical contents in educative/rehabilitative contexts. They can be at least as effective as traditional paper tests yet providing superior flexibility and versatility.
. Effective April 3, 2012, the National Hurricane Center will reconfigure its marine zones for the offshore reconfiguration. Click HERE for further information. Effective Jan 01, 2005 U.S. Coast Guard long range
Magnetic-field-controlled reconfigurable semiconductor logic.
Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark
2013-02-07
Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.
Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Belanovic, Pavle; Estlick, Michael; Gokhale, Maya; Szymanski, John J.; Theiler, James P.
2002-01-01
Unsupervised clustering is a powerful technique for processing multispectral and hyperspectral images. Last year, we reported on an implementation of k-means clustering for multispectral images. Our implementation in reconfigurable hardware processed 10 channel multispectral images two orders of magnitude faster than a software implementation of the same algorithm. The advantage of using reconfigurable hardware to accelerate k-means clustering is clear; the disadvantage is the hardware implementation worked for one specific dataset. It is a non-trivial task to change this implementation to handle a dataset with different number of spectral channels, bits per spectral channel, or number of pixels; or to change the number of clusters. These changes required knowledge of the hardware design process and could take several days of a designer's time. Since multispectral data sets come in many shapes and sizes, being able to easily change the k-means implementation for these different data sets is important. For this reason, we have developed a parameterized implementation of the k-means algorithm. Our design is parameterized by the number of pixels in an image, the number of channels per pixel, and the number of bits per channel as well as the number of clusters. These parameters can easily be changed in a few minutes by someone not familiar with the design process. The resulting implementation is very close in performance to the original hardware implementation. It has the added advantage that the parameterized design compiles approximately three times faster than the original.
Reconfigurable Sensor Monitoring System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
Montana Highway Reconfiguration Study
DOT National Transportation Integrated Search
2005-02-01
"The 2001 Montana State legislature and Governors Office directed the Department (MDT) to conduct a study : examining the economic impact of reconfiguring the States major two-lane highways. To achieve this overall goal, : the Governor created ...
Reliability Assessment of Reconfigurable Flight Control Systems Using Sure and Assist
NASA Technical Reports Server (NTRS)
Wu, N. Eva
1992-01-01
This paper presents a reliability assessment of Reconfigurable Flight Control Systems using Semi-Markov Unreliability Range Evaluator (SURE) and Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST).
Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.
Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan
2014-12-15
Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3 GB/s.
Cognitive caching promotes flexibility in task switching: evidence from event-related potentials.
Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno
2015-12-08
Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Reconfigurability of behavioural specifications for manufacturing systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus Werner
2017-12-01
Reconfigurable manufacturing systems (RMS) support flexibility in the product variety and the configuration of the manufacturing system itself in order to enable quick adjustments to new products and production requirements. As a consequence, an essential feature of RMS is their ability to rapidly modify the control strategy during run-time. In this paper, the particular problem of changing the specified operation of a RMS, whose logical behaviour is modelled as a finite state automaton, is addressed. The notion of reconfigurability of specifications (RoS) is introduced and it is shown that the stated reconfiguration problem can be formulated as a controlled language convergence problem. In addition, algorithms for the verification of RoS and the construction of a reconfiguration supervisor are proposed. The supervisor is realised in a modular way which facilitates the extension by new configurations. Finally, it is shown that a supremal nonblocking and controllable strict subautomaton of the plant automaton that fulfils RoS exists in case RoS is violated for the plant automaton itself and an algorithm for the computation of this strict subautomaton is presented. The developed concepts and results are illustrated by a manufacturing cell example.
Cognitive caching promotes flexibility in task switching: evidence from event-related potentials
Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno
2015-01-01
Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty. PMID:26643146
Reconfiguration of broad leaves into cones
NASA Astrophysics Data System (ADS)
Miller, Laura
2013-11-01
Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.
Embeddable Reconfigurable Neuroprocessors
NASA Technical Reports Server (NTRS)
Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil
1993-01-01
Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald
2013-03-01
The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-01-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669
NASA Astrophysics Data System (ADS)
McNie, Mark E.; Combes, David J.; Smith, Gilbert W.; Price, Nicola; Ridley, Kevin D.; Brunson, Kevin M.; Lewis, Keith L.; Slinger, Chris W.; Rogers, Stanley
2007-09-01
Coded aperture imaging has been used for astronomical applications for several years. Typical implementations use a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. More recent applications have emerged in the visible and infra red bands for low cost lens-less imaging systems. System studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. We report on work to develop a novel, reconfigurable mask based on micro-opto-electro-mechanical systems (MOEMS) technology employing interference effects to modulate incident light in the mid-IR band (3-5μm). This is achieved by tuning a large array of asymmetric Fabry-Perot cavities by applying an electrostatic force to adjust the gap between a moveable upper polysilicon mirror plate supported on suspensions and underlying fixed (electrode) layers on a silicon substrate. A key advantage of the modulator technology developed is that it is transmissive and high speed (e.g. 100kHz) - allowing simpler imaging system configurations. It is also realised using a modified standard polysilicon surface micromachining process (i.e. MUMPS-like) that is widely available and hence should have a low production cost in volume. We have developed designs capable of operating across the entire mid-IR band with peak transmissions approaching 100% and high contrast. By using a pixelated array of small mirrors, a large area device comprising individually addressable elements may be realised that allows reconfiguring of the whole mask at speeds in excess of video frame rates.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions.
Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M
2015-02-26
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
NASA Astrophysics Data System (ADS)
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-02-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.
Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric
2017-06-01
This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Antenna reconfiguration verification and validation
NASA Technical Reports Server (NTRS)
Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)
2009-01-01
A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
A Reconfigurable Communications System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Kifle, Muli
2004-01-01
Two trends of NASA missions are the use of multiple small spacecraft and the development of an integrated space network. To achieve these goals, a robust and agile communications system is needed. Advancements in field programmable gate array (FPGA) technology have made it possible to incorporate major communication and network functionalities in FPGA chips; thus this technology has great potential as the basis for a reconfigurable communications system. This report discusses the requirements of future space communications, reviews relevant issues, and proposes a methodology to design and construct a reconfigurable communications system for small scientific spacecraft.
Reconfigurable Pointing Control for High Resolution Space Spectroscopy
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey
1997-01-01
In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.
Upper and lower bounds for semi-Markov reliability models of reconfigurable systems
NASA Technical Reports Server (NTRS)
White, A. L.
1984-01-01
This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.
Reconfigurable OR and XOR logic gates based on dual responsive on-off-on micromotors.
Dong, Yonggang; Liu, Mei; Zhang, Hui; Dong, Bin
2016-04-21
In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized.
Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks
NASA Astrophysics Data System (ADS)
Papaharalabos, George; Greenman, John; Stinchcombe, Andrew; Horsfield, Ian; Melhuish, Chris; Ieropoulos, Ioannis
2014-12-01
A microbial fuel cell (MFC) is a bioelectrochemical device that uses anaerobic bacteria to convert chemical energy locked in biomass into small amounts of electricity. One viable way of increasing energy extraction is by stacking multiple MFC units and exploiting the available electrical configurations for increasing the current or stepping up the voltage. The present study illustrates how a real-time electrical reconfiguration of MFCs in a stack, halves the time required to charge a capacitor (load) and achieves 35% higher current generation compared to a fixed electrical configuration. This is accomplished by progressively switching in-parallel elements to in-series units in the stack, thus maintaining an optimum potential difference between the stack and the capacitor, which in turn allows for a higher energy transfer.
On-chip switch for reconfigurable mode-multiplexing optical network.
Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang
2016-09-19
The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.
Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry
NASA Technical Reports Server (NTRS)
Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul
2003-01-01
Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.
Reconfigurable Embedded System for Electrocardiogram Acquisition.
Kay, Marcel Seiji; Iaione, Fábio
2015-01-01
Smartphones include features that offers the chance to develop mobile systems in medical field, resulting in an area called mobile-health. One of the most common medical examinations is the electrocardiogram (ECG), which allows the diagnosis of various heart diseases, leading to preventative measures and preventing more serious problems. The objective of this study was to develop a wireless reconfigurable embedded system using a FPAA (Field Programmable Analog Array), for the acquisition of ECG signals, and an application showing and storing these signals on Android smartphones. The application also performs the partial FPAA reconfiguration in real time (adjustable gain). Previous studies using FPAA usually use the development boards provided by the manufacturer (high cost), do not allow the reconfiguration in real time, use no smartphone and communicate via cables. The parameters tested in the acquisition circuit and the quality of ECGs registered in an individual were satisfactory.
All optical reconfiguration of optomechanical filters.
Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko
2012-05-22
Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.
Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D
2004-01-01
Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.
Reconfigurable origami-inspired acoustic waveguides
Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia
2016-01-01
We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
Application of precomputed control laws in a reconfigurable aircraft flight control system
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.
1989-01-01
A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.
Positioning challenges in reconfigurable semi-autonomous robotic NDE inspection
NASA Astrophysics Data System (ADS)
Pierce, S. Gareth; Dobie, Gordon; Summan, Rahul; Mackenzie, Liam; Hensman, James; Worden, Keith; Hayward, Gordon
2010-03-01
This paper describes work conducted into mobile, wireless, semi-autonomous NDE inspection robots developed at The University of Strathclyde as part of the UK Research Centre for Non Destructive Evaluation (RCNDE). The inspection vehicles can incorporate a number of different NDE payloads including ultrasonic, eddy current, visual and magnetic based payloads, and have been developed to try and improve NDE inspection techniques in challenging inspection areas (for example oil, gas, and nuclear structures). A significant research challenge remains in the accurate positioning and guidance of such vehicles for real inspection tasks. Employing both relative and absolute position measurements, we discuss a number of approaches to position estimation including Kalman and particle filtering. Using probabilistic approaches enables a common mathematical framework to be employed for both positioning and data fusion from different NDE sensors. In this fashion the uncertainties in both position and defect identification and classification can be dealt with using a consistent approach. A number of practical constraints and considerations to different precision positioning techniques are discussed, along with NDE applications and the potential for improved inspection capabilities by utilising the inherent reconfigurable capabilities of the inspection vehicles.
