Sample records for difference vegetation index

  1. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong

    2015-12-01

    Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.

  2. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages

    PubMed Central

    Din, Mairaj; Zheng, Wen; Rashid, Muhammad; Wang, Shanqin; Shi, Zhihua

    2017-01-01

    Hyperspectral reflectance derived vegetation indices (VIs) are used for non-destructive leaf area index (LAI) monitoring for precise and efficient N nutrition management. This study tested the hypothesis that there is potential for using various hyperspectral VIs for estimating LAI at different growth stages of rice under varying N rates. Hyperspectral reflectance and crop canopy LAI measurements were carried out over 2 years (2015 and 2016) in Meichuan, Hubei, China. Different N fertilization, 0, 45, 82, 127, 165, 210, 247, and 292 kg ha-1, were applied to generate various scales of VIs and LAI values. Regression models were used to perform quantitative analyses between spectral VIs and LAI measured under different phenological stages. In addition, the coefficient of determination and RMSE were employed to evaluate these models. Among the nine VIs, the ratio vegetation index, normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index (MSAVI), modified triangular vegetation index (MTVI2) and exhibited strong and significant relationships with the LAI estimation at different phenological stages. The enhanced vegetation index performed moderately. However, the green normalized vegetation index and blue normalized vegetation index confirmed that there is potential for crop LAI estimation at early phenological stages; the soil-adjusted vegetation index and optimized soil-adjusted vegetation index were more related to the soil optical properties, which were predicted to be the least accurate for LAI estimation. The noise equivalent accounted for the sensitivity of the VIs and MSAVI, MTVI2, and NDVI for the LAI estimation at phenological stages. The results note that LAI at different crop phenological stages has a significant influence on the potential of hyperspectral derived VIs under different N management practices. PMID:28588596

  3. Application of Hyperspectral Vegetation Indices to Detect Variations in High Leaf Area Index Temperate Shrub Thicket Canopies

    DTIC Science & Technology

    2011-01-01

    sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI ), tend to saturate at...little or no improvement over NDVI . Furthermore, indirect ground-sampling techniques often used to evaluate the potential of vegetation indices also...landscapes makes remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI

  4. Towards the Mitigation of Correlation Effects in the Analysis of Hyperspectral Imagery with Extensions to Robust Parameter Design

    DTIC Science & Technology

    2012-08-01

    Difference Vegetation Index ( NDVI ) ..................................... 15  2.3  Methodology...Atmospheric Compensation ........................................................................ 31  3.2.3.1  Normalized Difference Vegetation Index ( NDVI ...anomaly detection algorithms are contrasted and implemented, and explains the use of the Normalized Difference Vegetation Index ( NDVI ) in post

  5. ESTCP Pilot Project Wide Area Assessment for Munitions Response

    DTIC Science & Technology

    2008-07-01

    Data A broadband normalized difference vegetation index ( NDVI ) was computed from the high- resolution spectral data to provide a detection of canopy...chlorophyll content. The NDVI strongly correlates with the green yucca, cactus, juniper, and other SAR-responsive vegetation species on the site...Vegetation Index. NDVI is broadband normalized difference vegetation index computed from high resolution spectral data using (RED-NIR) / (RED +NIR) to

  6. Relative sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for vegetation and desertification monitoring

    NASA Technical Reports Server (NTRS)

    Becker, Francois; Choudhury, Bhaskar J.

    1988-01-01

    A simple equation relating the Microwave Polarization Difference Index (MPDI) and the Normalized Difference Vegetation Index (NDVI) is proposed which represents well data obtained from Nimbus 7/SMMR at 37 GHz and NOAA/AVHRR Channels 1 and 2. It is found that there is a limit which is characteristic of a particular type of cover for which both indices are equally sensitive to the variation of vegetation, and below which MPDI is more efficient than NDVI. The results provide insight into the relationship between water content and chlorophyll absorption at pixel size scales.

  7. Detection of underground structures using UAV and field spectroscopy for defence and security in Cyprus

    NASA Astrophysics Data System (ADS)

    Melillos, George; Themistocleous, Kyriacos; Prodromou, Maria; Hadjimitsis, Diofantos G.

    2017-10-01

    The purpose of this paper is to present the results obtained from unmanned aerial vehicle (UAV) and field spectroscopy campaigns for detecting underground structures. Underground structures can affect their surrounding landscapes in different ways, such as soil moisture content, soil composition and vegetation vigor. The last is often observed on the ground as a crop mark; a phenomenon which can be used as a proxy to denote the presence of underground non-visible structures. A number of vegetation indices such as the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Difference Vegetation Index (DVI) and Soil Adjusted Vegetation Index (SAVI) were utilized for the development of a vegetation index-based procedure aiming at the detection of underground military structures by using existing vegetation indices or other in-band algorithms. The measurements were taken at the following test areas such as: (a) vegetation area covered with the vegetation (barley), in the presence of an underground military structure (b) vegetation area covered with the vegetation (barley), in the absence of an underground military structure.

  8. A MODIS-based begetation index climatology

    USDA-ARS?s Scientific Manuscript database

    Passive microwave soil moisture algorithms must account for vegetation attenuation of the signal in the retrieval process. One approach to accounting for vegetation is to use vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to estimate the vegetation optical depth. The pa...

  9. An Assessment of Normalized Difference Skin Index Robustness in Aquatic Environments

    DTIC Science & Technology

    2014-03-27

    Index NDSI Normalized Difference Skin Index NDVI Normalized Difference Vegetation Index NIR Near-Infrared SAR Search and Rescue SERG Sensors... Vegetation and water-bearing objects with high scatter tend to have NDSI values similar to human skin , potentially causing false positives in certain...AN ASSESSMENT OF NORMALIZED DIFFERENCE SKIN INDEX ROBUSTNESS IN AQUATIC ENVIRONMENTS THESIS Alice W. Chan, First Lieutenant, USAF AFIT-ENG-14-M-17

  10. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot

    NASA Astrophysics Data System (ADS)

    Naji, Taghreed A. H.

    2018-05-01

    The present work aims to study the effect of using vegetation indices technique on image segmentation for subdividing an image into the homogeneous regions. Three of these vegetation indices technique has been adopted (i.e. Difference Vegetation-Index (DVI), Perpendicular Vegetation Index (PVI) and Weighted Difference Vegetation Index (WDVI)) for detecting and monitoring vegetation distribution and healthiness. Image binarization method being followed the implementation of the indices to isolating the vegetation areas from the image background. The separated agriculture regions from other land use regions and their percentages are presented for two years (2001 and 2002) of the (ETM+) scenes. The counted areas resulted from 2D-space plot technique and the separated vegetated areas resulted from the using of the vegetation indices are also presented. The separated agriculture regions from the implementation of the DVI-index have proved better than other used indices. Because it showed better coincident approximately with 2D-space plot segmentation.

  11. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  12. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  13. Development Of Index To Assess Drought Conditions Using Geospatial Data A Case Study Of Jaisalmer District, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Chhajer, Vaidehi; Prabhakar, Sumati; Rama Chandra Prasad, P.

    2015-12-01

    The Jaisalmer district of Rajasthan province of India was known to suffer with frequent drought due to poor and delayed monsoon, abnormally high summer-temperature and insufficient water resources. However flood-like situation prevails in the drought prone Jaisalmer district of Rajasthan as torrential rains are seen to affect the region in the recent years. In the present study, detailed analysis of meteorological, hydrological and satellite data of the Jaisalmer district has been carried out for the years 2006-2008. Standardized Precipitation Index (SPI), Consecutive Dry Days (CDD) and Effective Drought Index (EDI) have been used to quantify the precipitation deficit. Standardized Water-Level Index (SWI) has been developed to assess ground-water recharge-deficit. Vegetative drought indices like Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Difference Vegetation Index (NDVI) and Modified Soil-Adjusted Vegetation Index 2 have been calculated. We also introduce two new indices Soil based Vegetation Condition Index (SVCI) and Composite Drought Index (CDI) specifically for regions like Jaisalmer where aridity in soil and affects vegetation and water-level.

  14. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  15. Mapping Collective Identity: Territories and Boundaries of Human Terrain

    DTIC Science & Technology

    2011-06-10

    Line MAP-HT Mapping the Human Terrain NDVI Normalized Difference Vegetation Index NGA National Geospatial-Intelligence Agency xi OBIA Object-Based...The Normalized Difference Vegetation Index ( NDVI ) uses the red band to represent the low reflectance from vegetation and the expanded near infrared...spectrum to provide greater delineation of agricultural areas. This layer highlights different fields, crops, and their boundaries. NDVI layers are

  16. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural vegetation showed the strongest correlation with drought index. There existed definite correlations among the climatic factors. If the correlations among the climatic factors were ignored, the significant level of the correlations between NDVI and climatic factors would be somewhat reduced.

  17. [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].

    PubMed

    Tian, Yong-Chao; Yang, Jie; Yao, Xia; Zhu, Yan; Cao, Wei-Xing

    2009-07-01

    Based on field experiments with different rice varieties under different nitrogen application levels, the quantitative relationships of rice leaf area index (LAI) with canopy hyper-spectral parameters at different growth stages were analyzed. Rice LAI had good relationships with several hyper-spectral vegetation indices, the correlation coefficient being the highest with DI (difference index), followed by with RI (ratio index), and NI (normalized index), based on the spectral reflectance or the first derivative spectra. The two best spectral indices for estimating LAI were the difference index DI (854, 760) (based on two spectral bands of 850 nm and 760 nm) and the difference index DI (D676, D778) (based on two first derivative bands of 676 nm and 778 nm). In general, the hyper-spectral vegetation indices based on spectral reflectance performed better than the spectral indices based on the first derivative spectra. The tests with independent dataset suggested that the rice LAI monitoring models with difference index DI (854,760) as the variable could give an accurate LAI estimation, being available for estimation of rice LAI.

  18. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Treesearch

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  19. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index

    PubMed Central

    Wang, Cong; Li, Jing; Wu, Shanlong; Xia, Chuanfu

    2017-01-01

    Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the leaf area index (LAI) are the most widely used vegetation parameters for remote-sensing phenology extraction, this paper aims to assess the differences in phenological information extracted from EVI and LAI time series and to explore whether either index performs well for all vegetation types on a large scale. To this end, a GLASS (Global Land Surface Satellite Product)-LAI-based phenology product (GLP) was generated using the same algorithm as the MODIS (Moderate Resolution Imaging Spectroradiometer)-EVI phenology product (MLCD) over China from 2001 to 2012. The two phenology products were compared in China for different vegetation types and evaluated using ground observations. The results show that the ratio of missing data is 8.3% for the GLP, which is less than the 22.8% for the MLCD. The differences between the GLP and the MLCD become stronger as the latitude decreases, which also vary among different vegetation types. The start of the growing season (SOS) of the GLP is earlier than that of the MLCD in most vegetation types, and the end of the growing season (EOS) of the GLP is generally later than that of the MLCD. Based on ground observations, it can be suggested that the GLP performs better than the MLCD in evergreen needleleaved forests and croplands, while the MLCD performs better than the GLP in shrublands and grasslands. PMID:28867773

  1. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    NASA Astrophysics Data System (ADS)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  2. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates

    NASA Technical Reports Server (NTRS)

    Running, Steven W.; Nemani, Ramakrishna R.

    1988-01-01

    Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.

  3. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  4. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    PubMed

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  5. On the terminology of the spectral vegetation index (NIR – SWIR)/(NIR + SWIR)

    USGS Publications Warehouse

    Ji, Lel; Zhang, Li; Wylie, Bruce K.; Rover, Jennifer R.

    2011-01-01

    The spectral vegetation index (ρNIR – ρSWIR)/(ρNIR + ρSWIR), where ρNIR and ρSWIR are the near-infrared (NIR) and shortwave-infrared (SWIR) reflectances, respectively, has been widely used to indicate vegetation moisture condition. This index has multiple names in the literature, including infrared index (II), normalized difference infrared index (NDII), normalized difference water index (NDWI), normalized difference moisture index (NDMI), land surface water index (LSWI), and normalized burn ratio (NBR), etc. After reviewing each term’s definition, associated sensors, and channel specifications, we found that the index consists of three variants, differing only in the SWIR region (1.2–1.3 µm, 1.55–1.75 µm, or 2.05–2.45 µm). Thus, three terms are sufficient to represent these three SWIR variants; other names are redundant and therefore unnecessary. Considering the spectral representativeness, the term’s popularity, and the “rule of priority” in scientific nomenclature, NDWI, NDII, and NBR, each corresponding to the three SWIR regions, are more preferable terms.

  6. Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort

    Treesearch

    Geoffrey H. Donovan; Demetrios Gatziolis; Ian Longley; Jeroen Douwes

    2018-01-01

    We assessed the association between the natural environment and asthma in 49,956 New Zealand children born in 1998 and followed up until 2016 using routinely collected data. Children who lived in greener areas, as measured by the normalized difference vegetation index, were less likely to be asthmatic: a 1 s.d. increase in normalized difference vegetation index was...

  7. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)

    USGS Publications Warehouse

    Wilson, Natalie R.; Norman, Laura

    2018-01-01

    Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports and even increases vegetation health despite ongoing drought conditions in this arid watershed. However, the extent of restoration impacts is still unknown despite qualitative observations of improvement in surrounding vegetation amount and vigor. We analyzed spatial and temporal trends in vegetation greenness and soil moisture by applying the normalized difference vegetation index (NDVI) and normalized difference infrared index (NDII) to one dry summer season Landsat path/row from 1984 to 2016. The study area was divided into zones and spectral data for each zone was analyzed and compared with precipitation record using statistical measures including linear regression, Mann– Kendall test, and linear correlation. NDVI and NDII performed differently due to the presence of continued grazing and the effects of grazing on canopy cover; NDVI was better able to track changes in vegetation in areas without grazing while NDII was better at tracking changes in areas with continued grazing. Restoration impacts display higher greenness and vegetation water content levels, greater increases in greenness and water content through time, and a decoupling of vegetation greenness and water content from spring precipitation when compared to control sites in nearby tributary and upland areas. Our results confirm the potential of erosion control structures to affect areas up to 5 km downstream of restoration sites over time and to affect 1 km upstream of the sites.

  8. Sensitivity analysis of the Commonly Used Drought Indices on the different land use Types - Case Study over Turkey

    NASA Astrophysics Data System (ADS)

    Ersoy, E. N.; Hüsami Afşar, M.; Bulut, B.; Onen, A.; Yilmaz, M. T.

    2017-12-01

    Droughts are climatic phenomenon that may impact large and small regions alike for long or short time periods and influence society in terms of industrial, agricultural, domestic and many more aspects. The characteristics of the droughts are commonly investigated using indices like Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI). On the other hand, these indices may not necessarily yield similar performance over different vegetation types. The aim is to analyze the sensitivity of drought indices (SPI, SPEI, PDSI) to vegetation types over different climatic regions in Turkey. Here the magnitude of the drought severity is measured using MODIS NDVI data, while the vegetation type (e.g., non-irrigated arable lands, vineyards, fruit trees and berry plantations, olive groves, pastures, land principally occupied by agriculture) information is obtained using CORINE land cover classification. This study has compared the drought characteristics and vegetation conditions on different land use types using remotely sensed datasets (e.g., CORINE land use data, MODIS NDVI), and commonly used drought indices between 2000 and 2016 using gauge based precipitation and temperature measurements.

  9. Normalized difference vegetation index (NDVI) variation among cultivars and environments

    USDA-ARS?s Scientific Manuscript database

    Although Nitrogen (N) is an essential nutrient for crop production, large preplant applications of fertilizer N can result in off-field loss that causes environmental concerns. Canopy reflectance is being investigated for use in variable rate (VR) N management. Normalized difference vegetation index...

  10. Soybean varieties discrimination using non-imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    da Silva Junior, Carlos Antonio; Nanni, Marcos Rafael; Shakir, Muhammad; Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; Cezar, Everson; de Gois, Givanildo; Lima, Mendelson; Wojciechowski, Julio Cesar; Shiratsuchi, Luciano Shozo

    2018-03-01

    Infrared region of electromagnetic spectrum has remarkable applications in crop studies. Infrared along with Red band has been used to develop certain vegetation indices. These indices like NDVI, EVI provide important information on any crop physiological stages. The main objective of this research was to discriminate 4 different soybean varieties (BMX Potência, NA5909, FT Campo Mourão and Don Mario) using non-imaging hyperspectral sensor. The study was conducted in four agricultural areas in the municipality of Deodápolis (MS), Brazil. For spectral analysis, 2400 field samples were taken from soybean leaves by means of FieldSpec 3 JR spectroradiometer in the range from 350 to 2500 nm. The data were evaluated through multivariate analysis with the whole set of spectral curves isolated by blue, green, red and near infrared wavelengths along with the addition of vegetation indices like (Enhanced Vegetation Index - EVI, Normalized Difference Vegetation Index - NDVI, Green Normalized Difference Vegetation Index - GNDVI, Soil-adjusted Vegetation Index - SAVI, Transformed Vegetation Index - TVI and Optimized Soil-Adjusted Vegetation Index - OSAVI). A number of the analysis performed where, discriminant (60 and 80% of the data), simulated discriminant (40 and 20% of data), principal component (PC) and cluster analysis (CA). Discriminant and simulated discriminant analyze presented satisfactory results, with average global hit rates of 99.28 and 98.77%, respectively. The results obtained by PC and CA revealed considerable associations between the evaluated variables and the varieties, which indicated that each variety has a variable that discriminates it more effectively in relation to the others. There was great variation in the sample size (number of leaves) for estimating the mean of variables. However, it was possible to observe that 200 leaves allow to obtain a maximum error of 2% in relation to the mean.

  11. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J. (Principal Investigator)

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation.

  12. [Cross comparison of ASTER and Landsat ETM+ multispectral measurements for NDVI and SAVI vegetation indices].

    PubMed

    Xu, Han-qiu; Zhang, Tie-jun

    2011-07-01

    The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.

  13. Linking in situ LAI and fine resolution remote sensing data to map reference LAI over cropland and grassland using geostatistical regression method

    NASA Astrophysics Data System (ADS)

    He, Yaqian; Bo, Yanchen; Chai, Leilei; Liu, Xiaolong; Li, Aihua

    2016-08-01

    Leaf Area Index (LAI) is an important parameter of vegetation structure. A number of moderate resolution LAI products have been produced in urgent need of large scale vegetation monitoring. High resolution LAI reference maps are necessary to validate these LAI products. This study used a geostatistical regression (GR) method to estimate LAI reference maps by linking in situ LAI and Landsat TM/ETM+ and SPOT-HRV data over two cropland and two grassland sites. To explore the discrepancies of employing different vegetation indices (VIs) on estimating LAI reference maps, this study established the GR models for different VIs, including difference vegetation index (DVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI). To further assess the performance of the GR model, the results from the GR and Reduced Major Axis (RMA) models were compared. The results show that the performance of the GR model varies between the cropland and grassland sites. At the cropland sites, the GR model based on DVI provides the best estimation, while at the grassland sites, the GR model based on DVI performs poorly. Compared to the RMA model, the GR model improves the accuracy of reference LAI maps in terms of root mean square errors (RMSE) and bias.

  14. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    PubMed

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  15. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest.

    PubMed

    Matsushita, Bunkei; Yang, Wei; Chen, Jin; Onda, Yuyichi; Qiu, Guoyu

    2007-11-05

    Vegetation indices play an important role in monitoring variations in vegetation.The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Groupand the Normalized Difference Vegetation Index (NDVI) are both global-based vegetationindices aimed at providing consistent spatial and temporal information regarding globalvegetation. However, many environmental factors such as atmospheric conditions and soilbackground may produce errors in these indices. The topographic effect is another veryimportant factor, especially when the indices are used in areas of rough terrain. In thispaper, we theoretically analyzed differences in the topographic effect on the EVI and theNDVI based on a non-Lambertian model and two airborne-based images acquired from amountainous area covered by high-density Japanese cypress plantation were used as a casestudy. The results indicate that the soil adjustment factor "L" in the EVI makes it moresensitive to topographic conditions than is the NDVI. Based on these results, we stronglyrecommend that the topographic effect should be removed in the reflectance data beforethe EVI was calculated-as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)-when these indices are used in the area of rough terrain, where the topographic effect on the vegetation indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  16. Estimation on rubber tree disturbance caused by typhoon Damery (200518) with Landsat and MODIS data in Hainan Island of China

    NASA Astrophysics Data System (ADS)

    Tan, Chenyan; Fang, Weihua; Li, Jian

    2016-04-01

    In 2005, Typhoon Damery (200518) caused severe damage to the rubber trees in Hainan Island with its destructive winds and rainfall. Selection of proper vegetation indices using multi-source remote sensing data is critical to the assessment of forest disturbance and damage loss for this event. In this study, we will compare the performance of seven vegetation indices derived from MODIS and Landsat TM imageries prior to and after typhoon Damery, in order to select an optimal index for identifying rubber tree disturbance. The indices to be compared are normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), Enhanced vegetation index (EVI), Leaf area index (LAI), forest z-score (IFZ), and Disturbance Index (DI). The ground truth data of rubber tree damage collected through field investigation was used to verify and compare the results. Our preliminary result for the area with ground-truth data shows that DI has the most significant performance for disturbance detection for this typhoon event. This index DI is then applied to all the areas in Hainan Island hit by Darmey to evaluate the overall forest damage severity. At last, rubber tree damage severity is analyzed with other typhoon hazard factors such as wind, topography, soil and precipitation.

