Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo
NASA Technical Reports Server (NTRS)
Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.
1995-01-01
We examine the effects of a dusty C02 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and C02 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not accurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.
Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo
NASA Technical Reports Server (NTRS)
Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.
1995-01-01
We examine the effects of a dusty CO2 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and CO2 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not acurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.
Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials
NASA Astrophysics Data System (ADS)
Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo
2017-10-01
A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.
Al-Chokhachy, Robert K.; Wegner, Seth J.; Isaak, Daniel J.; Kershner, Jeffrey L.
2013-01-01
Understanding a species’ thermal niche is becoming increasingly important for management and conservation within the context of global climate change, yet there have been surprisingly few efforts to compare assessments of a species’ thermal niche across methods. To address this uncertainty, we evaluated the differences in model performance and interpretations of a species’ thermal niche when using different measures of stream temperature and surrogates for stream temperature. Specifically, we used a logistic regression modeling framework with three different indicators of stream thermal conditions (elevation, air temperature, and stream temperature) referenced to a common set of Brook Trout Salvelinus fontinalis distribution data from the Boise River basin, Idaho. We hypothesized that stream temperature predictions that were contemporaneous with fish distribution data would have stronger predictive performance than composite measures of stream temperature or any surrogates for stream temperature. Across the different indicators of thermal conditions, the highest measure of accuracy was found for the model based on stream temperature predictions that were contemporaneous with fish distribution data (percent correctly classified = 71%). We found considerable differences in inferences across models, with up to 43% disagreement in the amount of stream habitat that was predicted to be suitable. The differences in performance between models support the growing efforts in many areas to develop accurate stream temperature models for investigations of species’ thermal niches.
Modelling and simulation of thermal behaviour of vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Yan, Yitao; Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-08-01
This paper extends previous thermal models of the vanadium redox flow battery to predict temperature profiles within multi-cell stacks. This involves modelling the thermal characteristics of the stack as a whole to modelling each individual cell. The study investigates the thermal behaviour for two different scenarios: during standby periods when the pumps are turned off, and in a residential power arbitrage scenario for two types of membranes. It was found that the temperature gradient across the cells is most significant during the standby case, with the simulation results showing completely different thermal behaviours between the two systems.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy; Muramoto, Kyle M.
1990-01-01
Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.
Comparison of thermal signatures of a mine buried in mineral and organic soils
NASA Astrophysics Data System (ADS)
Lamorski, K.; Pregowski, Piotr; Swiderski, Waldemar; Usowicz, B.; Walczak, R. T.
2001-10-01
Values of thermal signature of a mine buried in soils, which ave different properties, were compared using mathematical- statistical modeling. There was applied a model of transport phenomena in the soil, which takes into consideration water and energy transfer. The energy transport is described using Fourier's equation. Liquid phase transport of water is calculated using Richard's model of water flow in porous medium. For the comparison, there were selected two soils: mineral and organic, which differs significantly in thermal and hydrological properties. The heat capacity of soil was estimated using de Vries model. The thermal conductivity was calculated using a statistical model, which incorprates fundamental soil physical properties. The model of soil thermal conductivity was built on the base of heat resistance, two Kirchhoff's laws and polynomial distribution. Soil hydrological properties were described using Mualem-van Genuchten model. The impact of thermal properties of the medium in which a mien had been placed on its thermal signature in the conditions of heat input was presented. The dependence was stated between observed thermal signature of a mine and thermal parameters of the medium.
Thermal history of Bakken shale in Williston basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J.
1989-12-01
Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships includemore » factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.« less
Influence of Water Saturation on Thermal Conductivity in Sandstones
NASA Astrophysics Data System (ADS)
Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.
2009-04-01
Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.
Dependence of Thermal Conductivity on Water Saturation of Sandstones
NASA Astrophysics Data System (ADS)
Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.
2008-12-01
Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.
Review on modeling heat transfer and thermoregulatory responses in human body.
Fu, Ming; Weng, Wenguo; Chen, Weiwang; Luo, Na
2016-12-01
Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Feifei; Lan, Fengchong; Chen, Jiqing
2016-07-01
Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano
2011-07-01
Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
Kumar, P; Kumar, Dinesh; Rai, K N
2016-08-01
In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon
2015-05-03
This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.
Parametric study of different contributors to tumor thermal profile
NASA Astrophysics Data System (ADS)
Tepper, Michal; Gannot, Israel
2014-03-01
Treating cancer is one of the major challenges of modern medicine. There is great interest in assessing tumor development in in vivo animal and human models, as well as in in vitro experiments. Existing methods are either limited by cost and availability or by their low accuracy and reproducibility. Thermography holds the potential of being a noninvasive, low-cost, irradiative and easy-to-use method for tumor monitoring. Tumors can be detected in thermal images due to their relatively higher or lower temperature compared to the temperature of the healthy skin surrounding them. Extensive research is performed to show the validity of thermography as an efficient method for tumor detection and the possibility of extracting tumor properties from thermal images, showing promising results. However, deducing from one type of experiment to others is difficult due to the differences in tumor properties, especially between different types of tumors or different species. There is a need in a research linking different types of tumor experiments. In this research, parametric analysis of possible contributors to tumor thermal profiles was performed. The effect of tumor geometric, physical and thermal properties was studied, both independently and together, in phantom model experiments and computer simulations. Theoretical and experimental results were cross-correlated to validate the models used and increase the accuracy of simulated complex tumor models. The contribution of different parameters in various tumor scenarios was estimated and the implication of these differences on the observed thermal profiles was studied. The correlation between animal and human models is discussed.
A review of typical thermal fatigue failure models for solder joints of electronic components
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong
2017-09-01
For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.
Thermal comparison of buried-heterostructure and shallow-ridge lasers
NASA Astrophysics Data System (ADS)
Rustichelli, V.; Lemaître, F.; Ambrosius, H. P. M. M.; Brenot, R.; Williams, K. A.
2018-02-01
We present finite difference thermal modeling to predict temperature distribution, heat flux, and thermal resistance inside lasers with different waveguide geometries. We provide a quantitative experimental and theoretical comparison of the thermal behavior of shallow-ridge (SR) and buried-heterostructure (BH) lasers. We investigate the influence of a split heat source to describe p-layer Joule heating and nonradiative energy loss in the active layer and the heat-sinking from top as well as bottom when quantifying thermal impedance. From both measured values and numerical modeling we can quantify the thermal resistance for BH lasers and SR lasers, showing an improved thermal performance from 50K/W to 30K/W for otherwise equivalent BH laser designs.
NASA Technical Reports Server (NTRS)
Peabody, Hume L.
2017-01-01
This presentation is meant to be an overview of the model building process It is based on typical techniques (Monte Carlo Ray Tracing for radiation exchange, Lumped Parameter, Finite Difference for thermal solution) used by the aerospace industry This is not intended to be a "How to Use ThermalDesktop" course. It is intended to be a "How to Build Thermal Models" course and the techniques will be demonstrated using the capabilities of ThermalDesktop (TD). Other codes may or may not have similar capabilities. The General Model Building Process can be broken into four top level steps: 1. Build Model; 2. Check Model; 3. Execute Model; 4. Verify Results.
NASA Astrophysics Data System (ADS)
Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei
2018-03-01
Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.
Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; ...
2015-08-29
The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical abuse induced short circuit. Here in this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneous coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describemore » the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cell under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Lastly, numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.
The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical abuse induced short circuit. Here in this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneous coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describemore » the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cell under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Lastly, numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.« less
Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1991-01-01
An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.
Zhang, Le; Luo, Feng; Xu, Ruina; ...
2014-12-31
The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less
Atmospheric effects on the remote determination of thermal inertia on Mars
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Jakosky, Bruce M.
1991-01-01
Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.
2015-02-01
Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less
Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, P. C.; Chen, G.; Liu, L. S.
2008-02-15
A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometriesmore » and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.« less
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
NASA Astrophysics Data System (ADS)
Hong, Jie; Carlsson, Mats; Ding, M. D.
2017-08-01
Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.
Biothermomechanics of skin tissues
NASA Astrophysics Data System (ADS)
Xu, F.; Lu, T. J.; Seffen, K. A.
Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.
Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun
2018-04-12
The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.
NASA Astrophysics Data System (ADS)
Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun
2018-04-01
The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.
Nonlocal thermal transport across embedded few-layer graphene sheets
Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...
2014-11-13
Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less
Thermal analysis of combinatorial solid geometry models using SINDA
NASA Technical Reports Server (NTRS)
Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave
1993-01-01
Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.
NASA Astrophysics Data System (ADS)
Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph
2011-08-01
In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.
NASA Astrophysics Data System (ADS)
Song, Li
The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature. Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter. The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis. A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
NASA Astrophysics Data System (ADS)
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the realistic description of thermal properties in models of subducted slabs is discussed.
Modeling void growth and movement with phase change in thermal energy storage canisters
NASA Technical Reports Server (NTRS)
Darling, Douglas; Namkoong, David; Skarda, J. R. L.
1993-01-01
A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.
Network model for thermal conductivities of unidirectional fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Wang, Yang; Peng, Chaoyi; Zhang, Weihua
2014-12-01
An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).
Geletič, Jan; Lehnert, Michal; Savić, Stevan; Milošević, Dragan
2018-05-15
This study uses the MUKLIMO_3 urban climate model (in German, Mikroskaliges Urbanes KLImaMOdell in 3-Dimensionen) and measurements from an urban climate network in order to simulate, validate and analyse the spatiotemporal pattern of human thermal comfort outdoors in the city of Brno (Czech Republic) during a heat-wave period. HUMIDEX, a heat index designed to quantify human heat exposure, was employed to assess thermal comfort, employing air temperature and relative humidity data. The city was divided into local climate zones (LCZs) in order to access differences in intra-urban thermal comfort. Validation of the model results, based on the measurement dates within the urban monitoring network, confirmed that the MUKLIMO_3 micro-scale model had the capacity to simulate the main spatiotemporal patterns of thermal comfort in an urban area and its vicinity. The results suggested that statistically significant differences in outdoor thermal comfort exist in the majority of cases between different LCZs. The most built-up LCZ types (LCZs 2, 3, 5, 8 and 10) were disclosed as the most uncomfortable areas of the city. Hence, conditions of great discomfort (HUMIDEX >40) were recorded in these areas, mainly in the afternoon hours (from 13.00 to 18.00 CEST), while some thermal discomfort continued overnight. In contrast, HUMIDEX values in sparsely built-up LCZ 9 and non-urban LCZs were substantially lower and indicated better thermal conditions for the urban population. Interestingly, the model captured a local increase of HUMIDEX values arising out of air humidity in LCZs with the presence of more vegetation (LCZs A and B) and in the vicinity of larger bodies of water (LCZ G). Copyright © 2017 Elsevier B.V. All rights reserved.
New thermal model with distinct freeze-out temperatures for baryons and mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Assis, Leonardo P. G.; Duarte, Sergio B.; Chiapparini, Marcelo
2013-05-06
A significant amount of experimental data for particle production in high-energy heavy ion collisions (10 - 200 GeV/A at center of mass) has been accumulated during last years. Many different theoretical attempts have tried to describe these data using thermal models in the approximation of global thermal equilibrium considering only one freeze-out temperature. However the thermal models often are not able to describe adequately the whole multiplicities of hadrons. For instance, the abundance of strange particles is overestimate and the pion yields are underestimated. In this work is presented a thermal hadronic model with two different temperatures in order tomore » describe the baryonic and mesonic chemical freeze-out in ultra-relativistic heavy ion collisions. The model is used to fit the particle population ratios of the hadrons produced in the reaction. The proposal is not merely to incorporate one additional degree of freedom in the adjustment procedure of data, but to present and alternative scenario for the freeze out stage in the collisional proces s. This new reformulated version of thermal model was applied to a set of data, offering a rather good improvement in the fitting of the calculated particle ratios to the data. The results suggest that the introduced model makes the thermal approach more robust to handle with a larger number of colliding systems and a more comprehensive set of reaction observables.« less
NASA Astrophysics Data System (ADS)
Saikia, Banashree
2017-03-01
An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.
Foundations of High-Pressure Thermal Plasmas
NASA Astrophysics Data System (ADS)
Murphy, Anthony B.; Uhrlandt, Dirk
2018-06-01
An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.
Determination of thermally induced effects and design guidelines of optomechanical accelerometers
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang
2017-11-01
Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.
NASA Astrophysics Data System (ADS)
Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.
2015-05-01
Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recovering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TradeMark) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested, namely MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lilibridge, Sean T.; Navarro, Moses
2012-01-01
Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
NASA Technical Reports Server (NTRS)
Lee, H. P.
1977-01-01
The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.
OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, C. R.; Mainzer, A.; Masiero, J.
The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emittedmore » flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.« less
Off- and Along-Axis Slow Spreading Ridge Segment Characters: Insights From 3d Thermal Modeling
NASA Astrophysics Data System (ADS)
Gac, S.; Tisseau, C.; Dyment, J.
2001-12-01
Many observations along the Mid-Atlantic Ridge segments suggest a correlation between surface characters (length, axial morphology) and the thermal state of the segment. Thibaud et al. (1998) classify segments according to their thermal state: "colder" segments shorter than 30 km show a weak magmatic activity, and "hotter" segments as long as 90 km show a robust magmatic activity. The existence of such a correlation suggests that the thermal structure of a slow spreading ridge segment explains most of the surface observations. Here we test the physical coherence of such an integrated thermal model and evaluate it quantitatively. The different kinds of segment would constitute different phases in a segment evolution, the segment evolving progressively from a "colder" to a "hotter" so to a "colder" state. Here we test the consistency of such an evolution scheme. To test these hypotheses we have developed a 3D numerical model for the thermal structure and evolution of a slow spreading ridge segment. The thermal structure is controlled by the geometry and the dimensions of a permanently hot zone, imposed beneath the segment center, where is simulated the adiabatic ascent of magmatic material. To compare the model with the observations several geophysic quantities which depend on the thermal state are simulated: crustal thickness variations along axis, gravity anomalies (reflecting density variations) and earthquake maximum depth (corresponding to the 750° C isotherm depth). The thermal structure of a particular segment is constrained by comparing the simulated quantities to the real ones. Considering realistic magnetization parameters, the magnetic anomalies generated from the same thermal structure and evolution reproduce the observed magnetic anomaly amplitude variations along the segment. The thermal structures accounting for observations are determined for each kind of segment (from "colder" to "hotter"). The evolution of the thermal structure from the "colder" to the "hotter" segments gives credence to a temporal relationship between the different kinds of segment. The resulting thermal evolution model of slow spreading ridge segments may explain the rhomboedric shapes observed off-axis.
NASA Astrophysics Data System (ADS)
O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.
2015-12-01
We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.
Computer modelling of technogenic thermal pollution zones in large water bodies
NASA Astrophysics Data System (ADS)
Parshakova, Ya N.; Lyubimova, T. P.
2018-01-01
In the present work, the thermal pollution zones created due to discharge of heated water from thermal power plants are investigated using the example of the Permskaya Thermal Power Plant (Permskaya TPP or Permskaya GRES), which is one of the largest thermal power plants in Europe. The study is performed for different technological and hydrometeorological conditions. Since the vertical temperature distribution in such wastewater reservoirs is highly inhomogeneous, the computations are performed in the framework of 3D model.
Spacecraft thermal balance testing using infrared sources
NASA Technical Reports Server (NTRS)
Tan, G. B. T.; Walker, J. B.
1982-01-01
A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.
NASA Technical Reports Server (NTRS)
Cleveland, Paul E.; Parrish, Keith A.
2005-01-01
A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description of the three aspects of the thermal verification and model validation plan is presented.
Creation of lumped parameter thermal model by the use of finite elements
NASA Technical Reports Server (NTRS)
1978-01-01
In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.
Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.
2010-01-01
Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, thermally enhanced machining (TEM) slowly gearing up to cut hard metals like high chrome white cast iron (HCWCI) which were impossible in conventional procedures. Also setting up of suitable cutting parameters and positioning of the heat source against the work appears to be critical in order to enhance the machinability characteristics of the work material. In this research work, the Oxy - LPG flame was used as the heat source and HCWCI as the workpiece. ANSYS-CFD-Flow software was used to develop the transient thermal model to analyze the thermal flux distribution on the work surface during TEM of HCWCI using Cubic boron nitride (CBN) tools. Non-contact type Infrared thermo sensor was used to measure the surface temperature continuously at different positions, and is validated with the thermal model results. The result confirms thermal model is a better predictive tool for thermal flux distribution analysis in TEM process.
NASA Astrophysics Data System (ADS)
Ross, Anthony B.; Diederich, Chris J.; Nau, William H.; Tyreus, Per D.; Gill, Harcharan; Bouley, Donna; Butts, R. K.; Rieke, Viola; Daniel, Bruce; Sommer, Graham
2005-04-01
Thermal ablation is a minimally-invasive treatment option for benign prostatic hyperplasia (BPH) and localized prostate cancer. Accurate spatial control of thermal dose delivery is paramount to improving thermal therapy efficacy and avoiding post-treatment complications. We have recently developed three types of transurethral ultrasound applicators, each with different degrees of heating selectivity. These applicators have been evaluated in vivo in coordination with magnetic resonance temperature imaging, and demonstrated to accurately ablate specific regions of the canine prostate. A finite difference biothermal model of the three types of transurethral ultrasound applicators (sectored tubular, planar, and curvilinear transducer sections) was developed and used to further study the performance and heating capabilities of each these devices. The biothermal model is based on the Pennes bioheat equation. The acoustic power deposition pattern corresponding to each applicator type was calculated using the rectangular radiator approximation to the Raleigh Sommerfield diffraction integral. In this study, temperature and thermal dose profiles were calculated for different treatment schemes and target volumes, including single shot and angular scanning procedures. This study also demonstrated the ability of the applicators to conform the cytotoxic thermal dose distribution to a predefined target area. Simulated thermal profiles corresponded well with MR temperature images from previous in vivo experiments. Biothermal simulations presented in this study reinforce the potential of improved efficacy of transurethral ultrasound thermal therapy of prostatic disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
Thermal inactivation kinetics of hepatitis A virus in homogenized clam meat (Mercenaria mercenaria).
Bozkurt, H; D'Souza, D H; Davidson, P M
2015-09-01
Epidemiological evidence suggests that hepatitis A virus (HAV) is the most common pathogen transmitted by bivalve molluscs such as clams, cockles, mussels and oysters. This study aimed to generate thermal inactivation kinetics for HAV as a first step to design adequate thermal processes to control clam-associated HAV outbreaks. Survivor curves and thermal death curves were generated for different treatment times (0-6 min) at different temperatures (50-72°C) and Weibull and first-order models were compared. D-values for HAV ranged from 47·37 ± 1·23 to 1·55 ± 0·12 min for the first-order model and 64·43 ± 3·47 to 1·25 ± 0·45 min for the Weibull model at temperatures from 50 to 72°C. z-Values for HAV in clams were 12·97 ± 0·59°C and 14·83 ± 0·0·28°C using the Weibull and first-order model respectively. The calculated activation energies for the first-order and Weibull model were 145 and 170 kJ mole(-1) respectively. The Weibull model described the thermal inactivation behaviour of HAV better than the first-order model. This study provides novel and precise information on thermal inactivation kinetics of HAV in homogenized clams. This will enable reliable thermal process calculations for HAV inactivation in clams and closely related seafood. © 2015 The Society for Applied Microbiology.
Calculation of TIR Canopy Hot Spot and Implications for Earth Radiation Budget
NASA Technical Reports Server (NTRS)
Smith, J. A.; Ballard, J. R., Jr.
2000-01-01
Using a 3-D model for thermal infrared exitance and the Lowtran 7 atmospheric radiative transfer model, we compute the variation in brightness temperature with view direction and, in particular, the canopy thermal hot spot. We then perform a sensitivity analysis of surface energy balance components for a nominal case using a simple SVAT model given the uncertainty in canopy temperature arising from the thermal hot spot effect. Canopy thermal hot spot variations of two degrees C lead to differences of plus or minus 24% in the midday available energy.
2017-02-01
risks, by modeling thermal strain. Twenty clothing ensembles were tested for thermal and evaporative resistances according to American Society of...e.g., football, hockey, etc.) or during military, law enforcement, or first responder operations (e.g., body armor, flame resistant clothing, etc...Each clothing configuration was tested to American Society of Testing and Materials (ASTM) standards for “dry” thermal resistance (Rct) (ASTM F1291
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Constraints on Thermal Evolution of Mars from Relaxation Models of Crustal and Topographic Dichotomy
NASA Technical Reports Server (NTRS)
Guest, A.; Smrekar, S. E.
2005-01-01
The early thermal evolution of Mars is largely unconstrained. Models such as degree one convection [1,2,3], plate tectonics [4], and a transition to stagnant lid [5] have been proposed to explain formation of the dichotomy, the Tharsis rise, crustal production, and dynamo evolution. Here we model both the early deformation of the dichotomy and the long-term preservation as a means of examining the plausibility of a range of early thermal evolution models. Constraints include the preservation of crustal thickness and topographic differences between the northern and southern hemispheres and the geologic history of the dichotomy [6]). Our previous modeling indicates that the lower crust must have been weak enough to allow for relaxation early on, but the Martian interior had to cool fast enough to preserve the crustal difference and the associated topographic difference (5 km) over approx. 3-3.5 Gyr [7].
Differential and directional effects of perfusion on electrical and thermal conductivities in liver.
Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L
2009-01-01
Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.
Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors
NASA Astrophysics Data System (ADS)
Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration
2017-01-01
In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.
Transient in-plane thermal transport in nanofilms with internal heating
Cao, Bing-Yang
2016-01-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903
Transient in-plane thermal transport in nanofilms with internal heating.
Hua, Yu-Chao; Cao, Bing-Yang
2016-02-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.
Thermal modeling of wide bandgap semiconductor devices for high frequency power converters
NASA Astrophysics Data System (ADS)
Sharath Sundar Ram, S.; Vijayakumari, A.
2018-02-01
The emergence of wide bandgap semiconductors has led to development of new generation semiconductor switches that are highly efficient and scalable. To exploit the advantages of GaNFETs in power converters, in terms of reduction in the size of heat sinks and filters, a thorough understanding of the thermal behavior of the device is essential. This paper aims to establish a thermal model for wideband gap semiconductor GaNFETs commercially available, which will enable power electronic designers to obtain the thermal characteristics of the device more effectively. The model parameters is obtained from the manufacturer’s data sheet by adopting an exponential curve fitting technique and the thermal model is validated using PSPICE simulations. The model was developed based on the parametric equivalence that exists between the thermal and electrical components, such that it responds for transient thermal stresses. A suitable power profile has been generated to evaluate the GaNFET model under different power dissipation scenarios. The results were compared with a Silicon MOSFETs to further highlight the advantages of the GaN devices. The proposed modeling approach can be extended for other GaN devices and can provide a platform for the thermal study and heat sink optimization.
NASA Astrophysics Data System (ADS)
Ruiz, María Angélica; Correa, Erica Norma
2015-10-01
Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje's Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model's energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
Data book for 12.5-inch diameter SRB thermal model water flotation test; 1.29 psia, series P022
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation at a scaled pressure of 1.29 psia are presented. Included are acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB. Nineteen valid tests were conducted. These thermal tests indicated the following basic differences relative to the ambient temperature and pressure model tests: (1) more water was taken on board during penetration and (2) model flotation/sinking was temperature sensitive.
NASA Astrophysics Data System (ADS)
Epting, Jannis; García-Gil, Alejandro; Huggenberger, Peter; Vázquez-Suñe, Enric; Mueller, Matthias H.
2017-05-01
The shallow subsurface in urban areas is increasingly used by shallow geothermal energy systems as a renewable energy resource and as a cheap cooling medium, e.g. for building air conditioning. In combination with further anthropogenic activities, this results in altered thermal regimes in the subsurface and the so-called subsurface urban heat island effect. Successful thermal management of urban groundwater resources requires understanding the relative contributions of the different thermal parameters and boundary conditions that result in the "present thermal state" of individual urban groundwater bodies. To evaluate the "present thermal state" of urban groundwater bodies, good quality data are required to characterize the hydraulic and thermal aquifer parameters. This process also involved adequate monitoring systems which provide consistent subsurface temperature measurements and are the basis for parameterizing numerical heat-transport models. This study is based on previous work already published for two urban groundwater bodies in Basel (CH) and Zaragoza (ES), where comprehensive monitoring networks (hydraulics and temperature) as well as calibrated high-resolution numerical flow- and heat-transport models have been analyzed. The "present thermal state" and how it developed according to the different hydraulic and thermal boundary conditions is compared to a "potential natural state" in order to assess the anthropogenic thermal changes that have already occurred in the urban groundwater bodies we investigated. This comparison allows us to describe the various processes concerning groundwater flow and thermal regimes for the different urban settings. Furthermore, the results facilitate defining goals for specific aquifer regions, including future aquifer use and urbanization, as well as evaluating the thermal use potential for these regions. As one example for a more sustainable thermal use of subsurface water resources, we introduce the thermal management concept of the "relaxation factor", which is a first approach to overcome the present policy of "first come, first served". Remediation measures to regenerate overheated urban aquifers are also introduced. The transferability of the applied methods to other urban areas is discussed. It is shown that an appropriate selection of locations for monitoring hydraulic and thermal boundary conditions make it possible to implement representative interpretations of groundwater flow and thermal regimes as well as to set up high-resolution numerical flow- and heat-transport models. Those models are the basis for the sustainable management of thermal resources.
A SINDA thermal model using CAD/CAE technologies
NASA Technical Reports Server (NTRS)
Rodriguez, Jose A.; Spencer, Steve
1992-01-01
The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.
Design and simulation of liquid cooled system for power battery of PHEV
NASA Astrophysics Data System (ADS)
Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun
2017-09-01
Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
NASA Astrophysics Data System (ADS)
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Freezable Radiator Coupon Testing and Full Scale Radiator Design
NASA Technical Reports Server (NTRS)
Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses
2009-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard
2010-01-01
Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement
Non-thermal leptogenesis after Majoron hilltop inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Marschall, Kenneth
2018-05-01
We analyse non-thermal leptogenesis after models of Majoron hilltop inflation, where the scalar field that provides masses for the right-handed neutrinos and sneutrinos via its vacuum expectation value acts as the inflaton. We discuss different realisations of Majoron inflation models with different hilltop shapes and couplings to the right-handed (s)neutrinos. To study the non-thermally produced baryon asymmetry in these models, we numerically solve the relevant Boltzmann equations. In contrast to previous studies, we include the effects from resonant sneutrino particle production during preheating. We find that these effects can result in an enhancement of the produced baryon asymmetry by more than an order of magnitude. This can significantly change the favoured parameter regions of these models.