A survey of various enhancement techniques for square rings antennas
NASA Astrophysics Data System (ADS)
Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.
2017-09-01
The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.
Moioli, Renan C; Vargas, Patricia A; Husbands, Phil
2012-09-01
Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.
Predicting future learning from baseline network architecture.
Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S
2018-05-15
Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Complete denture tooth arrangement technology driven by a reconfigurable rule.
Dai, Ning; Yu, Xiaoling; Fan, Qilei; Yuan, Fulai; Liu, Lele; Sun, Yuchun
2018-01-01
The conventional technique for the fabrication of complete dentures is complex, with a long fabrication process and difficult-to-control restoration quality. In recent years, digital complete denture design has become a research focus. Digital complete denture tooth arrangement is a challenging issue that is difficult to efficiently implement under the constraints of complex tooth arrangement rules and the patient's individualized functional aesthetics. The present study proposes a complete denture automatic tooth arrangement method driven by a reconfigurable rule; it uses four typical operators, including a position operator, a scaling operator, a posture operator, and a contact operator, to establish the constraint mapping association between the teeth and the constraint set of the individual patient. By using the process reorganization of different constraint operators, this method can flexibly implement different clinical tooth arrangement rules. When combined with a virtual occlusion algorithm based on progressive iterative Laplacian deformation, the proposed method can achieve automatic and individual tooth arrangement. Finally, the experimental results verify that the proposed method is flexible and efficient.
Service user engagement in health service reconfiguration: a rapid evidence synthesis.
Dalton, Jane; Chambers, Duncan; Harden, Melissa; Street, Andrew; Parker, Gillian; Eastwood, Alison
2016-07-01
To assess what is known about effective patient and public engagement in health service reconfiguration processes and identify implications for further research and health care practice. Rapid systematic review of published and grey literature to identify methods or approaches to engagement in decisions about health service reconfiguration; and to examine how engagement has worked or not worked in specific examples of system change. Following a search for literature published in English from 2000 to March 2014, eight systematic reviews, seven primary studies and 24 case studies (of which 6 were exemplars) were included. We undertook a narrative synthesis to consider five aspects of engagement with health service reconfiguration. Engagement varied in nature and intensity, and efforts generally involved multiple methods. There was no evidence on the isolated impact of any particular engagement method or collection of methods. In general, engagement was most likely to be successful when started early, when led and supported by clinicians, and when it offered opportunities for genuine interaction. The impact of engagement was variably measured and demonstrated, and frequently defined as process measures rather than the outcomes of proposals for service reconfiguration. Little was reported on the potential negative impact of service user engagement. Patients and the public can be engaged through various methods. Problems often arise because decision-makers paid insufficient attention to issues considered important by patients and the public. Guidance setting out the stages of reconfiguration and opportunities for service user input could be a helpful practical framework for future engagement activity. Future evaluation and explicit reporting of engagement and impact is needed. © The Author(s) 2015.
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
Learning in third spaces: community art studio as storefront university classroom.
Timm-Bottos, Janis; Reilly, Rosemary C
2015-03-01
Third spaces are in-between places where teacher-student scripts intersect, creating the potential for authentic interaction and a shift in what counts as knowledge. This paper describes a unique community-university initiative: a third space storefront classroom for postsecondary students in professional education programs, which also functions as a community art studio for the surrounding neighborhood. This approach to professional education requires an innovative combination of theory, methods, and materials as enacted by the professionals involved and performed by the students. This storefront classroom utilizes collaborative and inclusive instructional practices that promote human and community development. It facilitates the use of innovative instructional strategies including art making and participatory dialogue to create a liminal learning space that reconfigures professional education. In researching the effectiveness of this storefront classroom, we share the voices of students who have participated in this third space as part of their coursework to underscore these principles and practices.
Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.
Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh
2017-06-14
We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.
Reconfigurable Robust Routing for Mobile Outreach Network
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang
2010-01-01
The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.
Specifying structural constraints of architectural patterns in the ARCHERY language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Alejandro; HASLab INESC TEC and Universidade do Minho, Campus de Gualtar, 4710-057 Braga; Barbosa, Luis S.
ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
Hardware support for software controlled fast reconfiguration of performance counters
Salapura, Valentina; Wisniewski, Robert W.
2013-06-18
Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.
Hardware support for software controlled fast reconfiguration of performance counters
Salapura, Valentina; Wisniewski, Robert W
2013-09-24
Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.
Thermooptic two-mode interference device for reconfigurable quantum optic circuits
NASA Astrophysics Data System (ADS)
Sahu, Partha Pratim
2018-06-01
Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.
Reconfigurable microfluidic pump enabled by opto-electrical-thermal transduction
NASA Astrophysics Data System (ADS)
Takeuchi, Masaru; Hagiwara, Masaya; Haulot, Gauvain; Ho, Chih-Ming
2013-10-01
Flexible integration of a microfluidic system comprising pumps, valves, and microchannels was realized by an optoelectronic reconfigurable microchannels (OERM) technique. Projecting a low light fluidic device pattern—e.g., pumps, valves, and channels—onto an OERM platform generates Joule heating and melts the substrate in the bright area on the platform; thus, the fluidic system can be reconfigured by changing the projected light pattern. Hexadecane was used as the substrate of the microfluidic system. The volume change of hexadecane during the liquid-solid phase transition was utilized to generate pumping pressure. The system can pump nanoliters of water within several seconds.
Reconfiguration control system for an aircraft wing
NASA Technical Reports Server (NTRS)
Wakayama, Sean R. (Inventor)
2008-01-01
Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-03-01
Addressable Reconfigurable Technology (ART), conceived for future ANTS (Autonomous Nanotechnology Swarm) Architectures, is now implemented as Autonomous Lunar Investigator (ALI) rovers, a mission concept allowing autonomous exploration of the lunar farside and poles within 10 years.
1996 Olympic Stadium/Braves Baseball Park: Adaptive pre-use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambron, C.R.
1996-02-01
Converting an Olympic stadium back into a baseball park proved challenging from an HVAC standpoint because both configurations` HVAC needs were different. At first glance the HVAC requirements for an open air stadium may seem slight. Surprisingly, however, the stadium boasts nearly 300,000 sq ft of conditioned space, handled by two chillers, 22 air handling units, 37 cooking exhausts, over 150 exhaust fans, over 3 miles of ductwork, and several electric heat pumps. The approach -- design for second use, adapt for first use, and reconfigure facility to its original design. Because the designated after-use is baseball, the design mustmore » start with a first-class baseball stadium that can be expanded to meet the needs of the Olympics. After 1996, the facility can be reconfigured for its intended lifetime usage.« less
Reconfigurable Processing Module
NASA Technical Reports Server (NTRS)
Somervill, Kevin; Hodson, Robert; Jones, Robert; Williams, John
2005-01-01
To accommodate a wide spectrum of applications and technologies, NASA s Exploration System's Missions Directorate has called for reconfigurable and modular technologies to support future missions to the moon and Mars. In response, Langley Research Center is leading a program entitled Reconfigurable Scaleable Computing (RSC) that is centered on the development of FPGA-based computing resources in a stackable form factor. This paper details the architecture and implementation of the Reconfigurable Processing Module (RPM), which is the key element of the RSC system. The RPM is an FPGA-based, space-qualified printed circuit assembly leveraging terrestrial/commercial design standards into the space applications domain. The form factor is similar to, and backwards compatible with, the PCI-104 standard utilizing only the PCI interface. The size is expanded to accommodate the required functionality while still better than 30% smaller than a 3U CompactPCI(TradeMark)card and without the overhead of the backplane. The architecture is built around two FPGA devices, one hosting PCI and memory interfaces, and another hosting mission application resources; both of which are connected with a high-speed data bus. The PCI interface FPGA provides access via the PCI bus to onboard SDRAM, flash PROM, and the application resources; both configuration management as well as runtime interaction. The reconfigurable FPGA, referred to as the Application FPGA - or simply "the application" - is a radiation-tolerant Xilinx Virtex-4 FX60 hosting custom application specific logic or soft microprocessor IP. The RPM implements various SEE mitigation techniques including TMR, EDAC, and configuration scrubbing of the reconfigurable FPGA. Prototype hardware and formal modeling techniques are used to explore the performability trade space. These models provide a novel way to calculate quality-of-service performance measures while simultaneously considering fault-related behavior due to SEE soft errors.
Reconfigurable fault tolerant avionics system
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.; Asami, K.; Cho, Mengu
This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, K. K.; Yeo, K. S.; Shee, Y. G.
2015-04-24
A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.
BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration
2016-01-01
PI minicomputer powered by a different supply. The ODROID and Raspberry PI communicate via an Ethernet connection through a software interface named...HardKernel, an Atheros Wi-Fi card connected to it, and a dedicated power pack developed by RavPower. The hexarotor’s autopilot runs on a separate Raspberry
Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production
USDA-ARS?s Scientific Manuscript database
To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....
Wireless Sensors Network (Sensornet)
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.
2003-01-01
Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.
I(CES)-cubes: a modular self-reconfigurable bipartite robotic system
NASA Astrophysics Data System (ADS)
Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.