  17. Developing a Method to Mask Trees in Commercial Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Becker, S. J.; Daughtry, C. S. T.; Jain, D.; Karlekar, S. S.

    2015-12-01

    The US Army has an increasing focus on using automated remote sensing techniques with commercial multispectral imagery (MSI) to map urban and peri-urban agricultural and vegetative features; however, similar spectral profiles between trees (i.e., forest canopy) and other vegetation result in confusion between these cover classes. Established vegetation indices, like the Normalized Difference Vegetation Index (NDVI), are typically not effective in reliably differentiating between trees and other vegetation. Previous research in tree mapping has included integration of hyperspectral imagery (HSI) and LiDAR for tree detection and species identification, as well as the use of MSI to distinguish tree crowns from non-vegetated features. This project developed a straightforward method to model and also mask out trees from eight-band WorldView-2 (1.85 meter x 1.85 meter resolution at nadir) satellite imagery at the Beltsville Agricultural Research Center in Beltsville, MD spanning 2012 - 2015. The study site included tree cover, a range of agricultural and vegetative cover types, and urban features. The modeling method exploits the product of the red and red edge bands and defines accurate thresholds between trees and other land covers. Results show this method outperforms established vegetation indices including the NDVI, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Simple Ratio, and Normalized Difference Red Edge Index in correctly masking trees while preserving the other information in the imagery. This method is useful when HSI and LiDAR collection are not possible or when using archived MSI.

  18. Comparison of Topographic Effects between the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.

    2007-12-01

    Vegetation indices play an important role in monitoring variations in vegetation. The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Group and the Normalized Difference Vegetation Index (NDVI) are both global-based vegetation indices aimed at providing consistent spatial and temporal information regarding global vegetation. However, many environmental factors such as atmospheric conditions and soil background may produce errors in these indices. The topographic effect is another very important factor, especially when the indices are used in areas of rough terrain. In this paper, we analyzed differences in the topographic effect between the EVI and the NDVI based on a non-Lambertian model and using two airborne-based images with a spatial resolution of 1.5m acquired from a mountainous area covered by a homogeneous Japanese cypress plantation. The results indicate that the soil adjustment factor "L" in the EVI makes it more sensitive to topographic conditions than is the NDVI. Based on these results, we strongly recommend that the topographic effect be removed from the EVI--as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)--when these indices are used in conjunction with a high spatial resolution image of an area of rough terrain, where the topographic effect on the vegetarian indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  19. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    USGS Publications Warehouse

    Gu, Yingxin; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, Jesslyn F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  20. Satellite assessment of early-season forecasts for vegetation conditions of grazing allotments in Nevada, United States

    USDA-ARS?s Scientific Manuscript database

    Fifteen years of enhanced vegetation index data from the MODIS sensor are examined in conjunction with precipitation and the Palmer drought severity index to assess how well growing season conditions for vegetation within grazing allotments of Nevada can be predicted at different times of the year. ...

  1. Multiscaling of vegetative indexes from remote sensing images obtained at different spatial resolutions

    NASA Astrophysics Data System (ADS)

    Alonso, Carmelo; Tarquis, Ana M.; Zuñiga, Ignacio; Benito, Rosa M.

    2017-04-01

    Vegetation indexes, such as Normalized Difference Vegetation Index (NDVI) and enhanced Vegetation index (EVI), can been used to estimate root zone soil moisture through high resolution remote sensing images. These indexes are based in red (R), near infrared (NIR) and blue (B) wavelengths data. In this work we have studied the scaling properties of both vegetation indexes analyzing the information contained in two satellite data: Landsat-7 and Ikonos. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends possible data archives from present time to over several decades back. For this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. To study the influence of the spatial resolution the vegetation indexes map estimated with Ikonos-2 coded in 8 bits, with a resolution of 4m, have been compared through a multifractal analysis with the ones obtained with Lansat-7 8 bits, of 30 m. resolution, on the same area of study. The scaling behaviour of NDVI and EVI presents several differences that will be discussed based on the multifractal parameters extracted from the analysis. REFERENCES Alonso, C., Tarquis, A. M., Benito, R. M. and Zuñiga, I. Correlation scaling properties between soil moisture and vegetation indices. Geophysical Research Abstracts, 11, EGU2009-13932, 2009. Alonso, C., Tarquis, A. M. and Benito, R. M. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors. Geophysical Research Abstracts, 14, EGU2012-14342, 2012. Escribano Rodriguez, J., Alonso, C., Tarquis, A.M., Benito, R.M. and Hernandez Diaz-Ambrona, C. Comparison of NDVI fields obtained from different remote sensors. Geophysical Research Abstracts,15, EGU2013-14153, 2013. Lovejoy, S., Tarquis, A., Gaonac'h, H. and Schertzer, D. Single and multiscale remote sensing techniques, multifractals and MODIS derived vegetation and soil moisture, Vadose Zone J., 7, 533-546, 2008. Renosh, P. R., Schmitt, F. G., and Loisel, H.: Scaling analysis of ocean surface turbulent heterogeneities from satellite remote sensing: use of 2D structure functions. PLoS ONE, 10, e0126975, 2015. Tarquis, A.M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M. and Redondo J. M. Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlin. Processes Geophys., 21, 439-450, 2014.

  2. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927

  3. Salinity modeling by remote sensing in central and southern Iraq

    NASA Astrophysics Data System (ADS)

    Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.

    2012-12-01

    Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence level of 95% in a stepwise (forward) manner. The results reveal that soil salinity and EM38 readings are negatively correlated with the different vegetation indices, especially, GDVI and NDVI, and positively correlated with T. The models obtained for the pilot sites are presented in Table 1. Although we are still waiting for more laboratory analytical result and satellite imagery for more comprehensive analysis, it is clearly possible to build up salinity models by remote sensing, on which further salinity mapping and assessment can be based. It is also noted that among all the vegetation indices, GDVI is the best salinity indicator followed by NDVI and T. RapidEye image shows lower correlation with EM38 measurements and EC because fallow and crop rotation issue cannot be sorted out by one acquisition image.Table 1: Salinity models obtained from the pilot sitesNote: EMV- Vertical reading of EM38, EC - Electrical conductivity in dS/m

  4. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  5. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  6. Assessing corn water stress using spectral reflectance

    NASA Astrophysics Data System (ADS)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water stress as indicated by good R2 values (Nratio = 0.53, G ratio=0.46, Oratio=0.49) and low RMSE values (Nratio = 0.076, Gratio=0.062, Oratio=0.076) when compared to Ks. Therefore it can be concluded that corn spectral reflectance is sensitive to water stress. In order to use spectral reflectance to manage crop water stress an irrigation trigger point of 0.93 for the vegetation ratios was determined. These results were validated using data collected by a MSR5 multispectral sensor in an adjacent field (SWIIM Field). The results from the second field proved better than in the main field giving higher R 2 values (Nratio = 0.66, Gratio = 0.63, Oratio = 0.66), and lower RMSE values (Nratio = 0.043, Gratio = 0.036, Oratio = 0.043) between Ks and the vegetation indices. SWIIM field further validated the results that spectral reflectance can be used to monitor corn water stress.

  7. A special vegetation index for the weed detection in sensor based precision agriculture.

    PubMed

    Langner, Hans-R; Böttger, Hartmut; Schmidt, Helmut

    2006-06-01

    Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).

  8. Comparison of remote sensing indices for monitoring of desert cienegas

    USGS Publications Warehouse

    Wilson, Natalie R.; Norman, Laura M.; Villarreal, Miguel; Gass, Leila; Tiller, Ron; Salywon, Andrew

    2016-01-01

    This research considers the applicability of different vegetation indices at 30 m resolution for mapping and monitoring desert wetland (cienega) health and spatial extent through time at Cienega Creek in southeastern Arizona, USA. Multiple stressors including the risk of decadal-scale drought, the effects of current and predicted global warming, and continued anthropogenic pressures threaten aquatic habitats in the southwest and cienegas are recognized as important sites for conservation and restoration efforts. However, cienegas present a challenge to satellite-imagery based analysis due to their small size and mixed surface cover of open water, exposed soils, and vegetation. We created time series of five well-known vegetation indices using annual Landsat Thematic Mapper (TM) images retrieved during the April–June dry season, from 1984 to 2011 to map landscape-level distribution of wetlands and monitor the temporal dynamics of individual sites. Indices included the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Infrared Index (NDII). One topographic index, the Topographic Wetness Index (TWI), was analyzed to examine the utility of topography in mapping distribution of cienegas. Our results indicate that the NDII, calculated using Landsat TM band 5, outperforms the other indices at differentiating cienegas from riparian and upland sites, and was the best means to analyze change. As such, it offers a critical baseline for future studies that seek to extend the analysis of cienegas to other regions and time scales, and has broader applicability to the remote sensing of wetland features in arid landscapes.

  9. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  10. Remote sensing technologies applied to the irrigation water management on a golf course

    NASA Astrophysics Data System (ADS)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates and managed stress. The ETL was obtained thru the use of mobile reference ET stations and also by the development of the surface renewal (SR) measurement technique. The sprinkler irrigation system installed was evaluated according to the methodology described by ASAE. The Normalized Difference Vegetation Index, NDVI, and Visible atmospherically Resistant Index, VARI, are confronted with the direct localized measurements. The NDVI is the most used indicator to assess the vigor status of the vegetation. However, this index depends of the use of NIR bands which demands quite expensive sensors. The use vegetation indexes obtained by sensors that collect data in the visible wavelength, such as VARI is less expensive and allow the vegetative vigor evaluation with a similar rigor. The information of vegetation indices is crossed with edafoclimatic data obtained in situ, in order to improve the irrigation water management based on aerial imagery.

  11. Abstracting GIS Layers from Hyperspectral Imagery

    DTIC Science & Technology

    2009-03-01

    Difference Vegetative Index ( NDVI ) 2-20 2.2.10 Separating Trees from Grass . . . . . . . . . . . 2-22 2.3 Spatial Analysis...2-18 2.10. Example of the Normalized Difference Vegetation Index ( NDVI ) applied to a hyperspectral image. . . . . . . . . . . . . . . . . . 2-20...3.5. Example of applying NDVI to a SOM. . . . . . . . . . . . . . . 3-8 3.6. Visualization of the NIR scatter tree ID algorithm. . . . . . . . 3-9 ix

  12. Biodiversity Measurement Using Indices Based on Hyperspectral Reflectance on the Coast of Lagos

    NASA Astrophysics Data System (ADS)

    Omodanisi, E. O.; Salami, A. T.

    2013-12-01

    Hyperspectral measurements provide explicit measurements which can be used in the analysis of biodiversity change. This study was carried out in the coastal area of Lagos State, Nigeria. The objective of this study was to determine if gasoline seepage affects vegetation species distribution and reflectance; with the view to analyzing the vegetation condition. To evaluate the potential of different reflectance spectroscopy of species, the ASD Handheld2 Spectrometer was used. Three identified impacted plots of 30m by 30m were selected randomly and a control plot established in relatively undisturbed vegetated areas away from but perpendicular to the source of seepage. Each identified plot and the control consisted of five transects and measurement were taken at every 2m with about four reflectance measurement per sample point, to average out differences in reflectance as a result of different leaf angles. The radiance output of the spectrometer was converted into reflectance using the reflectance of a white reference over a standardized white spectralon panel. Indices such as Normalized Differential Vegetation Index, RedEdge Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index, Ratio Vegetation Index and Volgelmann RedEdge Index 1 were calculated to accurately estimate the chlorophyll content in the vegetation within optimal band wavelength. Shannon-Weiner's index, Spearman's rank correlation and Analysis of Variance were used to analyze the data. Cocos nucifera was observed to be the most dominant species with a relative abundance of 47.27% while Ananas comosus recorded the lowest relative abundance of 21.8%. In the control plot, Cocos nucifera had the highest relative abundance of 42.3% and Mangifera indica with the least relative abundance of 16.7%. The relationship between the indices and chlorophyll content of the vegetation were significantly higher at (p>0.01) for all the indices in all the plots; however, RedEdgeNDVI and VOG1 indices had the highest occurring frequency among the entire plots. Thus they were used to distinguish relatively healthy from relatively unhealthy vegetation and it was statistically higher at F-ratio 4.825 (p<0.01) and 3.194 (p<0.01) respectively. It was concluded that gasoline affected the condition of vegetation.Table 2: Spearman's rank correlation analysis for relating indices with chlorophyll content for the field data at p>0.01, rho - correlation coefficient. (Source: Author: 2012) Field Spectral Indices Measurement The measurement above is the averaged value for the entire transect in each plot.(Source: Author, 2012)

  13. Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Lin, Bing

    2005-01-01

    A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.

  14. Pathfinder, Volume 7, Number 6, November/December 2009

    DTIC Science & Technology

    2009-12-01

    identified forest vegetation between 2005 and 2008 using normalized difference vegetation index ( NDVI ) measurements derived from low-resolution, com...posite images. Vegetation indices, including NDVI , are helpful for monitoring the health and vigor of vegetation and are used in products displaying

  15. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  16. Stability of spatial distributions of stink bugs, boll injury, and NDVI in cotton

    USDA-ARS?s Scientific Manuscript database

    A two-year study was conducted to determine the degree of aggregation of thrips, stink bugs, and aphids in cotton, Gossypium hirsutum L., and their spatial association with soil apparent electrical conductivity (ECa), a multispectral vegetation index (Normalized Difference Vegetation Index [NDVI]), ...

  17. Biophysical characterization and management effects on semiarid rangeland observed from Landsat ETM+ data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Hongliang; Liang, Shunlin; McClaran, Mitchell P.

    2005-01-20

    Semi-arid rangelands are very sensitive to global climatic change; studies of their biophysical attributes are crucial to understanding the dynamics of rangeland ecosystems under human disturbance. In the Santa Rita Experimental Range (SRER), Arizona, the vegetation has changed considerably and there have been many management activities applied. This study calculates seven surface variables: the enhanced vegetation index (EVI), the normalized difference vegetation index (NDVI), surface albedos (total shortwave, visible and near-infrared), leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by green vegetation (FPAR) from the Enhanced Thematic Mapper (ETM+) data. Comparison with the MODIS (Moderate Resolutionmore » Imaging Spectroradiometer) vegetation index and albedo products indicate they agree well with our estimates from ETM+ while their LAI and FPAR are larger than ETM+. Human disturbance has significantly changed the cover types and biophysical conditions. Statistical tests indicate that surface albedos increased and FPAR decreased at all sites. The recovery will require more than 67 years, and is about 50% complete within 40 years at the higher elevation. Grass cover, vegetation indices, albedos and LAI recovered from cutting faster at the higher elevation. Woody plants, vegetation indices and LAI have recovered to their original characteristics after 65 years at the lower elevation. More studies are needed to examine the spectral characteristics of different ground components.« less

  18. Performance of vegetation indices from Landsat time series in deforestation monitoring

    NASA Astrophysics Data System (ADS)

    Schultz, Michael; Clevers, Jan G. P. W.; Carter, Sarah; Verbesselt, Jan; Avitabile, Valerio; Quang, Hien Vu; Herold, Martin

    2016-10-01

    The performance of Landsat time series (LTS) of eight vegetation indices (VIs) was assessed for monitoring deforestation across the tropics. Three sites were selected based on differing remote sensing observation frequencies, deforestation drivers and environmental factors. The LTS of each VI was analysed using the Breaks For Additive Season and Trend (BFAST) Monitor method to identify deforestation. A robust reference database was used to evaluate the performance regarding spatial accuracy, sensitivity to observation frequency and combined use of multiple VIs. The canopy cover sensitive Normalized Difference Fraction Index (NDFI) was the most accurate. Among those tested, wetness related VIs (Normalized Difference Moisture Index (NDMI) and the Tasselled Cap wetness (TCw)) were spatially more accurate than greenness related VIs (Normalized Difference Vegetation Index (NDVI) and Tasselled Cap greenness (TCg)). When VIs were fused on feature level, spatial accuracy was improved and overestimation of change reduced. NDVI and NDFI produced the most robust results when observation frequency varies.

  19. Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.

    1987-01-01

    The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.

  20. Using Panchromatic Imagery in Place of Multispectral Imagery for Kelp Detection in Water

    DTIC Science & Technology

    2010-01-01

    Normalized Difference Vegetation Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong...response of vegetation in the NIR, and can be reliably detected by means of a simple threshold; overall brightness is generally proportional to the NDVI ...Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong response of vegetation in the NIR, and

  1. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  2. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    PubMed

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  3. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  4. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is studied. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. The spectral biomass estimate of a broadleaf canopy is most similar to the harvest biomass estimate when a broadleaf canopy radiance model is used. All major wetland vegetation species can be identified through TM imagery. Simple regression models are developed equating the vegetation index and the infrared index with biomass. The spectral radiance index largely agreed with harvest biomass estimates.

  5. Development and Testing of a Laboratory Spray Table Methodology to Bioassay Simulated Levels of Aerial Spray Drift

    DTIC Science & Technology

    2009-05-01

    was measured on Mylar cards through fluorometric analysis. Plant health measures height and normalized difference vegetation index NDVI were...plant health data were used to generate dose-response relationships. Dose-response curves relating change in plant height and change in measured NDVI ...Held Sensor Model 505, NTech Industries, Inc., Ukiah, California to measure the normalized difference vegetation index NDVI which is directly

  6. Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Park, T.; Hu, B.

    2018-02-01

    Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.

  7. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index.

    PubMed

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-07-08

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.

  8. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Dietary Patterns and Body Mass Index in Children with Autism and Typically Developing Children

    ERIC Educational Resources Information Center

    Evans, E. Whitney; Must, Aviva; Anderson, Sarah E.; Curtin, Carol; Scampini, Renee; Maslin, Melissa; Bandini, Linda

    2012-01-01

    To determine whether dietary patterns (juice and sweetened non-dairy beverages, fruits, vegetables, fruits and vegetables, snack foods, and kid's meals) and associations between dietary patterns and body mass index (BMI) differed between 53 children with autism spectrum disorders (ASD) and 58 typically developing children, ages 3-11, multivariate…

  10. A Candidate Vegetation Index of Biological Integrity Based on Species Dominance and Habitat Fidelity

    USGS Publications Warehouse

    Gara, Brian D; Stapanian, Martin A.

    2015-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.

  11. Foliar anthocyanin content - Sensitivity of vegetation indices using green reflectance

    NASA Astrophysics Data System (ADS)

    Vina, A.; Gitelson, A. A.

    2009-12-01

    The amount and composition of photosynthetic and non-photosynthetic foliar pigments varies primarily as a function of species, developmental and phenological stages, and environmental stresses. Information on the absolute and relative amounts of these pigments thus provides insights onto the physiological conditions of plants and their responses to stress, and has the potential to be used for evaluating plant species composition and diversity across broad geographic regions. Anthocyanins in particular, are non-photosynthetic pigments associated with the resistance of plants to environmental stresses (e.g., drought, low soil nutrients, high radiation, herbivores, and pathogens). As they absorb radiation primarily in the green region of the electromagnetic spectrum (around 540-560 nm), broad-band vegetation indices that use this region in their formulation will respond to their presence. We evaluated the sensitivity of three vegetation indices using reflectance in the green spectral region (the green Normalized Difference Vegetation Index, gNDVI, the green Chlorophyll Index, CIg, and the Visible Atmospherically Resistant Vegetation Index, VARI) to foliar anthocyanins in five different species. For comparison purposes the widely used Normalized Difference Vegetation Index, NDVI was also evaluated. Among the four indices tested, the VARI, which uses only spectral bands in the visible region of the electromagnetic spectrum, was found to be inversely and linearly related to the relative amount of foliar anthocyanins. While this result was obtained at leaf level, it opens new possibilities for analyzing anthocyanin content across multiple scales, by means of currently operational aircraft- and spacecraft-mounted broad-band sensor systems. Further studies that evaluate the sensitivity of the VARI to the relative content of anthocyanins across space (e.g., at canopy and regional scales) and time, and its relationship with plant biodiversity and vegetation stresses, are needed.

  12. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  13. Comparison of AVHRR and SMMR data for monitoring vegetation phenology on a continental scale

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Choudhury, B. J.

    1989-01-01

    AVHRR normalized difference vegetation index (NDVI) data for a one-year period were compared with Scanning Multichannel Microwave Radiometer microwave polarization difference temperature (MPDT) data for the study of vegetation phenology. It is shown that the MPDT response differs considerably from the seasonal NDVI pattern. The results do not support the hypothetical relationship between MPDT and leaf water content. It is found that only vegetation types with a substantial seasonal variation in the areal extent of vegetated cover show strong seasonality in MPDT data.