Detection and modeling of subsurface coal oxidation
Leonhart, Leo S.; Rasmussen, William O.; Barringer, Anthony R.
1980-01-01
The oxidation and sustained ignition of coal and coaly wastes within surface coal mine spoils in the southwestern U.S. have hampered the success of reclamation efforts at these locations. To assess better the magnitude, depth, geometry, and dynamics of the oxidation process thermal infrared remote sensing data have been used. Digital thermal imagery was found to be useful for this purpose and was integrated with finite different heat transfer models to yield predictions of several characteristics of the thermal source. In addition to thermal infrared imagery, aerial color and false color infrared imagery were found to provide useful information for the interpretation of oxidation phenomena by means of variations in surface vegetation, color of the surface material, subsidence, etc. The combined use of thermal infrared imagery and thermal modeling techniques are well suited for use in exploration and interpretation of other thermal targets.
Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings
Chai, Yijun; Lin, Chen; Wang, Xian; Li, Yueming
2016-01-01
Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC) systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL), which grows between the thermally grown oxide (TGO) and the bond coat (BC), is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO. PMID:28773894
Assessment of human thermal comfort and mitigation measures in different urban climatotopes
NASA Astrophysics Data System (ADS)
Müller, N.; Kuttler, W.
2012-04-01
This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the effectiveness of water bodies, which need further research in contrast to well analysed vegetation areas. Results show different thermal loads in the miscellaneous climatotopes due to land use structures. Both measurements and model simulations demonstrate the positive effect on thermal comfort due to augmentation of areas with high evaporation capacity. These effects can be especially well detected in summer, when heat stress is most pronounced. The measurement based PET calculations show a maximum difference of 4 K PET between inner city and open land site in summer nights. Simulation results overall present a PET reduction of 1-3 K. The average PET reduction in the city center site is about 2 K, while the maximum reduction in the suburban site can exceed 5 K. In urban areas parks are particularly advisable as mitigation measure, because they reduce thermal stress both by tree shading and evapotranspiration.
Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Hadgu, T.; Park, H.
2016-12-01
Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1980-01-01
A user's manual for a one dimensional thermal model to predict the temperature profiles of a deep body of water for any number of annual cycles is presented. The model is essentially a set of partial differential equations which are solved by finite difference methods using a high speed digital computer. The model features the effects of area change with depth, nonlinear interaction of wind generated turbulence and buoyancy, adsorption of radiative heat flux below the surface, thermal discharges, and the effects of vertical convection caused by discharge. The main assumption in the formulation is horizontal homogeneity. The environmental impact of thermal discharges from power plants is emphasized. Although the model is applicable to most lakes, a specific site (Lake Keowee, S.C.) application is described in detail. The programs are written in FORTRAN 5.
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
Biophysical model of prokaryotic diversity in geothermal hot springs.
Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador
2012-02-01
Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society
Development and evaluation of thermal model reduction algorithms for spacecraft
NASA Astrophysics Data System (ADS)
Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus
2015-05-01
This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.
Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry
NASA Astrophysics Data System (ADS)
Safaie, A.; Davis, K. A.; Pawlak, G. R.
2016-02-01
The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.
Thermal Damage Analysis in Biological Tissues Under Optical Irradiation: Application to the Skin
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Solana-Quirós, José Ramón; Arce-Diego, José Luis
2009-07-01
The use of optical sources in medical praxis is increasing nowadays. In this study, different approaches using thermo-optical principles that allow us to predict thermal damage in irradiated tissues are analyzed. Optical propagation is studied by means of the radiation transport theory (RTT) equation, solved via a Monte Carlo analysis. Data obtained are included in a bio-heat equation, solved via a numerical finite difference approach. Optothermal properties are considered for the model to be accurate and reliable. Thermal distribution is calculated as a function of optical source parameters, mainly optical irradiance, wavelength and exposition time. Two thermal damage models, the cumulative equivalent minutes (CEM) 43 °C approach and the Arrhenius analysis, are used. The former is appropriate when dealing with dosimetry considerations at constant temperature. The latter is adequate to predict thermal damage with arbitrary temperature time dependence. Both models are applied and compared for the particular application of skin thermotherapy irradiation.
Thermal conductivity of disperse insulation materials and their mixtures
NASA Astrophysics Data System (ADS)
Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J.
2017-10-01
Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to estimate role of different heat transfer phenomena in such porous mixture. Modelling results show that thermal convection plays small role in heat transfer despite large fraction of air within material pores.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
Tailoring thermal conductivity via three-dimensional porous alumina
Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol
2016-01-01
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930
The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification
NASA Astrophysics Data System (ADS)
Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.
2015-12-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.
Parameter-Study Of The Thermal Yarkovsky Effect Acting On Neas
NASA Astrophysics Data System (ADS)
Polishook, David; Prialnik, D.; Rosenberg, E.; Brosch, N.
2010-10-01
We study the relevant parameters for the thermal Yarkovsky effect acting on Near-Earth Asteroids (NEAs), specifically the rotation period and rotation axis. The study uses a quasi 3-D thermal model to derive the temperature map over the surface of the asteroid, and the thermal thrust is calculated. The model (Prialnik et al. 2004, Rosenberg and Prialnik 2006), uses an implicit scheme to numerically solve the equations that describe the asteroid and its thermal evolution. The results show how the thermal thrust is stronger for fast-rotating asteroids, as heat is emitted from their surface on the evening side, increasing the tangential component of the thermal thrust. Moreover, we show the differences in the thermal thrust between asteroids with different perihelion distances, and how this can explain the observed distribution of asteroids in the inner Solar System on the spin-perihelion plane. Our results suggest that many asteroids within the inner Solar System may have retrograde spins. Acknowledgements: D. Polishook is grateful for an Ilan Ramon doctoral scholarship from the Israeli Ministry of Science.
Applying chemical engineering concepts to non-thermal plasma reactors
NASA Astrophysics Data System (ADS)
Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI
2018-06-01
Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.
A potential thermal dynamo and its astrophysical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingam, Manasvi, E-mail: mlingam@princeton.edu; Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544; Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu
2016-05-15
It is shown that thermal turbulence, not unlike the standard kinetic and magnetic turbulence, can be an effective driver of a mean-field dynamo. In simple models, such as hydrodynamics and magnetohydrodynamics, both vorticity and induction equations can have strong thermal drives that resemble the α and γ effects in conventional dynamo theories; the thermal drives are likely to be dominant in systems that are endowed with subsonic, low-β turbulence. A pure thermal dynamo is quite different from the conventional dynamo in which the same kinetic/magnetic mix in the ambient turbulence can yield a different ratio of macroscopic magnetic/vortical fields. Themore » possible implications of the similarities and differences between the thermal and non-thermal dynamos are discussed. The thermal dynamo is shown to be highly important in the stellar and planetary context, and yields results broadly consistent with other theoretical and experimental approaches.« less
Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Santhanagopalan, S.; Sprague, M. A.
2016-07-28
Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less
Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.
2016-08-01
Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less
NASA Astrophysics Data System (ADS)
Siouane, Saima; Jovanović, Slaviša; Poure, Philippe
2017-01-01
The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.
Thermal modeling of high efficiency AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.
1995-12-31
Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Twomore » parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.« less
Using SDO/AIA to Understand the Thermal Evolution of Solar Prominence Formation
NASA Astrophysics Data System (ADS)
Viall, Nicholeen; M.; Kucera, Therese T.; Karpen, Judith
2016-10-01
In this study, we investigate prominence formation using time series analysis of Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA) data. We investigate the thermal properties of forming prominences by analyzing observed light curves using the same technique that we have already successfully applied to active regions to diagnose heating and cooling cycles. This technique tracks the thermal evolution using emission formed at different temperatures, made possible by AIA's different wavebands and high time resolution. We also compute the predicted light curves in the same SDO/AIA channels of a hydrodynamic model of thermal nonequilibrium formation of prominence material, an evaporation-condensation model. In these models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of material of a few MK into the corona followed by catastrophic cooling of the hot material to form cool ( 10,000 K) prominence material. We demonstrate that the SDO/AIA light curves for flux tubes undergoing thermal nonequilibrium vary at different locations along the flux tube, especially in the region where the condensate forms, and we compare the predicted light curves with those observed. Supported by NASA's Living with a Star program.
Voelker, C; Alsaad, H
2018-05-01
This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Spectral Correlation of Thermal and Magnetotelluric Responses in a 2D Geothermal System
NASA Astrophysics Data System (ADS)
Pacheco, M. A.
2008-05-01
A methodology of thermal response observations at regional scale in geothermal systems was implemented using magnetotelluric(MT) data that was analyzed by spectral correlation of EM anomalies. Local favorability indices were obtained enhancing the anomalies of thermal flow and their corresponding magnetotelluric responses related to a common source. A C++ code was developed to compute magnetotelluric and thermal responses using finite differences of a geothermal field model. The problem of thermal convection was solved numerically using the approach of Boussinesq and temperature and thermal flow profiles are obtained, also is solved to the equations of electromagnetic induction 2D that govern the wave equation for the H-polarization case in a two-dimensional model of the system. This methodology is useful to find thermal anomalies in conductive or resistive structures of a geothermal system, which is directly associated with the litology of the model such as magmatic chamber, basement and hydrothermal reservoir.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.
1981-01-01
The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.
Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement
NASA Astrophysics Data System (ADS)
Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.
2018-01-01
Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.
Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.
2003-01-01
The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.
He, Xiaoming; Bhowmick, Sankha; Bischof, John C
2009-07-01
The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.
Chantre, Guillermo R; Batlla, Diego; Sabbatini, Mario R; Orioli, Gustavo
2009-06-01
Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Seeds were dry-stored at constant temperatures of 5, 15 or 24 degrees C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 degrees C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single T(b) value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics.
NASA Technical Reports Server (NTRS)
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Thermal transport in semicrystalline polyethylene by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun
2018-01-01
Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam
2012-01-01
Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
Numerical modeling of reflux solar receivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, R.E. Jr.
1993-05-01
Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is presently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, N. Mex. In support of this program, Sandia has developed two numerical models describing the thermal performance of pool-boiler and heat-pipe reflux receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. The primary difference between the models is the level of detailmore » in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. The numerical modeling concepts presented are applicable to conventional tube-type solar receivers, as well as to reflux receivers. Good agreement between the two models is demonstrated by comparing the predicted and measured performance of a pool-boiler reflux receiver being tested at Sandia. For design operating conditions, the receiver thermal efficiencies agree within 1 percent and the average receiver cavity temperature within 1.3 percent. The thermal efficiency and receiver temperatures predicted by the simpler thermal resistance model agree well with experimental data from on-sun tests of the Sandia reflux pool-boiler receiver. An analysis of these comparisons identifies several plausible explanations for the differences between the predicted results and the experimental data.« less
Efficiency and its bounds for a quantum Einstein engine at maximum power.
Yan, H; Guo, Hao
2012-11-01
We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.
Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package
NASA Technical Reports Server (NTRS)
Lee, H.-P.; Jackson, C. E., Jr.
1974-01-01
The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.
Heat dissipation schemes in QCLs monitored by CCD thermoreflectance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Pierścińska, Dorota; Morawiec, Magdalena; Gutowski, Piotr; Karbownik, Piotr; Serebrennikova, Olga; Bugajski, Maciej
2017-02-01
In this paper we present the development of the instrumentation for accurate evaluation of the thermal characteristics of quantum cascade lasers based on CCD thermoreflectance (CCD TR). This method allows rapid thermal characterization of QCLs, as the registration of high-resolution map of the whole device facet lasts only several seconds. The capabilities of the CCD TR are used to study temperature dissipation schemes in different designs of QCLs. We report on the investigation of thermal performance of QCLs developed at the Institute of Electron Technology, with an emphasis on the influence of different material system, processing technology and device designs. We investigate and compare AlInAs/InGaAs/InP QCLs (lattice matched and strain compensated) of different architectures, i.e., double trench and buried heterostructure (BH) in terms of thermal management. Experimental results are in very good agreement with numerical predictions of heat dissipation in various device constructions. Numerical model is based on FEM model solved by commercial software package. The model assumes anisotropic thermal conductivity in the AR layers as well as the temperature dependence of thermal conductivities of all materials in the project. We have observed experimentally improvement of thermal properties of devices based on InP materials, especially for buried heterostructure type. The use of buried heterostructure enhanced the lateral heat dissipation from the active region of QCLs. The BH structure and epilayer-down bonding help dissipate the heat generated from active core of the QCL.
Optimal trajectory planning for a UAV glider using atmospheric thermals
NASA Astrophysics Data System (ADS)
Kagabo, Wilson B.
An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.
Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells
NASA Astrophysics Data System (ADS)
Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang
2015-04-01
Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.
Asteroid thermal modeling in the presence of reflected sunlight
NASA Astrophysics Data System (ADS)
Myhrvold, Nathan
2018-03-01
A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high values. IR observations of asteroids in bands that have substantial reflected sunlight can largely avoid these problems by adopting the Kirchhoff law compliant modeling framework presented here, which is conceptually straightforward and comes without computational cost.
Thermal modelling of various thermal barrier coatings in a high heat flux rocket engine
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1989-01-01
Traditional Air Plasma Sprayed (APS) ZrO2-Y2O3 Thermal Barrier Coatings (TBC's) and Low Pressure Plasma Sprayed (LPPS) ZrO2-Y2O3/Ni-Cr-Al-Y cermet coatings were tested in a H2/O2 rocked engine. The traditional ZrO2-Y2O3 (TBC's) showed considerable metal temperature reductions during testing in the hydrogen-rich environment. A thermal model was developed to predict the thermal response of the tubes with the various coatings. Good agreement was observed between predicted temperatures and measured temperatures at the inner wall of the tube and in the metal near the coating/metal interface. The thermal model was also used to examine the effect of the differences in the reported values of the thermal conductivity of plasma sprayed ZrO2-Y2O3 ceramic coatings, the effect of 100 micron (0.004 in.) thick metallic bond coat, the effect of tangential heat transfer around the tube, and the effect or radiation from the surface of the ceramic coating. It was shown that for the short duration testing in the rocket engine, the most important of these considerations was the effect of the uncertainty in the thermal conductivity of temperatures (greater than 100 C) predicted in the tube. The thermal model was also used to predict the thermal response of the coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries and to explain the previously-observed increased life of coatings on rods over that on tubes. A thermal model was also developed to predict heat transfer to the leading edge of High Pressure Fuel Turbopump (HPFTP) blades during start-up of the space shuttle main engines. The ability of various TBC's to reduce metal temperatures during the two thermal excursions occurring on start-up was predicted. Temperature reductions of 150 to 470 C were predicted for 165 micron (0.0065 in.) coatings for the greater of the two thermal excursions.
Transient electro-thermal characterization of Si-Ge heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Sahoo, Amit Kumar; Weiß, Mario; Fregonese, Sébastien; Malbert, Nathalie; Zimmer, Thomas
2012-08-01
In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230 GHz and 290 GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R-C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.
The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer
Jakosky, Bruce M.; Mellon, Michael T.; Kieffer, Hugh H.; Christensen, Philip R.; Varnes, E. Stacy; Lee, Steven W.
2000-01-01
We have used Mars Global Surveyor (MGS) Thermal Emission Spectrometer thermal emission measurements to derive the thermal inertia of the Martian surface at the ∼100-km spatial scale. We have validated the use of nighttime-only measurements to derive thermal inertia as well as the use of a single wavelength band versus bolometric thermal emission measurements. We have also reanalyzed the Viking Infrared Thermal Mapper data set in a similar manner in order to allow a direct comparison between the two. Within the uncertainties of the fit of the data to the model, and the uncertainties inherent in the model, the thermal inertia has not changed substantially in the 21 years between the Viking and the MGS measurements. Although some differences are seen, they are most likely due to changes in albedo during the intervening years or to residual effects of airborne dust that are not fully accounted for in the thermal models. The thermal inertia values that we derive, between about 24 and 800 J m-2 s-1/2 K-1, are thought to better represent the actual thermal inertia of the Martian surface than previous estimates.
Automatic visibility retrieval from thermal camera images
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Ott, Beat; Wellig, Peter; Wunderle, Stefan
2017-10-01
This study presents an automatic visibility retrieval of a FLIR A320 Stationary Thermal Imager installed on a measurement tower on the mountain Lagern located in the Swiss Jura Mountains. Our visibility retrieval makes use of edges that are automatically detected from thermal camera images. Predefined target regions, such as mountain silhouettes or buildings with high thermal differences to the surroundings, are used to derive the maximum visibility distance that is detectable in the image. To allow a stable, automatic processing, our procedure additionally removes noise in the image and includes automatic image alignment to correct small shifts of the camera. We present a detailed analysis of visibility derived from more than 24000 thermal images of the years 2015 and 2016 by comparing them to (1) visibility derived from a panoramic camera image (VISrange), (2) measurements of a forward-scatter visibility meter (Vaisala FD12 working in the NIR spectra), and (3) modeled visibility values using the Thermal Range Model TRM4. Atmospheric conditions, mainly water vapor from European Center for Medium Weather Forecast (ECMWF), were considered to calculate the extinction coefficients using MODTRAN. The automatic visibility retrieval based on FLIR A320 images is often in good agreement with the retrieval from the systems working in different spectral ranges. However, some significant differences were detected as well, depending on weather conditions, thermal differences of the monitored landscape, and defined target size.
Effect of thermal noise on vesicles and capsules in shear flow.
Abreu, David; Seifert, Udo
2012-07-01
We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic models predict only pure tank treading or tumbling.
Modified physiologically equivalent temperature—basics and applications for western European climate
NASA Astrophysics Data System (ADS)
Chen, Yung-Chang; Matzarakis, Andreas
2018-05-01
A new thermal index, the modified physiologically equivalent temperature (mPET) has been developed for universal application in different climate zones. The mPET has been improved against the weaknesses of the original physiologically equivalent temperature (PET) by enhancing evaluation of the humidity and clothing variability. The principles of mPET and differences between original PET and mPET are introduced and discussed in this study. Furthermore, this study has also evidenced the usability of mPET with climatic data in Freiburg, which is located in Western Europe. Comparisons of PET, mPET, and Universal Thermal Climate Index (UTCI) have shown that mPET gives a more realistic estimation of human thermal sensation than the other two thermal indices (PET, UTCI) for the thermal conditions in Freiburg. Additionally, a comparison of physiological parameters between mPET model and PET model (Munich Energy Balance Model for Individual, namely MEMI) is proposed. The core temperatures and skin temperatures of PET model vary more violently to a low temperature during cold stress than the mPET model. It can be regarded as that the mPET model gives a more realistic core temperature and mean skin temperature than the PET model. Statistical regression analysis of mPET based on the air temperature, mean radiant temperature, vapor pressure, and wind speed has been carried out. The R square (0.995) has shown a well co-relationship between human biometeorological factors and mPET. The regression coefficient of each factor represents the influence of the each factor on changing mPET (i.e., ±1 °C of T a = ± 0.54 °C of mPET). The first-order regression has been considered predicting a more realistic estimation of mPET at Freiburg during 2003 than the other higher order regression model, because the predicted mPET from the first-order regression has less difference from mPET calculated from measurement data. Statistic tests recognize that mPET can effectively evaluate the influences of all human biometeorological factors on thermal environments. Moreover, a first-order regression function can also predict the thermal evaluations of the mPET by using human biometeorological factors in Freiburg.
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon
2018-05-01
Differences in size between males and females, called the sexual size dimorphism, are common in insects. These differences may be followed by differences in the duration of development. Accordingly, it is believed that insect sex may be used to increase the accuracy of insect age estimates in forensic entomology. Here, the sex-specific differences in the development of Creophilus maxillosus were studied at seven constant temperatures. We have also created separate developmental models for males and females of C. maxillosus and tested them in a validation study to answer a question whether sex-specific developmental models improve the accuracy of insect age estimates. Results demonstrate that males of C. maxillosus developed significantly longer than females. The sex-specific and general models for the total immature development had the same optimal temperature range and similar developmental threshold but different thermal constant K, which was the largest in the case of the male-specific model and the smallest in the case of the female-specific model. Despite these differences, validation study revealed just minimal and statistically insignificant differences in the accuracy of age estimates using sex-specific and general thermal summation models. This finding indicates that in spite of statistically significant differences in the duration of immature development between females and males of C. maxillosus, there is no increase in the accuracy of insect age estimates while using the sex-specific thermal summation models compared to the general model. Accordingly, this study does not support the use of sex-specific developmental data for the estimation of insect age in forensic entomology.
Thermal Model Development for Ares I-X
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; DelCorso, Joe
2008-01-01
Thermal analysis for the Ares I-X vehicle has involved extensive thermal model integration, since thermal models of vehicle elements came from several different NASA and industry organizations. Many valuable lessons were learned in terms of model integration and validation. Modeling practices such as submodel, analysis group and symbol naming were standardized to facilitate the later model integration. Upfront coordination of coordinate systems, timelines, units, symbols and case scenarios was very helpful in minimizing integration rework. A process for model integration was developed that included pre-integration runs and basic checks of both models, and a step-by-step process to efficiently integrate one model into another. Extensive use of model logic was used to create scenarios and timelines for avionics and air flow activation. Efficient methods of model restart between case scenarios were developed. Standardization of software version and even compiler version between organizations was found to be essential. An automated method for applying aeroheating to the full integrated vehicle model, including submodels developed by other organizations, was developed.
Field mapping for heat capacity mapping determinations: Ground support for airborne thermal surveys
NASA Technical Reports Server (NTRS)
Lyon, R. J. P.
1976-01-01
Thermal models independently derived by Watson, Outcalt, and Rosema were compared using similar input data and found to yield very different results. Each model has a varying degree of sensitivity to any specified parameter. Data collected at Pisgah Crater-Lavic Lake was re-examined to indicate serious discrepancy in results for thermal inertia from Jet Lab Propulsion Laboratory calculations, when made using the same orginal data sets.
The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.
2016-01-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.
Apparent thermal inertia and the surface heterogeneity of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.
2006-01-01
Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.
Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung
2009-03-01
Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.
NASA Astrophysics Data System (ADS)
Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung
2009-03-01
Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.
Nonlinear Dynamics of Turbulent Thermals in Shear Flow
NASA Astrophysics Data System (ADS)
Ingel, L. Kh.
2018-03-01
The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.
NASA Technical Reports Server (NTRS)
Ko, William L.
1988-01-01
Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.
Modeling of the Multiparameter Inverse Task of Transient Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Y. A.
1998-01-01
Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.
An empirical analysis of thermal protective performance of fabrics used in protective clothing.
Mandal, Sumit; Song, Guowen
2014-10-01
Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Thermal-to-visible face recognition using partial least squares.
Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson
2015-03-01
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.
Thermal History and Mantle Dynamics of Venus
NASA Technical Reports Server (NTRS)
Hsui, Albert T.
1997-01-01
One objective of this research proposal is to develop a 3-D thermal history model for Venus. The basis of our study is a finite-element computer model to simulate thermal convection of fluids with highly temperature- and pressure-dependent viscosities in a three-dimensional spherical shell. A three-dimensional model for thermal history studies is necessary for the following reasons. To study planetary thermal evolution, one needs to consider global heat budgets of a planet throughout its evolution history. Hence, three-dimensional models are necessary. This is in contrasts to studies of some local phenomena or local structures where models of lower dimensions may be sufficient. There are different approaches to treat three-dimensional thermal convection problems. Each approach has its own advantages and disadvantages. Therefore, the choice of the various approaches is subjective and dependent on the problem addressed. In our case, we are interested in the effects of viscosities that are highly temperature dependent and that their magnitudes within the computing domain can vary over many orders of magnitude. In order to resolve the rapid change of viscosities, small grid spacings are often necessary. To optimize the amount of computing, variable grids become desirable. Thus, the finite-element numerical approach is chosen for its ability to place grid elements of different sizes over the complete computational domain. For this research proposal, we did not start from scratch and develop the finite element codes from the beginning. Instead, we adopted a finite-element model developed by Baumgardner, a collaborator of this research proposal, for three-dimensional thermal convection with constant viscosity. Over the duration supported by this research proposal, a significant amount of advancements have been accomplished.
Miller, R.T.
1986-01-01
A study of the feasibility of storing heated water in a deep sandstone aquifer in Minnesota is described. The aquifer consists of four hydraulic zones that are areally anisotropic and have average hydraulic conductivities that range from 0. 03 to 1. 2 meters per day. A preliminary axially symmetric, nonisothermal, isotropic, single-phase, radial-flow, thermal-energy-transport model was constructed to investigate the sensitivity of model simulation to various hydraulic and thermal properties of the aquifer. A three-dimensional flow and thermal-energy transport model was constructed to incorporate the areal anisotropy of the aquifer. Analytical solutions of equations describing areally anisotropic groundwater flow around a doublet-well system were used to specify model boundary conditions for simulation of heat injection. The entire heat-injection-testing period of approximately 400 days was simulated. Model-computed temperatures compared favorably with field-recorded temperatures, with differences of no more than plus or minus 8 degree C. For each test cycle, model-computed aquifer thermal efficiency, defined as total heat withdrawn divided by total heat injected, was within plus or minus 2% of the field-calculated values.
Research and development on performance models of thermal imaging systems
NASA Astrophysics Data System (ADS)
Wang, Ji-hui; Jin, Wei-qi; Wang, Xia; Cheng, Yi-nan
2009-07-01
Traditional ACQUIRE models perform the discrimination tasks of detection (target orientation, recognition and identification) for military target based upon minimum resolvable temperature difference (MRTD) and Johnson criteria for thermal imaging systems (TIS). Johnson criteria is generally pessimistic for performance predict of sampled imager with the development of focal plane array (FPA) detectors and digital image process technology. Triangle orientation discrimination threshold (TOD) model, minimum temperature difference perceived (MTDP)/ thermal range model (TRM3) Model and target task performance (TTP) metric have been developed to predict the performance of sampled imager, especially TTP metric can provides better accuracy than the Johnson criteria. In this paper, the performance models above are described; channel width metrics have been presented to describe the synthesis performance including modulate translate function (MTF) channel width for high signal noise to ration (SNR) optoelectronic imaging systems and MRTD channel width for low SNR TIS; the under resolvable questions for performance assessment of TIS are indicated; last, the development direction of performance models for TIS are discussed.