1999-08-01
In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
V-band electronically reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Radisic, Vesna; Hester, Jimmy G.; Nguyen, Vinh N.; Caira, Nicholas W.; DiMarzio, Donald; Hilgeman, Theodore; Larouche, Stéphane; Kaneshiro, Eric; Gutierrez-Aitken, Augusto
2017-04-01
In this work, we report on a reconfigurable V-band metamaterial fabricated using an InP heterojunction bipolar transistor production process. As designed and fabricated, the implementation uses complementary split ring resonators (cSRRs) and Schottky diodes in both single unit cell and three unit cell monolithic microwave integrated circuits. Each unit cell has two diodes embedded within the gaps of the cSRRs. Reconfigurability is achieved by applying an external bias that turns the diodes on and off, which effectively controls the resonant property of the structure. In order to measure the metamaterial properties, the unit cells are fed and followed by transmission lines. Measured data show good agreement with simulations and demonstrate that the metamaterial structure exhibits resonance at around 65 GHz that can be switched on and off. The three-unit cell transmission line metamaterial shows a deeper resonance and a larger phase change than a single cell, as expected. These are the first reported reconfigurable metamaterials operating at the V-band using the InP high speed device fabrication process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.
2002-10-01
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
Reconfigurable Hardware Adapts to Changing Mission Demands
NASA Technical Reports Server (NTRS)
2003-01-01
A new class of computing architectures and processing systems, which use reconfigurable hardware, is creating a revolutionary approach to implementing future spacecraft systems. With the increasing complexity of electronic components, engineers must design next-generation spacecraft systems with new technologies in both hardware and software. Derivation Systems, Inc., of Carlsbad, California, has been working through NASA s Small Business Innovation Research (SBIR) program to develop key technologies in reconfigurable computing and Intellectual Property (IP) soft cores. Founded in 1993, Derivation Systems has received several SBIR contracts from NASA s Langley Research Center and the U.S. Department of Defense Air Force Research Laboratories in support of its mission to develop hardware and software for high-assurance systems. Through these contracts, Derivation Systems began developing leading-edge technology in formal verification, embedded Java, and reconfigurable computing for its PF3100, Derivational Reasoning System (DRS ), FormalCORE IP, FormalCORE PCI/32, FormalCORE DES, and LavaCORE Configurable Java Processor, which are designed for greater flexibility and security on all space missions.
Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)
2001-01-01
The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.
Disciplined knowledge: Differentiating and binding the elementary science curriculum
NASA Astrophysics Data System (ADS)
Hayes, Michael Thomas
The purpose of this research was to investigate elementary science curriculum differentiation at two schools with widely divergent student demographics. Historically, elementary school students of ethnic-minority and low-socioeconomic backgrounds have not performed on traditional assessments of academic achievement and progress in science education at the same level as their White and more affluent peers. This inequality has long been of interest to the proponents of science education reform who are concerned with the ability of students to participate successfully in a democratic society and in the labor market. Differentiating the curriculum such that students, because of their socioeconomic, ethnic, or racial backgrounds, receive different knowledge, skills, and experiences is a key component of school activity that supports social inequality. Participants in the study included the teachers and students of four classrooms in two schools with student populations that differed in their socioeconomic and ethnic demographics. Qualitative research methods, including fieldnotes, audiorecordings, and interviews, were utilized to gather data. The collection and analysis of data were articulated in a developmental research process in which theories and interpretations were continuously constructed and tested for validity. The results of this research show that the science curricula at the two schools were different, with differences being understood in terms of the populations served. The particular form of differentiation observed in this study was closely correlated to elements of social discipline, knowledge segmentation and reconfiguration, time and pacing, control of bodies, and testing. The elementary science curriculum at the two schools differed in the formality and intensity with which the curriculum was constructed in adherence to these elements of discipline. Such differences cannot be understood in traditional terms as supporting White middle-class students' academic and social progress while retarding that of students from low-socioeconomic and ethnic-minority backgrounds. Curriculum differentiation, when considered on a theory of discipline, is not simply a matter of placing students into inequitable social and educational positions. Instead, the curriculum is implicated in the construction of a stratified social system that at once constrained and provided for educational, social, and economic possibility.
Memristor-CMOS hybrid integrated circuits for reconfigurable logic.
Xia, Qiangfei; Robinett, Warren; Cumbie, Michael W; Banerjee, Neel; Cardinali, Thomas J; Yang, J Joshua; Wu, Wei; Li, Xuema; Tong, William M; Strukov, Dmitri B; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley
2009-10-01
Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in a data routing network and were connected to gate-level CMOS components that acted as logic elements, in a manner similar to a field programmable gate array. We analyzed the chips using a purpose-built testing system, and demonstrated the ability to configure individual devices, use them to wire up various logic gates and a flip-flop, and then reconfigure devices.
A Polarization Reconfigurable Slot Antenna with a Novel Switchable Feeding Network
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang Ming
2017-12-01
A polarization reconfigurable slot antenna is proposed in this paper. The antenna consists of a microstrip line-to-slotline transition structure, two radiation slots and a switchable feeding network. The feeding network is a gradually changed ring slot with six switching diodes on it. By controlling the diodes states, the antenna can generate y-direction polarization, z-direction polarization, left-hand circular polarization and right-hand circular polarization. Detailed design considerations of the proposed antenna, simulated and measured results are presented and discussed. Measured results agree well with simulated. The results proved that the antenna can realize polarization reconfiguration effectively at 5 GHz.
Robot Would Reconfigure Modular Equipment
NASA Technical Reports Server (NTRS)
Purves, Lloyd R.
1993-01-01
Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.
Reconfigurable Mobile System - Ground, sea and air applications
NASA Astrophysics Data System (ADS)
Lamonica, Gary L.; Sturges, James W.
1990-11-01
The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.
1976-11-01
system. b. Read different program configurations to reconfigure the software during flight. c. Write Digital Integrated Test System (DITS) results...associated witn > inor C):l.e Event must be Unlatched. The sole difference between a Latched ana an lnratcrec Condition is that upon the Scheduling...Table. Furthermore, the block of pointers for one Minor Cycle may be wholly contained witnir the Diock of ocinters for a different Minor Cycle. For
NASA Astrophysics Data System (ADS)
Higgins, Marc
2018-03-01
The purpose of this article is to explore what Michel Foucault refers to as "the" critical attitude and its relationship to science education, drawing from Foucault's (The politics of truth. Semiotext(e), New York, 1997) insight that the critical attitude is but a critical attitude. This article is a rejoinder to Anna Danielsonn, Maria Berge, and Malena Lidar's paper, "Knowledge and power in the technology classroom: a framework for studying teachers and students in action". Where Danielsonn and colleagues think with Foucaultian power/knowledge to examine and (re)consider teacher-student didactic relations in science and technology education, this article critically examines the power/knowledge relationship between science educators and science education to critically explore the modes of criticality produced and produceable. Particularly, I explore possibilities for and of critique that stem from and respond to what Bruno Latour (Politics of nature: How to bring the sciences into democracy. Harvard University Press, Cambridge, 1993) refers to as the crisis and critique of critique.
More About Reconfigurable Exploratory Robotic Vehicles
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Nesnas, Issa; Werger, Barry; Helmick, Daniel; Clark, Murray; Christian, Raymond; Cipra, Raymond
2009-01-01
Modular exploratory robotic vehicles that will be able to reconfigure themselves in the field are undergoing development. Proposed for use in exploration of the surfaces of Mars and other remote planets, these vehicles and others of similar design could also be useful for exploring hostile terrain on Earth.
Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics
NASA Astrophysics Data System (ADS)
Cumby, Brad Lee
Present day electronics are now taking on small form factors, unexpected uses, adaptability, and other features that only a decade ago were unimaginable even for most engineers. These electronic devices, such as tablets, smart phones, wearable sensors, and others, have further had a profound impact on how society interacts, works, maintains health, etc. To optimize electronics a growing trend has been to both minimize the physical space taken up by the individual electronic components as well as to maximize the number of functionalities in a single electronic device, forming a compact and efficient package. To accomplish this challenge in one step, many groups have used a design that has reconfigurable electromagnetic properties, maximizing the functionality density of the device. This would allow the replacement of multiple individual components into an integrated system that would achieve a similar result as the separate individual devices while taking up less space. For example, could a device have a reconfigurable antenna, allowing it optimal communication in various settings and across multiple communication bands, thus increasing functionality, range, and even reducing total device size. Thus far a majority of such reconfigurable devices involve connecting/disconnecting various physically static layouts to achieve a summation of individual components that give rise to multiple effects. However, this is not an ideal situation due to the fact that the individual components whether connected or not are taking up real-estate as well as electrical interference with adjacent connected components. This dissertation focuses on the reconfigurability of the metallic component of the electronic device, specifically microwave devices. This component used throughout this dissertation is that of an eutectic liquid metal alloy. The liquid metal allows the utilization of both the inherent compact form (spherical shape) of a liquid in the lowest energy state and the fact that it is resilient and shapeable to allow for reconfigurability. In this dissertation, first background information is given on the existing technology for reconfigurable microwave devices and the basic principles that these mechanisms are based upon. Then a new reconfigurable method is introduced that utilizes Laplace pressure. Materials that are associated with using liquid metals are discussed and an overall systematic view is given to provide a set of proof of concepts that are more applied and understandable by electronic designers and engineers. Finally a novel approach to making essential measurements of liquid metal microwave devices is devised and discussed. This dissertation encompasses a complete device design from materials used for fabrication, fabrication methods and measurement processes to provide a knowledge base for designing liquid metal microwave devices.
NASA Astrophysics Data System (ADS)
Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.
2017-04-01
With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
ERIC Educational Resources Information Center
Hignite, Karla
2003-01-01
Describes the first phase of a master plan to expand the University of Alaska-Anchorage by purchasing a shopping mall and reconfiguring campus services to take advantage of the additional space. The master plan calls for eventually moving administration to the periphery of the campus and migrating academic programs to the campus center. (SLD)
1994-09-01
free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect
Task-Set Reconfiguration and Perceptual Processing: Behavioral and Electrophysiological Evidence
ERIC Educational Resources Information Center
Mackenzie, Ian G.; Leuthold, Hartmut
2011-01-01
Oriet and Jolicoeur (2003) proposed that an endogenous task-set reconfiguration process acts as a hard bottleneck during which even early perceptual processing is impossible. We examined this assumption using a psychophysiological approach. Participants were required to switch between magnitude and parity judgment tasks within a predictable task…
Definition and trade-off study of reconfigurable airborne digital computer system organizations
NASA Technical Reports Server (NTRS)
Conn, R. B.