  14. Comparison of Vegetation Indices from Rpas and SENTINEL-2 Imagery for Detecting Permanent Pastures

    NASA Astrophysics Data System (ADS)

    Piragnolo, M.; Lusiani, G.; Pirotti, F.

    2018-04-01

    Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.

  15. Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition.

    PubMed

    Liu, Pudong; Shi, Runhe; Zhang, Chao; Zeng, Yuyan; Wang, Jiapeng; Tao, Zhu; Gao, Wei

    2017-10-31

    The invasive species Spartina alterniflora and native species Phragmites australis display a significant co-occurrence zonation pattern and this co-exist region exerts most competitive situations between these two species, competing for the limited space, directly influencing the co-exist distribution in the future. However, these two species have different growth ratios in this area, which increase the difficulty to detect the distribution situation directly by remote sensing. As chlorophyll content is a key indicator of plant growth and physiological status, the objective of this study was to reduce the effect of interspecies competition when estimating Cab content; we evaluated 79 published representative indices to determine the optimal indices for estimating the chlorophyll a and b (Cab) content. After performing a sensitivity analysis for all 79 spectral indices, five spectral indices were selected and integrated using an artificial neural network (ANN) to estimate the Cab content of different competition ratios: the Gitelson ratio green index, the transformed chlorophyll absorption ratio index/optimized soil-adjusted vegetation index, the modified normalized difference vegetation index, the chlorophyll fluorescence index, and the Vogelmann chlorophyll index. The ANN method yielded better results (R 2  = 0.7110 and RMSE = 8.3829 μg cm -2 ) on average than the best single spectral index (R 2  = 0.6319 and RMSE = 9.3535 μg cm -2 ), representing an increase of 10.78% in R 2 and a decrease of 10.38% in RMSE. Our results indicated that integrating multiple vegetation indices with an ANN can alleviate the impact of interspecies competition and achieve higher estimation accuracy than the traditional approach using a single index.

  16. Integrated study of biomass index in La Herreria (Sierra de Guadarrama)

    NASA Astrophysics Data System (ADS)

    Hernandez Díaz-Ambrona, Carlos G.

    2016-04-01

    Drought severity has many implications for society, including its impacts on the water supply, water pollution, reservoir management and ecosystem. There have been many attempts to characterize its severity, resulting in the numerous drought indices that have been developed (Niemeyer 2008). The'biomass index', based on satellite image derived Normalized Difference Vegetation Index (NDVI) has been used in several countries for pasture and forage crops for some years (Rao, 2010; Escribano-Rodriguez et al., 2014). NDVI generally provides a broad overview of the vegetation condition and spatial vegetation distribution in a region. Vegetative drought is closely related with weather impacts. However, in NDVI, the weather component gets subdued by the strong ecological component. Another vegetation index is Vegetation Condition Index (VCI) that separates the short-term weather-related NDVI fluctuations from the long-term ecosystem changes (Kogan, 1990). Therefore, while NDVI shows seasonal vegetation dynamics, VCI rescales vegetation dynamics between 0 and 100 to reflect relative changes in the vegetation condition from extremely bad to optimal (Kogan et al., 2003). In this work a pasture area at La Herreria (Sierra de Guadarrama, Spain) has been delimited. Then, NDVI historical data are reconstructed based on remote sensing imaging MODIS, with 500x500m2 resolution. From the closest meteorological station (Santolaria-Canales, 2015) records of weekly precipitation, temperature and evapotranspiration from 2001 till 2012 were obtained. Standard Precipitation Index (SPI), Crop Moisture Index (CMI) (Palmer, 1968) and Evapotranspiration-Precipitation Ratio (EPR) are calculated in an attempt to relate them to several vegetation indexes: NDVI, VCI and NDVI Change Ratio to Median (RMNDVI). The results are discussed in the context of pasture index insurance. References Escribano Rodriguez, J.Agustín, Carlos Gregorio Hernández Díaz-Ambrona and Ana María Tarquis Alfonso. Selection of vegetation indices to estimate pasture production in Dehesas. PASTOS, 44(2), 6-18, 2014. Kogan, F. N., 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sensing, 11(8), pp. 1405-1419. Kogan, F. N., Gitelson, A., Edige, Z., Spivak, l., and Lebed, L., 2003. AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity: Calibration and Validation. Photogrammetric Engineering & Remote Sensing, 69(8), pp. 899-906. Niemeyer, S., 2008. New drought indices. First Int. Conf. on Drought Management: Scientific and Technological Innovations, Zaragoza, Spain, Joint Research Centre of the European Commission. Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: The new Crop Moisture Index. Weatherwise 21, 156-161. Rao, K.N. 2010. Index based Crop Insurance. Agriculture and Agricultural Science Procedia 1, 193-203. Santolaria-Canales, Edmundo and the GuMNet Consortium Team (2015). GuMNet - Guadarrama Monitoring Network. Installation and set up of a high altitude monitoring network, north of Madrid. Spain. Geophysical Research Abstracts, 17, EGU2015-13989-2 Web: http://www.ucm.es/gumnet/

  17. [Effects of re-vegetation on soil microbial functional diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China.

    PubMed

    Wen, Dong Xin; Yang, Ning; Yang, Man Yuan

    2016-08-01

    The aim of the study was to explore the effects of re-vegetation on soil microbial functio-nal diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China. By using the spatial series to replace time series, four typical sampling plots, grass (Setaria viridi, GS), frutex and grass (Lagerstroemia indica-Setaria viridi, FG), frutex (Vitex negundo var. cannabifolia+Robinia pseudoacacia, FX), as well as arbor and frutex (Liquidamdar formosana+Melia azedarach-Vitex negundo var. cannabifolia, AF) community were selected to study the soil microbial functional diversity by using the Biolog-ECO micro-plate technique. The four communities in purple soils on sloping-land were similar and denoted four different re-vegetation stages. The results showed that the soil microbial metabolic activity increased after re-vegetation significantly, and the average well color development (AWCD) which represented soil microbial activity and functional diversity followed the order of AF community>FX community>FG community>GS community at different re-vegetation stages, and followed the order of 0-10 cm >10-20 cm in different soil layers. Principal component analysis (PCA) identified that FG and FX community had similar C sources utilization mode and metabolic function, and GS and AF community were diffe-rent. The carbohydrates, amino acids, intermediate metabolites, and secondary metabolites were the main carbon sources separating the two principal component factors. The Shannon species richness index (H), Shannon evenness index (E), Simpson dominance index (D), McIntosh index (U) at four re-vegetation stages were the highest in AF community, the second in FG and FX community, and the lowest in GS community. The results of correlation analysis indicated that the content of soil water content (SWC), soil total organic carbon (STOC), total nitrogen (TN), total phospho-rus (TP) and available phosphorus (AP) had important influence on the soil microbial metabolic function and functional diversity indices. There existed significant correlation between the activities of urease (URE), alk-phosphatase (APE), invertase (INV), catalase (CAT) and the soil microbial metabolic function and functional diversity indices. All the results indicated that re-vegetation could enhance the soil microbial metabolic function, which was beneficial to the reproduction of soil micro-organisms, thereby promoting an increase of soil carbon source utilization intensity.

  18. Evaluating Evapotranspiration of Pine Forest, Switchgrass, and Pine- Switchgrass Intercroppings using Remote Sensing and Ground-based Methods

    NASA Astrophysics Data System (ADS)

    Amatya, D. M.; Panda, S.; Chescheir, G. M.; Nettles, J. E.; Appelboom, T.; Skaggs, R. W.

    2011-12-01

    Vast areas of the land in the Southeastern United States are under pine forests managed primarily for timber and related byproducts. Evapotranspiration (ET) is the major loss in the water balance of this forest ecosystem. A long-term (1988-2008) study to evaluate hydrologic and nutrient balance during a life cycle of a pine stand was just completed. The study used both monitoring and modeling approaches to evaluate hydrologic and water quality effects of silvicultural and water management treatments on three 25 ha experimental watersheds in eastern North Carolina (NC). The research was extended in 2009 to include a dedicated energy crop, switchgrass (Panicum virgatum), by adding an adjacent 25 ha watershed. These multiple watersheds are being used to evaluate the hydrologic and water quality effects of switchgrass alone, young pine with natural understory, and young pine with switchgrass intercropping compared to the control (pine stand with a natural understory). The biofuels study has been further expanded to two other southern states, Alabama (AL) and Mississippi (MS). Each has five small watersheds (< 25 ha size) consisting of the above treatments and an additional woody biomass removal treatment. In this presentation we provide methods for estimating ET for these treatment watersheds in all three states (NC, AL, and MS) using remote sensing based spatial high resolution multispectral satellite imagery data with ground truthing, where possible, together with sensor technology. This technology is making ET parameter estimation a reality for various crops and vegetation surfaces. Slope-based vegetation indices like Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) and distance-based vegetation indices like Soil Adjusted Vegetation Index (SAVI) and Perpendicular Vegetation Index (PVI) will be developed using the R and NIR bands, vegetation density, and background soil reflectance as necessary. Landsat and high resolution aerial imageries of vegetation and soils will be used. IDRISI Taiga software will be used for the indices development. The forested vegetation health will be correlated to the leaf chlorophyll content for determining the vegetation health with a subsequent derivation of available plant water for radiation. Models will be developed to correlate the plant and soil available water to different vegetation indices. Correlation models will also be developed to obtain information on climatic parameters like surface air temperature, net radiation, albedo, soil moisture content, and stomatal water availability from Landsat imageries. On-site weather parameters used for the PET estimates will be combined with other vegetation parameters like leaf area index (LAI) obtained using LIDAR data and NAIP orthophotos of different seasons. That will also help detect the upper and understory vegetation. The LIDAR data will be processed to obtain the volume of vegetation to correctly estimate the total ET for each treatment.

  19. Study of Wetland Ecosystem Vegetation Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  20. NOAA-AVHRR image mosaics applied to vegetation identification

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria d. G.; Ruddorff, Bernardo F.; Shimabukuro, Yosio E.

    2001-06-01

    In this paper, the maximum-value composite of images procedure from Normalized Difference Vegetation Index is used to get a cloud free image mosaic. The image mosaic is used to identify vegetation targets such as tropical forest, savanna and caatinga as well to make the vegetation cover mapping of Minas Gerais state, Brazil.

  1. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  2. [Effects of green space vegetation canopy pattern on the microclimate in residential quarters of Shenzhen City].

    PubMed

    Li, Ying-Han; Wang, Jun-Jian; Chen, Xue; Sun, Jian-Lin; Zeng, Hui

    2011-02-01

    Based on field survey and landscape pattern analysis, this paper studied the effects of green space vegetation canopy on the microclimate in three typical residential quarters in Shenzhen City. In each of the residential quarters, 22-26 points were chosen for meteorological observation; and around each of the observation points, a 20 m x 20 m quadrat was installed, with each quadrat divided into two different patches, one covered by vegetation canopy and the another no-covered. The patch density index (D(p)) and contagion index (CONTAG) in each quadrat were calculated to analyze the relationships between vegetation canopy pattern index and microclimate in each point. The results showed that the green space vegetation canopy pattern in Shenzhen had significant regulation effect on temperature and humidity. The cooling effect was mainly from the shading effect of vegetation, and also, correlated with vegetation quantity. The increase in the CONTAG of bare surface had obvious negative effects on the regulation effect of vegetation on microclimate. The regulation capability of green space vegetation on the temperature and humidity in residential quarters mainly came from tall arbor species.

  3. Vegetation Coverage Mapping and Soil Effect Correction in Estimating Vegetation Water Content and Dry Biomass from Satellites

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, D.

    2005-12-01

    Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in hydrology, agriculture, forestry and meteorology etc.

  4. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  5. Use of Normalized Difference Water Index for monitoring live fuel moisture

    Treesearch

    D.A. Roberts; P.E. Dennison; S.H. Peterson; J. Rechel

    2006-01-01

    Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were compared for monitoring live fuel moisture in a shrubland ecosystem. Both indices were calculated from 500m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data covering a 33-month period from 2000 to 2002. Both NDVI and NDWI were...

  6. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators

    NASA Astrophysics Data System (ADS)

    Gouveia, C. M.; Trigo, R. M.; Beguería, S.; Vicente-Serrano, S. M.

    2017-04-01

    The present work analyzes the drought impacts on vegetation over the entire Mediterranean basin, with the purpose of determining the vegetation communities, regions and seasons at which vegetation is driven by drought. Our approach is based on the use of remote sensing data and a multi-scalar drought index. Correlation maps between fields of monthly Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation-Evapotranspiration Index (SPEI) at different time scales (1-24 months) were computed for representative months of winter (Feb), spring (May), summer (Aug) and fall (Nov). Results for the period from 1982 to 2006 show large areas highly controlled by drought, although presenting high spatial and seasonal differences, with a maximum influence in August and a minimum in February. The highest correlation values are observed in February for 3 months' time scale and in May for 6 and 12 months. The higher control of drought on vegetation in February and May is obtained mainly over the drier vegetation communities (Mediterranean Dry and Desertic) at shorter time scales (3 to 9 months). Additionally, in February the impact of drought on vegetation is lower for Temperate Oceanic and Continental vegetation types and takes place at longer time scales (18-24). The dependence of drought time-scale response with water balance, as obtained through a simple difference between precipitation and reference evapotranspiration, varies with vegetation communities. During February and November low water balance values correspond to shorter time scales over dry vegetation communities, whereas high water balance values implies longer time scales over Temperate Oceanic and Continental areas. The strong control of drought on vegetation observed for Mediterranean Dry and Desertic vegetation types located over areas with high negative values of water balance emphasizes the need for an early warning drought system covering the entire Mediterranean basin. We are confident that these results will provide a useful tool for drought management plans and play a relevant role in mitigating the impact of drought episodes.

  7. Monitoring Coastal Marshes for Persistent Saltwater Intrusion

    DTIC Science & Technology

    2010-06-01

    for the normalized difference indices (vegetation, soil, and water– NDVI , NDSI, and NDWI) for both MODIS and Landsat 5 and 7, referred to as the...Normalized Difference Index transformation [4]. The MODIS indices are 250 m ( NDVI ) and 500 m (NDWI and NDSI), and the Landsat indices are 30 m...indices are shown for two locations in Fig. 1 and Fig 2. Each figure shows the NDSI (soil), NDVI (vegetation), and NDWI (water) index as a function of

  8. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  9. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  10. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production

    Treesearch

    Linda B. Phillips; Andrew J. Hansen; Curtis H. Flather

    2008-01-01

    Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is...

  11. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    USGS Publications Warehouse

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p < 0.001), indicating improvement over the alternate DVP metric (R2 = 0.73, p < 0.001) and substantial improvement over the two conventional VI metrics (R2 = 0.62 and 0.56, p < 0.001). The results suggest DVP-based methods, and the NDPI in particular, can be effective for subpixel discrimination and mapping of exposed perennial C4 grass cover within mixed-composition landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  12. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  13. The use of NOAA AVHRR data for assessment of the urban heat sland effect

    USGS Publications Warehouse

    Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.

    1993-01-01

    A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urban–rural differences for the vegetation index and the surface temperatures were computed and then compared to observed urban–rural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.

  14. Crop sensors for automation of in-season nitrogen application

    USDA-ARS?s Scientific Manuscript database

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  15. Satellite Vegetation Index Data as a Tool to Forecast Population Dynamics of Medically Important Mosquitoes at Military Installations in the Continental United States

    DTIC Science & Technology

    2008-07-01

    for the two installations. We obtained monthly North American normalized differ- ence vegetation index ( NDVI ) satellite climate data sets for 1981-2005...from the Goddard Space Flight Center."*-" The NDVI measures the greenness of the earth, capturing in one index the combined effects of temperature...humidity, insola- tion, elevation, soils, land use. and precipitation on vegeta- tion. There is an almost-linear relationship between NDVI values and

  16. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahilly, P.J.A.; Li, D.; Guo, Q.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothymore » biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal wetlands.« less

  17. Response of vegetation indices to changes in three measures of leaf water stress

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.

    1991-01-01

    The responses of vegetation indices to changes in water stress were evaluated in two separate laboratory experiments. In one experiment the normalized difference vegetation index (NDVI), the near-IR to red ratio (near-IR/red), the Infrared Index (II), and the Moisture Stress Index (MSI) were more highly correlated to leaf water potential in lodgepole pine branches than were the Leaf Water Content Index (LWCI), the mid-IR ratio (Mid-IR), or any of the single Thematic Mapper (TM) bands. In the other experiment, these six indices and the TM Tasseled Cap brightness, greenness, and wetness indices responded to changes in leaf relative water content (RWC) differently than they responded to changes in leaf water content (WC) of three plant species, and the responses were dependent on how experimental replicates were pooled. With no pooling, the LWCI was the most highly correlated index to both RWC and WC among replications, followed by the II, MSI, and wetness. Only the LWCI was highly correlated to RWC and WC when replications were pooled within species. With among species pooling the LWCI was the only index highly correlated with RWC, while the II, MSI, Mid-IR, and wetness were most highly correlated with WC.

  18. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  19. Spatial Variations in Salinity Stress Across a Coastal Landscape Using Vegetation Indices Derived from Hyperspectral Imagery

    DTIC Science & Technology

    2009-01-01

    NDVI , WBI970, Chlorophyll fluorescence, Salinity, Hyperspectral reflectance JC_Naumann, DR_Young, JE_Anderson Virginia Commonwealth University 800...DF=F0m for M. cerifera (r2 = 0.79) and I. frutescens (r2 = 0.72). The normalized difference vegetation index ( NDVI ), the chlorophyll index (CI), and...frutescens, while there were no differences in NDVI during the 2 years. PRI was not significantly related to NDVI , suggesting that the indices are spatially

  20. Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.

    1988-01-01

    Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.

  1. Assessment of ASTER data for forest inventory in Canary Islands

    NASA Astrophysics Data System (ADS)

    Alonso-Benito, Alfonso; Arbelo, Manuel; Hernandez-Leal, Pedro A.; González-Calvo, Alejandro; Labrador Garcia, Mauricio

    To understand and evaluate the forest structural attributes, forest inventories are conducted, which are costly and lengthy in time. Since the last 10-15 years there has been examining the possibility of using remote sensing data, to save costs and cheapen the process. One of the aims of SATELMAC, a project PCT-MAC 2007-2013 co-financing with FEDER funds, is to automate the forest inventory in Canary Islands using satellite images. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to estimate forest structure of the endemic vegetal specie, Pinus canariensis, located on the island of Tenerife (Spain). The forest structural attributes analyzed have been volume, basal area, stem per hectare and tree height. ASTER is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System. ASTER data were used because it have relatively high spatial resolution in the three visible and near-infrared bands (15 m) and in the six spectral bands (30 m) in the shortwave-IR region. To identify the vegetation index that is most suitable to use, about specific forest structural attributes in our study area, we assess the ability of different spectral indices: Normalized Difference Vegetation Index, Transformed Soil Adjusted Vegetation Index, Modified Soil adjusted Vegetation Index, Perpendicular Vegetation Index and Reduced Simple Ratio. The information provided by the ASTER data has been supplemented by the Third National Forest Inventory (III NFI) and field data. The results are analyzed statistically in order to see the degree of correlation (R2) and the mean square error (RMSE) of the values studied.

  2. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index

    PubMed Central

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-01-01

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243

  3. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices.

    PubMed

    Bektaş Balçik, Filiz

    2014-02-01

    For the past 60 years, Istanbul has been experiencing an accelerated urban expansion. This urban expansion is leading to the replacement of natural surfaces by various artificial materials. This situation has a critical impact on the environment due to the alteration of heat energy balance. In this study, the effect upon the urban heat island (UHI) of Istanbul was analyzed using 2009 dated Landsat 5 Thematic Mapper (TM) data. An Index Based Built-up Index (IBI) was used to derive artificial surfaces in the study area. To produce the IBI index, Soil-Adjusted Vegetation Index, Normalized Difference Built-up Index, and Modified Normalized Difference Water Index were calculated. Land surface temperature (LST) distribution was derived from Landsat 5 TM images using a mono-window algorithm. In addition, 24 transects were selected, and different regression models were applied to explore the correlation between LST and IBI index. The results show that artificial surfaces have a positive exponential relationship with LST rather than a simple linear one. An ecological evaluation index of the region was calculated to explore the impact of both the vegetated land and the artificial surfaces on the UHI. Therefore, the quantitative relationship of urban components (artificial surfaces, vegetation, and water) and LST was examined using multivariate statistical analysis, and the correlation coefficient was obtained as 0.829. This suggested that the areas with a high rate of urbanization will accelerate the rise of LST and UHI in Istanbul.