Ben-David, Avishai; Embury, Janon F; Davidson, Charles E
2006-09-10
A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.
Popova, Evgeniya; Chernov, Aleksandr; Maryandyshev, Pavel; Brillard, Alain; Kehrli, Damaris; Trouvé, Gwenaëlle; Lyubov, Viktor; Brilhac, Jean-François
2016-10-01
The thermal degradation of wood biofuels (spruce, pine), of coals from different fields of the Russian Federation and of hydrolysis lignin is investigated using a thermogravimetric analyzer under different heating conditions and under non-oxidative or oxidative atmospheres. The samples are indeed submitted to a linear temperature ramp of 10K/min or to a temperature ramp of 200K/min up to a residence temperature between 250 and 450°C where they are maintained during 4h (isothermal conditions). The values of the kinetic parameters are determined for these different samples in both thermal conditions, either using the differential isoconversional method or by means of an Extended Independent Parallel Reaction (EIPR) model. The values of the kinetic parameters obtained with this EIPR model for spruce trunk are also compared with that of its main constituents (hemicellulose, cellulose and lignin). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank
2018-02-01
Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.
Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi
NASA Technical Reports Server (NTRS)
Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.
2011-01-01
A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.
2010-01-01
Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.
Chantre, Guillermo R.; Batlla, Diego; Sabbatini, Mario R.; Orioli, Gustavo
2009-01-01
Background and Aims Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Methods Seeds were dry-stored at constant temperatures of 5, 15 or 24 °C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 °C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. Key Results The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single Tb value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. Conclusions The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics. PMID:19332426
NASA Astrophysics Data System (ADS)
Liu, Haiyun; Wang, Lei
2018-01-01
In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96 ± 0.92) W · m · K-1 and (2.65 ± 0.03) × 10-6 K-1, respectively, with temperature ranging from 300-400 K.
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Shi, Wen; Zhang, Chengjiao
2015-10-01
In this serial study, 486 thermal manikin tests were carried out to examine the effects of air velocity and walking speed on both total and local clothing thermal insulations. Seventeen clothing ensembles with different layers (i.e., one, two, or three layers) were selected for the study. Three different wind speeds (0.15, 1.55, 4.0 m/s) and three levels of walking speed (0, 0.75, 1.2 m/s) were chosen. Thus, there are totally nine different testing conditions. The clothing total insulation and local clothing insulation at different body parts under those nine conditions were determined. In part I, empirical equations for estimating total resultant clothing insulation as a function of the static thermal insulation, relative air velocity, and walking speed were developed. In part II, the local thermal insulation of various garments was analyzed and correction equations on local resultant insulation for each body part were developed. This study provides critical database for potential applications in thermal comfort study, modeling of human thermal strain, and functional clothing design and engineering.
Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James
2010-01-01
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.
Autoxidation of jet fuels: Implications for modeling and thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Chin, L.P.
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less
Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System
NASA Astrophysics Data System (ADS)
Ganguly, Sayantan
2017-04-01
Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.
Thermal conductivity model for nanoporous thin films
NASA Astrophysics Data System (ADS)
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
A lightweight thermal heat switch for redundant cryocooling on satellites
NASA Astrophysics Data System (ADS)
Dietrich, M.; Euler, A.; Thummes, G.
2017-04-01
A previously designed cryogenic thermal heat switch for space applications has been optimized for low mass, high structural stability, and reliability. The heat switch makes use of the large linear thermal expansion coefficient (CTE) of the thermoplastic UHMW-PE for actuation. A structure model, which includes the temperature dependent properties of the actuator, is derived to be able to predict the contact pressure between the switch parts. This pressure was used in a thermal model in order to predict the switch performance under different heat loads and operating temperatures. The two models were used to optimize the mass and stability of the switch. Its reliability was proven by cyclic actuation of the switch and by shaker tests.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model.
García-Plazaola, José Ignacio; Esteban, Raquel; Fernández-Marín, Beatriz; Kranner, Ilse; Porcar-Castell, Albert
2012-09-01
Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.
Numerical analysis on temperature field in single-wire flux-aided backing-submerged arc welding
NASA Astrophysics Data System (ADS)
Pu, Juan; Wu, Ming Fang; Pan, Haichao
2017-07-01
Single-wire flux-aided backing-submerged arc welding (FAB-SAW) technology has been widely used to weld thick steel plate due to its easy assembly and high heat input. The microstructure and property of welded joint are closely related to the thermal field of FAB-SAW process. In this research, the feature of thermal field for single-wire FAB-SAW was investigated. Based on the heat transfer mechanism, a three-dimensional transient model for thermal field was developed based on the influence of steel thickness, groove angle and ceramic backing. The temperature profile in single-wire FAB-SAW of D36 steel under different welding conditions was simulated by ANSYS. The characteristic of thermal field was analyzed and the influences of groove angle on temperature field for different plate thicknesses were discussed. The calculated geometries and dimensions of weld cross-section under different conditions show a good agreement with the experimental results. This newly built model can describe the thermal field accurately, which would be helpful to understanding the thermophysical mechanism of FAB-SAW and optimizing the welding process.
NASA Astrophysics Data System (ADS)
Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas
2017-06-01
The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.
A thermal conductivity model for U-Si compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Andersson, Anders David Ragnar
U 3Si 2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO 2 in commercial light water reactors (LWRs). One of its main benefits compared to UO 2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO 2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U 3Si 2, as compared to the phonon mechanism responsible for thermal transport in UO 2. The phonon thermal conductivity in UO 2 is unusually low for a fluorite oxidemore » due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U 3Si 2 as well as other U-Si compounds has been measured experimentally [1-4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO 2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U 3Si 2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO 2 (semi-conductor) and U 3Si 2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-Si compounds with the goal of capturing the effect of damage in U 3Si 2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.« less
Thermal Modelling of Various Thermal Barrier Coatings in a High Flux Rocket Engine
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1998-01-01
A thermal model was developed to predict the thermal response of coated and uncoated tubes tested in a H2/O2 rocket engine. Temperatures were predicted for traditional APS ZrO2-Y2O3 thermal barrier coatings, as well as APS and LPPS ZrO2-Y2O3/NiCrAlY cermet coatings. Good agreement was observed between predicted and measured metal temperatures at locations near the tube surface or at the inner tube wall. The thermal model was also used to quantitatively examine the effect of various coating system parameters on the temperatures in the substrate and coating. Accordingly, the effect of the presence a metallic bond coat and the effect of radiation from the surface of the ceramic layer were examined. In addition, the effect of a variation in the values of the thermal conductivity of the ceramic layer was also investigated. It was shown that a variation in the thermal conductivity of the ceramic layer, on the order of that reported in the literature for plasma sprayed ZrO2-Y2O3 coatings, can result in temperature differences in the substrate greater than 100 C, a much greater effect than that due to the presence of a bond coat or radiation from the ceramic layer. The thermal model was also used to predict the thermal response of a coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries in order to explain the previously-observed increased life of coatings on rods over that on tubes. It was shown that for the short duration testing in the rocket engine, the temperature in a tube could exceed that in a rod by more than 100 C. Lastly, a two-dimensional model was developed to evaluate the effect of tangential heat transfer around the tube and its impact on reducing the stagnation point temperature. It was also shown that tangential heat transfer does not significantly reduce the stagnation point temperature, thus allowing application of a simpler, one-dimensional model for comparing measured and predicted stagnation point temperatures.
Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock
NASA Astrophysics Data System (ADS)
Hadgu, T.; Gomez, S. P.; Matteo, E. N.
2017-12-01
Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8295 A.
A simulation technique for predicting thickness of thermal sprayed coatings
NASA Technical Reports Server (NTRS)
Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.
1995-01-01
The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less
Lopez-Haro, S. A.; Leija, L.
2016-01-01
Objectives. To present a quantitative comparison of thermal patterns produced by the piston-in-a-baffle approach with those generated by a physiotherapy ultrasonic device and to show the dependency among thermal patterns and acoustic intensity distributions. Methods. The finite element (FE) method was used to model an ideal acoustic field and the produced thermal pattern to be compared with the experimental acoustic and temperature distributions produced by a real ultrasonic applicator. A thermal model using the measured acoustic profile as input is also presented for comparison. Temperature measurements were carried out with thermocouples inserted in muscle phantom. The insertion place of thermocouples was monitored with ultrasound imaging. Results. Modeled and measured thermal profiles were compared within the first 10 cm of depth. The ideal acoustic field did not adequately represent the measured field having different temperature profiles (errors 10% to 20%). Experimental field was concentrated near the transducer producing a region with higher temperatures, while the modeled ideal temperature was linearly distributed along the depth. The error was reduced to 7% when introducing the measured acoustic field as the input variable in the FE temperature modeling. Conclusions. Temperature distributions are strongly related to the acoustic field distributions. PMID:27999801
A model for including thermal conduction in molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Wu, Yue; Friauf, Robert J.
1989-01-01
A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-01-01
ABSTRACT In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods. PMID:28515537
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-05-19
In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods.
Thermal lattice BGK models for fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Jian
1998-11-01
As an alternative in modeling fluid dynamics, the Lattice Boltzmann method has attracted considerable attention. In this thesis, we shall present a general form of thermal Lattice BGK. This form can handle large differences in density, temperature, and high Mach number. This generalized method can easily model gases with different adiabatic index values. The numerical transport coefficients of this model are estimated both theoretically and numerically. Their dependency on the sizes of integration steps in time and space, and on the flow velocity and temperature, are studied and compared with other established CFD methods. This study shows that the numerical viscosity of the Lattice Boltzmann method depends linearly on the space interval, and on the flow velocity as well for supersonic flow. This indicates this method's limitation in modeling high Reynolds number compressible thermal flow. On the other hand, the Lattice Boltzmann method shows promise in modeling micro-flows, i.e., gas flows in micron-sized devices. A two-dimensional code has been developed based on the conventional thermal lattice BGK model, with some modifications and extensions for micro- flows and wall-fluid interactions. Pressure-driven micro- channel flow has been simulated. Results are compared with experiments and simulations using other methods, such as a spectral element code using slip boundary condition with Navier-Stokes equations and a Direct Simulation Monte Carlo (DSMC) method.
NASA Astrophysics Data System (ADS)
Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas
2016-12-01
Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2013-01-01
Background and Aims Physical dormancy (PY)-break in some annual plant species is a two-step process controlled by two different temperature and/or moisture regimes. The thermal time model has been used to quantify PY-break in several species of Fabaceae, but not to describe stepwise PY-break. The primary aims of this study were to quantify the thermal requirement for sensitivity induction by developing a thermal time model and to propose a mechanism for stepwise PY-breaking in the winter annual Geranium carolinianum. Methods Seeds of G. carolinianum were stored under dry conditions at different constant and alternating temperatures to induce sensitivity (step I). Sensitivity induction was analysed based on the thermal time approach using the Gompertz function. The effect of temperature on step II was studied by incubating sensitive seeds at low temperatures. Scanning electron microscopy, penetrometer techniques, and different humidity levels and temperatures were used to explain the mechanism of stepwise PY-break. Key Results The base temperature (Tb) for sensitivity induction was 17·2 °C and constant for all seed fractions of the population. Thermal time for sensitivity induction during step I in the PY-breaking process agreed with the three-parameter Gompertz model. Step II (PY-break) did not agree with the thermal time concept. Q10 values for the rate of sensitivity induction and PY-break were between 2·0 and 3·5 and between 0·02 and 0·1, respectively. The force required to separate the water gap palisade layer from the sub-palisade layer was significantly reduced after sensitivity induction. Conclusions Step I and step II in PY-breaking of G. carolinianum are controlled by chemical and physical processes, respectively. This study indicates the feasibility of applying the developed thermal time model to predict or manipulate sensitivity induction in seeds with two-step PY-breaking processes. The model is the first and most detailed one yet developed for sensitivity induction in PY-break. PMID:23456728
Thermal stability analysis and modelling of advanced perpendicular magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Van Beek, Simon; Martens, Koen; Roussel, Philippe; Wu, Yueh Chang; Kim, Woojin; Rao, Siddharth; Swerts, Johan; Crotti, Davide; Linten, Dimitri; Kar, Gouri Sankar; Groeseneken, Guido
2018-05-01
STT-MRAM is a promising non-volatile memory for high speed applications. The thermal stability factor (Δ = Eb/kT) is a measure for the information retention time, and an accurate determination of the thermal stability is crucial. Recent studies show that a significant error is made using the conventional methods for Δ extraction. We investigate the origin of the low accuracy. To reduce the error down to 5%, 1000 cycles or multiple ramp rates are necessary. Furthermore, the thermal stabilities extracted from current switching and magnetic field switching appear to be uncorrelated and this cannot be explained by a macrospin model. Measurements at different temperatures show that self-heating together with a domain wall model can explain these uncorrelated Δ. Characterizing self-heating properties is therefore crucial to correctly determine the thermal stability.
Numerical modeling of Thermal Response Tests in Energy Piles
NASA Astrophysics Data System (ADS)
Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.
2013-05-01
Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal conductivity of the soil is the most determinant parameter that affects the estimated thermal conductivity. For example, we observed differences of up to 50% from the expected value at the end of 100 hours of simulation for values of thermal conductivity of the soil in the range of 1 to 6 W/mK. Additionally, we observed that the results of the synthetic TRT depend upon several other parameters such as the boundary conditions used to model the interaction of the top face of the pile with the surrounding media. For example, Simulations with a constant temperature boundary condition tended to overestimate the total thermal conductivity of the whole system. This analysis demonstrates that numerical modeling is a useful tool to model energy pile systems and to interpret and design tests to evaluate their performance. Furthermore, it also reveals that the results of thermal response tests interpreted with analytical models must be evaluated with care for the assessment of the potential of low enthalpy systems, because their results depend upon a variety of factors which are neglected in the analytical models.
Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.
Mundy, Erin; Gleeson, Tom; Roberts, Mark; Baraer, Michel; McKenzie, Jeffrey M
2017-03-01
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation. © 2016, National Ground Water Association.
Hwang, R-L; Chen, C-P
2010-06-01
This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal comfort zone is attempted in a household of members consisting of different age groups.
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
NASA Technical Reports Server (NTRS)
Sullins, Alan D.; Daryabeigi, Kamran
2001-01-01
The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.
Entropy generation method to quantify thermal comfort.
Boregowda, S C; Tiwari, S N; Chaturvedi, S K
2001-12-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
Entropy generation method to quantify thermal comfort
NASA Technical Reports Server (NTRS)
Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.
2001-01-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
NASA Astrophysics Data System (ADS)
Kiani, Hossein; Sun, Da-Wen
2018-03-01
As novel processes such as ultrasound assisted heat transfer are emerged, new models and simulations are needed to describe these processes. In this paper, a numerical model was developed to study the freezing process of potatoes. Different thermal conductivity models were investigated, and the effect of sonication was evaluated on the convective heat transfer in a fluid to the particle heat transfer system. Potato spheres and sticks were the geometries researched, and the effect of different processing parameters on the results were studied. The numerical model successfully predicted the ultrasound assisted freezing of various shapes in comparison with experimental data of the process. The model was sensitive to processing parameters variation (sound intensity, duty cycle, shape, etc.) and could accurately simulate the freezing process. Among the thermal conductivity correlations studied, de Vries and Maxwell models gave closer estimations. The maximum temperature difference was obtained for the series equation that underestimated the thermal conductivity. Both numerical and experimental data confirmed that an optimum condition of intensity and duty cycle is needed for reducing the freezing time, as increasing the intensity, increased the heat transfer rate and sonically heating rate, simultaneously, that acted against each other.
Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio
2016-04-01
We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.
The effect of sediment thermal conductivity on vertical groundwater flux estimates
NASA Astrophysics Data System (ADS)
Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos
2015-04-01
The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.
Mikhailov, V.O.; Parsons, T.; Simpson, R.W.; Timoshkina, E.P.; Williams, C.
2007-01-01
Data on present-day heat flow, subsidence history, and paleotemperature for the Sacramento Delta region, California, have been employed to constrain a numerical model of tectonic subsidence and thermal evolution of forearc basins. The model assumes an oceanic basement with an initial thermal profile dependent on its age subjected to refrigeration caused by a subducting slab. Subsidence in the Sacramento Delta region appears to be close to that expected for a forearc basin underlain by normal oceanic lithosphere of age 150 Ma, demonstrating that effects from both the initial thermal profile and the subduction process are necessary and sufficient. Subsidence at the eastern and northern borders of the Sacramento Valley is considerably less, approximating subsidence expected from the dynamics of the subduction zone alone. These results, together with other geophysical data, show that Sacramento Delta lithosphere, being thinner and having undergone deeper subsidence, must differ from lithosphere of the transitional type under other parts of the Sacramento Valley. Thermal modeling allows evaluation of the rheological properties of the lithosphere. Strength diagrams based on our thermal model show that, even under relatively slow deformation (10−17 s−1), the upper part of the delta crystalline crust (down to 20–22 km) can fail in brittle fashion, which is in agreement with deeper earthquake occurrence. Hypocentral depths of earthquakes under the Sacramento Delta region extend to nearly 20 km, whereas, in the Coast Ranges to the west, depths are typically less than 12–15 km. The greater width of the seismogenic zone in this area raises the possibility that, for fault segments of comparable length, earthquakes of somewhat greater magnitude might occur than in the Coast Ranges to the west.
Data book for 12.5-inch diameter SRB thermal model water flotation test - 14.7 psia, series P024
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Tests were conducted to determine how thermal conditions affect space shuttle solid rocket booster (SRB) flotation. Acceleration, pressure, and temperature data were recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Thermal Management and Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Hasnain, Aqib
2016-01-01
During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun's rays directly impinging on the system. Heating rate of the lamps were calculated by knowing fraction of emitted energy in a wavelength interval and the filament temperature. This version of the model can be used to predict performance of the system under vacuum with extreme cold or hot conditions. Initial testing of the PTMS showed promise, and the thermal math model predicts even better performance in thermal vacuum testing. ii) Thermal Protection Systems (TPS) are required for vehicles which enter earth's atmosphere to protect from aerodynamic heating caused by the friction between the vehicle and atmospheric gases. Orion's heat shield design has two aspects which needed to be analyzed thermally: i) a small excess of adhesive used to bond the outer AVCOAT layer to the inner composite structure tends to seep from under the AVCOAT and form a small bead in between two bricks of AVCOAT, ii) a silicone rubber with different thermophysical properties than AVCOAT fills the gap between two bricks of AVCOAT. I created a thermal model using TD to determine temperature differences that are caused by these two features. To prevent false results, all TD models must be verified against something known. In this case, the TD model was correlated to CHAR, an ablation modelling software used to analyze TPS. Analyzing a node far from the concerning features, we saw that the TD model data match CHAR data, verifying the TD model. Next, the temperature of the silicone rubber as well as the bead of adhesive were analyzed to determine if they exceeded allowable temperatures. It was determined that these two features do not have a significant effect on the max temperature of the heat shield. This model can be modified to check temperatures at various locations of the heat shield where the composite thickness varies.
Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang
2017-07-01
Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.
Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands
NASA Technical Reports Server (NTRS)
French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)
2002-01-01
Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
Interim report on nuclear waste depository thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altenbach, T.J.
1978-07-25
A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects ofmore » room ventilation and different depository media are secondary.« less
NASA Astrophysics Data System (ADS)
Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel
Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling were analysed in a dedicated and separate model. The value of the minimum stable thickness of the MIC is large, even though significantly affected by the operating conditions. This phenomenon prevents any unconsidered decrease of the thickness to reduce the thermal inertia of the stack. Thermal gradients and the shape of the temperature profile during operation induce significant decreases of the contact pressure on the gaskets near the fuel manifold, at the inlet or outlet, depending on the flow configuration. On the contrary, the electrical contact was ensured independently of the operating point and history, even though plastic strain developed in the gas diffusion layer.
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry
2017-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT
Gheribi, Aïmen E; Chartrand, Patrice
2016-02-28
A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Albyn, K.; Leger, L.
1990-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.
Thermal winds in stellar mass black hole and neutron star binary systems
NASA Astrophysics Data System (ADS)
Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki
2018-01-01
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.
Coupled Monte Carlo neutronics and thermal hydraulics for power reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernnat, W.; Buck, M.; Mattes, M.
The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less
NASA Technical Reports Server (NTRS)
Weckmann, Stephanie
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.
Visualization and Modelling of the Thermal Inactivation of Bacteria in a Model Food
Bellara, Sanjay R.; Fryer, Peter J.; McFarlane, Caroline M.; Thomas, Colin R.; Hocking, Paul M.; Mackey, Bernard M.
1999-01-01
A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique. PMID:10388708
Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures
NASA Astrophysics Data System (ADS)
Zheng, Jiang; Li, Yanzhong; Chen, Pengwei; Yin, Geyuan; Luo, Huaihua
2016-12-01
Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135-245 K and in the contact pressure range of 1-9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.
Efficient development and processing of thermal math models of very large space truss structures
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.
1993-01-01
As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.
John F. Hunt; Hongmei Gu
2006-01-01
The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or...
Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Prabhat Kumar; Rabehl, Roger
2014-07-01
Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
NASA Astrophysics Data System (ADS)
Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang
2018-05-01
With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.
Comparison of human radiation exchange models in outdoor areas
NASA Astrophysics Data System (ADS)
Park, Sookuk; Tuller, Stanton E.
2011-10-01
Results from the radiation components of seven different human thermal exchange models/methods are compared. These include the Burt, COMFA, MENEX, OUT_SET* and RayMan models, the six-directional method and the new Park and Tuller model employing projected area factors ( f p) and effective radiation area factors ( f eff) determined from a sample of normal- and over-weight Canadian Caucasian adults. Input data include solar and longwave radiation measured during a clear summer day in southern Ontario. Variations between models came from differences in f p and f eff and different estimates of longwave radiation from the open sky. The ranges between models for absorbed solar, net longwave and net all-wave radiation were 164, 31 and 187 W m-2, respectively. These differentials between models can be significant in total human thermal exchange. Therefore, proper f p and f eff values should be used to make accurate estimation of radiation on the human body surface.
An Evaluation of Human Thermal Models for the Study of Immersion Hypothermia Protection Equipment
1979-10-12
exhibited by the five experimental observations, largely due to somatotype differences among the subjects. None of the individual responses Is represented...not less than 35°C). A mathematical model capable of accurately simulating the thermal responses of a protected man in a cold environment would be an...flow) responses . The models are most generally expressed as a set of differential equa- tions. Early models were solved using analog computers. The
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1999-01-01
Analytical models were developed to model the heat transfer through high-temperature fibrous insulation used in metallic thermal protection systems on reusable launch vehicles. The optically thick approximation was used to simulate radiation heat transfer through the insulation. Different models for gaseous conduction and solid conduction in the fibers, and for combining the various modes of heat transfer into a local, volume-averaged, thermal conductivity were considered. The governing heat transfer equations were solved numerically, and effective thermal conductivities were calculated from the steady-state results. An experimental apparatus was developed to measure the apparent thermal conductivity of insulation subjected to pressures, temperatures and temperature gradients representative of re-entry conditions for launch vehicles. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/cu m. Data were obtained at environmental pressures from 10(exp 4) to 760 torr, with the insulation cold side maintained at room temperature and its hot side temperature varying up to 1000 C. The experimental results were used to evaluate the analytical models. The best analytical model resulted in effective thermal conductivity predictions that were within 8% of experimental results.
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Hill, R. J.; Guilliams, B. P.; Drake, S. K.; Kladden, J. L.
1979-01-01
An elastic stress analysis was performed on a wedge specimen (prismatic bar with single-wedge cross section) subjected to thermal cycles in fluidized beds. Seven different combinations consisting of three alloys (NASA TAZ-8A, 316 stainless steel, and A-286) and four thermal cycling conditions were analyzed. The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and ISO3DQ). Stress, strain, and temperature results are presented.
A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.
Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan
2013-01-01
An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120
The spiral field inhibition of thermal conduction in two-fluid solar wind models
NASA Technical Reports Server (NTRS)
Nerney, S.; Barnes, A.
1978-01-01
The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.
NASA Astrophysics Data System (ADS)
Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay
2015-06-01
A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.
Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi
2017-04-01
The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.
1988-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian
2011-03-23
Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.
Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian
2011-01-01
Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not “equally sensitive” to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices. PMID:21448459
NASA Astrophysics Data System (ADS)
Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.
2012-12-01
In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.
NASA Astrophysics Data System (ADS)
Moradi, A.; Smits, K. M.
2014-12-01
A promising energy storage option to compensate for daily and seasonal energy offsets is to inject and store heat generated from renewable energy sources (e.g. solar energy) in the ground, oftentimes referred to as soil borehole thermal energy storage (SBTES). Nonetheless in SBTES modeling efforts, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications. The validation of numerical models that are designed to capture these processes is difficult due to the scarcity of experimental data, limiting the testing and refinement of heat and water transfer theories. A common assumption in most SBTES modeling approaches is to consider the soil as a purely conductive medium with constant hydraulic and thermal properties. However, this simplified approach can be improved upon by better understanding the coupled processes at play. Consequently, developing new modeling techniques along with suitable experimental tools to add more complexity in coupled processes has critical importance in obtaining necessary knowledge in efficient design and implementation of SBTES systems. The goal of this work is to better understand heat and mass transfer processes for SBTES. In this study, we implemented a fully coupled numerical model that solves for heat, liquid water and water vapor flux and allows for non-equilibrium liquid/gas phase change. This model was then used to investigate the influence of different hydraulic and thermal parameterizations on SBTES system efficiency. A two dimensional tank apparatus was used with a series of soil moisture, temperature and soil thermal properties sensors. Four experiments were performed with different test soils. Experimental results provide evidences of thermally induced moisture flow that was also confirmed by numerical results. Numerical results showed that for the test conditions applied here, moisture flow is more influenced by thermal gradients rather than hydraulic gradients. The results also demonstrate that convective fluxes are higher compared to conductive fluxes indicating that moisture flow has more contribution to the overall heat flux than conductive fluxes.
Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones.
Peng, Tingying; O'Neill, David; Payne, Stephen
2011-01-01
Thermal ablation of a tumour in the liver with Radio Frequency energy can be accomplished by using a probe inserted into the tissue under the guidance of medical imaging. The extent of ablation can be significantly affected by heat loss due to the high blood perfusion in the liver, especially when the tumour is located close to large vessels. A mathematical model is thus presented here to investigate the heat sinking effects of large vessels, combining a 3D two-equation coupled bio-heat model and a 1D model of convective heat transport across the blood vessel surface. The model simulation is able to recover the experimentally observed different intrahepatic cooling on thermal ablation zones: hepatic veins showed a focal indentation whereas portal veins showed broad flattening of the ablation zones. Moreover, this study also illustrates that this shape derivation can largely be attributed to the temperature variations between the microvascular branches of portal vein as compared with hepatic vein. In contrast, different amount of surface heat convection on the vessel wall between these two types of veins, however, has a minor effect.
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.
2006-12-01
It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.
Ellipsoidal geometry in asteroid thermal models - The standard radiometric model
NASA Technical Reports Server (NTRS)
Brown, R. H.
1985-01-01
The major consequences of ellipsoidal geometry in an othewise standard radiometric model for asteroids are explored. It is shown that for small deviations from spherical shape a spherical model of the same projected area gives a reasonable aproximation to the thermal flux from an ellipsoidal body. It is suggested that large departures from spherical shape require that some correction be made for geometry. Systematic differences in the radii of asteroids derived radiometrically at 10 and 20 microns may result partly from nonspherical geometry. It is also suggested that extrapolations of the rotational variation of thermal flux from a nonspherical body based solely on the change in cross-sectional area are in error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram
Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. Themore » challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.« less
Integrated thermal disturbance analysis of optical system of astronomical telescope
NASA Astrophysics Data System (ADS)
Yang, Dehua; Jiang, Zibo; Li, Xinnan
2008-07-01
During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.
Gong, Feng; Duong, Hai M.; Papavassiliou, Dimitrios V.
2016-01-01
Here, we present a review of recent developments for an off-lattice Monte Carlo approach used to investigate the thermal transport properties of multiphase composites with complex structure. The thermal energy was quantified by a large number of randomly moving thermal walkers. Different modes of heat conduction were modeled in appropriate ways. The diffusive heat conduction in the polymer matrix was modeled with random Brownian motion of thermal walkers within the polymer, and the ballistic heat transfer within the carbon nanotubes (CNTs) was modeled by assigning infinite speed of thermal walkers in the CNTs. Three case studies were conducted to validate the developed approach, including three-phase single-walled CNTs/tungsten disulfide (WS2)/(poly(ether ether ketone) (PEEK) composites, single-walled CNT/WS2/PEEK composites with the CNTs clustered in bundles, and complex graphene/poly(methyl methacrylate) (PMMA) composites. In all cases, resistance to heat transfer due to nanoscale phenomena was also modeled. By quantitatively studying the influencing factors on the thermal transport properties of the multiphase composites, it was found that the orientation, aggregation and morphology of fillers, as well as the interfacial thermal resistance at filler-matrix interfaces would limit the transfer of heat in the composites. These quantitative findings may be applied in the design and synthesis of multiphase composites with specific thermal transport properties. PMID:28335270
Hydrochemistry and groundwater system of the Zerka Ma'in-Zara thermal field, Jordan
NASA Astrophysics Data System (ADS)
Rimawi, Omar; Salameh, Elias
1988-03-01
A groundwater flow model through the different geological successions from the Upper Cretaceous through the Lower Cretaceous Sandstone and older units is presented in this paper. The model is supported by the hydrochemical evolution of water types from the recharge areas in the highlands to discharge sites of thermal water at the slopes overlooking the Dead Sea. The thermal water discharged in the Zerka Ma'in-Zara areas consists of three end members mixed in different ratios with a component of old (many thousands of years) thermal water undersaturated in carbonate minerals and containing hundreds of milligrams per liter of free CO 2. The release of CO 2 gas upon discharge renders the water oversaturated with respect to carbonate minerals which results in aragonite precipitation. The elevated temperature of the water in the reservoir (73-82°C) is attributed to the presence of a heat-storing layer topping the aquifer.
Evaluating thermoregulation in reptiles: an appropriate null model.
Christian, Keith A; Tracy, Christopher R; Tracy, C Richard
2006-09-01
Established indexes of thermoregulation in ectotherms compare body temperatures of real animals with a null distribution of operative temperatures from a physical or mathematical model with the same size, shape, and color as the actual animal but without mass. These indexes, however, do not account for thermal inertia or the effects of inertia when animals move through thermally heterogeneous environments. Some recent models have incorporated body mass, to account for thermal inertia and the physiological control of warming and cooling rates seen in most reptiles, and other models have incorporated movement through the environment, but none includes all pertinent variables explaining body temperature. We present a new technique for calculating the distribution of body temperatures available to ectotherms that have thermal inertia, random movements, and different rates of warming and cooling. The approach uses a biophysical model of heat exchange in ectotherms and a model of random interaction with thermal environments over the course of a day to create a null distribution of body temperatures that can be used with conventional thermoregulation indexes. This new technique provides an unbiased method for evaluating thermoregulation in large ectotherms that store heat while moving through complex environments, but it can also generate null models for ectotherms of all sizes.
MGS-TES thermal inertia study of the Arsia Mons Caldera
Cushing, G.E.; Titus, T.N.
2008-01-01
Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.
Characterization Report on Fuels for NEAMS Model Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gofryk, Krzysztof
Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO 2) fuel. The thermal conductivity of UO 2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertaintiesmore » in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO 2.« less
NASA Astrophysics Data System (ADS)
Köhler, Mandy; Haendel, Falk; Epting, Jannis; Binder, Martin; Müller, Matthias; Huggenberger, Peter; Liedl, Rudolf
2015-04-01
Increasing groundwater temperatures have been observed in many urban areas such as London (UK), Tokyo (Japan) and also in Basel (Switzerland). Elevated groundwater temperatures are a result of different direct and indirect thermal impacts. Groundwater heat pumps, building structures located within the groundwater and district heating pipes, among others, can be addressed to direct impacts, whereas indirect impacts result from the change in climate in urban regions (i.e. reduced wind, diffuse heat sources). A better understanding of the thermal processes within the subsurface is urgently needed for decision makers as a basis for the selection of appropriate measures to reduce the ongoing increase of groundwater temperatures. However, often only limited temperature data is available that derives from measurements in conventional boreholes, which differ in construction and instrumental setup resulting in measurements that are often biased and not comparable. For three locations in the City of Basel models were implemented to study selected thermal processes and to investigate if heat-transport models can reproduce thermal measurements. Therefore, and to overcome the limitations of conventional borehole measurements, high-resolution depth-oriented temperature measurement systems have been introduced in the urban area of Basel. In total seven devices were installed with up to 16 sensors which are located in the unsaturated and saturated zone (0.5 to 1 m separation distance). Measurements were performed over a period of 4 years (ongoing) and provide sufficient data to set up and calibrate high-resolution local numerical heat transport models which allow studying selected local thermal processes. In a first setup two- and three-dimensional models were created to evaluate the impact of the atmosphere boundary on groundwater temperatures (see EGU Poster EGU2013-9230: Modelling Strategies for the Thermal Management of Shallow Rural and Urban Groundwater bodies). For Basel, where the mean thickness of the unsaturated zone amounts to 19 m, it could be observed that atmospheric seasonal temperature variations are small compared to advective groundwater heat transport. At chosen locations: i) near the river Rhine to study river-groundwater interaction processes, ii) downstream of a thermal groundwater user who uses water for cooling and infiltrates water with elevated temperatures and iii) downstream of a building structure reaching into the groundwater saturated zone, models were further extended to study selected thermal processes in detail and to investigate if these models can reproduce thermal impacts in the vicinity of the temperature measurement devices. Calibration, based on the depth-oriented temperature measurements, was performed for the saturated and unsaturated zone, respectively. Model results show that, although depth-oriented measurements provide valuable insights into local thermal processes, the identification of the governing impacts is strongly dependent on an appropriate positioning of the measurement device. Numerical simulations based on existing flow- and heat transport models, considering the site specific local hydraulic and thermal boundary conditions, allow optimizing the location of such systems before installation. Furthermore, the results of the local heat transport models can be transferred to regional scale models which are an important tool for thermal management in urban areas.
Analytical Investigation of a Reflux Boiler
NASA Technical Reports Server (NTRS)
Simon, William E.; Young, Fred M.; Chambers, Terrence L.
1996-01-01
A thermal model of a single Ultralight Fabric Reflux Tube (UFRT) was constructed and tested against data for an array of such tubes tested in the NASA-JSC facility. Modifications to the single fin model were necessary to accommodate the change in radiation shape factors due to adjacent tubes. There was good agreement between the test data and data generated for the same cases by the thermal model. The thermal model was also used to generate single and linear array data for the lunar environment (the primary difference between the test and lunar data was due to lunar gravity). The model was also used to optimize the linear spacing of the reflux tubes in an array. The optimal spacing of the tubes was recommended to be about 5 tube diameters based on maximizing the heat transfer per unit mass. The model also showed that the thermal conductivity of the Nextel fabric was the major limitation to the heat transfer. This led to a suggestion that the feasibility of jacketing the Nextel fiber bundles with copper strands be investigated. This jacketing arrangement was estimated to be able to double the thermal conductivity of the fabric at a volume concentration of about 12-14%. Doubling the thermal conductivity of the fabric would double the amount of heat transferred at the same steam saturation temperature.
Model for Increasing the Power Obtained from a Thermoelectric Generator Module
NASA Astrophysics Data System (ADS)
Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng
2014-06-01
We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and the environment.
Anion exchange membrane fuel cell modelling
NASA Astrophysics Data System (ADS)
Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.
2018-04-01
A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.
Generation of high powers from diode pumped chromium-3+ doped colquiriites
NASA Astrophysics Data System (ADS)
Eichenholz, Jason Matthew
1998-12-01
There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.
Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia
NASA Astrophysics Data System (ADS)
Putzig, N. E.; Mellon, M. T.
2005-12-01
Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.
Computer Simulation of Electron Thermalization in CsI and CsI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Xie, YuLong; Cannon, Bret D.
2011-09-15
A Monte Carlo (MC) model was developed and implemented to simulate the thermalization of electrons in inorganic scintillator materials. The model incorporates electron scattering with both longitudinal optical and acoustic phonons. In this paper, the MC model was applied to simulate electron thermalization in CsI, both pure and doped with a range of thallium concentrations. The inclusion of internal electric fields was shown to increase the fraction of recombined electron-hole pairs and to broaden the thermalization distance and thermalization time distributions. The MC simulations indicate that electron thermalization, following {gamma}-ray excitation, takes place within approximately 10 ps in CsI andmore » that electrons can travel distances up to several hundreds of nanometers. Electron thermalization was studied for a range of incident {gamma}-ray energies using electron-hole pair spatial distributions generated by the MC code NWEGRIM (NorthWest Electron and Gamma Ray Interaction in Matter). These simulations revealed that the partition of thermalized electrons between different species (e.g., recombined with self-trapped holes or trapped at thallium sites) vary with the incident energy. Implications for the phenomenon of nonlinearity in scintillator light yield are discussed.« less
Developing a cost effective rock bed thermal energy storage system: Design and modelling
NASA Astrophysics Data System (ADS)
Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank
2017-06-01
Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.
NASA Astrophysics Data System (ADS)
Kántor, Noémi; Kovács, Attila; Takács, Ágnes
2016-11-01
Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature ( PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.
Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Hanna, Gregory J.
1991-01-01
A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.
Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Driver head pose tracking with thermal camera
NASA Astrophysics Data System (ADS)
Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.
2016-09-01
Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.
Noninteractive macroscopic reliability model for whisker-reinforced ceramic composites
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Arnold, Steven M.
1990-01-01
Considerable research is underway in the field of material science focusing on incorporating silicon carbide whiskers into silicon nitride and alumina matrices. These composites show the requisite thermal stability and thermal shock resistance necessary for use as components in advanced gas turbines and heat exchangers. This paper presents a macroscopic noninteractive reliability model for whisker-reinforced ceramic composites. The theory is multiaxial and is applicable to composites that can be characterized as transversely isotropic. Enough processing data exists to suggest this idealization encompasses a significantly large class of fabricated components. A qualitative assessment of the model is made by presenting reliability surfaces in several different stress spaces and for different values of model parameters.
NEXT Ion Thruster Thermal Model
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.
2010-01-01
As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.
NASA Astrophysics Data System (ADS)
Demuzere, M.; De Ridder, K.; van Lipzig, N. P. M.
2008-08-01
During the ESCOMPTE campaign (Experience sur Site pour COntraindre les Modeles de Pollution atmospherique et de Transport d'Emissions), a 4-day intensive observation period was selected to evaluate the Advanced Regional Prediction System (ARPS), a nonhydrostatic meteorological mesoscale model that was optimized with a parameterization for thermal roughness length to better represent urban surfaces. The evaluation shows that the ARPS model is able to correctly reproduce temperature, wind speed, and direction for one urban and two rural measurements stations. Furthermore, simulated heat fluxes show good agreement compared to the observations, although simulated sensible heat fluxes were initially too low for the urban stations. In order to improve the latter, different roughness length parameterization schemes were tested, combined with various thermal admittance values. This sensitivity study showed that the Zilitinkevich scheme combined with and intermediate value of thermal admittance performs best.
Thermal Model of a Current-Carrying Wire in a Vacuum
NASA Technical Reports Server (NTRS)
Border, James
2006-01-01
A computer program implements a thermal model of an insulated wire carrying electric current and surrounded by a vacuum. The model includes the effects of Joule heating, conduction of heat along the wire, and radiation of heat from the outer surface of the insulation on the wire. The model takes account of the temperature dependences of the thermal and electrical properties of the wire, the emissivity of the insulation, and the possibility that not only can temperature vary along the wire but, in addition, the ends of the wire can be thermally grounded at different temperatures. The resulting second-order differential equation for the steady-state temperature as a function of position along the wire is highly nonlinear. The wire is discretized along its length, and the equation is solved numerically by use of an iterative algorithm that utilizes a multidimensional version of the Newton-Raphson method.
Phenemenological vs. biophysical models of thermal stress in aquatic eggs
NASA Astrophysics Data System (ADS)
Martin, B.
2016-12-01
Predicting species responses to climate change is a central challenge in ecology, with most efforts relying on lab derived phenomenological relationships between temperature and fitness metrics. We tested one of these models using the embryonic stage of a Chinook salmon population. We parameterized the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass-transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.
Doody, Claire; Ringler, Adam; Anthony, Robert E.; Wilson, David; Holland, Austin; Hutt, Charles R.; Sandoval, Leo
2017-01-01
Isolating seismic instruments from temperature fluctuations is routine practice within the seismological community. However, the necessary degree of thermal stability required in broadband installations to avoid generating noise or compromising the fidelity in the seismic records is largely unknown and likely application dependent. To quantify the temperature sensitivity of seismometers over a broad range of frequencies, we artificially induced local temperature changes on three different models of seismometers to measure the effect of thermal variations on seismometer output. We found that diurnal temperature changes above 0.002°C root mean square (rms) showed significant changes in velocity and acceleration output in comparison to thermally stable reference measurements. We also found that sensor incoherent self‐noise increased with temperature variation; these increases in noise can be modeled as 1/f">1/f noise (pink noise), and are unlikely to be easily corrected for. These experimental results are compared with the data from Incorporated Research Institutions for Seismology (IRIS) U.S. Geological Survey (USGS) Global Seismographic Network (GSN) station TUC (Tucson, Arizona). This station is well instrumented with temperature sensors and has three different broadband seismometers, each of which uses a different method of thermal isolation. We show that the water bricks and borehole installations give ample temperature attenuation to thermally isolate seismometers from diurnal thermal variability that would compromise seismic data. We find that seismometer installations that provide thermal stability below 0.002°C rms could help to improve long‐period vertical seismic data across the GSN by decreasing temperature‐driven 1/f">1/f noise.
Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C
2015-07-01
A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo
2017-04-01
Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.
Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows
NASA Astrophysics Data System (ADS)
Hajabdollahi, Farzaneh; Premnath, Kannan
2017-11-01
Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.
Heat Transfer Issues in Finite Element Analysis of Bounding Accidents in PPCS Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pampin, R.; Karditsas, P.J.
2005-05-15
Modelling of temperature excursions in structures of conceptual power plants during hypothetical worst-case accidents has been performed within the European Power Plant Conceptual Study (PPCS). A new, 3D finite elements (FE) based tool, coupling the different calculations to the same tokamak geometry, has been extensively used to conduct the neutron transport, activation and thermal analyses for all PPCS plant models. During a total loss of cooling, the usual assumption for the bounding accident, passive removal of the decay heat from activated materials depends on conduction and radiation heat exchange between components. This paper presents and discusses results obtained during themore » PPCS bounding accident thermal analyses, examining the following issues: (a) radiation heat exchange between the inner surfaces of the tokamak, (b) the presence of air within the cryostat volume, and the heat flow arising from the circulation pattern provided by temperature differences between various parts, and (c) the thermal conductivity of pebble beds, and its degradation due to exposure to neutron irradiation, affecting the heat transfer capability and thermal response of a blanket based on these components.« less
Modelling reverse characteristics of power LEDs with thermal phenomena taken into account
NASA Astrophysics Data System (ADS)
Ptak, Przemysław; Górecki, Krzysztof
2016-01-01
This paper refers to modelling characteristics of power LEDs with a particular reference to thermal phenomena. Special attention is paid to modelling characteristics of the circuit protecting the considered device against the excessive value of the reverse voltage and to the description of the temperature influence on optical power. The network form of the worked out model is presented and some results of experimental verification of this model for the selected diodes operating at different cooling conditions are described. The very good agreement between the calculated and measured characteristics is obtained.
Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A
2016-10-01
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Capecchi, Valerio; Modesti, Pietro Amedeo; Gensini, Gian Franco; Orlandini, Simone
2014-01-01
The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices, the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to other predictors. Data regarding very elderly people (≥75 years) who died in inland and coastal cities from 2006 to 2008 (May–October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational (UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed. Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection. Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor. The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best fitting with all-cause, very-elderly mortality attributable to heat stress. PMID:24523657
Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Capecchi, Valerio; Modesti, Pietro Amedeo; Gensini, Gian Franco; Orlandini, Simone
2014-01-01
The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices, the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to other predictors. Data regarding very elderly people (≥ 75 years) who died in inland and coastal cities from 2006 to 2008 (May-October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational (UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed. Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection. Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor. The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best fitting with all-cause, very-elderly mortality attributable to heat stress.
Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano
2017-09-01
The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Physical and numerical studies of a fracture system model
NASA Astrophysics Data System (ADS)
Piggott, Andrew R.; Elsworth, Derek
1989-03-01
Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.
Parametric study of closed wet cooling tower thermal performance
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Hayder, M. J.
2017-08-01
The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.
NASA Technical Reports Server (NTRS)
Sisson, R. D., Jr.; Sone, Ichiro; Biederman, R. R.
1985-01-01
Partially Stabilized Zirconia (PSZ) may become widely used for Thermal Barrier Coatings (TBC). Failure of these coatings can occur due to thermal fatigue in oxidizing atmospheres. The failure is due to the strains that develop due to thermal gradients, differences in thermal expansion coefficients, and oxidation of the bond coating. The role of microstructure and the cubic, tetragonal, and monoclinic phase distribution in the strain development and subsequent failure will be discussed. An X-ray diffraction technique for accurate determination of the fraction of each phase in PSZ will be applied to understanding the phase transformations and strain development. These results will be discussed in terms of developing a model for life prediction in PSZ coatings during thermal cycling.
Statistical Design Model (SDM) of satellite thermal control subsystem
NASA Astrophysics Data System (ADS)
Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi
2016-07-01
Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; Smith, Kandler A; Graf, Peter A
NREL's Energy Storage team is exploring the effect of mechanical crush of lithium ion cells on their thermal and electrical safety. PHEV cells, fresh as well as ones aged over 8 months under different temperatures, voltage windows, and charging rates, were subjected to destructive physical analysis. Constitutive relationship and failure criteria were developed for the electrodes, separator as well as packaging material. The mechanical models capture well, the various modes of failure across different cell components. Cell level validation is being conducted by Sandia National Laboratories.
Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.
2013-07-01
In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.
Liu, Bing; Wang, Hui; Qin, Qing-Hua
2018-01-14
Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.
Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.
1999-01-01
NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.
Finite-element modelling of thermal micracking in fresh and consolidated marbles
NASA Astrophysics Data System (ADS)
Weiss, T.; Fuller, E.; Siegesmund, S.
2003-04-01
The initial stage of marble weathering is supposed to be controlled by thermal microcracking. Due to the anisotropy of the thermal expansion coefficients of calcite, the main rock forming mineral in marble, stresses are caused which lead to thermally-induced microcracking, especially along the grain boundaries. The so-called "granular disintegration" is a frequent weathering phenomenon observed for marbles. The controlling parameters are the grain size, grain shape and grain orientation. We use a finite-element approach to constrain magnitude and directional dependence of thermal degradation. Therefore, different assumptions are validated including the fracture toughness of the grain boundaries, the effects of the grain-to-grain orientation and bulk lattice preferred orientation (here referred to as texture). The resulting thermal microcracking and bulk rock thermal expansion anisotropy are validated. It is evident that thermal degradation depends on the texture. Strongly textured marbles exhibit a clear directional dependence of thermal degradation and a smaller bulk thermal degradation than randomly oriented ones. The effect of different stone consolidants in the pore space of degraded marble is simulated and its influence on mechanical properties such as tensile strength are evaluated.
Thermal stress analysis of a planar SOFC stack
NASA Astrophysics Data System (ADS)
Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang
The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.
The deep thermal field of the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias
2017-01-01
The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.
Geometric dependence of the parasitic components and thermal properties of HEMTs
NASA Astrophysics Data System (ADS)
Vun, Peter V.; Parker, Anthony E.; Mahon, Simon J.; Fattorini, Anthony
2007-12-01
For integrated circuit design up to 50GHz and beyond accurate models of the transistor access structures and intrinsic structures are necessary for prediction of circuit performance. The circuit design process relies on optimising transistor geometry parameters such as unit gate width, number of gates, number of vias and gate-to-gate spacing. So the relationship between electrical and thermal parasitic components in transistor access structures, and transistor geometry is important to understand when developing models for transistors of differing geometries. Current approaches to describing the geometric dependence of models are limited to empirical methods which only describe a finite set of geometries and only include unit gate width and number of gates as variables. A better understanding of the geometric dependence is seen as a way to provide scalable models that remain accurate for continuous variation of all geometric parameters. Understanding the distribution of parasitic elements between the manifold, the terminal fingers, and the reference plane discontinuities is an issue identified as important in this regard. Examination of dc characteristics and thermal images indicates that gate-to-gate thermal coupling and increased thermal conductance at the gate ends, affects the device total thermal conductance. Consequently, a distributed thermal model is proposed which accounts for these effects. This work is seen as a starting point for developing comprehensive scalable models that will allow RF circuit designers to optimise circuit performance parameters such as total die area, maximum output power, power-added-efficiency (PAE) and channel temperature/lifetime.
NASA Astrophysics Data System (ADS)
De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W.
2012-09-01
Increasingly, mesoscale meteorological and climate models are used to predict urban weather and climate. Yet, large uncertainties remain regarding values of some urban surface properties. In particular, information concerning urban values for thermal roughness length and thermal admittance is scarce. In this paper, we present a method to estimate values for thermal admittance in combination with an optimal scheme for thermal roughness length, based on METEOSAT-8/SEVIRI thermal infrared imagery in conjunction with a deterministic atmospheric model containing a simple urbanized land surface scheme. Given the spatial resolution of the SEVIRI sensor, the resulting parameter values are applicable at scales of the order of 5 km. As a study case we focused on the city of Paris, for the day of 29 June 2006. Land surface temperature was calculated from SEVIRI thermal radiances using a new split-window algorithm specifically designed to handle urban conditions, as described inAppendix A, including a correction for anisotropy effects. Land surface temperature was also calculated in an ensemble of simulations carried out with the ARPS mesoscale atmospheric model, combining different thermal roughness length parameterizations with a range of thermal admittance values. Particular care was taken to spatially match the simulated land surface temperature with the SEVIRI field of view, using the so-called point spread function of the latter. Using Bayesian inference, the best agreement between simulated and observed land surface temperature was obtained for the Zilitinkevich (1970) and Brutsaert (1975) thermal roughness length parameterizations, the latter with the coefficients obtained by Kanda et al. (2007). The retrieved thermal admittance values associated with either thermal roughness parameterization were, respectively, 1843 ± 108 J m-2 s-1/2 K-1 and 1926 ± 115 J m-2 s-1/2 K-1.
Study of skin model and geometry effects on thermal performance of thermal protective fabrics
NASA Astrophysics Data System (ADS)
Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan
2008-05-01
Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
Experimental and numerical study of physiological responses in hot environments.
Yang, Jie; Weng, Wenguo; Zhang, Baoting
2014-10-01
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Studying the effects of the heat stress on the various layers of human skin using damage function
NASA Astrophysics Data System (ADS)
Aijaz, Mir; Khanday, M. A.
2016-03-01
This paper develops a model to identify the effects of thermal stress on temperature distribution and damage in human dermal regions. The design and selection of the model takes into account many factors effecting the temperature distribution of skin, e.g., thermal conductance, perfusion, metabolic heat generation and thermal protective capabilities of the skin. The transient temperature distribution within the region is simulated using a two-dimensional finite element model of the Pennes’ bioheat equation. The relationship between temperature and time is integrated to view the damage caused to human skin by using Henriques’ model Henriques, F. C., Arch. Pathol. 43 (1947) 489-502]. The Henriques’ damage model is found to be more desirable for use in predicting the threshold of thermal damage. This work can be helpful in both emergency medicines as well as to plastic surgeon in deciding upon a course of action for the treatment of different burn injuries.
Morphology-based differences in the thermal response of freshwater phytoplankton.