1974-01-01
A highly-reliable, fault-tolerant reconfigurable computer system for aircraft applications was developed. The development and application reliability and fault-tolerance assessment techniques are described. Particular emphasis is placed on the needs of an all-digital, fly-by-wire control system appropriate for a passenger-carrying airplane.
Modular reconfigurable matched spectral filter spectrometer
NASA Astrophysics Data System (ADS)
Schundler, Elizabeth; Engel, James R.; Gruber, Thomas; Vaillancourt, Robert; Benedict-Gill, Ryan; Mansur, David J.; Dixon, John; Potter, Kevin; Newbry, Scott
2015-06-01
OPTRA is currently developing a modular, reconfigurable matched spectral filter (RMSF) spectrometer for the monitoring of greenhouse gases. The heart of this spectrometer will be the RMSF core, which is a dispersive spectrometer that images the sample spectrum from 2000 - 3333 cm-1 onto a digital micro-mirror device (DMD) such that different columns correspond to different wavebands. By applying masks to this DMD, a matched spectral filter can be applied in hardware. The core can then be paired with different fore-optics or detector modules to achieve active in situ or passive remote detection of the chemicals of interest. This results in a highly flexible system that can address a wide variety of chemicals by updating the DMD masks and a wide variety of applications by swapping out fore-optic and detector modules. In either configuration, the signal on the detector is effectively a dot-product between the applied mask and the sample spectrum that can be used to make detection and quantification determinations. Using this approach significantly reduces the required data bandwidth of the sensor without reducing the information content, therefore making it ideal for remote, unattended systems. This paper will focus on the design of the RMSF core.
A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications
NASA Astrophysics Data System (ADS)
Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad
2017-03-01
A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.
Farzbod, Ali; Moon, Hyejin
2018-05-30
This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.
Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation
Żuk, Maciej; Tupikowska, Martyna
2018-01-01
By coating plasmonic nanoparticles (NPs) with thermally responsive liquid crystals (LCs) it is possible to prepare reversibly reconfigurable plasmonic nanomaterials with prospective applications in optoelectronic devices. However, simple and versatile methods to precisely tailor properties of liquid-crystalline nanoparticles (LC NPs) are still required. Here, we report a new method for tuning structural properties of assemblies of nanoparticles grafted with a mixture of promesogenic and alkyl thiols, by varying design of the latter. As a model system, we used Ag and Au nanoparticles that were coated with three-ring promesogenic molecules and dodecanethiol ligand. These LC NPs self-assemble into switchable lamellar (Ag NPs) or tetragonal (Au NPs) aggregates, as determined with small angle X-ray diffraction and transmission electron microscopy. Reconfigurable assemblies of Au NPs with different unit cell symmetry (orthorombic) are formed if hexadecanethiol and 1H,1H,2H,2H-perfluorodecanethiol were used in the place of dodecanethiol; in the case of Ag NPs the use of 11-hydroxyundecanethiol promotes formation of a lamellar structure as in the reference system, although with substantially broader range of thermal stability (140 vs. 90 °C). Our results underline the importance of alkyl ligand functionalities in determining structural properties of liquid-crystalline nanoparticles, and, more generally, broaden the scope of synthetic tools available for tailoring properties of reversibly reconfigurable plasmonic nanomaterials. PMID:29518916
NASA Astrophysics Data System (ADS)
Li, Ze; Zhang, Min; Wang, Danshi; Cui, Yue
2017-09-01
We propose a flexible and reconfigurable wavelength-division multiplexing (WDM) multicast scheme supporting downstream emergency multicast communication for WDM optical access network (WDM-OAN) via a multicast module (MM) based on four-wave mixing (FWM) in a semiconductor optical amplifier. It serves as an emergency measure to dispose of the burst, large bandwidth, and real-time multicast service with fast service provisioning and high resource efficiency. It also plays the role of physical backup in cases of big data migration or network disaster caused by invalid lasers or modulator failures. It provides convenient and reliable multicast service and emergency protection for WDM-OAN without modifying WDM-OAN structure. The strategies of an MM setting at the optical line terminal and remote node are discussed to apply this scheme to passive optical networks and active optical networks, respectively. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment in which one-to-six/eight 10-Gbps nonreturn-to-zero-differential phase-shift keying WDM multicasts in both strategies are successfully transmitted over single-mode fiber of 20.2 km. One-to-many reconfigurable WDM multicasts dealing with higher data rate and other modulation formats of multicast service are possible through the proposed scheme. It can be applied to different WDM access technologies, e.g., time-wavelength-division multiplexing-OAN and coherent WDM-OAN, and upgraded smoothly.
NASA Astrophysics Data System (ADS)
Echavarria, E.; Tomiyama, T.; van Bussel, G. J. W.
2007-07-01
The objective of this on-going research is to develop a design methodology to increase the availability for offshore wind farms, by means of an intelligent maintenance system capable of responding to faults by reconfiguring the system or subsystems, without increasing service visits, complexity, or costs. The idea is to make use of the existing functional redundancies within the system and sub-systems to keep the wind turbine operational, even at a reduced capacity if necessary. Re-configuration is intended to be a built-in capability to be used as a repair strategy, based on these existing functionalities provided by the components. The possible solutions can range from using information from adjacent wind turbines, such as wind speed and direction, to setting up different operational modes, for instance re-wiring, re-connecting, changing parameters or control strategy. The methodology described in this paper is based on qualitative physics and consists of a fault diagnosis system based on a model-based reasoner (MBR), and on a functional redundancy designer (FRD). Both design tools make use of a function-behaviour-state (FBS) model. A design methodology based on the re-configuration concept to achieve self-maintained wind turbines is an interesting and promising approach to reduce stoppage rate, failure events, maintenance visits, and to maintain energy output possibly at reduced rate until the next scheduled maintenance.
Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices
NASA Astrophysics Data System (ADS)
Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.
2009-05-01
This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF<2.8dB, S21>13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.
Development and validation of a low-cost mobile robotics testbed
NASA Astrophysics Data System (ADS)
Johnson, Michael; Hayes, Martin J.
2012-03-01
This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.
Integrated all-optical programmable logic array based on semiconductor optical amplifiers.
Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang
2018-05-01
The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.
A novel reconfigurable electromagnetically induced transparency based on S-PINs
NASA Astrophysics Data System (ADS)
Xue, Feng; Liu, Shao-Bin; Zhang, Hai-Feng; Wen, Yong-Diao; Kong, Xiang-Kun; Li, Hai-Ming
2018-02-01
In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.
Vehicle for civil helicopter ride quality research
NASA Technical Reports Server (NTRS)
Snyder, W. J.; Schlegel, R. G.
1975-01-01
A research aircraft for investigating the factors involved in civil helicopter operations was developed for NASA Langley Research Center. The aircraft is a reconfigured 17000 kg (36000 lb) military transport helicopter. The basic aircraft was reconfigured with advanced acoustic treatment, air-conditioning, and a 16-seat airline cabin. During the spring of 1975, the aircraft was flight tested to measure interior environment characteristics - noise and vibration - and was flown on 60 subjective flight missions with over 600 different subjects. Data flights established noise levels somewhat higher than expected, with a pure tone at 1400 Hz and vertical vibration levels between 0.07g and 0.17g. The noise and vibration levels were documented during subjective flight evaluations as being the primary source of discomfort. The aircraft will be utilized to document in detail the impact of various noise and vibration levels on passenger comfort during typical short-haul missions.
The trigger system for the external target experiment in the HIRFL cooling storage ring
NASA Astrophysics Data System (ADS)
Li, Min; Zhao, Lei; Liu, Jin-Xin; Lu, Yi-Ming; Liu, Shu-Bin; An, Qi
2016-08-01
A trigger system was designed for the external target experiment in the Cooling Storage Ring (CSR) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Considering that different detectors are scattered over a large area, the trigger system is designed based on a master-slave structure and fiber-based serial data transmission technique. The trigger logic is organized in hierarchies, and flexible reconfiguration of the trigger function is achieved based on command register access or overall field-programmable gate array (FPGA) logic on-line reconfiguration controlled by remote computers. We also conducted tests to confirm the function of the trigger electronics, and the results indicate that this trigger system works well. Supported by the National Natural Science Foundation of China (11079003), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the CAS Center for Excellence in Particle Physics (CCEPP).
Controlled Electrochemical Deformation of Liquid-Phase Gallium.
Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh
2016-02-17
Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.
Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF
NASA Astrophysics Data System (ADS)
Mar, Jeich; Kuo, Chi-Cheng; Wu, Shin-Ru; Lin, You-Rong
The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.
Highly Reconfigurable Beamformer Stimulus Generator
NASA Astrophysics Data System (ADS)
Vaviļina, E.; Gaigals, G.
2018-02-01
The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.
In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface
Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...
2017-05-12
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less
Emergency strategy optimization for the environmental control system in manned spacecraft
NASA Astrophysics Data System (ADS)
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Two dimensional analytical model for a reconfigurable field effect transistor
NASA Astrophysics Data System (ADS)
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
ERIC Educational Resources Information Center
Druey, Michel D.
2014-01-01
In many task-switch studies, task sequence and response sequence interact: Response repetitions produce benefits when the task repeats but produce costs when the task switches. Four different theoretical frameworks have been proposed to explain these effects: a reconfiguration-based account, association-learning models, an episodic-retrieval…
Simulation of Fault Tolerance in a Hypercube Arrangement of Discrete Processors.
1987-12-01
Geometric Properties .................... 22 Binary Properties ....................... 26 Intel Hypercube Hardware Arrangement ... 28 IV. Cube-Connected... Properties of the CCC..............35 CCC Redundancy............................... 38 iii 6L V. Re-Configurable Cube-Connected Cycles ....... 40 Global...o........ 74 iv List of Figures Page Figure 1: Hypercubes of Different Dimensions ......... 21 Figure 2: Hypercube Properties
Performance vs. Paper-And-Pencil Estimates of Cognitive Abilities.