  4. Development of JPSS VIIRS Global Gridded Vegetation Index products for NOAA NCEP Environmental Modeling Systems

    NASA Astrophysics Data System (ADS)

    Vargas, Marco; Miura, Tomoaki; Csiszar, Ivan; Zheng, Weizhong; Wu, Yihua; Ek, Michael

    2017-04-01

    The first Joint Polar Satellite System (JPSS) mission, the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was successfully launched in October, 2011, and it will be followed by JPSS-1, slated for launch in 2017. JPSS provides operational continuity of satellite-based observations and products for NOAA's Polar Operational Environmental Satellites (POES). Vegetation products derived from satellite measurements are used for weather forecasting, land modeling, climate research, and monitoring the environment including drought, the health of ecosystems, crop monitoring and forest fires. The operationally produced S-NPP VIIRS Vegetation Index (VI) Environmental Data Record (EDR) includes two vegetation indices: the Top of the Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI), and the Top of the Canopy (TOC) Enhanced Vegetation Index (EVI). For JPSS-1, the S-NPP Vegetation Index EDR algorithm has been updated to include the TOC NDV. The current JPSS operational VI products are generated in granule style at 375 meter resolution at nadir, but these products in granule format cannot be ingested into NOAA operational monitoring and decision making systems. For that reason, the NOAA JPSS Land Team is developing a new global gridded Vegetation Index (VI) product suite for operational use by the NOAA National Centers for Environmental Prediction (NCEP). The new global gridded VIs will be used in the Multi-Physics (MP) version of the Noah land surface model (Noah-MP) in NCEP NOAA Environmental Modeling System (NEMS) for plant growth and data assimilation and to describe vegetation coverage and density in order to model the correct surface energy partition. The new VI 4km resolution global gridded products (TOA NDVI, TOC NDVI and TOC EVI) are being designed to meet the needs of directly ingesting vegetation index variables without the need to develop local gridding and compositing procedures. These VI products will be consistent with the already operational SNPP VIIRS Green Vegetation Fraction (GVF) global gridded 4km resolution. The ultimate goal is a global consistent set of global gridded land products at 1-km resolution to enable consistent use of the products in the full suite of global and regional NCEP land models. The new JPSS vegetation products system is scheduled to transition to operations in the fall of 2017.

  5. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  6. A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates

    PubMed Central

    Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing

    2012-01-01

    In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest that Method of 0.1% index scaling provides a feasible way to apply CT models directly to images from sensors or time periods that differ from those of the images used to develop the original models.

  7. Modeling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data

    Treesearch

    Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen

    2013-01-01

    We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...

  8. Interannual growth dynamics of vegetation in the Kuparuk River watershed, Alaska based on the Normalized Difference Vegetation Index

    USGS Publications Warehouse

    Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.

    2003-01-01

    Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.

  9. Performance of different vegetation indices in assessing degradation of community grazing lands in Indian arid zone

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Bastin, Gary; Friedel, Margaret; Narain, Pratap; Saha, D. K.; Ahuja, U. R.; Mathur, B. K.

    2006-12-01

    Vegetation in arid community grazinglands shows monsoonal growth. Its matching phenology with crops makes its detection difficult during July to September. While crops are harvested during September-October, using satellite data thereafter for the natural vegetation seems most appropriate but by then it turns dry. An index capable of sensing dry vegetation was needed since conventional NDVI is sensitive to greenness of vegetation. Performance of NDVI vis-à-vis another index, PD54, based on cover was therefore compared in assessing degradation of grazinglands. The PD54 was used to isolate anthropogenic impacts from environmental induced degradation by analyzing satellite images from dry and wet seasons. Substantial absence of appreciable vegetation response indicated poor resilience and severe degradation. Five grazinglands in Shergarh tehsil of Jodhpur district in Rajasthan were studied following above approach. Ground radiometric observations were recorded. Satellite data of IRS 1C/1D/P6 with LISS 3 sensor for both pre and post monsoon season were acquired for three contrasting wet-dry season events. These were geometrically registered and radiometrically calibrated to calculate an index of vegetation cover PD54 as well as NDVI. PD54 is a perpendicular vegetation index based on the green and red spectral band width. The PD54 and NDVI calculated from spectro-radiometer were related to vegetation cover measured on ground in permanent plots. This confirmed that PD54 was superior index for estimating cover in arid dry grasslands. These ground vegetation trends in a good rainfall year (2001) with drought year (2002) were related with satellite data for a protected and four unprotected grazinglands. NDVI failed to detect any vegetation in protected areas supporting excellent grass cover which was succinctly brought out by PD54. Successful validation of PD54 in detecting degradation of 13 additional sites confirmed its efficacy. These findings have implication in forage availability assessments, forage forecasting, drought preparedness, pastoralism and transhumance.

  10. The Effect of Vegetation on Soil Water Infiltration and Retention Capacity by Improving Soil Physiochemical Property in Semi-arid Grassland

    NASA Astrophysics Data System (ADS)

    A, Y.; Wang, G.

    2017-12-01

    Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, p<0.01), which indicated the influence of vegetation on soil water content not only by soil organic matter content but also the other influential factors, such as the root water uptake, precipitation and evaporation.

  11. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    PubMed

    Wang, Zhiwei; Wang, Qian; Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions.

  12. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas

    PubMed Central

    Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions. PMID:28068392

  13. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to central plains stream conditions

    USGS Publications Warehouse

    Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  14. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  15. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to Central Plains stream conditions.

    PubMed

    Griffith, Jerry A; Martinko, Edward A; Whistler, Jerry L; Price, Kevin P

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  16. Deriving a light use efficiency estimation algorithm using in situ hyperspectral and eddy covariance measurements for a maize canopy in Northeast China.

    PubMed

    Zhang, Feng; Zhou, Guangsheng

    2017-07-01

    We estimated the light use efficiency ( LUE ) via vegetation canopy chlorophyll content ( CCC canopy ) based on in situ measurements of spectral reflectance, biophysical characteristics, ecosystem CO 2 fluxes and micrometeorological factors over a maize canopy in Northeast China. The results showed that among the common chlorophyll-related vegetation indices (VIs), CCC canopy had the most obviously exponential relationships with the red edge position (REP) ( R 2  = .97, p  <   .001) and normalized difference vegetation index (NDVI) ( R 2  = .91, p  <   .001). In a comparison of the indicating performances of NDVI, ratio vegetation index (RVI), wide dynamic range vegetation index (WDRVI), and 2-band enhanced vegetation index (EVI2) when estimating CCC canopy using all of the possible combinations of two separate wavelengths in the range 400-1300 nm, EVI2 [1214, 1259] and EVI2 [726, 1248] were better indicators, with R 2 values of .92 and .90 ( p  <   .001). Remotely monitoring LUE through estimating CCC canopy derived from field spectrometry data provided accurate prediction of midday gross primary productivity ( GPP ) in a rainfed maize agro-ecosystem ( R 2  = .95, p  <   .001). This study provides a new paradigm for monitoring vegetation GPP based on the combination of LUE models with plant physiological properties.

  17. Designing a generalized soil-adjusted vegetation index (GESAVI)

    NASA Astrophysics Data System (ADS)

    Gilabert, M. A.; Gonzalez Piqueras, Jose; Garcia-Haro, Joan; Melia, J.

    1998-12-01

    Operational monitoring of vegetative cover by remote sensing currently involves the utilization of vegetation indices (VIs), most of them being functions of the reflectance in red (R) and near-infrared (NIR) spectral bands. A generalized soil-adjusted vegetation index (GESAVI), theoretically based on a simple vegetation canopy model, is introduced. It is defined in terms of the soil line parameters (A and B) as: GESAVI equals (NIR-BR-A)/(R + Z), where Z is related to the red reflectance at the cross point between the soil line and vegetation isolines. Z can be considered as a soil adjustment coefficient which let this new index be considered as belonging to the SAVI family. In order to analyze the GESAVI sensitivity to soil brightness and soil color, both high resolution reflectance data from two laboratory experiments and data obtained by applying a radiosity model to simulate heterogeneous vegetation canopy scenes were used. VIs (including GESAVI, NDVI, PVI and SAVI family VIs) were computed and their correlation with LAI for the different soil backgrounds was analyzed. Results confirmed the lower sensitivity of GESAVI to soil background in most of the cases, thus becoming the most efficient index. This good index performance results from the fact that the isolines in the NIR-R plane are neither parallel to the soil line (as required by the PVI) nor convergent at the origin (as required by the NDVI) but they converge somewhere between the origin and infinity in the region of negative values of both NIR and R. This convergence point is not necessarily situated on the bisectrix, as required by other SAVI family indices.

  18. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  19. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  20. Vegetation monitoring and classification using NOAA/AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Greegor, D. H., Jr.; Norwine, J. R.

    1983-01-01

    A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.

  1. Monitoring vegetation greenness with satellite data

    Treesearch

    Robert E. Burgan; Roberta A. Hartford

    1993-01-01

    Vegetation greenness can be monitored at 1-km resolution for the conterminous United States through data obtained from the Advanced Very High Resolution Radiometer on the NOAA-11 weather satellites. The data are used to calculate biweekly composites of the Normalized Difference Vegetation Index. The resulting composite images are updated weekly and made available to...

  2. A remote sensing protocol for identifying rangelands with degraded productive capacity

    Treesearch

    Matthew C. Reeves; L. Scott Bagget

    2014-01-01

    Rangeland degradation is a growing problem throughout the world. An assessment process for com-paring the trend and state of vegetation productivity to objectively derived reference conditions wasdeveloped. Vegetation productivity was estimated from 2000 to 2012 using annual maximum Normalized Difference Vegetation Index (NDVI) from the MODIS satellite platform. Each...

  3. Automatic Target Recognition for Hyperspectral Imagery

    DTIC Science & Technology

    2012-03-01

    representation, b) NDVI representation .... 13 Figure 6. Vegetation Reflectance Spectra, taken directly from (Eismann, 2011) ........... 15 Figure 7...46 Figure 22. Example NDVI Mean and Shade Spectrum Signatures ................................. 47 Figure 23. Example Average...locate vegetation within an image normalized-difference vegetation index ( NDVI ) is applied. NDVI was first introduced by Rouse et al. while monitoring

  4. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  5. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Karakacan Kuzucu, A.; Bektas Balcik, F.

    2017-11-01

    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  6. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, Christopher O.; Eck, T. F.; Tanre, Didier; Holben, B. N.

    1991-01-01

    The near-infrared channel of the NOAA advanced very high resolution radiometer (AVHRR) contains a water vapor absorption band that affects the determination of the normalized difference vegetation index (NDVI). Daily and seasonal variations in atmospheric water vapor within the Sahel are shown to affect the use of the NDVI for the estimation of primary production. This water vapor effect is quantified for the Sahel by radiative transfer modeling and empirically using observations made in Mali in 1986.

  7. Area of vegetation loss: a new index of campsite impact

    Treesearch

    David N. Cole

    1989-01-01

    Expressions of the amount of vegetation lost on campsites should reflect both the proportion of vegetation lost and the area1 extent of vegetation loss. A new index-area of vegetation loss-incorporates these two elements by multiplying campsite area by absolute vegetation loss. Guidelines on how to take the measurements needed to calculate this index are provided...

  8. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  9. Multi-index time series monitoring of drought and fire effects on desert grasslands

    USGS Publications Warehouse

    Villarreal, Miguel; Norman, Laura M.; Buckley, Steven; Wallace, Cynthia S.A.; Coe, Michelle A.

    2016-01-01

    The Western United States is expected to undergo both extended periods of drought and longer wildfire seasons under forecasted global climate change and it is important to understand how these disturbances will interact and affect recovery and composition of plant communities in the future. In this research paper we describe the temporal response of grassland communities to drought and fire in southern Arizona, where land managers are using repeated, prescribed fire as a habitat restoration tool. Using a 25-year atlas of fire locations, we paired sites with multiple fires to unburned control areas and compare satellite and field-based estimates of vegetation cover over time. Two hundred and fifty Landsat TM images, dating from 1985–2011, were used to derive estimates of Total Vegetation Fractional Cover (TVFC) of live and senescent grass using the Soil-Adjusted Total Vegetation Index (SATVI) and post-fire vegetation greenness using the Normalized Difference Vegetation Index (NDVI). We also implemented a Greenness to Cover Index that is the difference of time-standardized SATVI-TVFC and NDVI values at a given time and location to identify post-fire shifts in native, non-native, and annual plant cover. The results highlight anomalous greening and browning during drought periods related to amounts of annual and non-native plant cover present. Results suggest that aggressive application of prescribed fire may encourage spread of non-native perennial grasses and annual plants, particularly during droughts.

  10. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  11. Vegetation Structure of Ebony Leaf Monkey (Trachypithecus auratus) Habitat in Kecubung Ulolanang Nature Preservation Central Java-Indonesia

    NASA Astrophysics Data System (ADS)

    Ervina, Rahmawati; Wasiq, Hidayat Jafron

    2018-02-01

    Kecubung Ulolanang Nature Preservation is ebony leaf monkey's habitats in Central Java Indonesia. Continuously degradation of their population is caused by illegal hunting and habitat degradation that made this species being vulnerable. Habitat conservation is one of important aspects to prevent them from extinction. The purpose of this research was to analyze the vegetation's structure and composition, which was potentially, becomes habitat and food source for the monkeys. Data collected using purposive sampling with line transect method of four different level of vegetation. Data analysis used Important Value Index and Diversity Index. There were 43 species of vegetation at seedling stage, 18 species at sapling stage, 8 species at poles stage and 27 species at trees stage. Species that had the highest important value index at seedling was Stenochlaena palustri , at the sapling was Gnetum gnemon, at pole was Swietenia mahagoni and at tree was Tectona grandis . Species of trees those were potentially to become habitat (food source) for ebony leaf monkey were T. grandis, Dipterocarpus gracilis, Quercus sundaica and Ficus superba. The highest diversity index was at seedling gwoth stage.

  12. A COMPARISON OF THE SALINITY REGIME ALONG THE TEXAS COAST WITH TERRESTRIAL VEGETATION GREENNESS AND WATER USE IN THE GALVESTON BAY WATERSHED USING REMOTING SENSING

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (A VHRR) flown on NOAA satellites. NDVI variability was compared with reg...

  13. TERRESTRIAL VEGETATION GREENNESS OF THE LOWER GALVESTON BAY WATERSHED FROM SATELLITE REMOTE SENSING AND ITS RELATION TO WATER AND THE SALINITY REGIME OF THE GALVESTON BAY ESTUARY

    EPA Science Inventory

    Spatial and temporal variability of vegetation greenness have been determined for coastal Texas using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR). Results are presented on relationships between grou...

  14. A Sensitivity Analysis of NDWI and SRWI to Different types of Vegetation Moisture

    NASA Astrophysics Data System (ADS)

    Chai, Linna; Chen, Zhizhong

    2017-04-01

    There are many definitions of vegetation moisture, such as fuel moisture content (FMC), gravimetric water content (GWC), relative water content (RWC), leaf water content (LWC), canopy water content (CWC) and vegetation water content (VWC). They were introduced because of different applications. For example, FMC is with superiority in monitoring wildfire potential, and GWC responses well to determine whether the plant is in health. RWC is suitable for estimating vegetation water stress. LWC and CWC are often used in optical remote sensing and are always related to equivalent water thickness (EWT). For VWC, the main application is for improving retrievals of soil moisture content from microwave sensors. For optical remote sensing technique, the absorption features of liquid water in plant leaves are readily detectable by spectroscopy. Spectral reflectance at 970nm, 1200nm, 1450nm, 1930nm and 2500nm are the basis of numerous remote-sensing indices that could be used in estimating vegetation moisture. Foregoing studies have introduced different spectral indices based on these bands to retrieve vegetation moisture. These spectral indices often fall into two categories, one is Normalized Different Water Index (NDWI), and the other is Simple Ratio Water Index (SRWI). NDWIs take the form of normalized difference spectral index, while SRWIs are in the form of ratio type. They were calculated from different combinations of spectral channels. Since the sensitivities to vegetation moisture of reflectance at different spectral channel are distinguished from each other, the capabilities of these NDWIs and SRWIs in estimating different types of vegetation moisture will be distinguished from one to one. In this work, based on in-situ measurements collected in the north China plain from wheat and corn (Fig. 1), a sensitivity analysis of NDWI and SRWI to different types of vegetation moisture, such as VWC, FMC and GWC, was carried out. They were calculated from different combinations of spectral channels of MODIS and Landsat-8 OLI. Result shows that: 1) NDWI and SRWI are more sensitive to VWC than to FMC and GWC; 2) SRWI and NDWI calculated from reflectances of green band at about 550nm and shortwave infrared band at about 1240nm often yielded relatively higher correlation coefficients with VWC; 3) For a fixed two-band combination, SRWI shows a slight superiority to NDWI. PIC Fig.1 The north China plain and the experimental area with corn and winter wheat sample locations A detailed description to this study work will be demonstrated in the fullpaper.

  15. Mapping tree density in forests of the southwestern USA using Landsat 8 data

    USGS Publications Warehouse

    Humagain, Kamal; Portillo-Quintero, Carlos; Cox, Robert D.; Cain, James W.

    2017-01-01

    The increase of tree density in forests of the American Southwest promotes extreme fire events, understory biodiversity losses, and degraded habitat conditions for many wildlife species. To ameliorate these changes, managers and scientists have begun planning treatments aimed at reducing fuels and increasing understory biodiversity. However, spatial variability in tree density across the landscape is not well-characterized, and if better known, could greatly influence planning efforts. We used reflectance values from individual Landsat 8 bands (bands 2, 3, 4, 5, 6, and 7) and calculated vegetation indices (difference vegetation index, simple ratios, and normalized vegetation indices) to estimate tree density in an area planned for treatment in the Jemez Mountains, New Mexico, characterized by multiple vegetation types and a complex topography. Because different vegetation types have different spectral signatures, we derived models with multiple predictor variables for each vegetation type, rather than using a single model for the entire project area, and compared the model-derived values to values collected from on-the-ground transects. Among conifer-dominated areas (73% of the project area), the best models (as determined by corrected Akaike Information Criteria (AICc)) included Landsat bands 2, 3, 4, and 7 along with simple ratios, normalized vegetation indices, and the difference vegetation index (R2 values for ponderosa: 0.47, piñon-juniper: 0.52, and spruce-fir: 0.66). On the other hand, in aspen-dominated areas (9% of the project area), the best model included individual bands 4 and 2, simple ratio, and normalized vegetation index (R2 value: 0.97). Most areas dominated by ponderosa, pinyon-juniper, or spruce-fir had more than 100 trees per hectare. About 54% of the study area has medium to high density of trees (100–1000 trees/hectare), and a small fraction (4.5%) of the area has very high density (>1000 trees/hectare). Our results provide a better understanding of tree density for identifying areas in need of treatment and planning for more effective treatment. Our analysis also provides an integrated method of estimating tree density across complex landscapes that could be useful for further restoration planning.

  16. a Framework of Change Detection Based on Combined Morphologica Features and Multi-Index Classification

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, S.; Yang, D.

    2017-09-01

    Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.

  17. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet

    PubMed Central

    Fu, Gang; Shen, Zhen Xi

    2016-01-01

    Uncertainty about responses of vegetation index, aboveground biomass (AGB) and gross primary production (GPP) limits our ability to predict how climatic warming will influence plant growth in alpine regions. A field warming experiment was conducted in an alpine meadow at a low (4313 m), mid- (4513 m) and high elevation (4693 m) in the Northern Tibet since May 2010. Growing season vapor pressure deficit (VPD), soil temperature (Ts) and air temperature (Ta) decreased with increasing elevation, while growing season precipitation, soil moisture (SM), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), AGB and GPP increased with increasing elevation. The growing season Ta, Ts and VPD in 2015 was greater than that in 2014, while the growing season precipitation, SM, NDVI, SAVI, AGB and GPP in 2015 was lower than that in 2014, respectively. Compared to the mean air temperature and precipitation during the growing season in 1963–2015, it was a warmer and wetter year in 2014 and a warmer and drier year in 2015. Experimental warming increased growing season Ts, Ta,VPD, but decreased growing season SM in 2014–2015 at all the three elevations. Experimental warming only reduced growing season NDVI, SAVI, AGB and GPP at the low elevation in 2015. Growing season NDVI, SAVI, AGB and GPP increased with increasing SM and precipitation, but decreased with increasing VPD, indicating vegetation index and biomass production increased with environmental humidity. The VPD explained more variation of growing season NDVI, SAVI, AGB and GPP compared to Ts, Ta and SM at all the three elevations. Therefore, environmental humidity regulated the effect of experimental warming on vegetation index and biomass production in alpine meadows on the Tibetan Plateau. PMID:27798690

  18. The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index.

    PubMed

    Strong, Conor J; Burnside, Niall G; Llewellyn, Dan

    2017-01-01

    The loss of unimproved grassland has led to species decline in a wide range of taxonomic groups. Agricultural intensification has resulted in fragmented patches of remnant grassland habitat both across Europe and internationally. The monitoring of remnant patches of this habitat is critically important, however, traditional surveying of large, remote landscapes is a notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems (sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional grassland survey methods, and have the potential to progress and innovate the monitoring and future conservation of this habitat globally. The aim of this article is to investigate the potential of sUAS for rapid detection of threatened unimproved grassland and to test the use of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is undertaken at a site nationally recognised as an important location for fragmented unimproved mesotrophic grassland, within the south east of England, UK. A multispectral camera is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calculated and its discrimination performance compared to a range of more traditional vegetation indices. In order to validate the results of analysis, ground quadrat surveys were carried out to determine the grassland communities present. Quadrat surveys identified three community types within the site; unimproved grassland, improved grassland and rush pasture. All six vegetation indices tested were able to distinguish between the broad habitat types of grassland and rush pasture; whilst only three could differentiate vegetation at a community level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effective index when differentiating grasslands at the community level. The mechanisms behind the improved performance of the ENDVI are discussed and recommendations are made for areas of future research and study.