Segura, Angel M; Sarthou, Florencia; Kruk, Carla
2018-05-01
The thermal response of maximum growth rate in morphology-based functional groups (MBFG) of freshwater phytoplankton is analysed. Contrasting an exponential Boltzmann-Arrhenius with a unimodal model, three main features were evaluated: (i) the activation energy of the rise ( E r ), (ii) the presence of a break in the thermal response and (iii) the activation energy of the fall ( E f ). The whole dataset ( N = 563) showed an exponential increase ( E r ∼ 0.5), a break around 24°C and no temperature dependence after the breakpoint ( E f = 0). Contrasting thermal responses among MBFG were found. All groups showed positive activation energy ( E r > 0), four showed no evidence of decline in growth rate (temperature range = 0-35°C) and two presented a breakpoint followed by a sharp decrease in growth rate. Our results evidenced systematic differences between MBFG in the thermal response and a coherent response significantly related to morphological traits other than size (i.e. within MBFG). These results provide relevant information for water quality modelling and climate change predictions. © 2018 The Author(s).
Thermal Conductivity of Metallic Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hin, Celine
This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Bothmore » methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.« less
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1980-01-01
Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.
Influence of PCMs in thermal insulation on thermal behaviour of building envelopes
NASA Astrophysics Data System (ADS)
Dydek, K.; Furmański, P.; Łapka, P.
2016-09-01
A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.
Two omega method for active thermocouple microscopy.
Thiery, Laurent; Gavignet, Eric; Cretin, Bernard
2009-03-01
We present a contribution to a new mode of scanning thermal microscopy (SThM) based on the use of thermoelectric junction operating in ac active mode. This is the first alternative to 3omega operating mode of a resistive SThM probe for measuring thermophysical parameters of materials at micro- and nanoscale. Whereas a current at omega frequency generates by Joule effect a 2omega thermal oscillation along the wires, the junction thermoelectric voltage can be measured by means of a differential bridge scheme associated to a lock-in amplifier. A thermal model is presented that confirms measurements performed in different situations with different wire probes. Values of thermal contact conductance of different materials have been extracted and a comparison has been performed between this technique and the resistive 3omega mode.
Thermal behavior of horizontally mixed surfaces on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.
Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs
2012-08-15
Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.
Feedbacks of sedimentation on crustal heat flow - New insights from the Vøring Basin, Norwegian Sea
NASA Astrophysics Data System (ADS)
Theissen, S.; Ruepke, L. H.
2009-04-01
Information on the nature and origin of rift basins is preserved in the presently observed stratigraphy. Basin modeling aims at recovering this information with the goal of quantifying a basin's structural and thermal evolution. Decompaction and backstripping analysis is a classic and still popular approach to basin reconstruction [Steckler and Watts, 1978]. The total and tectonic subsidences, as well as sedimentation rates are calculated by the consecutive decompaction and removal of individual layers. The thermal history has to be computed separately using forward thermal models. An alternative is coupled forward modeling, where the structural and thermal history is computed simultaneously. A key difference between these reconstruction methods is that feedbacks of sedimentation on crustal heat flow are often neglected in backstripping methods. In this work we use the coupled basin modeling approach presented by Rüpke et al. [2008] to quantify some of the feedbacks between sedimentation and heat flow and to explore the differences between both reconstruction approaches in a case study from the Vøring Basin, Norwegian Sea. In a series of synthetic model runs we have reviewed the effects of sedimentation on basement heat flow. These example calculations clearly confirm the well-known blanketing effect of sedimentation and show that it is largest for high sedimentation rates. Recovery of sedimentation rates from the stratigraphy is, however, not straightforward. Decompaction-based methods may systematically underestimate sedimentation rates as sediment thickness is assumed to not change/thin during stretching. We present a new method for computing sedimentation rates based on forward modeling and demonstrate the differences between both methods in terms of rates and thermal feedbacks in a reconstruction of the Vøring basin (Euromargin transect 2). We find that sedimentation rates are systematically higher in forward models and heat flow is clearly depressed during times of high sedimentation. In addition, computed subsidence curves can differ significantly between backtripping and forward modeling methods. This shows that integrated basin modeling is important for improved reconstructions of sedimentary basins and passive margins. Rupke, L. H., et al. (2008), Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study, AAPG Bulletin, 92(3), 309-326. Steckler, M. S., and A. B. Watts (1978), SUBSIDENCE OF ATLANTIC-TYPE CONTINENTAL-MARGIN OFF NEW-YORK, Earth and Planetary Science Letters, 41(1), 1-13.
3D thermal modeling of TRISO fuel coupled with neutronic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Uddin, Rizwan
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less
Daschewski, M; Kreutzbruck, M; Prager, J
2015-12-01
In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali
2014-05-01
In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to formation damage in ATES systems. We would like to present preliminary results of the structural reservoir model and the hydraulic-thermal-chemical coupling for the demonstration site. Literature: Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software 26, 210-218.
Zhao, Jinzhe; Zhao, Qi; Jiang, Yingxu; Li, Weitao; Yang, Yamin; Qian, Zhiyu; Liu, Jia
2018-06-01
Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ ' s ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ ' s . Activation energy (E a ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 10 5 J mol -1 and 4.016 × 10 17 s -1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi
2018-08-01
The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos-Sanz, P.; Lellouch, E.; Groussin, O.; Lacerda, P.; Müller, T. G.; Ortiz, J. L.; Kiss, C.; Vilenius, E.; Stansberry, J.; Duffard, R.; Fornasier, S.; Jorda, L.; Thirouin, A.
2017-08-01
Context. Time series observations of the dwarf planet Haumea and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects (TNOs) were acquired as part of the "TNOs are Cool" Herschel Space Observatory key programme. Aims: We search for the thermal light curves at 100 and 160 μm of Haumea and 2003 AZ84, and at 70 and 160 μm for 2003 VS2 by means of photometric analysis of the PACS data. The goal of this work is to use these thermal light curves to obtain physical and thermophysical properties of these icy Solar System bodies. Methods: When a thermal light curve is detected, it is possible to derive or constrain the object thermal inertia, phase integral and/or surface roughness with thermophysical modeling. Results: Haumea's thermal light curve is clearly detected at 100 and 160 μm. The effect of the reported dark spot is apparent at 100 μm. Different thermophysical models were applied to these light curves, varying the thermophysical properties of the surface within and outside the spot. Although no model gives a perfect fit to the thermal observations, results imply an extremely low thermal inertia (<0.5 J m-2 s-1/2 K-1, hereafter MKS) and a high phase integral (>0.73) for Haumea's surface. We note that the dark spot region appears to be only weakly different from the rest of the object, with modest changes in thermal inertia and/or phase integral. The thermal light curve of 2003 VS2 is not firmly detected at 70 μm and at 160 μm but a thermal inertia of (2 ± 0.5) MKS can be derived from these data. The thermal light curve of 2003 AZ84 is not firmly detected at 100 μm. We apply a thermophysical model to the mean thermal fluxes and to all the Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining a close to pole-on orientation as the most likely for this TNO. Conclusions: For the three TNOs, the thermal inertias derived from light curve analyses or from the thermophysical analysis of the mean thermal fluxes confirm the generally small or very small surface thermal inertias of the TNO population, which is consistent with a statistical mean value Γmean = 2.5 ± 0.5 MKS. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS: The Photodetector Array Camera and Spectrometer is one of Herschel's instruments.
Ultra high temperature ceramics for hypersonic vehicle applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.
2006-01-01
HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2}more » ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.« less
Global thermal analysis of air-air cooled motor based on thermal network
NASA Astrophysics Data System (ADS)
Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong
2018-02-01
The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.
NASA Astrophysics Data System (ADS)
Gaetano, A.; Roncolato, J.; Montorfano, D.; Barbato, M. C.; Ambrosetti, G.; Pedretti, A.
2016-05-01
The employment of new gaseous heat transfer fluids as air or CO2, which are cheaper and environmentally friendly, is drawing more and more attention within the field of Concentrated Solar Power applications. However, despite the advantages, their use requires receivers with a larger heat transfer area and flow cross section with a consequent greater volume of thermal insulation. Solid thermal insulations currently used present high thermal inertia which is energetically penalizing during the daily transient phases faced by the main plant components (e.g. receivers). With the aim of overcoming this drawback a thermal insulation based on radiative shields is presented in this study. Starting from an initial layout comprising a solid thermal insulation layer, the geometry was optimized avoiding the use of the solid insulation keeping performance and fulfilling the geometrical constraints. An analytical Matlab model was implemented to assess the system thermal behavior in terms of heat loss taking into account conductive, convective and radiative contributions. Accurate 2D Computational Fluid Dynamics (CFD) simulations were run to validate the Matlab model which was then used to select the most promising among three new different designs.
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
NASA Astrophysics Data System (ADS)
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
I-deas TMG to NX Space Systems Thermal Model Conversion and Computational Performance Comparison
NASA Technical Reports Server (NTRS)
Somawardhana, Ruwan
2011-01-01
CAD/CAE packages change on a continuous basis as the power of the tools increase to meet demands. End -users must adapt to new products as they come to market and replace legacy packages. CAE modeling has continued to evolve and is constantly becoming more detailed and complex. Though this comes at the cost of increased computing requirements Parallel processing coupled with appropriate hardware can minimize computation time. Users of Maya Thermal Model Generator (TMG) are faced with transitioning from NX I -deas to NX Space Systems Thermal (SST). It is important to understand what differences there are when changing software packages We are looking for consistency in results.
Robert Al-Chokhachy; Seth J. Wenger; Daniel J. Isaak; Jeffrey L. Kershner
2013-01-01
Understanding a speciesâ thermal niche is becoming increasingly important for management and conservation within the context of global climate change, yet there have been surprisingly few efforts to compare assessments of a speciesâ thermal niche across methods. To address this uncertainty, we evaluated the differences in model performance and interpretations...
NASA Astrophysics Data System (ADS)
Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.
2015-12-01
Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.
NASA Astrophysics Data System (ADS)
Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei
2018-03-01
The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.
NASA Astrophysics Data System (ADS)
Liu, Ding; Huang, Weichao; Zhang, Ni
2017-07-01
A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
A comparison of temperature profile depending on skin types for laser hair removal therapy.
Kim, Tae-Hoon; Lee, Gwi-Won; Youn, Jong-In
2014-11-01
Although numerous lasers with different wavelengths are available for laser hair removal, their use in individuals with dark-pigmented skin remains a challenge. The present study aims to develop a numerical heat diffusion model considering skin types over various wavelengths. This numerical mode uses Pennes approximation to represent heat from metabolism, blood perfusion and an external heating source. The heat diffusion model is experimentally validated by using agar-based skin tissue phantoms. Diode lasers with four different wavelengths were used with two antithetical skin models. The pulse width and beam spot size were set to 200 ms and 1 cm(2), respectively. Temperature distribution along the hair structure and skin tissue was examined to determine both thermal confinement and heat transfer to the hair follicle. Experimental results are well matched with the numerical results. The results show that for the light skin model, thermal confinement is well achieved over various wavelengths, and treatment efficacy is expected to be better at a shorter wavelength. Otherwise, for the dark skin model, thermal confinement is poorly achieved as the wavelength decreases (<808 nm) and the temperature gap between the hair tip and the hair root is significantly large compared with the light skin model, which may lead to adverse effects. We believe that the developed numerical model will help to establish optimal laser parameters for different individuals during laser hair removal.
NASA Technical Reports Server (NTRS)
Malroy, Eric T.
2007-01-01
The programs, arrays and logic structure were developed to enable the dynamic update of conductors in thermal desktop. The MatLab program FMHTPRE.m processes the Thermal Desktop conductors and sets up the arrays. The user needs to manually copy portions of the output to different input regions in Thermal Desktop. Also, Fortran subroutines are provided that perform the actual updates to the conductors. The subroutines are setup for helium gas, but the equations can be modified for other gases. The maximum number of free molecular conductors allowed is 10,000 for a given radiation task. Additional radiation tasks for FMHT can be generated to account for more conductors. Modifications to the Fortran subroutines may be warranted, when the mode of heat transfer is in the mixed or continuum mode. The FMHT Thermal Desktop model should be activated by using the "Case Set Manager" once the model is setup. Careful setup of the model is needed to avoid excessive solve times.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony
2016-08-01
A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.
NASA Astrophysics Data System (ADS)
Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.
2018-03-01
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.
Mathematical Models of IABG Thermal-Vacuum Facilities
NASA Astrophysics Data System (ADS)
Doring, Daniel; Ulfers, Hendrik
2014-06-01
IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily establish multiple possible set-ups (e.g. exclude components like the motion system or enable / disable the solar simulator). Both models were validated by comparing calculated results (thermal balance temperatures for simple passive test articles) with measured temperatures generated in actual tests in these facilities. This paper presents information about the chambers, the modelling approach, properties of the models and their performance in the validation tests.
NASA Technical Reports Server (NTRS)
Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.
2010-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.
MODELING COMPARATIVE THERMAL PERFORMANCE OF LIGHTWEIGHT FABRICS USING A COMPUTATIONAL DESIGN TOOL
2017-04-14
lost through clothing = ( T / Rc ) + ( pv / Ret ) (5) T = temperature difference between skin and environment (°C) Rc...thermal resistance (m²-°C/Watt) pv = vapor pressure difference between skin and environment (Pa) Ret = water vapor diffusion resistance (m²-Pa/Watt...clothing, and the external environment (wind, temperature, humidity, solar radiation). Activity: Stationary Anatomic Build: Newton, Fine
Spin-dependent heat transport and thermal boundary resistance
NASA Astrophysics Data System (ADS)
Jeong, Taehee
In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport in thin film structures. A transient theraroreflectance (TTR) technique can be used for measuring the thermal conductivity of thin films in cross-sectional direction. In this study, a pump-probe scheme was employed for the TTR technique. We built an optical pump-probe system by using a nanosecond pulse laser for pumping and a continuous-wave laser for probing. A short-time heating event occured at the surface of a sample by shining a laser pulse on the surface. Then the time-resolved thermoreflectance signals were detected using a photodetector and an oscilloscope. The increased temperature decreases slowly and its thermal decay depends on the thermal properties of a sample. Since the reflectivity is linearly proportional to the temperature, the time-resolved thermoreflectance signals have the information of the thermal properties of a sample. In order to extract the thermal properties of a sample, a thermal analysis was performed by fitting the experimental data with thermal models. We developed 2-layered and 3-layered thermal models using the analogies between thermal conduction and electric conduction and a transmission-line concept. We used two sets of sample structures: Au/SiNx/Si substrate and Au/CoFe/SiNx/Si substrate with various thickness of SiN x layer. Using the pump-probe system, we measured the time-resolved thermoreflectance signals for each sample. Then, the thermal conductivity and thermal boundary resistance were obtained by fitting the experimental data with the thermal models. The thermal conductivity of SiNx films was measured to be 2.0 W/mK for both structures. In the case of the thermal boundary resistance, it was 0.81x10-5 m 2K/W at the Au/SiNx interface and 0.54x10 -5 m2K/W at the CoFe/SiNx interface, respectively. The difference of the thermal boundary resistance between Au/SiNx and CoFe/SiNx might be came from the different phonon dispersion of Au and CoFe. The thermal conductivity did not depend on the thickness of SiNx films in the thickness range of 50-200nm. However, the thermal boundary resistance at metal/SiNx interfaces will impact overall thermal conduction when the thickness of SiNx thin films is in a nanometer order. For example, apparent thermal conductivity of SiN x film becomes half of the intrinsic thermal conductivity when the thickness decreases to 16nm. Therefore, it is advised that the thermal boundary resistance between metal and dielectrics should be counted in nano-scale electronic devices. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Urquhart, Alexander
Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature upmore » to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.« less
Asoubar, Daniel; Wyrowski, Frank
2015-07-27
The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.
Modeling of the thermal comfort in vehicles using COMSOL multiphysics
NASA Astrophysics Data System (ADS)
Gavrila, Camelia; Vartires, Andreea
2016-12-01
The environmental quality in vehicles is a very important aspect of building design and evaluation of the influence of the thermal comfort inside the car for ensuring a safe trip. The aim of this paper is to modeling and simulating the thermal comfort inside the vehicles, using COMSOL Multiphysics program, for different ventilation grilles. The objective will be the implementing innovative air diffusion grilles in a prototype vehicle. The idea behind this goal is to introduce air diffusers with a special geometry allowing improving mixing between the hot or the cold conditioned air introduced in the cockpit and the ambient.
Photothermal modeling of thulium fibre laser-tissue interactions
NASA Astrophysics Data System (ADS)
Warnaby, Catherine E.; Coleman, Daniel J.; King, Terence A.
2003-10-01
A one-dimensional finite difference model has been used to investigate the temperature distribution within thulium fibre laser-irradiated tissue. Temperature-time and temperature-depth profiles are presented for various laser stimulus parameters in the 2 micron region. These current calculations are aimed at determining theoretical temperature distributions in the application of relatively low power fibre lasers for thermal stimulation of cutaneous nerves in human pain processing. Theoretical skin surface temperatures are compared with those from thermal camera measurements during thulium fibre laser irradiation. The effectiveness of the thulium fibre laser for thermally stimulating cutaneous nerves is confirmed.
NASA Astrophysics Data System (ADS)
Doody, C.; Ringler, A. T.; Anthony, R. E.; Wilson, D.; Holland, A. A.; Hutt, C. R.; Sandoval, L. D.
2017-12-01
Although taking steps to isolate seismic instruments from temperature fluctuations is routine practice within the seismological community, the necessary level of thermal stability required in a broadband installation to avoid generating noise is largely unknown. In order to quantify the temperature sensitivity of seismometers over a broad range of frequencies, we artificially induced local temperature changes on three different models of seismometers to empirically measure the effect of thermal variations on seismometer output. We found that temperature changes above 0.002˚C per day show upwards of 10% change in broadband seismometer amplitude when compared to thermally stable reference measurements. We also find that rises in sensor incoherent self-noise increase with temperature variation; these increases in noise can be modeled as 1/f noise (pink noise). While seismometer output changes that correlate with temperature changes are likely correctable, this increase in 1/f noise is unlikely to be easily corrected for. These experimental results are also compared to data from Global Seismographic Network (GSN)-IRIS/USGS network station TUC (Tucson, Arizona) which is well instrumented with temperature sensors, as well as three different broadband sensors, each of which uses a different method of thermal isolation (i.e. Styrofoam box, 1.2m posthole within the pier, and water bricks). We show that isolating sensors with water bricks, as well as posthole and borehole installations, thermally isolate sensors well enough to remove any thermal variability that would affect their output. We find that better seismometer installations which provide thermal stability below 0.002 ˚C per day could help to improve long-period vertical seismic data across the GSN by decreasing temperature-driven 1/f noise.
Analytical analysis of solar thermal collector with glass and Fresnel lens glazing
NASA Astrophysics Data System (ADS)
Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari
2018-04-01
Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.
Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal
NASA Astrophysics Data System (ADS)
Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.
2018-03-01
Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.
Ness, H; Stella, L; Lorenz, C D; Kantorovich, L
2017-04-28
We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
Electric Motor Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
2014-11-01
Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.« less
Computer Modeling of the Thermal Conductivity of Cometary Ice
NASA Technical Reports Server (NTRS)
Bunch, Theodore E.; Wilson, Michael A.; Pohorille, Andrew
1998-01-01
The main objective of this research was to estimate the thermal conductivity of cometry ices from computer simulations of model amorphous ices. This was divided into four specific tasks: (1) Generating samples of amorphous water ices at different microporosities; (2) Comparing the resulting molecular structures of the ices with experimental results, for those densities where data was available; (3) Calculating the thermal conductivities of liquid water and bulk amorphous ices and comparing these results with experimentally determined thermal conductivities; and (4) Investigating how the thermal conductivity of amorphous ice depends upon the microscopic porosity of the samples. The thermal conductivity was found to be only weakly dependent on the microstructure of the amorphous ice. In general, the amorphous ices were found to have thermal conductivities of the same order of magnitude as liquid water. This is in contradiction to recent experimental estimates of the thermal conductivity of amorphous ice, and it is suggested that the extremely low value obtained experimentally is due to larger-scale defects in the ice, such as cracks, but it is not an intrinsic property of the bulk amorphous ice.
Night Vision Laboratory Static Performance Model for Thermal Viewing Systems
1975-04-01
Research and Development Technical Report f ECOM- • i’.__1’=• =•NIGHT VISION LABORATORY STATIC PERFORMANCE MODEL 1 S1=• : FOR THERMAL VIEWING...resolvable temperature Infrared imaging Minimum detectable temperature1.Detection and recognition performance Night visi,-)n Noise equivalent temperature...modulation transfer function (MTF). The noise charactcristics are specified by the noise equivalent temper- ature difference (NE AT), The next sections
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
Reduced-order modeling for hyperthermia control.
Potocki, J K; Tharp, H S
1992-12-01
This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.
Simulation of a steady-state integrated human thermal system.
NASA Technical Reports Server (NTRS)
Hsu, F. T.; Fan, L. T.; Hwang, C. L.
1972-01-01
The mathematical model of an integrated human thermal system is formulated. The system consists of an external thermal regulation device on the human body. The purpose of the device (a network of cooling tubes held in contact with the surface of the skin) is to maintain the human body in a state of thermoneutrality. The device is controlled by varying the inlet coolant temperature and coolant mass flow rate. The differential equations of the model are approximated by a set of algebraic equations which result from the application of the explicit forward finite difference method to the differential equations. The integrated human thermal system is simulated for a variety of combinations of the inlet coolant temperature, coolant mass flow rate, and metabolic rates.
NASA Astrophysics Data System (ADS)
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen
2015-10-01
Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen
2015-10-01
Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.
Forney, William M.; Soulard, Christopher E.; Chickadel, C. Christopher
2013-01-01
The U.S. Geological Survey is studying approaches to characterize the thermal regulation of water and the dynamics of cold water refugia. High temperatures have physiological impacts on anadromous fish species. Factors affecting the presence, variability, and quality of thermal refugia are known, such as riverine and watershed processes, hyporheic flows, deep pools and bathymetric factors, thermal stratification of reservoirs, and other broader climatic considerations. This research develops a conceptual model and methodological techniques to quantify the change in solar insolation load to the Klamath River caused by riparian and floodplain vegetation, the morphology of the river, and the orientation and topographic characteristics of its watersheds. Using multiple scales of input data from digital elevation models and airborne light detection and ranging (LiDAR) derivatives, different analysis methods yielded three different model results. These models are correlated with thermal infrared imagery for ground-truth information at the focal confluence with the Scott River. Results from nonparametric correlation tests, geostatistical cross-covariograms, and cross-correlograms indicate that statistical relationships between the insolation models and the thermal infrared imagery exist and are significant. Furthermore, the use of geostatistics provides insights to the spatial structure of the relationships that would not be apparent otherwise. To incorporate a more complete representation of the temperature dynamics in the river system, other variables including the factors mentioned above, and their influence on solar loading, are discussed. With similar datasets, these methods could be applied to any river in the United States—especially those listed as temperature impaired under Section 303(d) of the Clean Water Act—or international riverine systems. Considering the importance of thermal refugia for aquatic species, these methods can help investigate opportunities for riparian restoration, identify problematic reaches unlikely to provide good habitat, and simulate changes to solar loading estimates from alternative landscape configurations.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
The thermal environment of the human being on the global scale.
Jendritzky, Gerd; Tinz, Birger
2009-11-11
The close relationship between human health, performance, well-being and the thermal environment is obvious. Nevertheless, most studies of climate and climate change impacts show amazing shortcomings in the assessment of the environment. Populations living in different climates have different susceptibilities, due to socio-economic reasons, and different customary behavioural adaptations. The global distribution of risks of hazardous thermal exposure has not been analysed before. To produce maps of the baseline and future bioclimate that allows a direct comparison of the differences in the vulnerability of populations to thermal stress across the world. The required climatological data fields are obtained from climate simulations with the global General Circulation Model ECHAM4 in T106-resolution. For the thermo-physiologically relevant assessment of these climate data a complete heat budget model of the human being, the 'Perceived Temperature' procedure has been applied which already comprises adaptation by clothing to a certain degree. Short-term physiological acclimatisation is considered via Health Related Assessment of the Thermal Environment. The global maps 1971-1980 (control run, assumed as baseline climate) show a pattern of thermal stress intensities as frequencies of heat. The heat load for people living in warm-humid climates is the highest. Climate change will lead to clear differences in health-related thermal stress between baseline climate and the future bioclimate 2041-2050 based on the 'business-as-usual' greenhouse gas scenario IS92a. The majority of the world's population will be faced with more frequent and more intense heat strain in spite of an assumed level of acclimatisation. Further adaptation measures are crucial in order to reduce the vulnerability of the populations. This bioclimatology analysis provides a tool for various questions in climate and climate change impact research. Considerations of regional or local scale require climate simulations with higher resolution. As adaptation is the key term in understanding the role of climate/climate change for human health, performance and well-being, further research in this field is crucial.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
NASA Technical Reports Server (NTRS)
Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.
1976-01-01
The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.
Yarkovsky-O'Keefe-Radzievskii-Paddack effect with anisotropic radiation
NASA Astrophysics Data System (ADS)
Breiter, S.; Vokrouhlický, D.
2011-02-01
In this paper, we study the influence of optical scattering and thermal radiation models on the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Lambertian formulation is compared with the scattering and emission laws and Lommel-Seeliger reflection. Although the form of the reflectivity function strongly influences the mean torques because of scattering or thermal radiation alone, their combined contribution to the rotation period YORP effect is not very different from the standard Lambertian values. For higher albedo values, the differences between the Hapke and Lambert models become significant for the YORP effect in attitude.
Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels
Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...
2015-12-22
The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less
The research on thermal adaptability reinforcement technology for photovoltaic modules
NASA Astrophysics Data System (ADS)
Su, Nana; Zhou, Guozhong
2015-10-01
Nowadays, Photovoltaic module contains more high-performance components in smaller space. It is also demanded to work in severe temperature condition for special use, such as aerospace. As temperature rises, the failure rate will increase exponentially which makes reliability significantly reduce. In order to improve thermal adaptability of photovoltaic module, this paper makes a research on reinforcement technologies. Thermoelectric cooler is widely used in aerospace which has harsh working environment. So, theoretical formulas for computing refrigerating efficiency, refrigerating capacity and temperature difference are described in detail. The optimum operating current of three classical working condition is obtained which can be used to guide the design of driven circuit. Taken some equipment enclosure for example, we use thermoelectric cooler to reinforce its thermal adaptability. By building physical model and thermal model with the aid of physical dimension and constraint condition, the model is simulated by Flotherm. The temperature field cloud is shown to verify the effectiveness of reinforcement.
Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.
Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J
2015-10-01
The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie
Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.
2015-01-01
The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.
McElroy, Matthew T
2014-01-01
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature. Another hypothesis, countergradient variation, posits that genetic variation can compensate for decreased performance in cool environments, leading to physiological phenotypes that do not track environmental temperatures. On Mo'orea, French Polynesia, thermal ecology and physiology were studied in two morphologically similar skinks that differ in habitat use. Previous studies show that Emoia impar tends to inhabit closed-canopy and interior habitats that are cooler compared to those inhabited by Emoia cyanura, but these differences had not been quantified on Mo'orea. The goal of this study was to determine whether this pattern of habitat partitioning exists on Mo'orea and relates to interspecific differences in thermal physiology and to evaluate whether the evolution of thermal sensitivity supports coadaptation or countergradient variation. I found that E. impar inhabits closed-canopy habitats with cooler substrates and with higher altitudes compared to habitats of E. cyanura. Although the two species do not differ significantly in critical thermal minimum, E. impar has a significantly lower preferred body temperature and critical thermal maximum than does E. cyanura. Despite a preference for cooler habitats and temperatures, E. impar has a warmer optimal temperature for sprint speed and sprints faster than E. cyanura at all temperatures, which supports the countergradient model of thermal adaptation. These results are robust to three different curve-fitting functions and support the view that generalist/specialist trade-offs do not universally constrain the evolution of performance curves.
Heating of solid targets with laser pulses
NASA Technical Reports Server (NTRS)
Bechtel, J. H.
1975-01-01
Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.
Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods
NASA Astrophysics Data System (ADS)
Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.
2017-12-01
Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).
Wang, Ning; Chen, Jiajun; Zhang, Kun; Chen, Mingming; Jia, Hongzhi
2017-11-21
As thermoelectric coolers (TECs) have become highly integrated in high-heat-flux chips and high-power devices, the parasitic effect between component layers has become increasingly obvious. In this paper, a cyclic correction method for the TEC model is proposed using the equivalent parameters of the proposed simplified model, which were refined from the intrinsic parameters and parasitic thermal conductance. The results show that the simplified model agrees well with the data of a commercial TEC under different heat loads. Furthermore, the temperature difference of the simplified model is closer to the experimental data than the conventional model and the model containing parasitic thermal conductance at large heat loads. The average errors in the temperature difference between the proposed simplified model and the experimental data are no more than 1.6 K, and the error is only 0.13 K when the absorbed heat power Q c is equal to 80% of the maximum achievable absorbed heat power Q max . The proposed method and model provide a more accurate solution for integrated TECs that are small in size.
Three Dimensional Thermal Model of Newberry Volcano, Oregon
Trenton Cladouhos
2015-01-30
Final results of a 3D finite difference thermal model of Newberry Volcano, Oregon. Model data are formatted as a text file with four data columns (X, Y, Z, T). X and Y coordinates are in UTM (NAD83 Zone 10N), Z is elevation from mean sea level (meters), T is temperature in °C. Model is 40km X 40km X 12.5 km, grid node spacing is 100m in X, Y, and Z directions. A symmetric cylinder shaped magmatic heat source centered on the present day caldera is the modeled heat source. The center of the modeled body is a -1700 m (elevation) and is 600m thick with a radius of 8700m. This is the best fit results from 2D modeling of the west flank of the volcano. The model accounts for temperature dependent thermal properties and latent heat of crystallization. For additional details, assumptions made, data used, and a discussion of the validity of the model see Frone, 2015 (http://search.proquest.com/docview/1717633771).
NASA Astrophysics Data System (ADS)
Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.
2017-12-01
The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating crust, which causes heat to be retained in the lower crust for 10s of millions of years after the thermal event has ceased. Thus, metamorphic temperatures preserved in granulites are likely higher than steady-state, suggesting that lithospheric thickness at the end of the Archean for this region was considerably more than 150 km.
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. (Principal Investigator); Zilioli, E.; Marini, A.; Brivio, P. A.; Tosi, N.
1981-01-01
The usefulness of thermal inertia mapping in discriminating geolithological units was investigated using Sardinia and the Gulf of Orosei as test sites. Software designed for LANDSAT data were modified and improved for HCMM tapes. A first attempt was made to compare the geological cross section, the topography, the IR radiance, and the thermal inertia along selected profiles of the test site. Thermal inertia profiles appear smoothed in comparison with the thermal radiance. The lowest apparent thermal inertia (ATI) was found on granitic and basaltic outcrops where their image is of sufficient extent, while ATI is higher on carbonatic and dolomitic or moist deposits. Almost every fault is marked by a jump of ATI, the interval being sometimes of the order of one pixel. This seems to demonstrate the ability of ATI to detect contacts or tectonically disturbed zones with a good resolution. It seems more difficult to measure the differences in ATI between homogeneous materials having different lithology. Ground surveys conducted and a simulation model of diurnal temperatures of rocks having different thermal inertia are discussed.
Challenges in predicting climate change impacts on pome fruit phenology
NASA Astrophysics Data System (ADS)
Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E. W. R.
2014-08-01
Climate projection data were applied to two commonly used pome fruit flowering models to investigate potential differences in predicted full bloom timing. The two methods, fixed thermal time and sequential chill-growth, produced different results for seven apple and pear varieties at two Australian locations. The fixed thermal time model predicted incremental advancement of full bloom, while results were mixed from the sequential chill-growth model. To further investigate how the sequential chill-growth model reacts under climate perturbed conditions, four simulations were created to represent a wider range of species physiological requirements. These were applied to five Australian locations covering varied climates. Lengthening of the chill period and contraction of the growth period was common to most results. The relative dominance of the chill or growth component tended to predict whether full bloom advanced, remained similar or was delayed with climate warming. The simplistic structure of the fixed thermal time model and the exclusion of winter chill conditions in this method indicate it is unlikely to be suitable for projection analyses. The sequential chill-growth model includes greater complexity; however, reservations in using this model for impact analyses remain. The results demonstrate that appropriate representation of physiological processes is essential to adequately predict changes to full bloom under climate perturbed conditions with greater model development needed.
NASA Astrophysics Data System (ADS)
Valdes, Raymond
The characterization of thermal barrier coating (TBC) systems is increasingly important because they enable gas turbine engines to operate at high temperatures and efficiency. Phase of photothermal emission analysis (PopTea) has been developed to analyze the thermal behavior of the ceramic top-coat of TBCs, as a nondestructive and noncontact method for measuring thermal diffusivity and thermal conductivity. Most TBC allocations are on actively-cooled high temperature turbine blades, which makes it difficult to precisely model heat transfer in the metallic subsystem. This reduces the ability of rote thermal modeling to reflect the actual physical conditions of the system and can lead to higher uncertainty in measured thermal properties. This dissertation investigates fundamental issues underpinning robust thermal property measurements that are adaptive to non-specific, complex, and evolving system characteristics using the PopTea method. A generic and adaptive subsystem PopTea thermal model was developed to account for complex geometry beyond a well-defined coating and substrate system. Without a priori knowledge of the subsystem characteristics, two different measurement techniques were implemented using the subsystem model. In the first technique, the properties of the subsystem were resolved as part of the PopTea parameter estimation algorithm; and, the second technique independently resolved the subsystem properties using a differential "bare" subsystem. The confidence in thermal properties measured using the generic subsystem model is similar to that from a standard PopTea measurement on a "well-defined" TBC system. Non-systematic bias-error on experimental observations in PopTea measurements due to generic thermal model discrepancies was also mitigated using a regression-based sensitivity analysis. The sensitivity analysis reported measurement uncertainty and was developed into a data reduction method to filter out these "erroneous" observations. It was found that the adverse impact of bias-error can be greatly reduced, leaving measurement observations with only random Gaussian noise in PopTea thermal property measurements. Quantifying the influence of the coating-substrate interface in PopTea measurements is important to resolving the thermal conductivity of the coating. However, the reduced significance of this interface in thicker coating systems can give rise to large uncertainties in thermal conductivity measurements. A first step towards improving PopTea measurements for such circumstances has been taken by implementing absolute temperature measurements using harmonically-sustained two-color pyrometry. Although promising, even small uncertainties in thermal emission observations were found to lead to significant noise in temperature measurements. However, PopTea analysis on bulk graphite samples were able to resolve its thermal conductivity to the expected literature values.
THERMAL-INERTIA MAPPING IN VEGETATED TERRAIN FROM HEAT CAPACITY MAPPING MISSION SATELLITE DATA.
Watson, Ken; Hummer-Miller, Susanne
1984-01-01
Thermal-inertia data, derived from the Heat Capacity Mapping Mission (HCMM) satellite, were analyzed in areas of varying amounts of vegetation cover. Thermal differences which appear to correlate with lithologic differences have been observed previously in areas of substantial vegetation cover. However, the energy exchange occurring within the canopy is much more complex than that used to develop the methods employed to produce thermal-inertia images. Because adequate models are lacking at present, the interpretation is largely dependent on comparison, correlation, and inference. Two study areas were selected in the western United States: the Richfield, Utah and the Silver City, Arizona-New Mexico, 1 degree multiplied by 2 degree quadrangles. Many thermal-inertia highs were found to be associated with geologic-unit boundaries, faults, and ridges. Lows occur in valleys with residual soil cover.
NASA Astrophysics Data System (ADS)
Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.
2012-09-01
Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.
Thermal Texture Generation and 3d Model Reconstruction Using SFM and Gan
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Mizginov, V. A.
2018-05-01
Realistic 3D models with textures representing thermal emission of the object are widely used in such fields as dynamic scene analysis, autonomous driving, and video surveillance. Structure from Motion (SfM) methods provide a robust approach for the generation of textured 3D models in the visible range. Still, automatic generation of 3D models from the infrared imagery is challenging due to an absence of the feature points and low sensor resolution. Recent advances in Generative Adversarial Networks (GAN) have proved that they can perform complex image-to-image transformations such as a transformation of day to night and generation of imagery in a different spectral range. In this paper, we propose a novel method for generation of realistic 3D models with thermal textures using the SfM pipeline and GAN. The proposed method uses visible range images as an input. The images are processed in two ways. Firstly, they are used for point matching and dense point cloud generation. Secondly, the images are fed into a GAN that performs the transformation from the visible range to the thermal range. We evaluate the proposed method using real infrared imagery captured with a FLIR ONE PRO camera. We generated a dataset with 2000 pairs of real images captured in thermal and visible range. The dataset is used to train the GAN network and to generate 3D models using SfM. The evaluation of the generated 3D models and infrared textures proved that they are similar to the ground truth model in both thermal emissivity and geometrical shape.
Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet
NASA Astrophysics Data System (ADS)
Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.
2016-12-01
Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.
NASA Astrophysics Data System (ADS)
Ghosh, Amitabha
A finite element code has been developed to study the thermal history of asteroid 4 Vesta. This is the first attempt to model the thermal history of a differentiated asteroid, from accretion through core and crust formation and subsequent cooling until geochemical closure is attained. Previous thermal models were simpler formulations aimed at explaining metamorphism and aqueous alteration in unmelted asteroids. The results of the simulation are consistent with chronological measurements of cumulate and noncumulate eucrites, meteorites belonging to the HED suite, believed to have been derived from 4 Vesta. The work solves major problems with the hypothesis of heating by decay of 26Al, an extinct radionuclide, believed to be a plausible heat source in the early solar system. The simulation draws a model chronology of Vesta and predicts the time interval of accretion at 2.85 Myrs, the absolute times (with respect to CAI formation) of core formation at 4.58 Myrs, crust formation at 6.58 Myrs and geochemical closure on Vesta at ~100 Myrs. It is concluded that neither collisional heating nor heating due to the radioactive decay of 60Fe caused any perceptible difference in the whole-body thermal history of Vesta. Further, the thermal model suggested that the olivine-rich spot observed on Vesta may not be excavated mantle material, but may be unmelted near-surface material that escaped the asteroid's differentiation history.
López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L
2015-10-01
To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.
Some remarks on the early evolution of Enceladus
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2014-12-01
Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.
Val, Jonatan; Pino, María Rosa; Chinarro, David
2018-03-15
Thermal quality in river ecosystems is a fundamental property for the development of biological processes and many of the human activities linked to the aquatic environment. In the future, this property is going to be threatened due to global change impacts, and basin managers will need useful tools to evaluate these impacts. Currently, future projections in temperature modelling are based on the historical data for air and water temperatures, and the relationship with past temperature scenarios; however, this represents a problem when evaluating future scenarios with new thermal impacts. Here, we analysed the thermal impacts produced by several human activities, and linked them with the decoupling degree of the thermal transfer mechanism from natural systems measured with frequency analysis tools (wavelet coherence). Once this relationship has been established we develop a new methodology for simulating different thermal impacts scenarios in order to project them into future. Finally, we validate this methodology using a site that changed its thermal quality during the studied period due to human impacts. Results showed a high correlation (r 2 =0.84) between the decoupling degree of the thermal transfer mechanisms and the quantified human impacts, obtaining 3 thermal impact scenarios. Furthermore, the graphic representation of these thermal scenarios with its wavelet coherence spectrums showed the impacts of an extreme drought period and the agricultural management. The inter-conversion between the scenarios gave high morphological similarities in the obtained wavelet coherence spectrums, and the validation process clearly showed high efficiency of the developed model against old methodologies when comparing with Nash-Stucliffe criterion. Although there is need for further investigation with different climatic and anthropic management conditions, the developed frequency models could be useful in decision-making processes by managers when faced with future global change impacts. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Feng; Liu, Xuyang; Hu, Ning; Ning, Huiming; Atobe, Satoshi; Yan, Cheng; Mo, Fuhao; Fu, Shaoyun; Zhang, Jianyu; Wang, Yu; Mu, Xiaojing
2017-10-31
It is well known the thermal properties of three-dimensional (3-D) hybrid graphene (GR)-carbon nanotube (CNT) structures are not superior to that of the individual GR and CNT, however, the 3-D hybrid GR-CNT structures can effectively improve the thermal properties of polymer matrix. Therefore, understanding the thermal energy transport in the interface between polymer matrix and 3-D hybrid GR-CNT structure is essential. Here, the enhancement mechanism of interfacial thermal transport of hybrid GR-CNT structure was explored by applying non-equilibrium molecular dynamics (NEMD) simulations. Three different types of hybrid GR-CNT structures were built. The influences of CNT radius and CNT type for the hybrid GR-CNT on the interfacial thermal properties were also analyzed. Computational results show that among the three different types of hybrid GR-CNT structures, the Model-I, i.e., the covalent bond hybrid GR-CNT structures are of the best interfacial thermal properties. Meanwhile, the CNT radius of hybrid GR-CNT structure has a great influence on the interfacial thermal properties.
Thermal optimum design for tracking primary mirror of Space Telescope
NASA Astrophysics Data System (ADS)
Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei
2011-08-01
In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.
NASA Astrophysics Data System (ADS)
El Amri, Abdelouahid; el yakhloufi Haddou, Mounir; Khamlichi, Abdellatif
2017-10-01
Damage mechanisms in hot metal forming processes are accelerated by mechanical stresses arising during Thermal and mechanical properties variations, because it consists of the materials with different thermal and mechanical loadings and swelling coefficients. In this work, 3D finite element models (FEM) are developed to simulate the effect of Temperature and the stresses on the model development, using a general purpose FE software ABAQUS. Explicit dynamic analysis with coupled Temperature displacement procedure is used for a model. The purpose of this research was to study the thermomechanical damage mechanics in hot forming processes. The important process variables and the main characteristics of various hot forming processes will also be discussed.
A thermalized ion explosion model for high energy sputtering and track registration
NASA Technical Reports Server (NTRS)
Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.
1980-01-01
A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil
2018-04-01
The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.
Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle
NASA Astrophysics Data System (ADS)
Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.
2017-11-01
Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.
Thermal characterizations of a large-format lithium ion cell focused on high current discharges
NASA Astrophysics Data System (ADS)
Veth, C.; Dragicevic, D.; Merten, C.
2014-12-01
The thermal behavior of a large-format lithium ion cell has been investigated during measurements on cell and battery level. High current discharges up to 300 A are the main topic of this study. This paper demonstrates that the temperature response to high current loads provides the possibility to investigate internal cell parameters and their inhomogeneity. In order to identify thermal response caused by internal cell processes, the heat input due to contact resistances has been minimized. The differences between the thermal footprint of a cell during cell and battery measurements are being addressed. The study presented here focuses on the investigation of thermal hot and cold spots as well as temperature gradients in a 50 Ah pouch cell. Furthermore, it is demonstrated that the difference between charge and discharge can have significant influence on the thermal behavior of lithium ion cells. Moreover, the miscellaneous thermal characteristics of differently aged lithium ion cells highlight the possibility of an ex-situ non-destructive post-mortem-analysis, providing the possibility of a qualitative and quantitative characterization of inhomogeneous cell-aging. These investigations also generate excellent data for the validation and parameterization of electro-thermal cell models, predicting the distribution of temperature, current, potential, SOC and SOH inside large-format cells.
Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.
2012-01-01
A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.
Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)
Atchley, A. L.; Painter, S. L.; Harp, D. R.; ...
2015-04-14
Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less
Heat Transfer in Adhesively Bonded Honeycomb Core Panels
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HSU, P C; Hust, G; May, C
Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performedmore » detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.« less
NASA Astrophysics Data System (ADS)
Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.
Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.
Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module
NASA Astrophysics Data System (ADS)
Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.
2017-05-01
For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.
A model of freezing foods with liquid nitrogen using special functions
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-05-01
A food freezing model is analyzed analytically. The model is based on the heat diffusion equation in the case of cylindrical shaped food frozen by liquid nitrogen; and assuming that the thermal conductivity of the cylindrical food is radially modulated. The model is solved using the Laplace transform method, the Bromwich theorem, and the residue theorem. The temperature profile in the cylindrical food is presented as an infinite series of special functions. All the required computations are performed with computer algebra software, specifically Maple. Using the numeric values of the thermal and geometric parameters for the cylindrical food, as well as the thermal parameters of the liquid nitrogen freezing system, the temporal evolution of the temperature in different regions in the interior of the cylindrical food is presented both analytically and graphically. The duration of the liquid nitrogen freezing process to achieve the specified effect on the cylindrical food is computed. The analytical results are expected to be of importance in food engineering and cooking engineering. As a future research line, the formulation and solution of freezing models with thermal memory is proposed.
NASA Astrophysics Data System (ADS)
Coman, Paul T.; Rayman, Sean; White, Ralph E.
2016-03-01
This paper presents a mathematical model built for analyzing the intricate thermal behavior of a 18650 LCO (Lithium Cobalt Oxide) battery cell during thermal runaway when venting of the electrolyte and contents of the jelly roll (ejecta) is considered. The model consists of different ODEs (Ordinary Differential Equations) describing reaction rates and electrochemical reactions, as well as the isentropic flow equations for describing electrolyte venting. The results are validated against experimental findings from Golubkov et al. [1] [Andrey W. Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche, Christoph Stangl, Gisela Fauler, Gernot Voitice Alexander Thaler and Viktor Hacker, RSC Advances, 4:3633-3642, 2014] for two cases - with flow and without flow. The results show that if the isentropic flow equations are not included in the model, the thermal runaway is triggered prematurely at the point where venting should occur. This shows that the heat dissipation due to ejection of electrolyte and jelly roll contents has a significant contribution. When the flow equations are included, the model shows good agreement with the experiment and therefore proving the importance of including venting.
Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models
NASA Technical Reports Server (NTRS)
Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.
2012-01-01
Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.
Interface-based two-way tuning of the in-plane thermal transport in nanofilms
NASA Astrophysics Data System (ADS)
Hua, Yu-Chao; Cao, Bing-Yang
2018-03-01
Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.
Estimating evaporation with thermal UAV data and two-source energy balance models
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T.
2016-02-01
Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.
Numerical modeling of the autumnal thermal bar
NASA Astrophysics Data System (ADS)
Tsydenov, Bair O.
2018-03-01
The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
Thermal niche estimators and the capability of poor dispersal species to cope with climate change
NASA Astrophysics Data System (ADS)
Sánchez-Fernández, David; Rizzo, Valeria; Cieslak, Alexandra; Faille, Arnaud; Fresneda, Javier; Ribera, Ignacio
2016-03-01
For management strategies in the context of global warming, accurate predictions of species response are mandatory. However, to date most predictions are based on niche (bioclimatic) models that usually overlook biotic interactions, behavioral adjustments or adaptive evolution, and assume that species can disperse freely without constraints. The deep subterranean environment minimises these uncertainties, as it is simple, homogeneous and with constant environmental conditions. It is thus an ideal model system to study the effect of global change in species with poor dispersal capabilities. We assess the potential fate of a lineage of troglobitic beetles under global change predictions using different approaches to estimate their thermal niche: bioclimatic models, rates of thermal niche change estimated from a molecular phylogeny, and data from physiological studies. Using bioclimatic models, at most 60% of the species were predicted to have suitable conditions in 2080. Considering the rates of thermal niche change did not improve this prediction. However, physiological data suggest that subterranean species have a broad thermal tolerance, allowing them to stand temperatures never experienced through their evolutionary history. These results stress the need of experimental approaches to assess the capability of poor dispersal species to cope with temperatures outside those they currently experience.
Thermal neutral format based on the step technology
NASA Technical Reports Server (NTRS)
Almazan, P. Planas; Legal, J. L.
1995-01-01
The exchange of models is one of the most serious problems currently encountered in the practice of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing environments that are used across different sites, and the consequent proliferation of native tool formats. Furthermore, increasing pressure to reduce the development's life cycle time has originated a growing interest in the so-called spacecraft concurrent engineering. In this context, the realization of the interdependencies between different disciplines and the proper communication between them become critical issues. The use of a neutral format represents a step forward in addressing these problems. Such a means of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it is kept under stringent change control. Currently, most of the groups promoting exchange formats are contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is being developed under the auspices of the International Standards Organization (ISO 10303). This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some background information, the paper presents the characteristics of the STEP standard. Later, the first efforts to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the currently harmonized European activities that follow up and extend earlier work on the area.
Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit
NASA Technical Reports Server (NTRS)
Xu, Kun; Lui, Shiu-Hong
1998-01-01
In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.
Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled
NASA Technical Reports Server (NTRS)
Ali, Abdul-Aziz; Bhatt, Ramakrishna T.
2009-01-01
When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.
The thermal conductivity of mixed fuel U xPu 1-xO 2: molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard
2015-10-16
Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO 2-PuO 2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO 2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. Formore » this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO 2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of U xPu 1-xO 2, as a function of PuO 2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.« less
NASA Astrophysics Data System (ADS)
Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice
2017-03-01
During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.
Temporal Treatment of a Thermal Response for Defect Depth Estimation
NASA Technical Reports Server (NTRS)
Plotnikov, Y. A.; Winfree, W. P.
2004-01-01
Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.
NASA Astrophysics Data System (ADS)
Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.
2018-02-01
The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.
NASA Astrophysics Data System (ADS)
Tai, Y.; Watanabe, T.; Nagata, K.
2018-03-01
A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.
NASA Technical Reports Server (NTRS)
Thurber, C. H.; Hsui, A. T.; Toksoz, M. N.
1980-01-01
The imaging experiments of the Voyager 1 and 2 fly-by missions have provided a large amount of information about the nature of the surfaces of the Galilean satellites. The present investigation is concerned with the development of models regarding the thermal evolution of Ganymede and Callisto, taking into account the approach of parameterized convection. Attention is given to the physical, chemical, and geological data which are available as constraints on the thermal evolution of Ganymede and Callisto. Both satellites appear to possess surfaces composed of silicates and ice. However, their surface features are distinctly different from each other. In the discussion of thermal evolution models, attention is given to ice-dominant rheology, silicate-dominant rheology, and aspects of phase changes and solid-state convection.
NASA Astrophysics Data System (ADS)
Zenkour, A. M.
2018-05-01
The thermal buckling analysis of carbon nanotubes embedded in a visco-Pasternak's medium is investigated. The Eringen's nonlocal elasticity theory, in conjunction with the first-order Donnell's shell theory, is used for this purpose. The surrounding medium is considered as a three-parameter viscoelastic foundation model, Winkler-Pasternak's model as well as a viscous damping coefficient. The governing equilibrium equations are obtained and solved for carbon nanotubes subjected to different thermal and mechanical loads. The effects of nonlocal parameter, radius and length of nanotube, and the three foundation parameters on the thermal buckling of the nanotube are studied. Sample critical buckling loads are reported and graphically illustrated to check the validity of the present results and to present benchmarks for future comparisons.
Meteorological models for estimating phenology of corn
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Cochran, J. C.; Hollinger, S. E.
1984-01-01
Knowledge of when critical crop stages occur and how the environment affects them should provide useful information for crop management decisions and crop production models. Two sources of data were evaluated for predicting dates of silking and physiological maturity of corn (Zea mays L.). Initial evaluations were conducted using data of an adapted corn hybrid grown on a Typic Agriaquoll at the Purdue University Agronomy Farm. The second phase extended the analyses to large areas using data acquired by the Statistical Reporting Service of USDA for crop reporting districts (CRD) in Indiana and Iowa. Several thermal models were compared to calendar days for predicting dates of silking and physiological maturity. Mixed models which used a combination of thermal units to predict silking and days after silking to predict physiological maturity were also evaluated. At the Agronomy Farm the models were calibrated and tested on the same data. The thermal models were significantly less biased and more accurate than calendar days for predicting dates of silking. Differences among the thermal models were small. Significant improvements in both bias and accuracy were observed when the mixed models were used to predict dates of physiological maturity. The results indicate that statistical data for CRD can be used to evaluate models developed at agricultural experiment stations.
Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Dettori, Riccardo; Dunham, Marc T.; Melis, Claudio; Tonini, Rita; Colombo, Luciano; Sood, Aditya; Goodson, Kenneth E.; Narducci, Dario
2018-05-01
Ideal thermoelectric materials should possess low thermal conductivity κ along with high electrical conductivity σ . Thus, strategies are needed to impede the propagation of phonons mostly responsible for thermal conduction while only marginally affecting charge carrier diffusion. Defect engineering may provide tools to fulfill this aim, provided that one can achieve an adequate understanding of the role played by multiple morphological defects in scattering thermal energy carriers. In this paper, we study how various morphological defects such as grain boundaries and dispersed nanovoids reduce the thermal conductivity of silicon. A blended approach has been adopted, using data from both simulations and experiments in order to cover a wide range of defect densities. We show that the co-presence of morphological defects with different characteristic scattering length scales is effective in reducing the thermal conductivity. We also point out that non-gray models (i.e. models with spectral resolution) are required to improve the accuracy of predictive models explaining the dependence of κ on the density of morphological defects. Finally, the application of spectral models to Matthiessen's rule is critically addressed with the aim of arriving at a compact model of phonon scattering in highly defective materials showing that non-local descriptors would be needed to account for lattice distortion due to nanometric voids.
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Baudin, François; Chenu, Claire; Houot, Sabine; Jolivet, Romain; Kätterer, Thomas; Lutfalla, Suzanne; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Savignac, Florence; Soucémarianadin, Laure N.; Barré, Pierre
2018-05-01
Changes in global soil carbon stocks have considerable potential to influence the course of future climate change. However, a portion of soil organic carbon (SOC) has a very long residence time ( > 100 years) and may not contribute significantly to terrestrial greenhouse gas emissions during the next century. The size of this persistent SOC reservoir is presumed to be large. Consequently, it is a key parameter required for the initialization of SOC dynamics in ecosystem and Earth system models, but there is considerable uncertainty in the methods used to quantify it. Thermal analysis methods provide cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC biogeochemical stability. The objective of this work was to build the first quantitative model of the size of the centennially persistent SOC pool based on thermal analysis. We used a unique set of 118 archived soil samples from four agronomic experiments in northwestern Europe with long-term bare fallow and non-bare fallow treatments (e.g., manure amendment, cropland and grassland) as a sample set for which estimating the size of the centennially persistent SOC pool is relatively straightforward. At each experimental site, we estimated the average concentration of centennially persistent SOC and its uncertainty by applying a Bayesian curve-fitting method to the observed declining SOC concentration over the duration of the long-term bare fallow treatment. Overall, the estimated concentrations of centennially persistent SOC ranged from 5 to 11 g C kg-1 of soil (lowest and highest boundaries of four 95 % confidence intervals). Then, by dividing the site-specific concentrations of persistent SOC by the total SOC concentration, we could estimate the proportion of centennially persistent SOC in the 118 archived soil samples and the associated uncertainty. The proportion of centennially persistent SOC ranged from 0.14 (standard deviation of 0.01) to 1 (standard deviation of 0.15). Samples were subjected to thermal analysis by Rock-Eval 6 that generated a series of 30 parameters reflecting their SOC thermal stability and bulk chemistry. We trained a nonparametric machine-learning algorithm (random forests multivariate regression model) to predict the proportion of centennially persistent SOC in new soils using Rock-Eval 6 thermal parameters as predictors. We evaluated the model predictive performance with two different strategies. We first used a calibration set (n = 88) and a validation set (n = 30) with soils from all sites. Second, to test the sensitivity of the model to pedoclimate, we built a calibration set with soil samples from three out of the four sites (n = 84). The multivariate regression model accurately predicted the proportion of centennially persistent SOC in the validation set composed of soils from all sites (R2 = 0.92, RMSEP = 0.07, n = 30). The uncertainty of the model predictions was quantified by a Monte Carlo approach that produced conservative 95 % prediction intervals across the validation set. The predictive performance of the model decreased when predicting the proportion of centennially persistent SOC in soils from one fully independent site with a different pedoclimate, yet the mean error of prediction only slightly increased (R2 = 0.53, RMSEP = 0.10, n = 34). This model based on Rock-Eval 6 thermal analysis can thus be used to predict the proportion of centennially persistent SOC with known uncertainty in new soil samples from different pedoclimates, at least for sites that have similar Rock-Eval 6 thermal characteristics to those included in the calibration set. Our study reinforces the evidence that there is a link between the thermal and biogeochemical stability of soil organic matter and demonstrates that Rock-Eval 6 thermal analysis can be used to quantify the size of the centennially persistent organic carbon pool in temperate soils.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Cheng; Xu, Shuai; He, Juan; Ye, Liu
2015-10-01
We analytically investigate the thermal entanglement of three-mixed-spin (1/2, 1, 1/2) XXZ model with the DM interaction under an external magnetic field B. Two different cases are considered: one subsystem (1/2, 1/2) consists of two spin-1/2 fermions and the other subsystem (1/2, 1) contains a spin-1/2 fermion and a spin-1 boson. It is shown that the DM interaction parameter D, the external magnetic field strength B and coupling constant J have different effects on Fermi and mixed Fermi-Bose systems. All of the factors mentioned above can be utilized to control entanglement switch of any two particles in mixed spins model.
A study of tornadic thunderstorm interactions with thermal boundaries
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.
1980-01-01
A study of tornadic thunderstorm interactions with thermal boundaries using a model of subcloud wind profiles is presented. Within a hot, moist, and conditionally unstable air mass, warm thermal advection and surface friction cause the winds to veer and increase with height, while within a cool, moist air mass cool thermal advection and friction combine to produce a wind profile that has maximum speeds near the surface and veers little with height. The spatial distribution of different wind profiles and moisture contents within the boundary layer may act together to maximize mesoscale moisture contents, convergence, and cyclonic vorticity within a narrow mixing zone along the thermal boundary.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere
NASA Technical Reports Server (NTRS)
Hager, B. H.
1981-01-01
Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1980-01-01
A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.
Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe
2009-08-01
Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.
An analysis of a mixed convection associated with thermal heating in contaminated porous media.
Krol, Magdalena M; Johnson, Richard L; Sleep, Brent E
2014-11-15
The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities. Copyright © 2014 Elsevier B.V. All rights reserved.
Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants
Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.
2017-01-01
This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463
Effect of aerated concrete blockwork joints on the heat transfer performance uniformity
NASA Astrophysics Data System (ADS)
Pukhkal, Viktor; Murgul, Vera
2018-03-01
Analysis of data on the effect of joints of the aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out. It was concluded, that the values of the heat transfer performance uniformity factor in the literature sources were obtained for the regular fragment of a wall construction by approximate addition of thermal conductivities. Heat flow patterns for the aerated concrete exterior walls amid different values of the thermal conductivity factors and design ambient air temperature of -26 °C were calculated with the use of "ELCUT" software for modelling of thermal patterns by finite element method. There were defined the values for the heat transfer performance uniformity factor, reduced total thermal resistance and heat-flux density for the exterior walls. The calculated values of the heat transfer performance uniformity factors, as a function of the coefficient of thermal conductivity of aerated concrete blocks, differ from the known data by a more rigorous thermal and physical substantiation.
Biswas, Kaushik; Shukla, Yash; Desjarlais, Andre Omer; ...
2018-04-17
This article presents combined measurements of fatty acid-based organic PCM products and numerical simulations to evaluate the energy benefits of adding a PCM layer to an exterior wall. The thermal storage characteristics of the PCM were measured using a heat flow meter apparatus (HFMA). The PCM characterization is based on a recent ASTM International standard test method, ASTM C1784. The PCM samples were subjected to step changes in temperature and allowed to stabilize at each temperature. By measuring the heat absorbed or released by the PCM, the temperature-dependent enthalpy functions for melting and freezing were determined.Here, the simulations were donemore » using a previously-validated two-dimensional (2D) wall model containing a PCM layer and incorporating the HFMA-measured enthalpy functions. The wall model was modified to include the hysteresis phenomenon observed in PCMs, which is reflected in different melting and freezing temperatures of the PCM. Simulations were done with a single enthalpy curve based on the PCM melting tests, both melting and freezing enthalpy curves, and with different degrees of hysteresis between the melting and freezing curves. Significant differences were observed between the thermal performances of the modeled wall with the PCM layer under the different scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Shukla, Yash; Desjarlais, Andre Omer
This article presents combined measurements of fatty acid-based organic PCM products and numerical simulations to evaluate the energy benefits of adding a PCM layer to an exterior wall. The thermal storage characteristics of the PCM were measured using a heat flow meter apparatus (HFMA). The PCM characterization is based on a recent ASTM International standard test method, ASTM C1784. The PCM samples were subjected to step changes in temperature and allowed to stabilize at each temperature. By measuring the heat absorbed or released by the PCM, the temperature-dependent enthalpy functions for melting and freezing were determined.Here, the simulations were donemore » using a previously-validated two-dimensional (2D) wall model containing a PCM layer and incorporating the HFMA-measured enthalpy functions. The wall model was modified to include the hysteresis phenomenon observed in PCMs, which is reflected in different melting and freezing temperatures of the PCM. Simulations were done with a single enthalpy curve based on the PCM melting tests, both melting and freezing enthalpy curves, and with different degrees of hysteresis between the melting and freezing curves. Significant differences were observed between the thermal performances of the modeled wall with the PCM layer under the different scenarios.« less
Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory
Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa; ...
2016-11-11
Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less
Reliability of emerging bonded interface materials for large-area attachments
Paret, Paul P.; DeVoto, Douglas J.; Narumanchi, Sreekant
2015-12-30
In this study, conventional thermal interface materials (TIMs), such as greases, gels, and phase change materials, pose bottlenecks to heat removal and have long caused reliability issues in automotive power electronics packages. Bonded interface materials (BIMs) with superior thermal performance have the potential to be a replacement to the conventional TIMs. However, due to coefficient of thermal expansion mismatches between different components in a package and resultant thermomechanical stresses, fractures or delamination could occur, causing serious reliability concerns. These defects manifest themselves in increased thermal resistance in the package. In this paper, the results of reliability evaluation of emerging BIMsmore » for large-area attachments in power electronics packaging are reported. Thermoplastic (polyamide) adhesive with embedded near-vertical-aligned carbon fibers, sintered silver, and conventional lead solder (Sn 63Pb 37) materials were bonded between 50.8 mm x 50.8 mm cross-sectional footprint silicon nitride substrates and copper base plate samples, and were subjected to accelerated thermal cycling until failure or 2500 cycles. Damage in the BIMs was monitored every 100 cycles by scanning acoustic microscopy. Thermoplastic with embedded carbon fibers performed the best with no defects, whereas sintered silver and lead solder failed at 2300 and 1400 thermal cycles, respectively. Besides thermal cycling, additional lead solder samples were subjected to thermal shock and thermal cycling with extended dwell periods. A finite element method (FEM)-based model was developed to simulate the behavior of lead solder under thermomechanical loading. Strain energy density per cycle results were calculated from the FEM simulations. A predictive lifetime model was formulated for lead solder by correlating strain energy density results extracted from modeling with cycles-to-failure obtained from experimental accelerated tests. A power-law-based approach was used to formulate the - redictive lifetime model.« less
Nespolo, Roberto F; Arim, Matías; Bozinovic, Francisco
2003-07-01
Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional complications when analyzing the relationships among physiological variables such as basal metabolism, non-shivering thermogenesis, thermoregulatory maximum metabolic rate and minimum thermal conductance, body size dependence, and the effect of thermal acclimation on them. We measured these variables in Phyllotis darwini, a murid rodent from central Chile, under conditions of warm and cold acclimation. In addition to standard statistical analyses to determine the effect of thermal acclimation on each variable and the body-mass-controlled correlation among them, we performed a Structural Equation Modeling analysis to evaluate the effects of three different measurements of body size (body mass, m(b); body length, L(b) and foot length, L(f)) on energy metabolism and thermal conductance. We found that thermal acclimation changed the correlation among physiological variables. Only cold-acclimated animals supported our a priori path models, and m(b) appeared to be the best descriptor of body size (compared with L(b) and L(f)) when dealing with energy metabolism and thermal conductance. However, while m(b) appeared to be the strongest determinant of energy metabolism, there was an important and significant contribution of L(b) (but not L(f)) to thermal conductance. This study demonstrates how additional information can be drawn from physiological ecology and general organismal studies by applying Structural Equation Modeling when multiple variables are measured in the same individuals.
Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Ash, Robert L.
1989-01-01
A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented.
Thermal properties of soils: effect of biochar application
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy
2014-05-01
Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.
Application of remote sensing for prediction and detection of thermal pollution
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1974-01-01
The first phase is described of a three year project for the development of a mathematical model for predicting thermal pollution by use of remote sensing measurements. A rigid-lid model was developed, and results were obtained for different wind conditions at Biscayne Bay in South Florida. The design of the measurement system was completed, and instruments needed for the first stage of experiment were acquired, tested, and calibrated. A preliminary research flight was conducted.
Solar radiation pressure effects on the Helios spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1976-01-01
A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.
NASA Astrophysics Data System (ADS)
Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.
2017-09-01
We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.
Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.
Kumagai, Naoki H; Yamano, Hiroya
2018-01-01
Coral reefs are one of the world's most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004-2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper.
Thermal conductivity of III-V semiconductor superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu
2015-11-07
This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Yamano, Hiroya
2018-01-01
Coral reefs are one of the world’s most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004–2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper. PMID:29473007
NASA Technical Reports Server (NTRS)
Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; Scola, Salvatore; Tobin, Steven; McLeod, Shawn; Mannu, Sergio; Guglielmo, Corrado; Moeller, Timothy
2013-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2015. A detailed thermal model of the SAGE III payload has been developed in Thermal Desktop (TD). Several novel methods have been implemented to facilitate efficient payload-level thermal analysis, including the use of a design of experiments (DOE) methodology to determine the worst-case orbits for SAGE III while on ISS, use of TD assemblies to move payloads from the Dragon trunk to the Enhanced Operational Transfer Platform (EOTP) to its final home on the Expedite the Processing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC)-4, incorporation of older models in varying unit sets, ability to change units easily (including hardcoded logic blocks), case-based logic to facilitate activating heaters and active elements for varying scenarios within a single model, incorporation of several coordinate frames to easily map to structural models with differing geometries and locations, and streamlined results processing using an Excel-based text file plotter developed in-house at LaRC. This document presents an overview of the SAGE III thermal model and describes the development and implementation of these efficiency-improving analysis methods.
Frost, T.P.; Lindsay, J.R.
1988-01-01
MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.
Thermal Models of the Ocean Floor: from Wegener to Cerro Prieto
NASA Astrophysics Data System (ADS)
Sclater, J. G.; Negrete-Aranda, R.
2017-12-01
Wegener (1925) argued that hot rock could explain the shallower depths of ridges in the center of the Atlantic Ocean. Hess (1963) proposed that the intrusion of molten rock occurred at a world encircling mid-ocean ridge system. However, he accounted for the elevation of the ridges by the formation of serpentinite and thermal convection. Langseth et al. (1966) provided the major advance by using a 100 km thick plate to argue such a concept could not explain the depth, heat flow versus distance relations. They had the correct model but misinterpreted the data. Reformulating theoretically, McKenzie (1967) created the generally accepted thermal model for the ocean floor. Unfortunately, in attempting to match erroneously low heat flow data, he used a 50 km thick plate. Addition of the effect of water and the realization of the importance of advective flow, enabled various groups to create thermal plate models that accounted for the heat flow and depth age relations. From this came the understanding of hydrothermal circulation in the oceanic crust, the thermal boundary layer concept of the oceanic plate and the realization that all thermal models differed only in the way the different groups had chosen to analyze the data. During the past 40 years many have applied similar concepts to continental margins: (1) Measurement of subsidence of the Atlantic margin, continental stretching and a Time Temperature, Depth and Maturation analysis of continental basins have created the field of Basin Analysis; (2) Changes in heat flow at ocean continent boundaries have determined the position of the transition and (3) In attempting to examine the ocean continent transition process in the northernmost basin of the Gulf of California, Neumann et al (in press) observed conductive heat flow values greater than 0.75 Watts, at a depth of < 150 m, along a 10 km section of a profile across the southern extension of the Cerro Prieto fault. The magnitude of these values overwhelms local environmental effects and indicates a very large thermal output. Their full potential depends upon the amount of advective flow. Whatever the case, these measurements have opened up shallow continental margins as a new area for geothermic investigation.
NASA Astrophysics Data System (ADS)
Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen
2017-12-01
Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.
A heat transfer model for incorporating carbon foam fabrics in firefighter's garment
NASA Astrophysics Data System (ADS)
Elgafy, Ahmed; Mishra, Sarthak
2014-04-01
In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.
Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania
Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi-layer perceptron (MLP), and a convolutional neural network (CNN). This research found that the multi-layer perceptron model produced the lowest error rates overall, with an RMSE of 1.22W / m2 sr mum when compared to actual Terra/MODIS band 31 image data. This research further aimed to characterize the errors associated with each method so that any potential user will have the best information available should they wish to apply these methods towards their own application.
Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)
Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; ...
2015-09-01
Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less
NASA Technical Reports Server (NTRS)
Ellis, David L.
2012-01-01
Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.
NASA Astrophysics Data System (ADS)
Timmermans, J.; Gomez-Dans, J. L.; Verhoef, W.; Tol, C. V. D.; Lewis, P.
2017-12-01
Evapotranspiration (ET) cannot be directly measured from space. Instead it relies on modelling approaches that use several land surface parameters (LSP), LAI and LST, in conjunction with meteorological parameters. Such a modelling approach presents two caveats: the validity of the model, and the consistency between the different input parameters. Often this second step is not considered, ignoring that without good inputs no decent output can provided. When LSP- dynamics contradict each other, the output of the model cannot be representative of reality. At present however, the LSPs used in large scale ET estimations originate from different single-sensor retrieval-approaches and even from different satellite sensors. In response, the Earth Observation Land Data Assimilation System (EOLDAS) was developed. EOLDAS uses a multi-sensor approach to couple different satellite observations/types to radiative transfer models (RTM), consistently. It is therefore capable of synergistically estimating a variety of LSPs. Considering that ET is most sensitive to the temperatures of the land surface (components), the goal of this research is to expand EOLDAS to the thermal domain. This research not only focuses on estimating LST, but also on retrieving (soil/vegetation, Sunlit/shaded) component temperatures, to facilitate dual/quad-source ET models. To achieve this, The Soil Canopy Observations of Photosynthesis and Energy (SCOPE) model was integrated into EOLDAS. SCOPE couples key-parameters to key-processes, such as photosynthesis, ET and optical/thermal RT. In this research SCOPE was also coupled to MODTRAN RTM, in order to estimate BOA component temperatures directly from TOA observations. This paper presents the main modelling steps of integrating these complex models into an operational platform. In addition it highlights the actual retrieval using different satellite observations, such as MODIS and Sentinel-3, and meteorological variables from the ERA-Interim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa
Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less
NASA Technical Reports Server (NTRS)
Wan, Zhengming; Dozier, Jeff
1992-01-01
The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.
Thermal Expansion of Polyurethane Foam
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Sullivan, Roy M.
2006-01-01
Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.
Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 2: numerical modelling.
Toffolon, Marco; Serafini, Michele
2013-01-15
A three-dimensional numerical model is used to simulate the thermal destratification caused by hypolimnetic jets releasing oxygen-rich water for lake restoration. Focussing on the case study described in the companion paper (Toffolon et al., 2013), i.e. the small, relatively shallow Lake Serraia (Trentino, Italy), a specific simplified sub-grid model is developed in the numerical model to reproduce jet entrainment with reduced computational costs, with the aim to simulate the whole lake dynamics along several weeks. The noticeable agreement between numerical results and available measurements suggests that the model can be used to understand the main effects of the hypolimnetic oxygenation in different scenarios. Therefore, different options can be evaluated and guidelines can be proposed for lake management, with the aim to preserve the typical thermal stratification while providing sufficient oxygen mass to proceed with the restoration phase. Copyright © 2012 Elsevier Ltd. All rights reserved.
The radiobrightness thermal inertia measure of soil moisture
NASA Technical Reports Server (NTRS)
England, Anthony W.; Galantowicz, John F.; Schretter, Mindy S.
1992-01-01
Radiobrightness thermal inertia (RTI) is proposed as a method for using day-night differences in satellite-sensed radiobrightness to monitor the moisture of Great Plains soils. Diurnal thermal and radiobrightness models are used to examine the sensitivity of the RTI method. Model predictions favor use of the 37.0 and 85.5 GHz, H-polarized channels of the Special Sensor Microwave/Imager (SSM/I). The model further predicts that overflight times near 2:00 AM/PM would be nearly optimal for RTI, that midnight/noon and 4:00 AM/PM are nearly as good, but that the 6:00 AM/PM overflight times of the current SSM/I are particularly poor. Data from the 37.0 GHz channel of the Scanning Multichannel Microwave Radiometer (SMMR) are used to demonstrate that the method is plausible.
Warming rays in cluster cool cores
NASA Astrophysics Data System (ADS)
Colafrancesco, S.; Marchegiani, P.
2008-06-01
Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters that recovers the observed one, a hard X-ray ICS emission from cool-core clusters that is systematically lower than the observed limits and yet observable with the next generation high-sensitivity and spatial resolution HXR experiments like Simbol-X. Conclusions: The specific theoretical properties and the multi-frequency distribution of the e.m. signals predicted in the WR model render it quite different from the other models so far proposed for the heating of clusters' cool-cores. Such differences make it possible to prove or disprove our model as an explanation for the cooling-flow problems on the basis of multi-frequency observations of galaxy clusters.
Thermal barrier coating life prediction model
NASA Technical Reports Server (NTRS)
Hillery, R. V.; Pilsner, B. H.
1985-01-01
This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.
Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study
NASA Astrophysics Data System (ADS)
Krol, M.; Daemi, N.
2017-12-01
Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.
Kramer, Rick; Schellen, Lisje; Schellen, Henk; Kingma, Boris
2017-01-01
ABSTRACT This study aims to improve the prediction accuracy of the rational standard thermal comfort model, known as the Predicted Mean Vote (PMV) model, by (1) calibrating one of its input variables “metabolic rate,” and (2) extending it by explicitly incorporating the variable running mean outdoor temperature (RMOT) that relates to adaptive thermal comfort. The analysis was performed with survey data (n = 1121) and climate measurements of the indoor and outdoor environment from a one year-long case study undertaken at Hermitage Amsterdam museum in the Netherlands. The PMVs were calculated for 35 survey days using (1) an a priori assumed metabolic rate, (2) a calibrated metabolic rate found by fitting the PMVs to the thermal sensation votes (TSVs) of each respondent using an optimization routine, and (3) extending the PMV model by including the RMOT. The results show that the calibrated metabolic rate is estimated to be 1.5 Met for this case study that was predominantly visited by elderly females. However, significant differences in metabolic rates have been revealed between adults and elderly showing the importance of differentiating between subpopulations. Hence, the standard tabular values, which only differentiate between various activities, may be oversimplified for many cases. Moreover, extending the PMV model with the RMOT substantially improves the thermal sensation prediction, but thermal sensation toward extreme cool and warm sensations remains partly underestimated. PMID:28680934
An Overview of the Thermal Challenges of Designing Microgravity Furnaces
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
2001-01-01
Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.
Kramer, Rick; Schellen, Lisje; Schellen, Henk; Kingma, Boris
2017-01-01
This study aims to improve the prediction accuracy of the rational standard thermal comfort model, known as the Predicted Mean Vote (PMV) model, by (1) calibrating one of its input variables "metabolic rate," and (2) extending it by explicitly incorporating the variable running mean outdoor temperature (RMOT) that relates to adaptive thermal comfort. The analysis was performed with survey data ( n = 1121) and climate measurements of the indoor and outdoor environment from a one year-long case study undertaken at Hermitage Amsterdam museum in the Netherlands. The PMVs were calculated for 35 survey days using (1) an a priori assumed metabolic rate, (2) a calibrated metabolic rate found by fitting the PMVs to the thermal sensation votes (TSVs) of each respondent using an optimization routine, and (3) extending the PMV model by including the RMOT. The results show that the calibrated metabolic rate is estimated to be 1.5 Met for this case study that was predominantly visited by elderly females. However, significant differences in metabolic rates have been revealed between adults and elderly showing the importance of differentiating between subpopulations. Hence, the standard tabular values, which only differentiate between various activities, may be oversimplified for many cases. Moreover, extending the PMV model with the RMOT substantially improves the thermal sensation prediction, but thermal sensation toward extreme cool and warm sensations remains partly underestimated.
NASA Astrophysics Data System (ADS)
de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.
2017-12-01
The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.
Cracking of a layered medium on an elastic foundation under thermal shock
NASA Technical Reports Server (NTRS)
Rizk, Abd El-Fattah A.; Erdogan, Fazil
1988-01-01
The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.
NASA Astrophysics Data System (ADS)
Morrison, Christopher
Nuclear fuels with similar aggregate material composition, but with different millimeter and micrometer spatial configurations of the component materials can have very different safety and performance characteristics. This research focuses on modeling and attempting to engineer heterogeneous combinations of nuclear fuels to improve negative prompt temperature feedback in response to reactivity insertion accidents. Improvements in negative prompt temperature feedback are proposed by developing a tailored thermal resistance in the nuclear fuel. In the event of a large reactivity insertion, the thermal resistance allows for a faster negative Doppler feedback by temporarily trapping heat in material zones with strong absorption resonances. A multi-physics simulation framework was created that could model large reactivity insertions. The framework was then used to model a comparison of a heterogeneous fuel with a tailored thermal resistance and a homogeneous fuel without the tailored thermal resistance. The results from the analysis confirmed the fundamental premise of prompt temperature feedback and provide insights into the neutron spectrum dynamics throughout the transient process. A trade study was conducted on infinite lattice fuels to help map a design space to study and improve prompt temperature feedback with many results. A multi-scale fuel pin analysis was also completed to study more realistic geometries. The results of this research could someday allow for novel nuclear fuels that would behave differently than current fuels. The idea of having a thermal barrier coating in the fuel is contrary to most current thinking. Inherent resistance to reactivity insertion accidents could enable certain reactor types once considered vulnerable to reactivity insertion accidents to be reevaluated in light of improved negative prompt temperature feedback.
Thermal inertia and surface heterogeneity on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.
Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer
Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W
2012-03-07
Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.