ERIC Educational Resources Information Center
Arima, James K.
Arima's Discrimination Learning Test (DLT) was reconfigured, made into a self-paced mode, and administered to potential recruits in order to determine if: (1) a previous study indicating a lack of difference in learning performance between white and nonwhites would hold up; and (2) the correlations between scores attained on the DLT and scores…
Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks
Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada
2015-01-01
Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Reconfigurable OR and XOR logic gates based on dual responsive on-off-on micromotors
NASA Astrophysics Data System (ADS)
Dong, Yonggang; Liu, Mei; Zhang, Hui; Dong, Bin
2016-04-01
In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized.In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized. Electronic supplementary information (ESI) available: Fig. S1-S6 and Videos S1-S5. See DOI: 10.1039/c6nr00752j
Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing
2012-11-22
In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.
A Functional Cartography of Cognitive Systems
Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2015-01-01
One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications
NASA Astrophysics Data System (ADS)
Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.
2017-10-01
In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.
Data flow language and interpreter for a reconfigurable distributed data processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, A.D.; Heath, J.R.
1982-01-01
An analytic language and an interpreter whereby an applications data flow graph may serve as an input to a reconfigurable distributed data processor is proposed. The architecture considered consists of a number of loosely coupled computing elements (CES) which may be linked to data and file memories through fully nonblocking interconnect networks. The real-time performance of such an architecture depends upon its ability to alter its topology in response to changes in application, asynchronous data rates and faults. Such a data flow language enhances the versatility of a reconfigurable architecture by allowing the user to specify the machine's topology atmore » a very high level. 11 references.« less
Do changes in coronal emission structure imply magnetic reconnection
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Petrasso, R. D.; Svestka, Z.; Wentzel, D. G.
1977-01-01
Several physical processes that can affect the emission from structures in the corona are investigated on the basis of images of coronal X-ray and XUV emission structures. Changes in emission accompanied by little or no change in large-scale magnetic structure are examined, and three theoretically distinct processes by which magnetic structure can change are discussed: reconfiguration of potential (current-free) fields, reconfiguration of frozen-in fields, and reconfiguration by magnetic-field-line reconnection. The possibility is considered of determining by observation whether a change in emission results from a magnetic change and, if so, what kind of magnetic change has occurred. It is concluded that changes in coronal emission structure do not necessarily imply magnetic reconnection.
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2013-07-01
In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.
Single mode to dual mode switch through a THz reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Zhang, Wu; Zhang, Meng; Yan, Zongkai; Zhao, Xin; Cheng, Jianping; Liu, Ai Qun
2017-12-01
Metamaterials interact with incident electromagnetic waves through their consisting subwavelength metamolecules. In this paper, we reported a reconfigurable metamaterial which tunes its THz response experimentally from a single mode resonance at 2.99 THz to a dual mode resonance at 2.94 THz and 2.99 THz. The reconfiguration is realized through a micromachined actuator, and the tunability is achieved by breaking the symmetry of the metamolecule. An abrupt change in the transmission is experimentally observed when the gap between two metallic structures is closed, and a decrease in transmission from 40% to 5% at 2.94 THz is obtained. Such a tunable metamaterial promises widespread applications in optical switches, filters, and THz detectors.
Organizing Space Shuttle parametric data for maintainability
NASA Technical Reports Server (NTRS)
Angier, R. C.
1983-01-01
A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.
Reconfiguration of a smart surface using heteroclinic connections
McInnes, Colin R.; Xu, Ming
2017-01-01
A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.
We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
Reconfigurable optomechanical circulator and directional amplifier.
Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua
2018-05-04
Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.
NASA Astrophysics Data System (ADS)
Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao
2016-03-01
This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.
Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao
2016-03-07
This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.
On State Complexes and Special Cube Complexes
ERIC Educational Resources Information Center
Peterson, Valerie J.
2009-01-01
This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…
Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J
2005-01-01
We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.
Split and flow: reconfigurable capillary connection for digital microfluidic devices.
Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent
2014-09-21
Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.
Elementary School Consolidation and Reconfiguration: An Autoethnographic Case Study
ERIC Educational Resources Information Center
Winer, Ellen J.
2010-01-01
This qualitative study was designed to examine the processes and practices that occurred before, during and after consolidation of the four elementary schools in the Great Local School district with the goal of developing a conceptual framework to be utilized by school districts that plan on implementing a school consolidation or reconfiguration.…
NASA Astrophysics Data System (ADS)
Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.
2008-10-01
We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.
NASA Technical Reports Server (NTRS)
Howard, J. W.; Kim, H.; Berg, M.; LaBel, K. A.; Stansberry, S.; Friendlich, M.; Irwin, T.
2006-01-01
A viewgraph presentation on the development of a low cost, high speed tester reconfigurable Field Programmable Gata Array (FPGA) is shown. The topics include: 1) Introduction; 2) Objectives; 3) Tester Descriptions; 4) Tester Validations and Demonstrations; 5) Future Work; and 6) Summary.
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Manufacturing Emission Limits, Work Practice Standards, and Compliance Requirements § 63.2480 What requirements... reconfiguration of an equipment train if flexible hose connections are the only disturbed equipment. (3) For an... accordance with § 65.117(b) is not required after reconfiguration of an equipment train if flexible hose...
ERIC Educational Resources Information Center
Case, Stephen
2007-01-01
A reconfigured and realigned system of assessment feedback was implemented with undergraduates taking criminology modules at Swansea University. The reformulated system integrated explicit engagement with assessment criteria in feedback given on an electronic template form with the use of a statement bank and the offer of follow-up, feedback…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... appropriate? Procedural Matters Initial Regulatory Flexibility Analysis As required by the Regulatory... Flexibility Analysis (IRFA) of the possible significant economic impact on a substantial number of small... Reconfiguration Agreement with Sprint Nextel would enter TA-sponsored mediation. The reconfiguration of the 800...
Reconfiguring Urban Leadership: Taking a Perspective on Community
ERIC Educational Resources Information Center
Riley, Kathryn A.
2009-01-01
This article maps the key features of the community contexts in which a range of challenging urban schools are located, highlighting the community-related issues facing school leaders. Whilst recognising the growing demands on school leaders and the need to reconfigure leadership, the author also identifies steps which they can take to strengthen…
ERIC Educational Resources Information Center
Wang, Jianfeng; Doll, William J.; Deng, Xiaodong; Park, Kihyun; Yang, Ma Ga
2013-01-01
This study explores whether learning management systems (LMSs) enable faculty course developers to use the reconfigurable characteristics of the software to implement the seven principles of effective teaching (Chickering & Gamson, 1987). If LMSs are to be considered pedagogically effective, these systems must help engage faculty in effective…
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
NASA Astrophysics Data System (ADS)
Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang
2010-05-01
A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.
NASA Astrophysics Data System (ADS)
Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi
2013-09-01
A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Complex patchy colloids shaped from deformable seed particles through capillary interactions.
Meester, V; Kraft, D J
2018-02-14
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Operational Dynamic Configuration Analysis
NASA Technical Reports Server (NTRS)
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified schedule containing k configurations based on stability score of the sector combinations among the raw operational configurations. In addition, the number of the selected configurations is determined based on balance between accuracy and assessment complexity.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
NASA Astrophysics Data System (ADS)
Huang, Peter Jen-Hung
This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.
NASA Astrophysics Data System (ADS)
Capo-Lugo, Pedro A.
Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.
NASA Technical Reports Server (NTRS)
Rutishauser, David
2006-01-01
The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters that attempts to minimize execution time, while staying within resource constraints. The flexibility of using a custom reconfigurable implementation is exploited in a unique manner to leverage the lessons learned in vector supercomputer development. The vector processing framework is tailored to the application, with variable parameters that are fixed in traditional vector processing. Benchmark data that demonstrates the functionality and utility of the approach is presented. The benchmark data includes an identified bottleneck in a real case study example vector code, the NASA Langley Terminal Area Simulation System (TASS) application.
Han, Yu Long; Wang, Wenqi; Hu, Jie; Huang, Guoyou; Wang, Shuqi; Lee, Won Gu; Lu, Tian Jian; Xu, Feng
2013-12-21
We presented a benchtop technique that can fabricate reconfigurable, three-dimensional (3D) microfluidic devices made from a soft paper-polymer composite. This fabrication approach can produce microchannels at a minimal width of 100 μm and can be used to prototype 3D microfluidic devices by simple bending and stretching. The entire fabrication process can be finished in 2 hours on a laboratory bench without the need for special equipment involved in lithography. Various functional microfluidic devices (e.g., droplet generator and reconfigurable electronic circuit) were prepared using this paper-polymer hybrid microfluidic system. The developed method can be applied in a wide range of standard applications and emerging technologies such as liquid-phase electronics.
Teramoto, Yoshikuni; Lee, Seung-Hwan; Endo, Takashi
2009-10-01
We have previously demonstrated that a sulfuric acid-free ethanol (EtOH) cooking treatment enhances the enzymatic digestibility of eucalyptus wood and bagasse flour. In the present study, a reconfigured process that achieves similar performance was developed by identifying possible cost-competitive pretreatments that provide high cellulose-to-glucose conversion during subsequent enzymatic hydrolysis. The series of reconfigurations reduced EtOH usage in the pretreatment by more than 80% in comparison with our previous research. Higher initial pressures and intensive size reduction of the starting material are not required. The reconfigured process was applied to rice straw and Douglas fir, in order to confirm the feasibility of feedstock diversity.
A reconfigurable robot with tensegrity structure using nylon artificial muscle
NASA Astrophysics Data System (ADS)
Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.
2016-04-01
This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.
NASA Technical Reports Server (NTRS)
Olariu, S.; Schwing, J.; Zhang, J.
1991-01-01
A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.