  19. The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index

    PubMed Central

    Strong, Conor J.; Llewellyn, Dan

    2017-01-01

    The loss of unimproved grassland has led to species decline in a wide range of taxonomic groups. Agricultural intensification has resulted in fragmented patches of remnant grassland habitat both across Europe and internationally. The monitoring of remnant patches of this habitat is critically important, however, traditional surveying of large, remote landscapes is a notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems (sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional grassland survey methods, and have the potential to progress and innovate the monitoring and future conservation of this habitat globally. The aim of this article is to investigate the potential of sUAS for rapid detection of threatened unimproved grassland and to test the use of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is undertaken at a site nationally recognised as an important location for fragmented unimproved mesotrophic grassland, within the south east of England, UK. A multispectral camera is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calculated and its discrimination performance compared to a range of more traditional vegetation indices. In order to validate the results of analysis, ground quadrat surveys were carried out to determine the grassland communities present. Quadrat surveys identified three community types within the site; unimproved grassland, improved grassland and rush pasture. All six vegetation indices tested were able to distinguish between the broad habitat types of grassland and rush pasture; whilst only three could differentiate vegetation at a community level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effective index when differentiating grasslands at the community level. The mechanisms behind the improved performance of the ENDVI are discussed and recommendations are made for areas of future research and study. PMID:29023504

  20. Climatic drivers of vegetation based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego

    2017-04-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content - while at seasonal scales the vegetative response is dominated by solar radiation in most regions. At the higher latitudes, the trends in all vegetation diagnostics agree with the hypothesis of a greening pattern explained by the increase in temperature. At the same time, substantial differences can be observed between the responses of the different vegetation indices as well. As an example, the VOD - thought to be a close proxy for vegetation water content - shows a larger sensitivity to precipitation than traditional optical indices like the NDVI. Our findings help to further understand the physical attributes of vegetation that each remotely-sensed vegetation index is responding to in order to optimize their use in global bio-geoscience research.

  1. Atmospheric effects on the NDVI - Strategies for its removal. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Holben, B. N.; Markham, B.; Gitelson, A.

    1992-01-01

    The compositing technique used to derive global vegetation index (NDVI) from the NOAA AVHRR radiances reduces the residual effect of water vapor and aerosol on the NDVI. The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analaysis of the probability of occurrence of aerosol optical thickness and precipitable water vapor measured in different climatic regimes is used for this simulation. It is concluded that for a long compositing period (e.g., 27 days), the residual aerosol optical thickness and precipitable water vapor are usually too small to be corrected. For a 9-day compositing, the residual average aerosol effect may be about twice the correction uncertainty. For Landsat TM or Earth Observing System Moderate Resolution Imaging Spectrometer (EOS-MODIS) data, the newly defined atmospherically resistant vegetation index (ARVI) is more promising than possible direct atmospheric correction schemes, except for heavy desert dust conditions.

  2. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    NASA Technical Reports Server (NTRS)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  3. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s

    USGS Publications Warehouse

    Stow, D.; Daeschner, Scott; Hope, A.; Douglas, David C.; Petersen, A.; Myneni, Ranga B.; Zhou, L.; Oechel, W.

    2003-01-01

    The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data. Smaller SINDVI values occurred during the three years (1992-1994) following the volcanic eruption of Mt Pinatubo. Even after implementing corrections for this stratospheric aerosol effect and adjusting for changes in radiometric calibration coefficients, an apparent increasing trend of SINDVI in the 1990s is evident for the entire north slope. The most pronounced increase was observed for the foothills physiographical province.

  4. Measurement of physiological traits of paddy rice in temperature gradient chamber using Normalized Difference Vegetation Index and Photochemical Reflectance Index

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Oh, D.; Cho, J.

    2017-12-01

    Global warming has been affecting the phenological and physiological conditions of crop plants due to heat stress. Thus, the scientific understanding of not only crop-yield change, but also growth progress during high temperature condition is necessary. In this study, growth response and yield of paddy rice depending on air temperature (Ta) has been studied in a Temperature Gradient Chamber (TGC) that is composed of higher Ta than actual Ta (ambient temperature). The results on imitating experiment of global warming provided the reduced production of crop by heat stress. Therefore, it is important to quickly detect the condition of a plant in order to minimize damage to heat stress on global warming. Phenological and physiological changes depending on Ta was detected using optical spectroscopy sensors because remote sensing is useful and efficient technology to monitor quickly and continually. Two vegetation indices, Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), were applied to monitor paddy rice growth using hyperspectral and multispectral radiometer. Ta in TGC was gradually set from actual Ta + 0 ° to actual Ta + 3 °. The variations of NDVI and PRI were different during rice growth period, and also these patterns were changed depending on Ta condition. NDVI and PRI under +3 ° condition increase faster than ambient temperature. After heading stage, the values of NDVI and PRI were dropped. However, the NDVI and PRI of rice under heat stress were relatively slowly decreased. In addition, we found that the yield of rice decreased in the case of delayed drop patterns of NDVI and PRI after heading stage. Our results will be useful to understand crop plant conditions using vegetation index under global warming situations.

  5. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    USGS Publications Warehouse

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.

  6. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    PubMed Central

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire. PMID:28777802

  7. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    PubMed

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  8. Effectiveness of Vegetation Index Transformation for Land Use Identifying and Mapping in the Area of Oil palm Plantation based on SPOT-6 Imagery (Case Study: PT.Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu)

    NASA Astrophysics Data System (ADS)

    Setyowati, H. A.; S, S. H. Murti B.; Sukentyas, E. S.

    2016-11-01

    The reflection of land surface, atmosphere and vegetation conditions affect the reflectance value of the object is recorded on remote sensing image so that it can affect the outcome of information extraction from remote sensing imagery one multispectral classification. This study aims to assess the ability of the transformation of generic vegetation index (Wide Dynamic Range Vegetation Index), the vegetation index transformation that is capable reducing the influence of the atmosphere (Atmospherically Resistant Vegetation Index), and the transformation of vegetation index that is capable of reducing the influence of the background soil (Second Modified Soil Adjusted Vegetation Index) for the identification and mapping of land use in the oil palm plantation area based on SPOT-6 archived on June 13, 2013 from LAPAN. The study area selected oil palm plantations PT. Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu, Riau Province. The method is using the transformation of the vegetation index ARVI, MSAVI2, and WDRVI. Sample selection method used was stratified random sampling. The test method used mapping accuracy of the confusion matrix. The results showed that the best transformation of the vegetation index for the identification and mapping of land use in the plantation area is ARVI transformation with a total of accuracy is 96%. Accuracy of mapping land use settlements 100%, replanting 82.35%, 81.25% young oil palm, old oil palm 99.46%, 100% bush, body of water 100%, and 100% bare-soil.

  9. Fire effects in the northern Chihuahuan Desert derived from Landsat-5 Thematic Mapper spectral indices

    NASA Astrophysics Data System (ADS)

    White, Joseph D.; Swint, Pamela

    2014-01-01

    Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.

  10. Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images

    NASA Astrophysics Data System (ADS)

    Shang, Jiali; Liu, Jiangui; Huffman, Ted; Qian, Budong; Pattey, Elizabeth; Wang, Jinfei; Zhao, Ting; Geng, Xiaoyuan; Kroetsch, David; Dong, Taifeng; Lantz, Nicholas

    2014-01-01

    This study investigates the use of two different optical sensors, the multispectral imager (MSI) onboard the RapidEye satellites and the operational land imager (OLI) onboard the Landsat-8 for mapping within-field variability of crop growth conditions and tracking the seasonal growth dynamics. The study was carried out in southern Ontario, Canada, during the 2013 growing season for three annual crops, corn, soybeans, and winter wheat. Plant area index (PAI) was measured at different growth stages using digital hemispherical photography at two corn fields, two winter wheat fields, and two soybean fields. Comparison between several conventional vegetation indices derived from concurrently acquired image data by the two sensors showed a good agreement. The two-band enhanced vegetation index (EVI2) and the normalized difference vegetation index (NDVI) were derived from the surface reflectance of the two sensors. The study showed that EVI2 was more resistant to saturation at high biomass range than NDVI. A linear relationship could be used for crop green effective PAI estimation from EVI2, with a coefficient of determination (R2) of 0.85 and root-mean-square error of 0.53. The estimated multitemporal product of green PAI was found to be able to capture the seasonal dynamics of the three crops.

  11. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.

  12. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  13. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland.

    PubMed

    Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  14. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    PubMed

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation indices such as Hue and normalized difference index are superior compared with the often-used green chromatic coordinate. We conclude that indices based on red and green color information generally represent autumn phenology most efficiently. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  16. Habitat fragmentation effects on the orchid bee communities in remnant forests of southeastern Brazil.

    PubMed

    Knoll, Fátima do Rosário Naschenveng; Penatti, N C

    2012-10-01

    The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.

  17. Coupled topographic and vegetation patterns in coastal dunes: Remote sensing observations and ecomorphodynamic implications

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Silvestri, S.; Moore, L. J.; Marani, M.

    2017-01-01

    Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar-derived leaf area index and hyperspectral-derived normalized difference vegetation index patterns yield vegetation distributions at the whole-system scale which are in agreement with each other and with field observations. Lidar-derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two-way interaction between vegetation and topography.

  18. USE OF REMOTELY SENSED DATA FOR PARAMETERIZING AND VALIDATING LAND-USE HYDROLOGIC MODELS

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA satellites. NDVI variability was compared with regi...

  19. Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort.

    PubMed

    Donovan, Geoffrey H; Gatziolis, Demetrios; Longley, Ian; Douwes, Jeroen

    2018-05-07

    We assessed the association between the natural environment and asthma in 49,956 New Zealand children born in 1998 and followed up until 2016 using routinely collected data. Children who lived in greener areas, as measured by the normalized difference vegetation index, were less likely to be asthmatic: a 1 s.d. increase in normalized difference vegetation index was associated with a 6.0% (95% CI 1.9-9.9%) lower risk of asthma. Vegetation diversity was also protective: a 1 s.d. increase in the number of natural land-cover types in a child's residential meshblock was associated with a 6.7% (95% CI 1.5-11.5%) lower risk. However, not all land-cover types were protective. A 1 s.d. increase in the area covered by gorse (Ulex europaeus) or exotic conifers, both non-native, low-biodiversity land-cover types, was associated with a 3.2% (95% CI 0.0-6.0%) and 4.2% (95% CI 0.9-7.5%) increased risk of asthma, respectively. The results suggest that exposure to greenness and vegetation diversity may be protective of asthma.

  20. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.

  1. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  2. Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.

    2017-10-01

    Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.

  3. Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990-2009).

    PubMed

    Sharma, Richa; Ghosh, Aniruddha; Joshi, Pawan Kumar

    2013-04-01

    Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa = 0.88) for 1990 and 85 % (kappa = 0.81) for 2009. It was found that the city has expanded over 42.75 km(2) within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5 ± 2.6 °C increase in land surface temperature, vegetation to fallow 6.7 ± 3 °C, fallow to built-up is 3.5 ± 2.9 °C and built-up to dense built-up is 5.3 ± 2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N-S and NE-SW profiles.

  4. Characterization of drought patterns through remote sensing over The Chihuahua Desert, Mexico"

    NASA Astrophysics Data System (ADS)

    Madrigal, J. M.; Lopez, A.; Garatuza, J.

    2013-12-01

    Drought is a phenomenon that has intensified during the last few decades in the arid and semi-arid zones of northern Mexico. In the Chihuahua desert, across Chihuahua, Durango and Coahuila states has caused loss of food sustainability (agriculture, livestock), an increase in human health problems, and detriment of ecosystem services as well as important economic losses. In order to understand this phenomenon, it is necessary to create tools that allow monitoring the territory's spatial heterogeneity and multi-temporality. With this purpose we propose the implementation of a drought model which includes the traditional indexes of climatic drought, such as the Palmer Drought Severity Index PDSI, the Standardized Index of Rainfall SPI, data from meteorological stations and biophysical variations obtained from the MODIS sensors product MOD13 NDVI from 2001 to 2010, as well as biophysical variables characteristic of the environment, such as land use and vegetation coverage, Eco-regions, soil moisture, digital elevation model and irrigate agriculture districts. With the MODIS images, a spatially coherent time series was created analyzing the study area's phenology (TIMESAT) created the Seasonal Greenness (SG) and Start of Season Anomaly (SOSA) for the mentioned nine years. Through this, the annual cycles were established. With a decision tree model, all the previously mentioned proposed variables were integrated. The proposed model produces a general map which characterizes the vegetation condition (extreme drought, severe drought, moderate drought, near normal). Even though different techniques have been proposed on the monitoring of droughts, most of them generate drought indexes with a spatial resolution of 1km (Wardlow, B. et. al 2008; Levent T. et al. 2013). One of the main concerns of researchers on the matter is on improving the spatial information content and on having a better representation of the phenomenon. We use the normalized difference vegetation index (NDVI) data acquired by MODIS instead of the Advanced Very High Resolution Radiometer (AVHRR). The results show a better drought pattern characterization over The Chihuahua Desert, Mexico". The future work will consist of making a sensibility and optimization study of the variables used in the CART model, including others such as evapotranspiration and rainfall. Additionally, this work will research on the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI).

  5. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].

    PubMed

    Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui

    2016-01-01

    With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote sensing could yet be regarded as an optimal plan. Therefore, in the case of more and more available remote sensing information sources, agricultural UAV remote sensing could become an important information resource for guiding field-scale crop management and provide more scientific and accurate information for precision agriculture research.

  6. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.

    PubMed

    Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf

    2013-02-01

    Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.

  7. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  8. A Physically-Based Drought Product Using Thermal Remote Sensing of Evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonst...

  9. Use of Normalized Difference Vegetation Index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona

    USGS Publications Warehouse

    McFarland, Tiffany Marie; van Riper, Charles

    2013-01-01

    Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.

  10. Evaluation of different shadow detection and restoration methods and their impact on vegetation indices using UAV high-resolution imageries over vineyards

    NASA Astrophysics Data System (ADS)

    Aboutalebi, M.; Torres-Rua, A. F.; McKee, M.; Kustas, W. P.; Nieto, H.

    2017-12-01

    Shadows are an unavoidable component of high-resolution imagery. Although shadows can be a useful source of information about terrestrial features, they are a hindrance for image processing and lead to misclassification errors and increased uncertainty in defining surface reflectance properties. In precision agriculture activities, shadows may affect the performance of vegetation indices at pixel and plant scales. Thus, it becomes necessary to evaluate existing shadow detection and restoration methods, especially for applications that makes direct use of pixel information to estimate vegetation biomass, leaf area index (LAI), plant water use and stress, chlorophyll content, just to name a few. In this study, four high-resolution imageries captured by the Utah State University - AggieAir Unmanned Aerial Vehicle (UAV) system flown in 2014, 2015, and 2016 over a commercial vineyard located in the California for the USDA-Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program are used for shadow detection and restoration. Four different methods for shadow detection are compared: (1) unsupervised classification, (2) supervised classification, (3) index-based method, and (4) physically-based method. Also, two different shadow restoration methods are evaluated: (1) linear correlation correction, and (2) gamma correction. The models' performance is evaluated over two vegetation indices: normalized difference vegetation index (NDVI) and LAI for both sunlit and shadowed pixels. Histogram and analysis of variance (ANOVA) are used as performance indicators. Results indicated that the performance of the supervised classification and the index-based method are better than other methods. In addition, there is a statistical difference between the average of NDVI and LAI on the sunlit and shadowed pixels. Among the shadow restoration methods, gamma correction visually works better than the linear correlation correction. Moreover, the statistical difference between sunlit and shadowed NDVI and LAI decreases after the application of the gamma restoration method. Potential effects of shadows on modeling surface energy balance and evapotranspiration using very high resolution UAV imagery over the GRAPEX vineyard will be discussed.

  11. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai

    2016-12-01

    Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy at 0° to -30° (R2 = 0.835, RMSE = 0.366). As it is possible to monitor plant N status over a wide range of angles using portable spectrometers, viewing angles of as much as 0° to -30° are common. Consequently, we developed a united model across angles of 0° to -30° to reduce the effects of viewing angle on LNC prediction in wheat. The proposed combined NDRE/FWBI parameter, designated the wide-angle-adaptability nitrogen index (WANI), is superior for estimating LNC in wheat on a regional scale in China and Canada.

  12. On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2012-04-01

    A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum monthly flows to precipitation in Deciduous Forests though other three biome types show presence of effects beyond co-evolutionary. Such an analysis can yield insights into the nature of hydrologic change when assessed along the Budyko curve as well as non co-evolutionary effects such as anthropogenic effects on basin scale annual water balances.

  13. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  14. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  15. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  16. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters.

    PubMed

    Bousbih, Safa; Zribi, Mehrez; Lili-Chabaane, Zohra; Baghdadi, Nicolas; El Hajj, Mohammad; Gao, Qi; Mougenot, Bernard

    2017-11-14

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects.

  17. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters

    PubMed Central

    Bousbih, Safa; Lili-Chabaane, Zohra; El Hajj, Mohammad; Gao, Qi

    2017-01-01

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects. PMID:29135929

  18. Vegetation Cover Change in Yosemite National Park (California) Detected using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat image analysis over the past 20+ years showed that consistent increases in the satellite normalized difference vegetation index (NDVI) during relatively dry years were confined to large wildfire areas that burned in the late 1980s and 1990s.

  19. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    USGS Publications Warehouse

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  20. Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images

    NASA Astrophysics Data System (ADS)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2017-10-01

    Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.

  1. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbanceInternational Journal of Applied Earth Observation and Geoinformation 26 441-446 Lanorte A, M Danese, R Lasaponara, B Murgante 2014 Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis International Journal of Applied Earth Observation and Geoinformation 20, 42-51 Tuia D, F Ratle, R Lasaponara, L Telesca, M Kanevski 2008 Scan statistics analysis of forest fire clusters Communications in Nonlinear Science and Numerical Simulation 13 (8), 1689-1694 Telesca L, R Lasaponara 2006 Pre and post fire behavioral trends revealed in satellite NDVI time series Geophysical Research Letters 33 (14) Lasaponara R 2005 Intercomparison of AVHRR based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy International Journal of Remote Sensing 26 (5), 853-870

  2. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau.

    PubMed

    Duffaut Espinosa, L A; Posadas, A N; Carbajal, M; Quiroz, R

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study.

  3. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau

    PubMed Central

    Posadas, A. N.; Carbajal, M.; Quiroz, R.

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study. PMID:28125607

  4. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  5. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    NASA Astrophysics Data System (ADS)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these already endangered forest ecosystems and should be further monitored using both ground and satellite approaches.

  6. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    PubMed

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  7. Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data

    NASA Astrophysics Data System (ADS)

    ChéRet, VéRonique; Denux, Jean Philippe

    2007-06-01

    Wildfires are a prevalent natural hazard in the south of France. Planners need a permanent fire danger assessment valid for several years over a territory as large and heterogeneous as Midi-Pyrénées region. To this end, we developed an expert knowledge-based index model adapted to the specific features of the study area. The fire danger depends on two complementary elements: spatial occurrence and fire intensity. Among the GIS layers identified as input variables for modeling, vegetation fire susceptibility is one of the most influent. However, the main difficulty at this scale is the scarcity or the lack of exhaustiveness of the data. In this respect, remote sensing imagery is capable of providing relevant information. We proposed to calculate an annual relative greenness index (annual RGRE) that reflects vegetation dryness in summer. We processed times series of Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION images over the last six available years (1998 to 2003). The first step was to verify that these images characterize vegetation types and highlight intraannual and interannual response variability. It is then possible to identify phenological stages corresponding to the maximum NDVI (and therefore to maximum photosynthetic activity) during the growing season, the minimum NDVI at the end of the growing season and the minimum NDVI during winter period. These phenology metrics ground the annual RGRE calculation. Values obtained for each observation year show significant correlation (r2 = 0.70) with the De Martonne aridity index calculated for the same period. A synthesis of yearly index was integrated in the model as a variable that expresses fire susceptibility.

  8. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion.

    PubMed

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-05

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies.

  9. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion

    PubMed Central

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-01

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies. PMID:28067770

  10. Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and ...

  11. Vegetation Cover Change in Yellowstone National Park Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2015-01-01

    Results from Landsat satellite image analysis since 1987 in all unburned areas (since the 1880s) of Yellowstone National Park (YNP) showed that consistent decreases in the normalized difference vegetation index (NDVI) have been strongly dependent on periodic variations in peak annual snow water equivalents (SWE).