Theory of Radiation Transfer in Neutron Star Atmospheres
NASA Technical Reports Server (NTRS)
Zavlin, Vyacheslav
2006-01-01
The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Wei; Wong, Nyuk Hien; Zhang, Guoqiang
2013-11-01
This paper presents the comparative analysis between the findings from two field surveys of human thermal conditions in outdoor urban spaces during the summer season. The first survey was carried out from August 2010 to May 2011 in Singapore and the second survey was carried out from June 2010 to August 2010 in Changsha, China. The physiologically equivalent temperature (PET) was utilized as the thermal index to assess the thermal conditions. Differences were found between the two city respondents in terms of thermal sensation, humidity sensation, and wind speed sensation. No big difference was found between the two city respondents regarding the sun sensation. The two city respondents had similar neutral PET of 28.1 °C for Singapore and 27.9 °C for Changsha, respectively. However, Singapore respondents were more sensitive to PET change than Changsha respondents and the acceptable PET range for Changsha respondents was wider than that for Singapore respondents. Besides, the two city respondents had different thermal expectations with the preferred PET of 25.2 °C and 22.1 °C for Singapore and Changsha, respectively. The results also reveal that Changsha respondents were more tolerant than Singapore respondents under hot conditions. Finally, two regression models were proposed for Singapore and Changsha to predict the human thermal sensation in a given outdoor thermal environment.
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas
2017-10-01
Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the arithmetic average. The Spitzer and HST simulated observations sample deep parts of the planetary atmosphere and provide fewer constraints on the temperature and pressure profile, while the JWST observations sample the middle part of the atmosphere, providing a good match with the middle and most complex part of the arithmetic average of the 3D temperature structure.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.
2013-05-01
A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
A Model of the THUNDER Actuator
NASA Technical Reports Server (NTRS)
Curtis, Alan R. D.
1997-01-01
A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will develop in each layer and these stresses will induce a bending moment. When the actuator is released from its flat configuration, the differential stresses are relieved as the actuator bends.
An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizhov, V.; Kanukova, V.; Vinogradova, T.
1996-09-01
This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer frommore » melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.« less
Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics
NASA Astrophysics Data System (ADS)
Pan, J.; Huang, F.; He, L.; Wu, Q.
2015-12-01
The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.
Transport properties of carbon dioxide and methane from molecular dynamics simulations.
Aimoli, C G; Maginn, E J; Abreu, C R A
2014-10-07
Transport properties of carbon dioxide and methane are predicted for temperatures between (273.15 and 573.15) K and pressures up to 800 MPa by molecular dynamics simulations. Viscosities and thermal conductivities were obtained through the Green-Kubo formalism, whereas the Einstein relation was used to provide self-diffusion coefficient estimates. The differences in property predictions due to the force field nature and parametrization were investigated by the comparison of seven different CO2 models (two single-site models, three rigid three-site models, and two fully flexible three-site models) and three different CH4 models (two single-site models and one fully flexible five-site model). The simulation results show good agreement with experimental data, except for thermal conductivities at low densities. The molecular structure and force field parameters play an important role in the accuracy of the simulations, which is within the experimental deviations reported for viscosities and self-diffusion coefficients considering the most accurate CO2 and CH4 models studied. On the other hand, the molecular flexibility does not seem to improve accuracy, since the explicit account of vibrational and bending degrees of freedom in the CO2 flexible models leads to slightly less accurate results. Nonetheless, the use of a correctional term to account for vibrational modes in rigid models generally improves estimations of thermal conductivity values. At extreme densities, the caging effect observed with single-site representations of the molecules restrains mobility and leads to an unphysical overestimation of viscosities and, conversely, to the underestimation of self-diffusion coefficients. This result may help to better understand the limits of applicability of such force fields concerning structural and transport properties of dense systems.
modeling lunar seisms in class
NASA Astrophysics Data System (ADS)
Blancou, Emmanuelle
2017-04-01
Students are taught that the internal structure of the Earth has been described by analyzing seismometer data collected at the surface of the Earth. With this in mind, a group of 17-years old students asked whether lunar seisms could be used to explore the internal structure of the Moon. Seismometers placed during Apollo 12, 14, 15 and 16 missions recorded many seismic events. The signals obtained on the Moon are different form those recorded on Earth and are due to meteorite impact, lunar tides and thermal variations. Students tried to model meteorite impacts and thermal moonquakes to determine whether they can be distinguished based on their seismic signature. To this aim, the impact of meteorites were modeled by a metallic ball falling in sand and thermal moonquakes were modeled by storing hydrates rocks on a freezer during a week and then upon a bain marie. Signal were collected in both conditions with microphones. Data showed distinctive feature depending on vibration origin.
On the relationship between tectonic plates and thermal mantle plume morphology
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1993-01-01
Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.
Modeling of combined capacity fade with thermal effects for a cycled LixC6-LiyMn2O4 cell
NASA Astrophysics Data System (ADS)
Vazquez-Arenas, Jorge; Fowler, Michael; Mao, Xiaofeng; Chen, Shih-ken
2012-10-01
Li-ion batteries are the most promising technology for use in electric vehicles in the near future, and as such it is critical to understand their performance at both beginning of life (BOL) and end of life (EOL). In this work different thermal and capacity fade effects (e.g. SEI formation, dissolution of LiyMn2O4 particles) are modeled to account comprehensively for the behavior of a LixC6-LiyMn2O4 cell. The comparison between baseline and complex models is systematically used to analyze individual contributions and perform a deeper evaluation of the variables affecting the capacity fade with thermal inputs during typical cycle life tests. Some modifications in the original model are proposed to better describe the behavior of the cell and speed up the calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Elisberg, Brenton; Calderone, James
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
Dai, Steve; Elisberg, Brenton; Calderone, James; ...
2017-04-21
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu
2014-10-01
Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking
NASA Technical Reports Server (NTRS)
Dec, John A.
2007-01-01
A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data.
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.
2013-10-01
Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.
Market Mechanism Design for Renewable Energy based on Risk Theory
NASA Astrophysics Data System (ADS)
Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi
2018-02-01
Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.
NASA Technical Reports Server (NTRS)
Cassinis, R. (Principal Investigator); Tosi, N.
1980-01-01
The possibility of identifying ground surface material by measuring the surface temperature at two different and significant times of the day was investigated for the case of hypothetical island whose rocky surface contained no vegetation and consisted of dolomite, clay, and granite. The thermal dynamics of the soil surface during a day in which atmospheric conditions were average for a latitude of about 40 deg to 50 deg were numerically simulated. The line of separation between zones of different materials was delineated by the range of temperature variation. Results show that the difference between maximum and minimum value of the temperature of ground surface during the day is linked to the thermal inertia value of the material of which the rock is formed.
Havenith, George; Fiala, Dusan; Błazejczyk, Krzysztof; Richards, Mark; Bröde, Peter; Holmér, Ingvar; Rintamaki, Hannu; Benshabat, Yael; Jendritzky, Gerd
2012-05-01
The Universal Thermal Climate Index (UTCI) was conceived as a thermal index covering the whole climate range from heat to cold. This would be impossible without considering clothing as the interface between the person (here, the physiological model of thermoregulation) and the environment. It was decided to develop a clothing model for this application in which the following three factors were considered: (1) typical dressing behaviour in different temperatures, as observed in the field, resulting in a model of the distribution of clothing over the different body segments in relation to the ambient temperature, (2) the changes in clothing insulation and vapour resistance caused by wind and body movement, and (3) the change in wind speed in relation to the height above ground. The outcome was a clothing model that defines in detail the effective clothing insulation and vapour resistance for each of the thermo-physiological model's body segments over a wide range of climatic conditions. This paper details this model's conception and documents its definitions.
Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes
NASA Astrophysics Data System (ADS)
Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.
2015-02-01
A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.
Heat conduction tuning by hyperbranched nanophononic metamaterials
NASA Astrophysics Data System (ADS)
Li, Bing; Tan, K. T.; Christensen, Johan
2018-05-01
Phonon dispersion and thermal conduction properties of hyperbranched nanostructures with unique topological complexity are theoretically and numerically investigated in this research. We present analytical cantilever-in-mass models to analyze and control the inherent resonance hybridization in hyperbranched nanomembranes containing different configurations and cross sections. We show that these local resonances hosted by hyperbranched nanopillars can generate numerous flat bands in the phonon dispersion relation and dramatically lower the group velocities, consequently resulting in a significant reduction of the thermal conductivity. The applicability of the proposed analytical models in thermal conductivity tuning is demonstrated, and a superior performance in reducing the heat flux in nano-structured membranes is exhibited, which can potentially lead to improved thermoelectric energy conversion devices.
Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats
NASA Astrophysics Data System (ADS)
D'Ambrosio, Federico; Baiesi, Marco
2017-11-01
The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of inertial systems out of equilibrium, including relaxing systems, we show that Andersen thermostats are a natural tool for studying the thermal response. We derive a fluctuation-response relation that allows to predict thermal expansion coefficients or the heat capacitance in nonequilibrium regimes. Simulations of the FPU chain of oscillators suggest that estimates of susceptibilities obtained with our relation are better than those obtained via a small perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensah, P.F.; Stubblefield, M.A.; Pang, S.S.
Thermal characterization of a prepreg fabric used as the bonding material to join composite pipes has been modeled and solved using finite difference modeling (FDM) numerical analysis technique for one dimensional heat transfer through the material. Temperature distributions within the composite pipe joint are predicted. The prepreg material has temperature dependent thermal properties. Thus the resulting boundary value equations are non linear and analytical solutions cannot be obtained. This characterization is pertinent in determining the temperature profile in the prepreg layer during the manufacturing process for optimization purposes. In addition, in order to assess the effects of induced thermal stressmore » in the joint, the temperature profile is needed. The methodology employed in this analysis compares favorably with data from experimentation.« less
Self-heating in piezoresistive cantilevers
Doll, Joseph C.; Corbin, Elise A.; King, William P.; Pruitt, Beth L.
2011-01-01
We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature. PMID:21731884
Self-heating in piezoresistive cantilevers.
Doll, Joseph C; Corbin, Elise A; King, William P; Pruitt, Beth L
2011-05-30
We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature.
NASA Astrophysics Data System (ADS)
Bričkus, D.; Dement'ev, A. S.
2017-05-01
Temperature dependences of the thermo-optical coefficients of YAG crystals are often neglected when thermal lensing in laser rods is investigated, though their influence is very significant. It is especially significant for transversally non-uniform thermal loading. An analytical solution of the heat transfer equation with only the radial heat flow is found in the integral form, which is very convenient for numerical simulations. Uniform, top-hat, parabolic, Gaussian, super-Gaussian and annular heat source distributions are used in the calculations. The generalization of the thermally-induced refractive index change for long enough [1 1 1]-cut YAG rods to the case of temperature-dependent YAG parameters is developed and applied to the calculation of the corresponding optical path differences. Different definitions of the optical power of the aberrated thermal lens (TL) are discussed in detail. It is shown that for each of the heat source distributions, the temperature dependences of the YAG parameters significantly increase (1.5-1.8 times) the paraxial optical power of the induced TL.
The thermal environment of the human being on the global scale
Jendritzky, Gerd; Tinz, Birger
2009-01-01
Background The close relationship between human health, performance, well-being and the thermal environment is obvious. Nevertheless, most studies of climate and climate change impacts show amazing shortcomings in the assessment of the environment. Populations living in different climates have different susceptibilities, due to socio-economic reasons, and different customary behavioural adaptations. The global distribution of risks of hazardous thermal exposure has not been analysed before. Objective To produce maps of the baseline and future bioclimate that allows a direct comparison of the differences in the vulnerability of populations to thermal stress across the world. Design The required climatological data fields are obtained from climate simulations with the global General Circulation Model ECHAM4 in T106-resolution. For the thermo-physiologically relevant assessment of these climate data a complete heat budget model of the human being, the ‘Perceived Temperature’ procedure has been applied which already comprises adaptation by clothing to a certain degree. Short-term physiological acclimatisation is considered via Health Related Assessment of the Thermal Environment. Results The global maps 1971–1980 (control run, assumed as baseline climate) show a pattern of thermal stress intensities as frequencies of heat. The heat load for people living in warm–humid climates is the highest. Climate change will lead to clear differences in health-related thermal stress between baseline climate and the future bioclimate 2041–2050 based on the ‘business-as-usual’ greenhouse gas scenario IS92a. The majority of the world's population will be faced with more frequent and more intense heat strain in spite of an assumed level of acclimatisation. Further adaptation measures are crucial in order to reduce the vulnerability of the populations. Conclusions This bioclimatology analysis provides a tool for various questions in climate and climate change impact research. Considerations of regional or local scale require climate simulations with higher resolution. As adaptation is the key term in understanding the role of climate/climate change for human health, performance and well-being, further research in this field is crucial. PMID:20052427
NASA Astrophysics Data System (ADS)
Sandali, Messaoud; Boubekri, Abdelghani; Mennouche, Djamel
2018-05-01
Numerical simulation method has been employed to improve the thermal performance of cabinet direct solar dryer. The present study focused on the numerical simulation of a direct solar dryer with integration of a flat layer of fractured porous medium above the absorber plate in the aim to store thermal energy by sensible heat. Several calculations were conducted, using the finite volume method with a two-dimensional unsteady model implemented in the Fluent CFD software. The porous medium has been integrated with different thickness to show the influence of the medium thickness on the thermal performance of solar dryer. Different kinds of materials have been tested and studied. The effect of porosity of porous medium has been studied. The obtained results showed that the temperature of drying air is increased by 4°C with integration of porous medium. The increasing in the thickness of the porous medium by 1cm leads to increase the temperature of drying air by 2°C. The increasing of the medium porosity by 10% leads to decrease the temperature of drying air by 1°C. The best material is the one that has a highest specific heat and thermal conductivity.
NASA Astrophysics Data System (ADS)
van de Camp, W.; Dhallé, M. M. J.; Warnet, L.; Wessel, W. A. J.; Vos, G. S.; Akkerman, R.; ter Brake, H. J. M.
2017-02-01
The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural materials for the transport and storage of liquified gasses such as LNG. Combining different constituents in a laminate opens up the possibility to enhance its functionality, e.g. offering lower specific weight and increased damage tolerance. To explore this possibility, a test programme is underway at the University of Twente to study transverse crack initiation in different material combinations under combined thermal and mechanical loading. Specifically, the samples are tested in a three-point bending experiment at temperatures ranging from 77 to 293 K. These tests will serve as a validation of the model presented in this paper which, by incorporating temperature-dependent mechanical properties and differential thermal expansion, will allow to select optimal material combinations and laminate layouts. By combining the temperature-dependent mechanical properties and the differential thermal contraction explicitly, the model allows for a more accurate estimate of the resulting thermal stresses which can then be compared to the strength of the constituent materials.
Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathany, Maulana Yusuf, E-mail: myfathany@gmail.com; Fuada, Syifaul, E-mail: fsyifaul@gmail.com; Lawu, Braham Lawas, E-mail: bram-labs@rocketmail.com
2016-04-19
This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.
NASA Astrophysics Data System (ADS)
Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas
2015-04-01
Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.
Estimate carbon emissions from degraded permafrost with InSAR and a soil thermal model
NASA Astrophysics Data System (ADS)
Zhou, Z.; Liu, L.
2016-12-01
Climate warming, tundra fire over past decades has caused degradation in permafrost widely and quickly. Recent studies indicate that an increase in degradation could switch permafrost from a carbon sink to a source, with the potential of creating a positive feedback to anthropogenic climate warming. Unfortunately, Soil Organic Carbon (SOC) emissions from degraded permafrost unquantified, and limit our ability to understand SOC losses in arctic environments. This work will investigate recent 10 years of data already collected at the Anaktuvuk River fire (both ground and remote sensed), and will employ a soil thermal model to estimate SOC emission in this region. The model converts the increases in Active Layer Thickness (ALT), as measured by InSAR, to changes in Organic Layer Thickness (OLT), and SOC. ALOS-1/2 L-band SAR dataset will be used to produce the ATL changes over the study area. Soil prosperities (e.g. temperature at different depth, bulk density) will be used in the soil thermal model to estimate OLT changes and SOC losses. Ground measurement will validate the InSAR results and the soil thermal model. A final estimation of SOC emission will be produced in Anaktuvuk River region.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed. PMID:26244665
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.
Cryogenic strain gage techniques used in force balance design for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Ferris, A. T.
1986-01-01
A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.
Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida
NASA Technical Reports Server (NTRS)
Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.
1981-01-01
The HCMM transparency scenes for the available winter of 1978-1979 were evaluated; scenes were identified on processed magnetic tapes; other remote sensing information was identified; and a soil heat flux model with variable-depth thermal profile was developed. The Image 100 system was used to compare HCMM and GOES transparent images of surface thermal patterns. Excellent correspondence of patterns was found, with HCMM giving the greater resolution. One image shows details of thermal patterns in Florida that are attributable to difference in near surface water contents. The wide range of surface temperatures attributable to surface thermal inertia that exist in the relatively flat Florida topography is demonstrated.
Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
Divall, S A; Humphrey, V F
2000-03-01
Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.
NASA Astrophysics Data System (ADS)
Lescoutre, Rodolphe; Tugend, Julie; Brune, Sascha; Manatschal, Gianreto
2017-04-01
Mid-Cretaceous rift basins are exposed in the Pyrenees providing key information on rifted domain formation that is not available at present-day rift system. Substantial paleotemperature and thermochronological data have been collected and published in numerous recent papers. These data show a strong heterogeneity in the distribution of peak temperatures within the Cretaceous rift basins. Locations that experienced relatively high or low temperatures appear to cluster in specific areas along strike. These areas have been interpreted as either reflecting hot and cold conditions during rifting, or alternatively, a change in the polarity of a strongly asymmetric rift systems. In this study, we test if the observed variability of peak temperatures can be explained by segmentation and a change in polarity of an asymmetrical upper/lower plate rift model. To this aim we restore the observed syn- to early post-rift peak temperatures to their paleo-location within sections across the evolving rift system. In the meantime, we conduct numerical models of rift migration leading to asymmetrical extension that are benchmarked with geological and geophysical observations from the Pyrenees. From the models, we extract thermal information at different stages of rifting that are finally compared to the thermal data from the Pyrenean Cretaceous rift basins. This work employs a novel approach by comparing thermal output from numerical modelling with the distribution of peak temperatures and thermal gradient from field data. As such, these results may have substantial implications to further understand the pre-orogenic thermal evolution of the Pyrenean rift system and the role of segmentation. More generally, the results of this work may unravel the role of rift asymmetry and segmentation on the thermal architecture of hyperextended rift basins and margins.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
NASA Astrophysics Data System (ADS)
Mabood, Fazal; Boqué, Ricard; Folcarelli, Rita; Busto, Olga; Al-Harrasi, Ahmed; Hussain, Javid
2015-05-01
We have investigated the effect of thermal treatment on the discrimination of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with sunflower oil. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8 h, in contact with air and with light exposure, to favor oxidation. All samples were then measured with synchronous fluorescence spectroscopy. Fluorescence spectra were acquired by varying the excitation wavelength in the region from 250 to 720 nm. In order to optimize the differences between excitation and emission wavelengths, four constant differential wavelengths, i.e., 20 nm, 40 nm, 60 nm and 80 nm, were tried. Partial least-squares discriminant analysis (PLS-DA) was used to discriminate between pure and adulterated oils. It was found that the 20 nm difference was the optimal, at which the discrimination models showed the best results. The best PLS-DA models were those built with the difference spectra (75-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration. Furthermore, PLS regression models were built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 1.75% of adulteration.
A THC Simulator for Modeling Fluid-Rock Interactions
NASA Astrophysics Data System (ADS)
Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen
2014-05-01
Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations. Permeability of rock is controlled by porosity, which is itself related to effective stress. The theoretical model is solved using explicit finite differences, and runs in parallel mode with OpenMP. The code is fully modular so that any combination of current THC processes, one- and two-phase, can be chosen. Future developments will include dissolution and precipitation of chemical components in addition to chemical erosion.
SABER on Orbit Performance Evaluation and Lessons Learned
NASA Astrophysics Data System (ADS)
Jensen, Scott M.; Batty, J. Clair
2004-06-01
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, launched into orbit December 7, 2001, utilized a miniature pulse-tube cryocooler to maintain the SABER focal plane assembly (FPA) at 75 K. The limited cooling capacity of the cryocooler necessitated the development of a new never before flown Fiber Support Technology (FiST) for supporting and thermally isolating the FPA. A very precise predictive thermal modeling effort to ensure successful operation was also needed due to the very small capacity margin of the cryocooler. A high performance thermal link that minimized the temperature difference between the FPA and the cryocooler cold block and also the mechanical dynamic loading on the fragile pulse tube was developed and space qualified. This paper presents a comparison of the thermal modeling predictions with on orbit measurements, and discusses the lessons learned concerning long term performance issues of thermal isolation systems which utilize cryocoolers for cooling focal plane assemblies (FPA's). The effect of ice deposition on the thermal blankets and other FPA cooled structures, as well as the lessons learned in dealing with this ice deposition, will also be presented.
Multiple parent bodies of ordinary chondrites
NASA Technical Reports Server (NTRS)
Yomogida, K.; Matsui, T.
1984-01-01
Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.
Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.
Cavagnaro, M; Pinto, R; Lopresto, V
2015-04-21
Microwave thermal ablation (MTA) therapies exploit the local absorption of an electromagnetic field at microwave (MW) frequencies to destroy unhealthy tissue, by way of a very high temperature increase (about 60 °C or higher). To develop reliable interventional protocols, numerical tools able to correctly foresee the temperature increase obtained in the tissue would be very useful. In this work, different numerical models of the dielectric and thermal property changes with temperature were investigated, looking at the simulated temperature increments and at the size of the achievable zone of ablation. To assess the numerical data, measurement of the temperature increases close to a MTA antenna were performed in correspondence with the antenna feed-point and the antenna cooling system, for increasing values of the radiated power. Results show that models not including the changes of the dielectric and thermal properties can be used only for very low values of the power radiated by the antenna, whereas a good agreement with the experimental values can be obtained up to 20 W if water vaporization is included in the numerical model. Finally, for higher power values, a simulation that dynamically includes the tissue's dielectric and thermal property changes with the temperature should be performed.
Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen, J.
2012-01-01
This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.
NASA Astrophysics Data System (ADS)
Hink, R.
2015-09-01
The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.
Research on transient thermal process of a friction brake during repetitive cycles of operation
NASA Astrophysics Data System (ADS)
Slavchev, Yanko; Dimitrov, Lubomir; Dimitrov, Yavor
2017-12-01
Simplified models are used in the classical engineering analyses of the friction brake heating temperature during repetitive cycles of operation to determine basically the maximum and minimum brake temperatures. The objective of the present work is to broaden and complement the possibilities for research through a model that is based on the classical scheme of the Newton's law of cooling and improves the studies by adding a disturbance function for a corresponding braking process. A general case of braking in non-periodic repetitive mode is considered, for which a piecewise function is defined to apply pulse thermal loads to the system. Cases with rectangular and triangular waveforms are presented. Periodic repetitive braking process is also studied using a periodic rectangular waveform until a steady thermal state is achieved. Different numerical methods such as the Euler's method, the classical fourth order Runge-Kutta (RK4) and the Runge-Kutta-Fehlberg 4-5 (RKF45) are used to solve the non-linear differential equation of the model. The constructed model allows during pre-engineering calculations to be determined effectively the time for reaching the steady thermal state of the brake, to be simulated actual braking modes in vehicles and material handling machines, and to be accounted for the thermal impact when performing fatigue calculations.
Thermal niche estimators and the capability of poor dispersal species to cope with climate change
Sánchez-Fernández, David; Rizzo, Valeria; Cieslak, Alexandra; Faille, Arnaud; Fresneda, Javier; Ribera, Ignacio
2016-01-01
For management strategies in the context of global warming, accurate predictions of species response are mandatory. However, to date most predictions are based on niche (bioclimatic) models that usually overlook biotic interactions, behavioral adjustments or adaptive evolution, and assume that species can disperse freely without constraints. The deep subterranean environment minimises these uncertainties, as it is simple, homogeneous and with constant environmental conditions. It is thus an ideal model system to study the effect of global change in species with poor dispersal capabilities. We assess the potential fate of a lineage of troglobitic beetles under global change predictions using different approaches to estimate their thermal niche: bioclimatic models, rates of thermal niche change estimated from a molecular phylogeny, and data from physiological studies. Using bioclimatic models, at most 60% of the species were predicted to have suitable conditions in 2080. Considering the rates of thermal niche change did not improve this prediction. However, physiological data suggest that subterranean species have a broad thermal tolerance, allowing them to stand temperatures never experienced through their evolutionary history. These results stress the need of experimental approaches to assess the capability of poor dispersal species to cope with temperatures outside those they currently experience. PMID:26983802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stormont, John; Lampe, Brandon; Mills, Melissa
The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositoriesmore » in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report« less
NASA Technical Reports Server (NTRS)
Hammer, P. G.; Locke, D. R.; Burton, A. S.; Callahan, M. P.
2017-01-01
Organic compounds in carbonaceous chondrites were likely transformed by a variety of parent body processes including thermal and aqueous processing. Here, we analyzed ammonium cyanide reactions that were heated at different temperatures and times by multiple analytical techniques. The goal of this study is to better understand the effect of hydrothermal alteration on cyanide chemistry, which is believed to be responsible for the abiotic synthesis of purine nucleobases and their structural analogs detected in carbonaceous chondrites.
Validity of thermally-driven small-scale ventilated filling box models
NASA Astrophysics Data System (ADS)
Partridge, Jamie L.; Linden, P. F.
2013-11-01
The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...
2016-11-11
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials
NASA Astrophysics Data System (ADS)
Trifale, Ninad T.
A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.
Examination of thermal comfort in a hospital using PMV-PPD model.
Pourshaghaghy, A; Omidvari, M
2012-11-01
In this study, the performance of air conditioning system and the level of thermal comfort are determined in a state hospital located in Kermanshah city in the west of Iran in winter and summer using the Predicted Mean Vote (PMV) model which has been presented by ISO-7730 (2005). The Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) indices were computed using the data acquired from the experimental measurements performed in the building. The results showed that the values of PMV in some parts of the building, both for men and women, are not within the standard acceptable range defined by ISO. It was found that the most thermal problems in winter occur in morning work shift, and the worst thermal conditions in summer occur in noon work shift. The t-test results revealed that there is no noticeable difference between the thermal conditions of some rooms and those of the surroundings. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy
NASA Astrophysics Data System (ADS)
Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan
2017-09-01
Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.