Airborne Advanced Reconfigurable Computer System (ARCS)
NASA Technical Reports Server (NTRS)
Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.
1976-01-01
A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.
Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.
Redundancy management for efficient fault recovery in NASA's distributed computing system
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Pandya, Mihir; Yau, Kitty
1991-01-01
The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.
An Adaptive Web-Based Support to e-Education in Robotics and Automation
NASA Astrophysics Data System (ADS)
di Giamberardino, Paolo; Temperini, Marco
The paper presents the hardware and software architecture of a remote laboratory, with robotics and automation applications, devised to support e-teaching and e-learning activities, at an undergraduate level in computer engineering. The hardware is composed by modular structures, based on the Lego Mindstorms components: they are reasonably sophisticated in terms of functions, pretty easy to use, and sufficiently affordable in terms of cost. Moreover, being the robots intrinsically modular, wrt the number and distribution of sensors and actuators, they are easily and quickly reconfigurable. A web application makes the laboratory and its robots available via internet. The software framework allows the teacher to define, for the course under her/his responsibility, a learning path made of different and differently complex exercises, graduated in terms of the "difficulty" they require to meet and of the "competence" that the solver is supposed to have shown. The learning path of exercises is adapted to the individual learner's progressively growing competence: at any moment, only a subset of the exercises is available (depending on how close their levels of competence and difficulty are to those of the exercises already solved by the learner).
Sun, Alexander; Venkatesh, A G; Hall, Drew A
2016-10-01
This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients ( ∼ 200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.
From value chain to value constellation: designing interactive strategy.
Normann, R; Ramírez, R
1993-01-01
In today's fast-changing competitive environment, strategy is no longer a matter of positioning a fixed set of activities along that old industrial model, the value chain. Successful companies increasingly do not just add value, they reinvent it. The key strategic task is to reconfigure roles and relationships among a constellation of actors--suppliers, partners, customers--in order to mobilize the creation of value by new combinations of players. What is so different about this new logic of value? It breaks down the distinction between products and services and combines them into activity-based "offerings" from which customers can create value for themselves. But as potential offerings grow more complex, so do the relationships necessary to create them. As a result, a company's strategic task becomes the ongoing reconfiguration and integration of its competencies and customers. The authors provide three illustrations of these new rules of strategy. IKEA has blossomed into the world's largest retailer of home furnishings by redefining the relationships and organizational practices of the furniture business. Danish pharmacies and their national association have used the opportunity of health care reform to reconfigure their relationships with customers, doctors, hospitals, drug manufacturers, and with Danish and international health organizations to enlarge their role, competencies, and profits. French public-service concessionaires have mastered the art of conducting a creative dialogue between their customers--local governments in France and around the world--and a perpetually expanding set of infrastructure competencies.
NASA Technical Reports Server (NTRS)
Turner, Robert T.; Parodi, Andrea V.
2011-01-01
The Team Resource Center (TRC) at Naval Medical Center Portsmouth (NMCP) currently hosts a tri-service healthcare teams training course three times annually . The course consists of didactic learning coupled with simulation exercises to provide an interactive educational experience for healthcare professionals. The course is also the foundation of a research program designed to explore the use of simulation technologies for enhancing team training and evaluation. The TRC has adopted theoretical frameworks for evaluating training readiness and efficacy, and is using these frameworks to guide a systematic reconfiguration of the infrastructure supporting healthcare teams training and research initiatives at NMCP.
Dynamic reconfiguration of human brain functional networks through neurofeedback.
Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri
2013-11-01
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Reconfigurable Electronics and Non-Volatile Memory Research
2015-11-10
Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Arthur Edwards 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2015-0151 TR-2015-0151 RECONFIGURABLE ELECTRONICS AND NON- VOLATILE MEMORY RESEARCH Kristy A. Campbell Boise State... KIRTLAND AIR FORCE BASE, NM 87117-5776 NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this document for
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
Infrared Semiconductor Metamaterials
2016-09-01
Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The central objective of this program is to create a new class of programmable ...this program is to create a new class of programmable infrared optic that can steer or focus beams and is reconfigurable at electronic time...element of a programmable infrared optic that can steer or focus beams and is reconfigurable at electronic time-scales. B. Major
Modular microfluidic system for biological sample preparation
Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean
2015-09-29
A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.
Unexplained Obstruction of an Integrated Cardiotomy Filter During Cardiopulmonary Bypass.
Alwardt, Cory M; Wilson, Donald S; Pajaro, Octavio E
2017-03-01
Cardiopulmonary bypass (CPB) is considered relatively safe in most cases, yet is not complication free. We present a case of an integrated cardiotomy filter obstruction during CPB, requiring circuit reconfiguration. Approximately an hour after uneventful initiation of CPB the integrated cardiotomy filter became obstructed over several minutes, requiring circuit reconfiguration using an external cardiotomy filter to maintain functionality. Following reconfiguration, CPB was maintained with a fully functional circuit allowing safe patient support throughout the remainder of CPB. Postoperatively, there was no sign of thrombus or mechanical obstruction of the filter, which was sent to the manufacturer for analysis. The cause of the obstruction was unclear even after chemical analysis, visual inspection, and a review of all techniques and products to which the patient was exposed. The patient had a generally routine hospital stay, with no signs or symptoms related to the incident. To our knowledge, this is the first report describing an obstructed integrated cardiotomy filter. An appropriate readiness plan for such an incident includes proper venting of the filter chamber, a method for detecting an obstruction, and a plan for circuit reconfiguration. This case illustrates the need for a formal reporting structure for incidents or "near miss" incidents during CPB.
Origami tubes with reconfigurable polygonal cross-sections.
Filipov, E T; Paulino, G H; Tachi, T
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings.
Origami tubes with reconfigurable polygonal cross-sections
Filipov, E. T.; Paulino, G. H.; Tachi, T.
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings. PMID:26997894
Distributed reconfigurable control strategies for switching topology networked multi-agent systems.
Gallehdari, Z; Meskin, N; Khorasani, K
2017-11-01
In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Reconfiguration of a flexible flat plate under snow loading
NASA Astrophysics Data System (ADS)
Gosselin, Frédérick; de Langre, Emmanuel
2015-11-01
Snow and wind constitute two of the main sources of mechanical loading on terrestrial plants. Plants bend and twist with large amplitude to bear these loads. For the past ten years, various authors have sought to decompose the problem of plant reconfiguration under fluid flow into its fundamental mechanical ingredients by studying the reconfiguration of simple flexible structures such as beams, plates, rods and strips. Here, we adopt a similar approach to these studies and consider the snow interception of a flexible flat plate. We performed two sets of experiments on thin flexible rectangular plates supported at their center: in the first one, a plate was subjected to real snowing events; in the second one, a plate was loaded with glass beads acting as a granular media similar to snow. Moreover, a theoretical model coupling the Elastica formulation to a loading with a set angle of repose is developed. The model is found to be in good agreement with the experiments on glass beads. Asymptotic scaling laws can be found similarly to the Vogel exponents of reconfiguring structures. For the real snow loading, it is found that the cohesive force in snow which is highly dependent on the snow temperature complicate things greatly.
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...
2017-02-10
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.
Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas
2016-07-05
Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.
Frequency-reconfigurable water antenna of circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg
A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less
Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy
2001-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
Reconfigurable Flight Control Designs With Application to the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zhenglu
1999-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.
Addressing System Reconfiguration and Incremental Integration within IMA Systems
NASA Astrophysics Data System (ADS)
Ferrero, F.; Rodríques, A. I.
2009-05-01
Recently space industry is paying special attention to Integrated Modular Avionics (IMA) systems due to the benefits that modular concepts could bring to the development of space applications, especially in terms of interoperability, flexibility and software reuse. Two important IMA goals to be highlighted are system reconfiguration, and incremental integration of new functionalities into a pre-existing system. The purpose of this paper is to show how system reconfiguration is conducted based on Allied Standard Avionics Architecture Council (ASAAC) concepts for IMA Systems. Besides, it aims to provide a proposal for addressing the incremental integration concept supported by our experience gained during European Technology Acquisition Program (ETAP) TDP1.7 programme. All these topics will be discussed taking into account safety issues and showing the blueprint as an appropriate technique to support these concepts.
Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staruch, M.; Bussmann, K.; Finkel, P.
2015-07-20
Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus furthermore » improve the limit of detection and advance development of magnetic field sensing technology.« less
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
Race-ing Class Ladies: Lineages of Privilege in an Elite South African School
ERIC Educational Resources Information Center
Epstein, Debbie
2014-01-01
This paper draws on fieldwork done in Greystone School in South Africa, a single sex girls' school. I explore how the legacy of coloniser and colonised is reconfigured through the history of the school and the particular racialised politics of South Africa, where race and class have always been imbricated in differently nuanced ways before, during…
ERIC Educational Resources Information Center
Prats, Armando Jose
1998-01-01
Calls into question Kevin Costner's reconfiguration of the Indian in his film "Dances with Wolves." Examines and evaluates differences between the original theatrical version and the 50-minutes longer version shown on ABC television in the context of the canonical images that Costner disputes. Concludes the ABC version compels the viewer…
Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Ugurdag, H. Fatih; Goren, Sezer
2016-01-01
The authors aimed to develop an application for producing different architectures to implement dual tree complex wavelet transform (DTCWT) having near shift-invariance property. To obtain a low-cost and portable solution for implementing the DTCWT in multi-channel real-time applications, various embedded-system approaches are realised. For comparison, the DTCWT was implemented in C language on a personal computer and on a PIC microcontroller. However, in the former approach portability and in the latter desired speed performance properties cannot be achieved. Hence, implementation of the DTCWT on a reconfigurable platform such as field programmable gate array, which provides portable, low-cost, low-power, and high-performance computing, is considered as the most feasible solution. At first, they used the system generator DSP design tool of Xilinx for algorithm design. However, the design implemented by using such tools is not optimised in terms of area and power. To overcome all these drawbacks mentioned above, they implemented the DTCWT algorithm by using Verilog Hardware Description Language, which has its own difficulties. To overcome these difficulties, simplify the usage of proposed algorithms and the adaptation procedures, a code generator program that can produce different architectures is proposed. PMID:27733925
Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Ugurdag, H Fatih; Goren, Sezer; Aydin, Nizamettin
2016-09-01
The authors aimed to develop an application for producing different architectures to implement dual tree complex wavelet transform (DTCWT) having near shift-invariance property. To obtain a low-cost and portable solution for implementing the DTCWT in multi-channel real-time applications, various embedded-system approaches are realised. For comparison, the DTCWT was implemented in C language on a personal computer and on a PIC microcontroller. However, in the former approach portability and in the latter desired speed performance properties cannot be achieved. Hence, implementation of the DTCWT on a reconfigurable platform such as field programmable gate array, which provides portable, low-cost, low-power, and high-performance computing, is considered as the most feasible solution. At first, they used the system generator DSP design tool of Xilinx for algorithm design. However, the design implemented by using such tools is not optimised in terms of area and power. To overcome all these drawbacks mentioned above, they implemented the DTCWT algorithm by using Verilog Hardware Description Language, which has its own difficulties. To overcome these difficulties, simplify the usage of proposed algorithms and the adaptation procedures, a code generator program that can produce different architectures is proposed.