  12. Thirty Years of Vegetation Change in the Coastal Santa Cruz Mountains of Northern California Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Results from Landsat satellite image times series analysis since 1983 of this study area showed gradual, statistically significant increases in the normalized difference vegetation index (NDVI) in more than 90% of the (predominantly second-growth) evergreen forest locations sampled.

  13. Assessing phenological change in China from 1982 to 2006 using AVHRR imagery

    USDA-ARS?s Scientific Manuscript database

    Long term trends in vegetation phenology indicate ecosystem change due to the combined impacts of human activities and climate. In this study, we used 1982 to 2006 Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (AVHRR NDVI) imagery across China and the TIMESAT progra...

  14. Soil-vegetation correlations in the Connecticut River floodplain of Western Massachusetts

    USGS Publications Warehouse

    Veneman, Peter L.M.; Tiner, Ralph W.

    1990-01-01

    As part of a national study analyzing the relation between hydric soils and wetland vegetation, the vegetation associated with a series of known soils was sampled along the Connecticut River floodplain in Massachusetts. Weighted average and index average (presence/absence) values were calculated for vegetation using wetland ecological index values from the National List of Plant Species that Occur in Wetlands developed by the U.S. Fish and Wildlife Service and procedures developed by T. R. Wentworth and G. P. Johnson at North Carolina State University. Good correspondence between soils and vegetation was recorded with two exceptions. Two typically nonhydric soils were determined to be hydric based on vegetation analyses. Examination of the groundwater hydrology of these two soils confirmed their hydric nature. The authors suggested that one of these soils may need to be redefined and they also suggested that the assigned index values for a few species of vegetation should be reexamined. However, in general the index average values of vegetation based on published wetland index values corresponded with the hydric and nonhydric nature of soils.

  15. Lifting the Green Veil: A Fresh Look at Synoptic Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Vina, A.; Gitelson, A. A.

    2003-12-01

    Observing the dynamics of the vegetated land surface synoptically from spaceborne sensors plays a key role in understanding the global water, carbon, and nitrogen cycles, land cover and land use change, and biodiversity mapping. For the past three decades the study of global and regional vegetation dynamics has relied on satellite observations of the distinctive spectral contrast between red and near infrared reflectance exhibited by photosynthetically active green vegetation. It has long been recognized, however, that the spectral vegetation index with the widest currency-the Normalized Difference Vegetation Index (NDVI)-suffers a rapid decrease of sensitivity even at moderate Leaf Area Index (LAI) values of 2 to 4, as are commonly encountered in croplands and woodlands. This decrease in NDVI sensitivity casts a green veil over the land surface that obscures vegetation dynamics across vast areas during much of the growing season. This veil has important consequences for monitoring vegetation dynamics, developing land surface climatologies, and detecting significant changes. A straightforward modification of the NDVI, developed to increase its sensitivity under higher green biomass conditions, was applied to a standard, widely available AVHRR NDVI dataset for the conterminous US. The new Wide Dynamic Range Vegetation Index (WDRVI) exhibited increases in sensitivity between 30%-50% for Omernik Level III ecoregions dominated by woodlands, croplands, and grasslands. Ecoregions with lower aboveground net primary production, such as aridlands and semi-arid grasslands, showed no increase in sensitivity of the WDRVI over the NDVI. This powerful, new but simple approach creates an opportunity for a fresh look at the satellite data record. Further, it offers the possibility for significant improvements in the retrievals of canopy variables for carbon and nitrogen models, more accurate land surface characterizations for numerical weather prediction models, more sensitive analyses of land cover / land use change, and improvements in habitat mapping for biodiversity management.

  16. Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Asrar, Ghassem; Tanre, Didier; Choudhury, Bhaskar J.

    1992-01-01

    1D and 3D radiative-transfer models have been used to investigate the problem of remotely sensed determination of vegetated land surface-absorbed and reflected solar radiation. Calculations were conducted for various illumination conditions to determine surface albedo, soil- and canopy-absorbed photosynthetically active and nonactive radiation, and normalized difference vegetation index. Simple predictive models are developed on the basis of the relationships among these parameters.

  17. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance.

    PubMed

    Chasmer, L; Baker, T; Carey, S K; Straker, J; Strilesky, S; Petrone, R

    2018-06-12

    Time series remote sensing vegetation indices derived from SPOT 5 data are compared with vegetation structure and eddy covariance flux data at 15 dry to wet reclamation and reference sites within the Oil Sands region of Alberta, Canada. This comprehensive analysis examines the linkages between indicators of ecosystem function and change trajectories observed both at the plot level and within pixels. Using SPOT imagery, we find that higher spatial resolution datasets (e.g. 10 m) improves the relationship between vegetation indices and structural measurements compared with interpolated (lower resolution) pixels. The simple ratio (SR) vegetation index performs best when compared with stem density-based indicators (R 2  = 0.65; p < 0.00), while the normalised difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) are most comparable to foliage indicators (leaf area index (LAI) and canopy cover (R 2  = 0.52-0.78; p > 0.02). Fluxes (net ecosystem production (NEP) and gross ecosystem production (GEP)) are most related to NDVI and SAVI when these are interpolated to larger 20 m × 20 m pixels (R 2  = 0.44-0.50; p < 0.00). As expected, decreased sensitivity of NDVI is problematic for sites with LAI > 3 m 2  m -2 , making this index more appropriate for newly regenerating reclamation areas. For sites with LAI < 3 m 2  m -2 , trajectories of vegetation change can be mapped over time and are within 2.7% and 3.3% of annual measured LAI changes observed at most sites. This study demonstrates the utility of remote sensing in combination with field and eddy covariance data for monitoring and scaling of reclaimed and reference site productivity within and beyond the Oil Sands Region of western Canada. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of Mediterranean woody species

    NASA Astrophysics Data System (ADS)

    Weil, Gilad; Lensky, Itamar M.; Levin, Noam

    2017-10-01

    The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green/red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.

  19. Analysis of Terrestrial Conditions and Dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N.

    1985-01-01

    An ecological model is developed to estimate annual net primary productivity of vegetation in twelve major North American biomes. Three models are adapted and combined, each addressing a different factor known to govern primary productivity, i.e., photosynthesis, respiration, and moisture availability. Measures of intercepted photosynthetically active radiation (1PAR) for input to the photosynthesis model are derived from spectral vegetation index data. Normalized Difference Vegetation Index (NDVI) data are produced from NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) observations for April 1982 through March 1983. NDVI values are sampled from within the biomes at locations for which climatological data are available. Monthly estimates of Net Primary Productivity (NPP) for each sample location are generated and summed over the twelve month period. These monthly estimates are averaged to produce a single annual estimated NPP value for each biomes. Comparison of estimated NPP values with figures reported in the literature produces a correlation coefficient of 85.

  20. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.; Running, Steven W.

    1989-01-01

    Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.

  1. High spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors

    USGS Publications Warehouse

    Nouri, Hamideh; Beecham, Simon; Anderson, Sharolyn; Nagler, Pamela

    2014-01-01

    Evapotranspiration estimation has benefitted from recent advances in remote sensing and GIS techniques particularly in agricultural applications rather than urban environments. This paper explores the relationship between urban vegetation evapotranspiration (ET) and vegetation indices derived from newly-developed high spatial resolution WorldView-2 imagery. The study site was Veale Gardens in Adelaide, Australia. Image processing was applied on five images captured from February 2012 to February 2013 using ERDAS Imagine. From 64 possible two band combinations of WorldView-2, the most reliable one (with the maximum median differences) was selected. Normalized Difference Vegetation Index (NDVI) values were derived for each category of landscape cover, namely trees, shrubs, turf grasses, impervious pavements, and water bodies. Urban landscape evapotranspiration rates for Veale Gardens were estimated through field monitoring using observational-based landscape coefficients. The relationships between remotely sensed NDVIs for the entire Veale Gardens and for individual NDVIs of different vegetation covers were compared with field measured urban landscape evapotranspiration rates. The water stress conditions experienced in January 2013 decreased the correlation between ET and NDVI with the highest relationship of ET-Landscape NDVI (Landscape Normalized Difference Vegetation Index) for shrubs (r2 = 0.66) and trees (r2 = 0.63). However, when the January data was excluded, there was a significant correlation between ET and NDVI. The highest correlation for ET-Landscape NDVI was found for the entire Veale Gardens regardless of vegetation type (r2 = 0.95, p > 0.05) and the lowest one was for turf (r2 = 0.88, p > 0.05). In support of the feasibility of ET estimation by WV2 over a longer period, an algorithm recently developed that estimates evapotranspiration rates based on the Enhanced Vegetation Index (EVI) from MODIS was employed. The results revealed a significant positive relationship between ETMODIS and ETWV2 (r2 = 0.9857, p > 0.05). This indicates that the relationship between NDVI using high resolution WorldView-2 imagery and ground-based validation approaches could provide an effective predictive tool for determining ET rates from unstressed mixed urban landscape plantings.

  2. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  3. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Brooks, V.

    1997-01-01

    This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.

  4. Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan

    2014-05-01

    To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.

  5. The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Lin, Hongyue; Yang, Xinghe; Ramsey, Elijah, III; Davis, Bruce A.; Thoemke, Chris W.

    1991-01-01

    An intensive in situ sampling program near Marco Island, Florida during 19-23 October 1988 collected information on mangrove type, maximum canopy height, and percent canopy closure. These data were correlated with selected vegetation index information derived from analysis of SPOT multispectral (XS) data obtained on 21 October 1988. The Normalized Difference (ND) vegetation index information was the most highly correlated index with percent canopy closure (r = 0.91). Percent canopy closure information can be used as a surrogate for mangrove density which is of great value when predicting which parts of the mangrove ecosystem are at greatest risk after an oil spill occurs. Such information is very valuable when constructing oil spill Environmental Sensitivity Index (ESI) Maps for tropical regions of the world.

  6. Diversity of tree vegetation on different slopes in Sangkulirang – Mangkalihat exokarst area

    NASA Astrophysics Data System (ADS)

    Suwasono, R. A.; Matius, P.; Sutedjo

    2018-04-01

    The Karst ecosystem in East Kalimantan is predominantly located in the Sangkulirang-Mangkalihat covering an area of 1,867,676 hectares. The exokarst are all features that may be found on a surface karst landscape. The objective of this study was to determine the diversity of tree vegetation (diameters >10 cm) on different slopes. Six study locations were selected as replications where each location consisted of the different of slopes. The sample plot was set up 15 plots in each location on quadrants of 10 m x 10 m. 538 individuals had been found in the study sites consisting of 163 species, 100 genera and 43 family. The Dipterocarpaceae was dominant on slopes and the upper ridges, while Shorea sp. has dominated on the upper ridges. The highest diversity index (H’) of 4.04were found on the slopes and valley while the Species Richness Index (R) and Evenness Index (e) were high in all three slopes. The highest Similarity Index (ISs) of41.06was in the slopes and valley, while the highest Decimilarity Index (ID) of 67.30were in the slopes and upper ridges. Meanwhile, the overall diversity of species in the Sangkulirang-Mangkalihat exokarst area is high.

  7. Phenology of Succession: Tracking the Recovery of Dryland Forests after Wildfire Events

    NASA Astrophysics Data System (ADS)

    Walker, J.; Brown, J. F.; Sankey, J. B.; Wallace, C.; Weltzin, J. F.

    2016-12-01

    The frequency, size, and intensity of forest wildfires in the U.S. Southwest have increased over the past 30 years. In the coming decades, burn effects and altered climatic conditions may increasingly divert vegetation recovery trajectories from pre-disturbance forested ecosystems toward grassland or shrub woodlands. Dryland herbaceous and woody vegetation species exhibit different phenological responses to precipitation, resulting in temporal and spatial shifts in landscape phenology patterns as the proportions of plant functional groups change over time. We have developed time series of Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) greenness measures derived from satellite imagery from 1984 - 2015 to record the phenological signatures that characterize recovery trajectories towards predominantly grassland, shrubland, or forest land cover types. We leveraged the data and computational resources available through the Google Earth Engine cloud-based platform to analyze time series of Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery collected over maturing (40 years or more post-fire) dryland forests in Arizona and New Mexico, USA. These time series provided the basis for long-term comparisons of phenology behavior in different successional trajectories and enabled the assessment of climatic influence on the eventual outcomes.

  8. Dynamics of Vegetatin Indices in Tropical and Subtropical Savannas Defined by Ecoregions and Moderate Resolution Imaging Spectoradiometer (MODIS) Land Cover

    NASA Technical Reports Server (NTRS)

    Hill, Michael J.; Roman, Miguel O.; Schaaf, Crytal B.

    2011-01-01

    In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.

  9. Phenological indicators derived with CO2 flux, MODIS image and ground monitor at a temperate mixed forest and an alpine shrub

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian

    2016-04-01

    To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility

  10. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  11. Neighborhood Greenness and Chronic Health Conditions in Medicare Beneficiaries.

    PubMed

    Brown, Scott C; Lombard, Joanna; Wang, Kefeng; Byrne, Margaret M; Toro, Matthew; Plater-Zyberk, Elizabeth; Feaster, Daniel J; Kardys, Jack; Nardi, Maria I; Perez-Gomez, Gianna; Pantin, Hilda M; Szapocznik, José

    2016-07-01

    Prior studies suggest that exposure to the natural environment may impact health. The present study examines the association between objective measures of block-level greenness (vegetative presence) and chronic medical conditions, including cardiometabolic conditions, in a large population-based sample of Medicare beneficiaries in Miami-Dade County, Florida. The sample included 249,405 Medicare beneficiaries aged ≥65 years whose location (ZIP+4) within Miami-Dade County, Florida, did not change, from 2010 to 2011. Data were obtained in 2013 and multilevel analyses conducted in 2014 to examine relationships between greenness, measured by mean Normalized Difference Vegetation Index from satellite imagery at the Census block level, and chronic health conditions in 2011, adjusting for neighborhood median household income, individual age, gender, race, and ethnicity. Higher greenness was significantly associated with better health, adjusting for covariates: An increase in mean block-level Normalized Difference Vegetation Index from 1 SD less to 1 SD more than the mean was associated with 49 fewer chronic conditions per 1,000 individuals, which is approximately similar to a reduction in age of the overall study population by 3 years. This same level of increase in mean Normalized Difference Vegetation Index was associated with a reduced risk of diabetes by 14%, hypertension by 13%, and hyperlipidemia by 10%. Planned post-hoc analyses revealed stronger and more consistently positive relationships between greenness and health in lower- than higher-income neighborhoods. Greenness or vegetative presence may be effective in promoting health in older populations, particularly in poor neighborhoods, possibly due to increased time outdoors, physical activity, or stress mitigation. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Normalization of multidirectional red and NIR reflectances with the SAVI

    NASA Technical Reports Server (NTRS)

    Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.

    1992-01-01

    Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.

  13. Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China.

    PubMed

    Wu, Mingquan; Muhammad, Shakir; Chen, Fang; Niu, Zheng; Wang, Changyao

    2015-04-01

    Wetland ecosystems are very important for ecological diversity and have a strong ability to sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the relationships between the light use efficiency (LUE) index and the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST). Consequently, we have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST and the fraction of photosynthetically active radiation (FAPAR) absorbed by the active vegetation. This model was developed and validated for a study site on Chongming Island, Shanghai, China. Our results show that photosynthetically active radiation (PAR) was highly correlated with the LST, with a coefficient of determination (R(2)) of 0.59 (p < 0.001). Vegetation indices, such as EVI, NDVI and LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a modified form of LST (Te) can be used to estimate LUE, with an R(2) of 0.82 (P < 0.0001) and an RMSE of 0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R(2) of 0.87 and RMSE of 0.009 kg C m(-2) 8 d(-1) (P < 0.0001)).

  14. Detecting forest canopy change due to insect activity using Landsat MSS

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.

    1983-01-01

    Multitemporal Landsat multispectral scanner data were analyzed to test various computer-aided analysis techniques for detecting significant forest canopy alteration. Three data transformations - differencing, ratioing, and a vegetative index difference - were tested to determine which best delineated gypsy moth defoliation. Response surface analyses were conducted to determine optimal threshold levels for the individual transformed bands and band combinations. Results indicate that, of the three transformations investigated, a vegetative index difference (VID) transformation most accurately delineates forest canopy change. Band 5 (0.6 to 0.7 micron ratioed data did nearly as well. However, other single bands and band combinations did not improve upon the band 5 ratio and VID results.

  15. Estimating leaf area and above-ground biomass of forest regeneration areas using a corrected normalized difference vegetation index

    Treesearch

    Tommy L. Coleman; James H. Miller; Bruce R. Zutter

    1992-01-01

    The objective of this study was to investigate the regression relations between vegetation indices derived from remotely-sensed data of single and mixed forest regeneration plots. Loblolly pine (Pinus taeda L.) seedlings, sweelgum (Liquidambar styraciflua L.) seedlings and broomsedge (Andropogon virginicus L.)...

  16. Quantifying Uncertainties from Presence Data Sampling Methods for Species Distribution Modeling: Focused on Vegetation.

    NASA Astrophysics Data System (ADS)

    Sung, S.; Kim, H. G.; Lee, D. K.; Park, J. H.; Mo, Y.; Kil, S.; Park, C.

    2016-12-01

    The impact of climate change has been observed throughout the globe. The ecosystem experiences rapid changes such as vegetation shift, species extinction. In these context, Species Distribution Model (SDM) is one of the popular method to project impact of climate change on the ecosystem. SDM basically based on the niche of certain species with means to run SDM present point data is essential to find biological niche of species. To run SDM for plants, there are certain considerations on the characteristics of vegetation. Normally, to make vegetation data in large area, remote sensing techniques are used. In other words, the exact point of presence data has high uncertainties as we select presence data set from polygons and raster dataset. Thus, sampling methods for modeling vegetation presence data should be carefully selected. In this study, we used three different sampling methods for selection of presence data of vegetation: Random sampling, Stratified sampling and Site index based sampling. We used one of the R package BIOMOD2 to access uncertainty from modeling. At the same time, we included BioCLIM variables and other environmental variables as input data. As a result of this study, despite of differences among the 10 SDMs, the sampling methods showed differences in ROC values, random sampling methods showed the lowest ROC value while site index based sampling methods showed the highest ROC value. As a result of this study the uncertainties from presence data sampling methods and SDM can be quantified.

  17. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  18. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 2; Implementation, Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Samanta, Arindam; Schull, Mitchell A.; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramajrushna R,; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the intercomparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.

  19. Drought impact on vegetation in pre and post fire events in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Gouveia, C. M.; Bastos, A.; Trigo, R. M.; DaCamara, C.

    2012-04-01

    In 2004/2005, the Iberian Peninsula was stricken by an exceptional drought that affected more than one third of Portugal and part of southern Spain during more than 9 months. This severe drought had a strong negative impact on vegetation dynamics, as it coincided with the period of high photosynthetic activity (Gouveia et al., 2009). Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Fire events in the European Mediterranean areas have become a serious problem and a major ecosystem disturbance, increasing erosion and soil degradation. In Portugal, the years 2003 and 2005 were particularly devastating. In 2003 it was registered the maximal burnt area since 1980, with more than 425000 ha burned, representing about 5% of Portuguese mainland. The 2005 fire season registered the highest number of fire occurrences in Portugal and the second year with the greatest number of fires in Spain. The high number of fire events observed during the summer 2005 in the Iberian Peninsula is linked, in part, to the extreme drought conditions that prevailed during the preceding winter and spring seasons of 2004/2005. Vegetation recovery after the 2003 and 2005 fire seasons was estimated using the mono-parametric model developed by Gouveia et al. (2010), which relies on monthly values of Normalized Difference Vegetation Index (NDVI), from 1999 to 2009, at 1kmresolution, as obtained from the VEGETATION-SPOT5 instrument.. This model was further used to evaluate the effect of drought in pre and post vegetation activity. Besides the standard NDVI, the Normalized Difference Water Index (NDWI) and the Normalized Difference Drought Index (NDDI) were computed in order to evaluate drought intensity. In the case of the burnt scars of 2003, when data corresponding to the months of drought are removed, recovery times are considerably shorter. The extreme water stress conditions to which vegetation is subject during drought events appear, therefore, to delay the regeneration process, which is to be expected since water availability is determinant to primary productivity. On the other hand, in the case of 2005 burnt areas, vegetation is more stressed and dryer in summer than in spring and, in general, fire damage is higher for pixels with higher vegetation density and higher moisture content during the months before the fire. These relationships are also related with the distinct vegetation behavior of the different land covers: in general, shrubland holds less quantity of very dry biomass, while needle leaf presents higher amounts of fairly dry biomass. Gouveia C., Trigo R.M., DaCamara C.C (2009) "Drought and Vegetation Stress Monitoring in Portugal using Satellite Data". Natural Hazards and Earth System Sciences, 9, 1-11 Gouveia C., DaCamara C.C, Trigo R.M. (2010). "Post-fire vegetation dynamics in Portugal". Natural Hazards and Earth System Sciences, 10, 4, 673-684.