Between security and military identities: The case of Israeli security experts.
Grassiani, Erella
2018-02-01
The relationship between private security professionals and the military in Israel is complex. While there is growing attention to the fact that security and military actors and their activities are becoming increasingly blurred, the Israeli case shows something different. In this ground-up analysis of the relationship between private security practices and the military, I investigate its constant negotiation by private security professionals through their identification with and differentiation from the military, whereby they reconfigure the meaning of military capital. This identity work should be understood, I propose, within the strongly militarist context of Israeli society, where military capital is highly valued. I argue that actors who exit the military system feel the need to demonstrate the added value of their work in the private sector in order for it to gain value in the light of the symbolic capital given to the military. I analyse these processes as leading to a new kind of militarism, which includes security skills and ideas about professionalism. Such an approach sheds new light on the ways in which security actors can actively reconfigure the workings of military capital in and outside the nation-state and produce a different kind of militarism.
Between security and military identities: The case of Israeli security experts
Grassiani, Erella
2018-01-01
The relationship between private security professionals and the military in Israel is complex. While there is growing attention to the fact that security and military actors and their activities are becoming increasingly blurred, the Israeli case shows something different. In this ground-up analysis of the relationship between private security practices and the military, I investigate its constant negotiation by private security professionals through their identification with and differentiation from the military, whereby they reconfigure the meaning of military capital. This identity work should be understood, I propose, within the strongly militarist context of Israeli society, where military capital is highly valued. I argue that actors who exit the military system feel the need to demonstrate the added value of their work in the private sector in order for it to gain value in the light of the symbolic capital given to the military. I analyse these processes as leading to a new kind of militarism, which includes security skills and ideas about professionalism. Such an approach sheds new light on the ways in which security actors can actively reconfigure the workings of military capital in and outside the nation-state and produce a different kind of militarism. PMID:29416228
A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.
Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong
2018-04-01
A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.
“Modular Biospheres” New testbed platforms for public environmental education and research
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
A Modular, Reconfigurable Surveillance UAV Architecture
2003-09-02
Una Società Galileo Avionica A Modular, Reconfigurable Surveillance UAV Architecture METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via...ES) METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via Mario Stoppani 21 34077 Ronchi dei Legionari (GO) ITALY 8. PERFORMING...PMSFMS RS1Backup FMS NSU Payload Control Actuators Router Router RS2 Recovery Devices Una Società Galileo Avionica • Daylight TV Camera • IR Sensor • HR
Intelligent Control for Future Autonomous Distributed Sensor Systems
2007-03-26
recognized, the use of a pre-computed reconfiguration solution that fits the recognized scenario could allow reconfiguration to take place without...This data was loaded into the program developed to visualize the seabed and then the simulation was performed using frames to denote the target...to generate separate images for each eye. Users wear lightweight, inexpensive polarized eyeglasses and see a stereoscopic image. 35 Fig. 10
Reconfigurable Integrated Optoelectronics
2011-01-01
state -changing could be done also using thermo-optical, mechano-optical, magneto-optical or opto-optical inputs. The speed of reconfiguration can be fast... quantum computers, is a futuristic activity; however, Jeremy O’Brien believes that the time horizon for OQC suc- cess can be brought closer in by using ...2011 Richard Soref. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use
Reconfigurable Cellular Photonic Crystal Arrays (RCPA)
2013-03-01
signal processing based on reconfigurable integrated optics devices. This technology has the potential to revolutionize the design circle of optical...Accomplishments III.A. Design and fabrication of an accumulation-mode modulator Figure 1(a) shows the schematic of a compact resonator on the double-Si... integration of silicon nitride on silicon-on-insulator platform to enhance the arsenal of photonic circuit designers . The coherent integration of
ERIC Educational Resources Information Center
Hubner, Mike; Kluwe, Rainer H.; Luna-Rodriguez, Aquiles; Peters, Alexandra
2004-01-01
Four task-switching experiments examined the notion of an exogenous component of task-set reconfiguration (i.e., a process needed to shift task set that is not initiated in the absence of a task-associated figuration stimulus). The authors varied the complexity and familiarity of stimulus-response (SR) mapping rules to produce differentially…
Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure
Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.
2016-01-01
An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036
Bio-objects and the media: the role of communication in bio-objectification processes.
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-06-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.
Legitimacy of hospital reconfiguration: the controversial downsizing of Kidderminster hospital.
Oborn, Eivor
2008-04-01
This paper examines the contested organizational legitimacy of hospital reconfiguration, which continues to be a central issue in health care management. A qualitative study which focuses on the controversial downsizing of Kidderminster Hospital, a highly publicized landmark case of district general hospital closure. Rhetorical strategies are analysed to examine how legitimacy was constructed by stakeholder groups and how these strategies were used to support or resist change. Stakeholders promoting change legitimized re-organization pragmatically and morally arguing the need for centralization as a rational necessity. Stakeholders resisting change argued for cognitive and moral legitimacy in current service arrangements, contrasting local versus regionalized aspects of safety and provision. Groups managed to talk past each other, failing to establish a dialogue, which led to significant conflict and political upheaval. Stakeholders value hospitals in different ways and argue for diverse accounts of legitimacy. Broader discourses of medical science and democratic participation were drawn into rhetorical texts concerning regionalization to render them more powerful.
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-04-16
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.
Wave Manipulation in Metamaterials: A LEGO® Bricks Enabled Platform
NASA Astrophysics Data System (ADS)
Celli, Paolo; Gonella, Stefano
In this work, we show how simple, reconfigurable arrangements of LEGO® bricks can be turned into the building blocks of an experimental platform for the investigation of wave phenomena in metamaterial architectures. The approach involves the assembly of reconfigurable specimens consisting of patterns of bricks on a baseplate and the use of a 3D laser vibrometer to reconstruct global and local wave features. The ability to seamlessly transition between different topologies makes this an effective approach for rapid experimental verification and proof of concept in the arena of mechanical metamaterials engineering. The intuitive nature of the brick-and-baseplate assembly paradigm can also be leveraged to implement families of intuitive lab demonstrations with significant didactic and scientific outreach potential. The versatility of the platform is tested through a series of experiments that illustrate a variety of wave manipulation effects, such as waveguiding and seismic isolation, both in periodic and disordered topologies. We acknowledge the support of the National Science Foundation (Grant CMMI-1266089).
Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids
Chanda, Sayonsom; Srivastava, Anurag K.
2016-05-02
This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less
Lebreton, Florian; Routier, Guillaume; Héas, Stephane; Bodin, Dominique
2010-08-01
The article explores the process of "sportification"--i.e., processing physical activity in a sport regulated by a set of rules and standards, legitimized by supervisory institutions--from two originals practices, parkour and urban golf. To study these practices, we crossed the contributions of urban sociology and of the contemporary sociology of sport while respecting the methodological principles of qualitative sociology. A first point concerns the process of"sport" itself, its definition, its various stages, and the role played by communication of stakeholders on public space. The cultural mediation shows us how to institutionalize the movement that represents the "sports" resulted in the same time reconfiguration of physical practices themselves. Recent events illustrate the ongoing reconfiguration, we will detail them. Finally, we show the effects produced by the process on the definition of urban culture and sports: setting sight of activities, enhanced cooperation with the media-cultural, polarization between different types of practical in the case of parkour, around a confrontation between two of the founders.
A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns
NASA Astrophysics Data System (ADS)
Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-07-01
In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.
Local transformations of the hippocampal cognitive map.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2018-03-09
Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal's position might still be intact. Similar field shifts were also observed in place and boundary cells-albeit of greater magnitude and more pronounced closer to the reconfigured boundary-which suggests that there is no simple one-to-one relationship between these three different cell types. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Bio-objects and the media: the role of communication in bio-objectification processes
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-01-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763
Steward, Wayne T; Koester, Kimberly A; Collins, Shane P; Maiorana, Andre; Myers, Janet J
2012-10-01
To understand the dynamic capabilities that enabled the six demonstration projects of the Information Technology Networks of Care Initiative to implement health information exchanges (HIEs) tailored to their local HIV epidemics and regional care systems. We conducted 111 semi-structured interviews with project staff and information technology (IT) specialists associated with the demonstration projects, staff from community-based organizations and public health agencies collaborating in the design and implementation of the HIEs, and providers who used each HIE. The dynamic capability framework guided analyses. In the context of a HIE, the framework's components include information systems (the actual technological exchange systems and capacity to update them), absorptive capacity (the ability to implement an operating HIE), reconfiguration capacity (the ability to adapt workflows and clinical practices in response to a HIE), and organizational size and human resources (characteristics likely to affect a clinic's ability to respond). Across the projects, we found evidence for the importance of three dynamic capabilities: information systems, reconfiguration capacity, and organizational size and human resources. However, of these three, reconfiguration capacity was the most salient. Implementation outcomes at all six of the projects were shaped substantially by the degree of attention dedicated to reworking procedures and practices so that HIE usage became routine. Electronic information exchange offers the promise of improved coordination of care. However, implementation of HIEs goes beyond programing and hardware installation challenges, and requires close attention to the needs of the HIEs end-users. Providers need to discern value from a HIE because their active participation is essential to ensuring that clinic and agency practices and procedures are reconfigured to incorporate new systems into daily work processes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wysocki, R.; Karson, J. A.
2017-12-01
The power, fury, and nearly indescribably beauty of flowing lava has permeated the entirety of human existence. Being in the presence of flowing lava redefines the educational experience magnitudes beyond that of the classroom, online and/or an analog experiment. For the last 8 years the Syracuse University Lava Project (SULP) has presented this unique immersive experience nearly weekly year-round. It is through this intensely direct education experience that Pre-K to Post Doc students are exposed to a fundamental geomorphic mechanism: flowing lava. The SULP facility is located in the Syracuse Sculpture Studio and 1.1 Ga basalt is turned into 1200°C molten lava flowing from a reconfigured bronze furnace. Originally conceived as a means to find art material via scientific experiment the project has evolved into a truly one-of-a-kind interdisciplinary course "The Aesthetics and Dynamics of Lava," a course populated by students from across the academic spectrum. Students in this cross-listed course design their own investigations with lava- art or science or some combination - in the context of our background presentations as a launching point. Key benefits include interacting with faculty from very different backgrounds and with very different scholarly/funding systems and students with different outlooks, to engage in multiple modes of learning. Students use scientific tools and processes (FLIR camera, microprobe, thin sections, etc.) as well as those from art and design to produce reports in a variety of formats: traditional written reports, video projects, computer modeling, online presentations, sculpture, photography, etc. Our collaboration has truly blurred the lines between science and art, creating a learning environment in which students from across all academic disciplines work together to share their diverse impressions of lava flow events through shared projects, broadening their perspectives and enabling them to see one another's worlds from new points of view - a major tenant of a liberal arts education.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.
2014-01-01
Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.
Advanced RF and microwave functions based on an integrated optical frequency comb source.
Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J
2018-02-05
We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.
Robust Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay
2015-03-01
We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung
2018-05-14
Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
Reconfigurable terahertz grating with enhanced transmission of TE polarized light
NASA Astrophysics Data System (ADS)
He, J. W.; Wang, X. K.; Xie, Z. W.; Xue, Y. Z.; Wang, S.; Zhang, Y.
2017-07-01
We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz) waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD). The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.
Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit
NASA Technical Reports Server (NTRS)
French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory
2005-01-01
The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.
Changes in primary care and their impact on nurses' jobs.
Nazarko, Linda
2007-02-01
The primary care landscape is changing. Primary care trusts are reconfiguring in an effort to reduce management costs by 15% and to divide services into purchaser and provider arms. These changes are affecting staff at all levels within PCTs and in some organizations hundreds of jobs are at risk. This article explains the process of reconfiguration and outlines your options if your post is at risk.
Wideband Monolithic Tile for Reconfigurable Phased Arrays
2017-03-01
has been developed for Reconfigurable Phased Array applications. Low loss and high isolation interconnection of switches within the radiating...there is no ground to connect shunt elements to. An integral part of the design was bias control. Mesa resistors are used for biasing. MIM...highest in resistance had the best performance over bandwidth because of reduced capacitive loading of the “off” arms of the Quad Switch on the central
Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor)
2005-01-01
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.
Catastrophic Fault Recovery with Self-Reconfigurable Chips
NASA Technical Reports Server (NTRS)
Zheng, Will Hua; Marzwell, Neville I.; Chau, Savio N.
2006-01-01
Mission critical systems typically employ multi-string redundancy to cope with possible hardware failure. Such systems are only as fault tolerant as there are many redundant strings. Once a particular critical component exhausts its redundant spares, the multi-string architecture cannot tolerate any further hardware failure. This paper aims at addressing such catastrophic faults through the use of 'Self-Reconfigurable Chips' as a last resort effort to 'repair' a faulty critical component.
A Need for Systems Architecture Approach for Next Generation Mine Warfare Capability
2006-09-01
MRUUV Mission Reconfigurable Unmanned Undersea Vehicle MSC Mine Countermeasures Ship Coastal MSO Mine Countermeasures Ship Open-ocean P3I Preplanned...Helicopter, the Remote Mine Hunting System (RMS), the Mission Reconfigurable Unmanned Undersea Vehicle (MRUUV) and finally the Littoral Combat Ship (LCS...guarding against the sophisticated Soviet blue-water, air, and undersea threats. Yet since World War II, U.S. Naval Forces have suffered significantly
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-21
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
NASA Astrophysics Data System (ADS)
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.
2003-01-01
Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.
Matejic, Marko
2017-04-01
In the context of healthcare reforms in post-socialist Serbia, this research analyses the reconfiguration of acute care hospitals from the aspect of the spatial distribution of hospital beds among and within state-owned hospitals. The research builds a relationship between the macro or national level and the micro or hospital level of the spatial distribution of hospital beds. The aim of the study is to point out that a high level of efficiency in hospital functionality is difficult to achieve within the current hospital network and architectural-urban patterns of hospitals, and to draw attention to the necessity of a strategically planned hospital spatial reconfiguration, conducted simultaneously with other segments of the healthcare system reform. The research analyses published and unpublished data presented in tables and diagrams. The theoretical platform of the research covers earlier discussions of the Yugoslav healthcare system, its post-socialist reforms and the experiences of developed countries. The results show that the hospital bed distribution has not undergone significant changes, while the hospital spatial reconfiguration has either not been carried out at all or, if it has, only on a small scale. All this has contributed to overall inadequate, inflexible, inefficient, defragmented and unequal bed distribution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-01-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio
Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less
Real-Time Field Data Acquisition and Remote Sensor Reconfiguration Using Scientific Workflows
NASA Astrophysics Data System (ADS)
Silva, F.; Mehta, G.; Vahi, K.; Deelman, E.
2010-12-01
Despite many technological advances, field data acquisition still consists of several manual and laborious steps. Once sensors and data loggers are deployed in the field, scientists often have to periodically return to their study sites in order to collect their data. Even when field deployments have a way to communicate and transmit data back to the laboratory (e.g. by using a satellite or a cellular modem), data analysis still requires several repetitive steps. Because data often needs to be processed and inspected manually, there is usually a significant time delay between data collection and analysis. As a result, sensor failures that could be detected almost in real-time are not noted for weeks or months. Finally, sensor reconfiguration as a result of interesting events in the field is still done manually, making rapid response nearly impossible and causing important data to be missed. By working closely with scientists from different application domains, we identified several tasks that, if automated, could greatly improve the way field data is collected, processed, and distributed. Our goals are to enable real-time data collection and validation, automate sensor reconfiguration in response to interest events in the field, and allow scientists to easily automate their data processing. We began our design by employing the Sensor Processing and Acquisition Network (SPAN) architecture. SPAN uses an embedded processor in the field to coordinate sensor data acquisition from analog and digital sensors by interfacing with different types of devices and data loggers. SPAN is also able to interact with various types of communication devices in order to provide real-time communication to and from field sites. We use the Pegasus Workflow Management System (Pegasus WMS) to coordinate data collection and control sensors and deployments in the field. Because scientific workflows can be used to automate multi-step, repetitive tasks, scientists can create simple workflows to download sensor data, perform basic QA/QC, and identify events of interest as well as sensor and data logger failures almost in real-time. As a result of this automation, scientists can quickly be notified (e.g. via e-mail or SMS) so that important events are not missed. In addition, Pegasus WMS has the ability to abstract the execution environment of where programs run. By placing a Pegasus WMS agent inside an embedded processor in the field, we allow scientists to ship simple computational models to the field, enabling remote data processing at the field site. As an example, scientists can send an image processing algorithm to the field so that the embedded processor can analyze images, thus reducing the bandwidth necessary for communication. In addition, when real-time communication to the laboratory is not possible, scientists can create simple computational models that can be run on sensor nodes autonomously, monitoring sensor data and making adjustments without any human intervention. We believe our system lowers the bar for the adoption of reconfigurable sensor networks by field scientists. In this poster, we will show how this technology can be used to provide not only data acquisition, but also real-time data validation and sensor reconfiguration.
NASA Astrophysics Data System (ADS)
Briseno, Luis Miguel
This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.
Reconfigurable Network Routing with Spatial Soliton Crossbar Switches
1999-01-31
Properties of Quadratic Solitons", Acta Physica Polonica , in press 32. G.I. Stegeman and M. Segev, "Bright Spatial Soliton Interactions", book chapter for...put and output poVts. the central idea is to use the solitons as a waveguide for guiding signals. Deflecting the soliton electro-optically...as reconfigurable interconnects for guiding signals between multiple input and output ports. The central idea is to use the solitons as a waveguide
2006-01-01
cool , the ink is solid and does not flow. When the cantilever is heated , the ink melts and flows from the tip onto the surface. Mov ing the tip...IBM for use in the “Millipede” memory storage system. Thermal cantilevers may be designed to give rapid heating (1 to 20 µs) and cooling (1 to 50 µs...ability of combin- ing reconfigurable hardware devices with optimization software capable of executing real-time autonomous reconfiguration opens up a
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2014-10-01
In this Letter, we propose and experimentally demonstrate a free-space based reconfigurable card-to-card optical interconnect architecture with 16-carrierless-amplitude-phase modulation. Experimental results show that up to 120 Gb/s (3×40 Gb/s) flexible interconnection can be achieved for up to 30 cm distance with a worst-case receiver sensitivity of -9.70 dBm.