  20. Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation

    NASA Astrophysics Data System (ADS)

    Bondi, Elizabeth; Salvaggio, Carl; Montanaro, Matthew; Gerace, Aaron D.

    2016-05-01

    Vegetation health and vigor can be assessed with data from multi- and hyperspectral airborne and satellite- borne sensors using index products such as the normalized difference vegetation index (NDVI). Recent advances in unmanned aerial systems (UAS) technology have created the opportunity to access these same image data sets in a more cost effective manner with higher temporal and spatial resolution. Another advantage of these systems includes the ability to gather data in almost any weather condition, including complete cloud cover, when data has not been available before from traditional platforms. The ability to collect in these varied conditions, meteorological and temporal, will present researchers and producers with many new challenges. Particularly, cloud shadows and self-shadowing by vegetation must be taken into consideration in imagery collected from UAS platforms to avoid variation in NDVI due to changes in illumination within a single scene, and between collection flights. A workflow is presented to compensate for variations in vegetation indices due to shadows and variation in illumination levels in high resolution imagery collected from UAS platforms. Other calibration methods that producers may currently be utilizing produce NDVI products that still contain shadow boundaries and variations due to illumination, whereas the final NDVI mosaic from this workflow does not.

  1. Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    DTIC Science & Technology

    2010-03-01

    2-29 2.7.4 Normalized Difference Skin Index (NDSI) . . . . 2-30 2.7.5 Normalized Difference Vegetation Index ( NDVI ) 2-31 2.7.6...C-1 C.2 NDVI Method . . . . . . . . . . . . . . . . . . . . . . . C-4 Bibliography... NDVI ,NDSI) and (NDGRI,NDSI) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.3. Joint distributions of ( NDVI ,NDSI) and

  2. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation productivity declines.

  3. Spatio-Temporal Change of Vegetation Coverage and its Driving Forces Based on Landsat Images: a Case Study of Changchun City

    NASA Astrophysics Data System (ADS)

    Dong, L.; Jiang, H.; Yang, L.

    2018-04-01

    Based on the Landsat images in 2006, 2011 and 2015, and the method of dimidiate pixel model, the Normalized Difference Vegetation Index (NDVI) and the vegetation coverage, this paper analyzes the spatio-temporal variation of vegetation coverage in Changchun, China from 2006 to 2015, and investigates the response of vegetation coverage change to natural and artificial factors. The research results show that in nearly 10 years, the vegetation coverage in Changchun dropped remarkably, and reached the minimum in 2011. Moreover, the decrease of maximum NDVI was significant, with a decrease of about 27.43 %, from 2006 to 2015. The vegetation coverage change in different regions of the research area was significantly different. Among them, the vegetation change in Changchun showed a little drop, and it decreased firstly and then increased slowly in Yushu, Nong'an and Dehui. In addition, the temperature and precipitation change, land reclamation all affect the vegetation coverage. In short, the study of vegetation coverage change contributes scientific and technical support to government and environmental protection department, so as to promote the coordinated development of ecology and economy.

  4. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    PubMed

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for different period of year ecologists might focus on.

  5. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    NASA Astrophysics Data System (ADS)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  6. Effect of land cover and green space on land surface temperature of a fast growing economic region in Malaysia

    NASA Astrophysics Data System (ADS)

    Sheikhi, A.; Kanniah, K. D.; Ho, C. H.

    2015-10-01

    Green space must be increased in the development of new cities as green space can moderate temperature in the cities. In this study we estimated the land surface temperature (LST) and established relationships between LST and land cover and various vegetation and urban surface indices in the Iskandar Malaysia (IM) region. IM is one of the emerging economic gateways of Malaysia, and is envisaged to transform into a metropolis by 2025. This change may cause increased temperature in IM and therefore we conducted a study by using Landsat 5 image covering the study region (2,217 km2) to estimate LST, classify different land covers and calculate spectral indices. Results show that urban surface had highest LST (24.49 °C) and the lowest temperature was recorded in, forest, rubber and water bodies ( 20.69 to 21.02°C). Oil palm plantations showed intermediate mean LST values with 21.65 °C. We further investigated the relationship between vegetation and build up densities with temperature. We extracted 1000 collocated pure pixels of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI), Urban Index (UI) and LST in the study area. Results show a strong and significant negative correlation with (R2= -0.74 and -0.79) respectively between NDVI, NDWI and LST . Meanwhile a strong positive correlation (R2=0.8 and 0.86) exists between NDBI, UI and LST. These results show the importance of increasing green cover in urban environment to combat any adverse effects of climate change.

  7. The interactions between vegetation and climate seasonality, topography on different time scales under the Budyko framework: case study in China's Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ning, T.; Shen, H.; Li, Z.

    2017-12-01

    Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.

  8. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China.

    PubMed

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-10-07

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide.

  9. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China

    PubMed Central

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-01-01

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide. PMID:27713530

  10. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    PubMed Central

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  11. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  12. Applications of Remote Sensing and In-Situ Measurements for the Purpose of Understanding Lateral Carbon Fluxes between Tidal Marshes and Connected Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Van, U. A.; Lamb, B. T.

    2016-12-01

    Wetlands are biologically diverse ecosystems that provide a number of ecosystems services, including flood protection, erosion prevention, and carbon sequestration. Wetlands often act as carbon sinks because the abundant plant life in wetlands does not decompose easily in the saturated conditions, leading to carbon accumulating in wetland soils. Due to the motion of tides, however, this stored carbon can be transported to the adjacent estuary. Our study site is in the northwestern shore of the Chesapeake Bay, focusing on the Kirkpatrick Marsh and the adjacent Rhode River estuary. The goal of this project is to use remotely sensed data and in situ measurements to understand carbon fluxes between the Kirkpatrick marsh and the Rhode river estuary. Satellite earth images are obtained from the Optical Land Imager (OLI) sensor aboard the Landsat 8 satellite through the USGS Earth Explorer online interface. Landsat imagery is then processed using various spatial analysis tools to calculate for vegetation indices such as Normalized Density Vegetation Index (NDVI), Transformed Vegetation Index (TVI) and Green Normalized Density Vegetation Index (GNDVI). One goal of this project is to compare the vegetation data obtained from the different indices and find out which index can optimize the wide categorization of vegetation over the wetland. We evaluated lesser known vegetation indices (TVI and GNDVI) to compare to NDVI. Preliminary results have shown TVI to be most effective when compared against NDVI and has a correlating factor of 0.987. In addition to using marsh vegetation indices, we are using water quality indices such as the Red/Green index to compare to in-situ water samples in the Rhode River. A YSI EXO2 sensor sits at the marsh-estuary interface and continuously measures water parameters such as turbidity, depth, fDOM and chlorophyll-A. We are attempting to understand if the marsh vegetation indices, water quality indices (remote sensing), and in-situ measurements of water quality are related to one another. Initial comparison between remotely sensed NDVI data and in-situ fDOM data have a correlating factor of 0.93. Understanding the processes affecting carbon cycling within wetlands is pivotal to knowing how to manage them in the future.

  13. Thermal remote sensing approach combined with field spectroscopy for detecting underground structures intended for defence and security purposes in Cyprus

    NASA Astrophysics Data System (ADS)

    Melillos, George; Themistocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2018-04-01

    The purpose of this paper is to present the results obtained from unmanned aerial vehicle (UAV) using multispectral with thermal imaging sensors and field spectroscopy campaigns for detecting underground structures. Airborne thermal prospecting is based on the principle that there is a fundamental difference between the thermal characteristics of underground structures and the environment in which they are structure. This study aims to combine the flexibility and low cost of using an airborne drone with the accuracy of the registration of a thermal digital camera. This combination allows the use of thermal prospection for underground structures detection at low altitude with high-resolution information. In addition vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and Simple Ratio (SR), were utilized for the development of a vegetation index-based procedure aiming at the detection of underground military structures by using existing vegetation indices or other in-band algorithms. The measurements were taken at the following test areas such as: (a) vegetation area covered with the vegetation (barley), in the presence of an underground military structure (b) vegetation area covered with the vegetation (barley), in the absence of an underground military structure. It is important to highlight that this research is undertaken at the ERATOSTHENES Research Centre which received funding to be transformed to an EXcellence Research Centre for Earth SurveiLlance and Space-Based MonItoring Of the EnviRonment (Excelsior) from the HORIZON 2020 Widespread-04-2017: Teaming Phase 1(Grant agreement no: 763643).

  14. Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index

    USDA-ARS?s Scientific Manuscript database

    Ground-based, active light sensing relies upon the Normalized Difference Vegetation Index (NDVI) for assessing crop nitrogen (N) response and applying N fertilizer. However, NDVI may not work well in semiarid environments where biomass and yields depend upon plant water. This study evaluated the C...

  15. IMPACTS OF VEGETATION DYNAMICS ON THE IDENTIFICATION OF LAND COVER CHANGE IN A BIOLOGICALLY COMPLEX COMMUNITY IN NORTH CAROLINA, USA

    EPA Science Inventory

    A land-cover (LC) change detection experiment was performed in the biologically complex landscape of the Neuse Rive Basin (NRB), NC using Landsat 5 and 7 imagery collected in May of 1993 and 2000. Methods included pixel-wise Normalized Difference Vegetation Index (NDVI) and Mult...

  16. Deforestation in Mwanza District, Malawi, from 1981 to 1992 as determined from Landsat MSS imagery

    Treesearch

    Andrew T. Hudak; Carol A. Wessman

    2000-01-01

    Malawi is critically short of fuelwood, the primary energy source for its poverty-stricken populace. Deforestation from 1981 to 1992 in Mwanza District in southern Malawi was assessed using Normalized Difference Vegetation Index (NDVI) values calculated from multitemporal Landsat Multispectral Scanner (MSS) images. A control site, where vegetation change was assumed to...

  17. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and understanding of remotely sensed vegetation indices as proxies of photosynthetic activity in northern forests for long-term monitoring.

  18. Temperature and heat in informal settlements in Nairobi

    PubMed Central

    Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F.; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W.

    2017-01-01

    Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or “slums” are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation. PMID:29107977

  19. Temperature and heat in informal settlements in Nairobi.

    PubMed

    Scott, Anna A; Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W

    2017-01-01

    Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or "slums" are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation.

  20. Meteorological satellite data: A tool to describe the health of the world's agriculture

    NASA Technical Reports Server (NTRS)

    Gray, T. I., Jr.; Mccrary, D. G. (Principal Investigator); Scott, L.

    1981-01-01

    Local area coverage data acquired aboard the TIROS-N satellite family by the advanced very high resolution radiometer systems was examined to determine the agricultural information current. Albedo differences between channel 2 and channel 1 of the advanced very high resolution radiometer LAC (called EVI) are shown to be closely correlated to the Ashburn vegetative index produced from LANDSAT multispectral scanner data which have been shown to vary in response to "greenness", soil moisture, and crop production. The statistical correlation between the EVI and the Ashburn Vegetative Index (+ or - 1 deg) is 0.86.

  1. Evaluation of vegetation post-fire resilience in the Alpine region using descriptors derived from MODIS spectral index time series

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Fava, Francesco; Busetto, Lorenzo; Crosta, Giovanni Franco; Colombo, Roberto

    2013-04-01

    In this study a method based on the analysis of MODerate-resolution Imaging Spectroradiometer (MODIS) time series is proposed to estimate the post-fire resilience of mountain vegetation (broadleaf forest and prairies) in the Italian Alps. Resilience is defined herewith as the ability of a dynamical system to counteract disturbances. It can be quantified by the amount of time the disturbed system takes to resume, in statistical terms, an ecological functionality comparable with its undisturbed behavior. Satellite images of the Normalized Difference Vegetation Index (NDVI) and of the Enhanced Vegetation Index (EVI) with spatial resolution of 250m and temporal resolution of 16 days in the 2000-2012 time period were used. Wildfire affected areas in the Lombardy region between the years 2000 and 2010 were analysed. Only large fires (affected area >40ha) were selected. For each burned area, an undisturbed adjacent control site was located. Data pre-processing consisted in the smoothing of MODIS time series for noise removal and then a double logistic function was fitted. Land surface phenology descriptors (proxies for growing season start/end/length and green biomass) were extracted in order to characterize the time evolution of the vegetation. Descriptors from a burned area were compared to those extracted from the respective control site by means of the one-way analysis of variance. According to the number of subsequent years which exhibit statistically meaningful difference between burned and control site, five classes of resilience were identified and a set of thematic maps was created for each descriptor. The same method was applied to all 84 aggregated events and to events aggregated by main land cover. EVI index results more sensitive to fire impact than NDVI index. Analysis shows that fire causes both a reduction of the biomass and a variation in the phenology of the Alpine vegetation. Results suggest an average ecosystem resilience of 6-7 years. Moreover, broadleaf forest and prairies show different post-fire behavior in terms of land surface phenology descriptors. In addition to the above analysis, another method is proposed, which derives from the qualitative theory of dynamical systems. The (time dependent) spectral index of a burned area over the period of one year was plotted against its counterpart from the control site. Yearly plots (or scattergrams) before and after the fire were obtained. Each plot is a sequence of points on the plane, which are the vertices of a generally self-intersecting polygonal chain. Some geometrical descriptors were obtained from the yearly chains of each fire. Principal Components Analysis (PCA) of geometrical descriptors was applied to a set of case studies and the obtained results provide a system dynamics interpretation of the natural process.

  2. Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.

    2013-12-01

    Forecasting wheat yield in major producer countries early in the growing season allows better planning for harvest deficits and surplus with implications for food security, world market transactions, sustaining adequate grain stocks, policy making and other matters. Remote sensing imagery is well suited for yield forecasting over large areas. The Normalized Difference Vegetation Index (NDVI) has been the most-used spectral index derived from remote sensing imagery for assessing crop condition of major crops and forecasting crop yield. Many authors have found that the highest correlation between NDVI and yield of wheat crops occurs at the height of the growing season when NDVI values and photosynthetic activity of the wheat plants are at their relative maximum. At the same time NDVI saturates in very dense and vigorous (healthy, green) canopies such as wheat fields during the seasonal peak and shows significantly reduced sensitivity to further increases in photosynthetic activity. In this study we compare the performance of different vegetation indices derived from space-borne red and near-infrared spectral reflectance measurements for wheat yield forecasting in the Punjab Province, Pakistan. Areas covered by wheat crop each year were determined using a time series of MODIS 8-day composites at 250 m resolution converted to temporal metrics and classified using a bagged decision tree approach, driven by classified multi-temporal Landsat scenes. Within the wheat areas we analyze and compare wheat yield forecasts derived from three different satellite-based vegetation indices at the peak of the growing season. We regressed in turn NDVI, Wide Dynamic Range Vegetation Index (WDRVI) and the Vegetation Condition Index (VCI) from the four years preceding the wheat growing season 2011/12 against reported yield values and applied the regression equations to forecast wheat yield for the 2011/12 season per district for each of 36 Punjab districts. Yield forecasts overall corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.

  3. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  4. Soil Erosion Risk Map based on irregularity of the vegetative activity

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Tarquis, Ana Maria; Martín-Sotoca, Juan J.; Valencia, Jose L.; Gobin, Anne; Rodriguez-Sinobas, Leonor

    2016-04-01

    Because of the difficulties to build on both daily rainfall and base shorter time, we explored the possibilities of building indexes based on land cover, which also provide us the opportunity to evaluate their evolution over time. We consider the Fournier index (Fournier, 1960) which is used to assess the rainfall erosivity based on monthly rainfall, alternatively to use of the rainfall intensity in time bases under one hour (eg., van der Knijff et al., 1999; Shamshad et al, 2008). This index can also be interpreted as an index of irregularity and representing a ratio between maximum monthly precipitation and annual rainfall. We propose to calculate this irregularity in terms of irregularity of the vegetative activity. This activity is related to precipitation, but also with the availability of water in the soil reservoir and land use. Therefore, we propose a kind of Fournier index on the effective use of water, which is also closely related to variations in infiltration. Higher is the presence of vegetation higher is the effective use of water. For this "modified Fourier index" we used the NDVI (Normalized Difference Vegetation Index) as index of available vegetative activity, which is widely reported in the literature (Jensen, 2000). Initial calculations have been done with MODIS 500 x 500 m satellite data. The selected area was Cega-Eresma-Adaja subbasin during the period from 2009 to 2012. We selected 8 days composite images product. The calculation of the valid values to eliminate areas with clouds or snow is performed according to the criteria of Martinez Sotoca (2014), ie with a Saturation (based on HSL color model) greater or equal to 0.15. Then, an average of these values was estimated to represent each month of the year. The results are very interesting when we compare Modified Fournier Index on NDVIs with the map of potential soil loss. We have found surprisingly similar patterns and practical equivalence between several classes. Therefore, the Modified Fournier Index on NDVI values seems to synthesize the different parameters of the USLE, referring to rainfall, soil, geomorphology and vegetation cover. Acknowledgements Authors are grateful to TALE project (CICYT PCIN-2014-080) and DURERO project (Env.C1.3913442) for their financial support. References Fournier, F. (1960), Climat et erosion. P.U.F. Paris. Jensen, J.R. (2000). Remote Sensing of the Environment: An Earth Resource Perpective, Prentice Hall, New Jersey. Martínez Sotoca, J. J. (2014) estructura espacial de la sequía en pastos y sus aplicaciones en el seguro agrario indexado. (In Spanish) Master Thesis, UPM. Shamshad, A., Azhari M.N., Isaac, M.H., wan Hussin, W.M.A., Parida, B.P.. (2008). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena, 72, 423-432. van der Knijff, J.M., Jones, R.J.A., Montanarella, L. (1999). Soil Erosion Risk Assessment Italy Soil Erosion Risk Assessment in Italy. European Commission Soil Bureau Joint Research Centre European Commission. EUR 19022EN.

  5. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    NASA Astrophysics Data System (ADS)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  6. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  7. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data

    USGS Publications Warehouse

    Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.

    2004-01-01

    Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.

  8. Developing Remote Sensing Methodology to Characterize Savanna Vegetation Structure and Composition for Rangeland Monitoring and Conservation Applications

    NASA Astrophysics Data System (ADS)

    Tsalyuk, M.; Kelly, M.; Getz, W.

    2012-12-01

    Rangeland ecosystems cover more than fifty percent of earth's land surface, host considerable biodiversity and provide vital ecosystem services. However, rangelands around the world face degradation due to climate change, land use change and overgrazing. Human-driven changes to fire and grazing regimes enhance degradation processes. The purpose of this research is to develop a remote sensing methodology to characterize the structure and composition of savanna vegetation, in order to improve the ability of conservation managers to monitor and address such degradation processes. Our study site, Etosha National Park, is a 22,270 km^2 semi-arid savanna located in north-central Namibia. Fencing and provision of artificial water sources for wildlife have changed the natural grazing patterns, which has caused bush encroachment and vegetation degradation across the park. We used MODIS and Landsat ETM+ 7 satellite imagery to map the vegetation type, dominant species, density, cover and biomass of herbaceous and woody vegetation in Etosha. We used imagery for 2007-2012 together with extensive field sampling, both in the wet and the dry seasons. At each sampling point, we identified the dominant species and measured the density, canopy size, height and diameter of the trees and shrubs. At only 31% of the sampling points, the identified vegetation type matched the class assigned at the 1996 classification. This may indicate significant habitat modifications in Etosha. We used two parallel analytical approaches to correlate between radiometric and field data. First, we show that traditional supervised classification identifies well five classes: bare soil, grassland, steppe, shrub savanna and tree savanna. We then refined this classification to enable us to identify the species composition in an area utilizing the phenological differences in timing and duration of greenness of the dominant tree and shrub species in Etosha. Specifically, using multi-date images we were able to identify additional six sub-classes based on the dominant species in each class: Colophospermum mopane woodland, Colophospermum mopane shrubland, Cataphractes alexandri woodland, Acacia nebrownii shrubland, mixed Combretum species woodland and Terminalia prunioides woodland. Second, we used quantitative methods to relate satellite-based vegetation indices to the biometric properties measured on the ground. We found a correlation among measured height, diameter and canopy cover of woody vegetation and used this to improve the correlation between cover and Normalized Difference Vegetation Index (NDVI). We showed that the Soil Adjusted Total Vegetation Index (SATVI) and Normalized Difference Water Index (NDWI) were related to both greenness and density at a site. In order to measure grass biomass in the field, we calibrated Disc Pasture Mater by clipping, weighing and drying grass in 1m^2 plots, in the dry and wet seasons, with resulting R^2 of 0.87 and 0.83, respectively. MODIS-derived leaf area index (LAI) data was best correlated with dry grass biomass. We used these correlations to produce detailed maps of each vegetation parameter for the whole park. These maps will provide a baseline to employ historical imagery to better understand the effects of the park's management and changing grazing pressure on vegetation structure.

  9. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    PubMed

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  10. Pasture Drought Insurance Based on NDVI and SAVI

    NASA Astrophysics Data System (ADS)

    Escribano Rodríguez, J. A.; Tarquis, A. M.; Hernandez Díaz-Ambrona, C. G.

    2012-04-01

    Drought is a complex phenomenon, which is difficult to define. The term is used to refer to deficiency in rainfall, soil moisture, vegetation greenness, ecological conditions or socio economic conditions, and different drought types can be inferred. In this study, drought is considered as a period when the pasture growth is low in regard to long-term average conditions. The extensive livestock production is based on the natural resources available. The good management practices concurs the maximum livestock nutrition needs with the maximum pasture availability. Therefore, early drought detection and impact assessment on the amount of pasture biomass are important in several areas in Spain, whose economy strongly depends on livestock production. The use of remote sensing data presents a number of advantages when determining drought impact on vegetation. The information covers the whole of a territory and the repetition of images provides multi-temporal measurements. In addition, vegetation indexes, being NDVI (normalized difference vegetation index) and SAVI (soil-adjusted vegetation index) the most common ones, obtainedfrom satellite data allow areas affected by droughts to be identified. These indices are being used for estimation of vegetation photosynthesis activity and monitoring drought. The present study shows the application of these vegetation indices for pasture drought monitoring in three places in Spain and their correlation with several field measurements. During 2010 and 2011 three locations, El Cubo de Don Sancho (Salamanca), Trujillo (Cáceres) and Pozoblanco (Córdoba), were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 of the chosen places.This satellite is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. It has 6 cameras in red, green and near infrared bands, equivalent to Landsat ones. A discussion on the correlations found between field measurements and both vegetation index considering seasonal pattern and location are presented. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  11. View angle effects on relationships between leaf area index in wheat and vegetation indices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, W.; Huang, W.; Niu, Z.

    2016-12-01

    The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.

  12. Preliminary estimation of the realistic optimum temperature for vegetation growth in China.

    PubMed

    Cui, Yaoping

    2013-07-01

    The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.

  13. Preliminary Estimation of the Realistic Optimum Temperature for Vegetation Growth in China

    NASA Astrophysics Data System (ADS)

    Cui, Yaoping

    2013-07-01

    The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.

  14. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    USGS Publications Warehouse

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  15. Analysis of regional vegetation changes with medium and high resolution imagery

    NASA Astrophysics Data System (ADS)

    Marcello, J.; Eugenio, F.; Medina, A.

    2012-09-01

    The singular characteristics of the Canarian archipelago (Spain) and, in particular, of the Gran Canaria island have allowed the development of a unique biological richness. Almost half of its territory is protected to preserve the natural environment and, in consequence, the monitoring of vegetated regions plays an important role for regional administrations which aim to develop the corresponding policies for the conservation of such ecosystems. The Normalized Difference Vegetation Index (NDVI) is a common index applied for vegetation studies. It is important to emphasize that NDVI is sensor-dependent, and changes are affected by soil background, irradiance, solar position, atmospheric attenuation, season, hydric situation and climate of the area. So, a fixed threshold cannot be set, even for the same sensor or season, to properly segment vegetated areas. In this context, a robust methodology has been applied to ensure a reliable estimation of changes using the same sensor in multiple dates or different sensors. To that respect, a supervised procedure is presented consisting on the selection of different regions within each image to precisely map each cover with its associated NDVI values and, in consequence, obtain for each individual image the optimal threshold to properly segment vegetation without the need to perform the complex preprocessing required to estimate the ground reflectivity. On the other hand, fires are an important aspect of an ecosystem and their study, a fundamental task to perform a complete assessment of the environmental and economic damage. In our work we have also analyzed in detail the fire occurring during 2007 and precisely assessed the results.

  16. FlowShape: a runoff connectivity index for patched environments, based on shape and orientation of runoff sources

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Malkinson, Dan; Ursino, Nadia; Wittenberg, Lea

    2016-04-01

    The properties of vegetation cover are recognized to be a key factor in determining runoff processes and yield over natural areas. Still, how the actual vegetation spatial distribution affects these processes is not completely understood. In Mediterranean semi-arid regions, patched landscapes are often found, with clumped vegetation, grass or shrubs, surrounded by bare soil patches. These two phases produce a sink-source system for runoff, as precipitation falling over bare areas barely infiltrates and rather flows downslope. In contrast, vegetated patches have high infiltrability and can partially retain the runon water. We hypothesize that, at a relatively small scale, the shape and orientation of bare soil patches with respect to the runoff flow direction is a significant for the connectivity of the runoff flow paths, and consequently for runoff values. We derive an index, FlowShape, which is candidate to be a good proxy for runoff connectivity and thus runoff production in patched environments. FlowShape is an area-weighted average of the geometrical properties of each bare soil patch. Eight experimental plots in northern Israel were monitored during 2 years after a wildfire which occurred in 2006. Runoff was collected and measured - along with rainfall depth - after each rainfall event, at different levels of vegetation cover corresponding to post-fire recovery of vegetation and seasonality. We obtained a good correlation between FlowShape and the runoff coefficient, at two conditions: a minimal percentage of vegetation cover over the plot, and minimal rainfall depth. Our results support the hypothesis that the spatial distribution of the two phases (vegetation and bare soil) in patched landscapes dictates, at least partially, runoff yield. The correlation between the runoff coefficient and FlowShape, which accounts for shape and orientation of soil patches, is higher than the correlation between the runoff coefficient and the bare soil percentage alone. Besides that, the existence of a vegetation cover threshold under which FlowShape loses correlation with runoff yield, suggests that different processes occur at different levels of vegetation cover. On bare or almost bare plots, runoff flows as a sheet, and small isolated plants do not impose a directionality to the flow or interrupt runoff connectivity. On the other hand, rainfall depth - and possibly rainfall intensity - also affect the hydrological processes of infiltration and runoff production, and thus the applicability of any purely geometrical index. We compared the correlation to runoff coefficient with the FlowShape and FlowLength, a well-known index for runoff connectivity (Mayor et al., 2008) which is defined as the average of runoff flow paths over the plot. As microtopography was not available, our plots were idealized as planar hillslopes. We found that FlowShape is a better predictor than FlowLength for runoff yield over our experimental plots.

  17. Vulnerable land ecosystems classification using spatial context and spectral indices

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martín, Consuelo; Marcello, Javier

    2017-10-01

    Natural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.

  18. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland.

    PubMed

    Ren, Shilong; Chen, Xiaoqiu; An, Shuai

    2017-04-01

    Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.

  19. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland

    NASA Astrophysics Data System (ADS)

    Ren, Shilong; Chen, Xiaoqiu; An, Shuai

    2017-04-01

    Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.

  20. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of vegetated land surface as good as in situ radiometric measurements. Future studies that address biophysical or physiological interpretations of Tower VI time series derived from radiation flux measurements are desirable.

  1. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms

    DOE PAGES

    Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy; ...

    2017-03-02

    Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less

  2. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy

    Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less

  3. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  4. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  5. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  6. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    PubMed

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  7. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    NASA Astrophysics Data System (ADS)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  8. Spring and autumn phenological variability across environmental gradients of Great Smoky Mountains National Park, USA

    Treesearch

    Steven P. Norman; William W. Hargrove; William M. Christie

    2017-01-01

    Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI) to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for...

  9. Use of near infrared/red radiance ratios for estimating vegetation biomass and physiological status

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1977-01-01

    The application of photographic infrared/red (ir/red) reflectance or radiance ratios for the estimation of vegetation biomass and physiological status were investigated by analyzing in situ spectral reflectance data from experimental grass plots. Canopy biological samples were taken for total wet biomass, total dry biomass, leaf water content, dry green biomass, dry brown biomass, and total chlorophyll content at each sampling date. Integrated red and photographic infrared radiances were regressed against the various canopy or plot variables to determine the relative significance between the red, photographic infrared, and the ir/red ratio and the canopy variables. The ir/red ratio is sensitive to the photosynthetically active or green biomass, the rate of primary production, and actually measures the interaction between the green biomass and the rate of primary production within a given species type. The ir/red ratio resulted in improved regression significance over the red or the ir/radiances taken separately. Only slight differences were found between ir/red ratio, the ir-red difference, the vegetation index, and the transformed vegetation index. The asymptotic spectral radiance properties of the ir, red, ir/red ratio, and the various transformations were evaluated.

  10. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China

    NASA Astrophysics Data System (ADS)

    Han, Xianming; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Gao, Xiaoxi

    2018-06-01

    The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI) is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.

  11. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    NASA Astrophysics Data System (ADS)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  12. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data

    NASA Astrophysics Data System (ADS)

    Chemura, Abel; Mutanga, Onisimo; Odindi, John; Kutywayo, Dumisani

    2018-04-01

    Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index - IRECI (R2 = 0.66), Relative Normalized Difference Index - RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index - NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels (<2.5%). This study demonstrates the value of Sentinel-2 MSI data, particularly vegetation indices in modelling coffee foliar N at landscape scale.

  13. Analysis of vegetation changes in Cidanau watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Khairiah, R. N.; Kunihiko, Y.; Prasetyo, L. B.; Setiawan, Y.

    2018-05-01

    Vegetation change detection is needed for conserve of quality and water cycle in Cidanau watershed. The NDVI was applied to quantify the vegetation changes of Cidanau watershed for three different years 1989, 2001, and 2015. Using NDVI we mapped the reflectance from chlorophyll and distinguished varying amounts of vegetation at the pixel level by index. In the present study, as a preliminary study, we proposed a vegetation change detection analysis based on the NDVI from 1989 through 2015. Multi-temporal satellite data i.e. Landsat imagery with 30 m spatial resolution are used in the present study. It is reported that agroforestry land exhibited the greatest reductions in highly dense vegetation class in 1989-2001 and also moderate vegetation class in 2001-2015. It’s mean that amount of vegetation present in agroforestry land is getting lower year by year.

  14. Regional assessment of trends in vegetation change dynamics using principal component analysis

    NASA Astrophysics Data System (ADS)

    Osunmadewa, B. A.; Csaplovics, E.; R. A., Majdaldin; Adeofun, C. O.; Aralova, D.

    2016-10-01

    Vegetation forms the basis for the existence of animal and human. Due to changes in climate and human perturbation, most of the natural vegetation of the world has undergone some form of transformation both in composition and structure. Increased anthropogenic activities over the last decades had pose serious threat on the natural vegetation in Nigeria, many vegetated areas are either transformed to other land use such as deforestation for agricultural purpose or completely lost due to indiscriminate removal of trees for charcoal, fuelwood and timber production. This study therefore aims at examining the rate of change in vegetation cover, the degree of change and the application of Principal Component Analysis (PCA) in the dry sub-humid region of Nigeria using Normalized Difference Vegetation Index (NDVI) data spanning from 1983-2011. The method used for the analysis is the T-mode orientation approach also known as standardized PCA, while trends are examined using ordinary least square, median trend (Theil-Sen) and monotonic trend. The result of the trend analysis shows both positive and negative trend in vegetation change dynamics over the 29 years period examined. Five components were used for the Principal Component Analysis. The results of the first component explains about 98 % of the total variance of the vegetation (NDVI) while components 2-5 have lower variance percentage (< 1%). Two ancillary land use land cover data of 2000 and 2009 from European Space Agency (ESA) were used to further explain changes observed in the Normalized Difference Vegetation Index. The result of the land use data shows changes in land use pattern which can be attributed to anthropogenic activities such as cutting of trees for charcoal production, fuelwood and agricultural practices. The result of this study shows the ability of remote sensing data for monitoring vegetation change in the dry-sub humid region of Nigeria.

  15. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have drastic and lasting impacts on these unique ecosystems.

  16. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  17. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2000-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  18. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2001-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  19. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  20. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Above-Ground Plant Nitrogen Uptake in Winter Wheat

    PubMed Central

    Yao, Xinfeng; Yao, Xia; Jia, Wenqing; Tian, Yongchao; Ni, Jun; Cao, Weixing; Zhu, Yan

    2013-01-01

    Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N) uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and its derived vegetation indices from three ground-based sensors (ASD Field Spec Pro spectrometer, CropScan MSR 16 and GreenSeeker RT 100) in six winter wheat field experiments were compared. Then, the best sensor (ASD) and its normalized difference vegetation index (NDVI (807, 736)) for estimating above-ground plant N uptake were determined (R2 of 0.885 and RMSE of 1.440 g·N·m−2 for model calibration). In order to better utilize the spectral reflectance from the three sensors, intercalibration models for vegetation indices based on different sensors were developed. The results indicated that the vegetation indices from different sensors could be intercalibrated, which should promote application of data fusion and make monitoring of above-ground plant N uptake more precise and accurate. PMID:23462622

  1. Analysis of land cover/use changes using Landsat 5 TM data and indices.

    PubMed

    Ettehadi Osgouei, Paria; Kaya, Sinasi

    2017-04-01

    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  2. Assessment of Tibetan grassland degeneration via landscape analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hou, Ge; Ma, Baibing; Zang, Wenqian

    2017-04-01

    Desertification as one of the most severity social-economic-environmental issues has been extensive researched, and the assessments of desertification can be implemented accurately and efficiently based on the landscape indicators of vegetation coverage. Consequently, we explored the relationships of the degeneration index of the grassland with climate factors (temperature and precipitation), and human disturbance factors (livestock quantity and animal husbandry output value) via a landscape assessment approach across Tibet. The results showed that the vegetation coverage presented an increase tendency in the central region of Tibet, but the adverse phenomenon was observed in the northwest region. Meanwhile, the correlation of vegetation coverage with precipitation presented as positive effect in most region of Tibet except some regions of the alpine steppe, and the positive correlation of vegetation coverage with temperature also was observed in the less northwest region of Tibet. In addition, we found that the livestock quantity play a key roles in regulating vegetation coverage of the central region. Furthermore, the landscape indexes [number of patches (NP), patch density (PD), contagion index (CONTAG), landscape shape index (LSI), aggregation index (AI)] of grasslands were analyzed, the results exposed that vegetation coverage (1%-20%) has the positive influences on CONTAG and AI, but negative affects LSI, PD and NP. Morreover, there are opposite correlations among vegetation coverage and landscape indexes when vegetation coverage is 21%-40%. We concluded that overgrazing is the main reason of grassland degradation in Tibet, especially the number of livestock aggravates the landscape fragmentation. The results highlighted the alpine grassland management in future.

  3. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more understanding of the plant-herbivore interactions within the context of a 'greening' Arctic.

  4. Assessment of the environmental effects of mining using SPOT-Vegetation NDVI

    NASA Astrophysics Data System (ADS)

    Tote, C.; Swinnen, E.; Goossens, M.; Reusen, I.; Delalieux, S.

    2012-04-01

    Within the ImpactMin project, funded by the Framework Programme 7 of the European Commission, new methods for the environmental impact monitoring of mining operations are being developed. The objective of this study is to analyze the impact of mining on soil properties through assessment of the vegetation status using time series analysis of low resolution Normalized Difference Vegetation Index (NDVI) images derived from SPOT-Vegetation. The study focuses on the surroundings of mining areas in the Orenburg region in the Russian Urals. Karabash has been a centre for mining and metal production for well over 3000 years, and environmental impact of (historical) mining in the area is extremely severe. The area was characterized as an 'ecological disaster zone', based on chemical analysis of soil samples in the area [1]. The mining activities were intensified in the early to mid-20th century, but the old smelter was modernized in the 1990s. A time series of 10-daily NDVI images from SPOT-Vegetation (S10 April/1998-December/2010 at 1km2 resolution, http://www.vgt.vito.be/) is analyzed. Different land cover types clearly show different phenology. To remove seasonal vegetation changes and thus to facilitate the interpretation through the historical record, a Standardized Difference Vegetation Index (SDVI) was calculated for each pixel and for each record of the time series. The first results of trend analyses indicate a strong recovery of open forests in the Karabash region in the last decade. To what extent this can be related to reduced mining impact or climate factors, still needs to be assessed. Further research will also focus on the spatial heterogeneity of phenological parameters, in relation to distance to and wind direction of the smelters and soil properties. [1] V. Nestersnko, "Urban associations of elements- environmental pollutants in Karabash city (Chelyabinsk oblast) as a reflection of ore-chemical descriptions of mineral raw material", Proceedings of the Chelyabinsk Scientific Center, vol. 3, pp. 58-62, 2006.

  5. Detecting Anthropogenic and Climate Change Induced Land Cover and Land Use Change in the Vicinity of an Oil/gas Facility in Northwestern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.

    2015-12-01

    Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.

  6. Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Kalshoven, James E., Jr.; Tierney, Michael R., Jr.; Daughtry, Craig S. T.; McMurtrey, James E., III

    1995-05-01

    Polarized laser remote-sensing measurements that correlate the yield, the normalized difference vegetation index, and the leaf area index with the depolarized backscattered radiation from corn plots grown with eight different nitrogen fertilization dosages are presented. A polarized Nd:YAG laser emitting at 1064 and 532 nm is used. Depolarization increased significantly with increasing fertilization at the infrared wavelength, and there was a decrease in the depolarization at the green wavelength. The depolarization spectral difference index, defined as the absolute difference in the depolarization at the two wavelengths, is introduced as a parameter that is an indicator of the condition of the internal leaf structure.

  7. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  8. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    NASA Astrophysics Data System (ADS)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity over the last two decades. The co-variability of a range of climate oscillation indices and newly-derived records of fluorescence and vegetation optical depth is analyzed using a statistical framework based on correlations, bootstrapping and Empirical Orthogonal Functions (EOFs). Results will enable us to characterize regional hotspots where particular climatic oscillations control vegetation productivity, as well as allowing us to underpin the climatic variables behind this control.

  9. Drought index driven by L-band microwave soil moisture data

    NASA Astrophysics Data System (ADS)

    Bitar, Ahmad Al; Kerr, Yann; Merlin, Olivier; Cabot, François; Choné, Audrey; Wigneron, Jean-Pierre

    2014-05-01

    Drought is considered in many areas across the globe as one of the major extreme events. Studies do not all agree on the increase of the frequency of drought events over the past 60 years [1], but they all agree that the impact of droughts has increased and the need for efficient global monitoring tools has become most than ever urgent. Droughts are monitored through drought indexes, many of which are based on precipitation (Palmer index(s), PDI…), on vegetation status (VDI) or on surface temperatures. They can also be derived from climate prediction models outputs. The GMO has selected the (SPI) Standardized Precipitation Index as the reference index for the monitoring of drought at global scale. The drawback of this index is that it is directly dependent on global precipitation products that are not accurate over global scale. On the other hand, Vegetation based indexes show the a posteriori effect of drought, since they are based on NDVI. In this study, we choose to combine the surface soil moisture from microwave sensor with climate data to access a drought index. The microwave data are considered from the SMOS (Soil Moisture and Ocean Salinity) mission at L-Band (1.4 Ghz) interferometric radiometer from ESA (European Space Agency) [2]. Global surface soil moisture maps with 3 days coverage for ascending 6AM and descending 6PM orbits SMOS have been delivered since January 2010 at a 40 km nominal resolution. We use in this study the daily L3 global soil moisture maps from CATDS (Centre Aval de Traitement des Données SMOS) [3,4]. We present a drought index computed by a double bucket hydrological model driven by operational remote sensing data and ancillary datasets. The SPI is also compared to other drought indicators like vegetation indexes and Palmer drought index. Comparison of drought index to vegetation indexes from AVHRR and MODIS over continental United States show that the drought index can be used as an early warning system for drought monitoring as the water shortage can be sensed several weeks before the vegetation dryness occures. Keywords: SMOS, microwave, level 4, soil moisture, drought, precipitation, hydrological model, vegetation index

  10. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  11. Deforestation due to Urbanization: a Case Study for Trabzon, Turkey

    NASA Astrophysics Data System (ADS)

    Telkenaroglu, C.; Dikmen, M.

    2017-11-01

    This paper inspects the deforestation of Trabzon in Turkey, due to urbanization, between 2006 and 2016. For this purpose, Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) images are obtained from United States Geographical Survey (USGS) archive (USGS, 2017a) and their VNIR bands related to this study are utilized. For both years, and for each band, histograms are equalized. Finally, Normalized Difference Vegetation Index (NDVI) values are calculated as images. Resulting vegetation indexes are assessed in comparison to the binary ground truth images. A visual inspection is also done with respect to Google's Timelapse images for each year to validate and support the results.

  12. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.

  13. Spectral modelling of multicomponent landscapes in the Sahel

    NASA Technical Reports Server (NTRS)

    Hanan, N. P.; Prince, S. D.; Hiernaux, P. H. Y.

    1991-01-01

    Simple additive models are used to examine the infuence of differing soil types on the spatial average spectral reflectance and normalized difference vegetation index (NDVI). The spatial average NDVI is shown to be a function of the brightness (red plus near-infrared reflectances), the NDVI, and the fractional cover of the components. In landscapes where soil and vegetation can be considered the only components, the NDVI-brightness model can be inverted to obtain the NDVI of vegetation. The red and near-infrared component reflectances of soil and vegetation are determined on the basis of aerial photoradiometer data from Mali. The relationship between the vegetation component NDVI and plant cover is found to be better than between the NDVI of the entire landscape and plant cover. It is concluded that the usefulness of this modeling approach depends on the existence of clearly distinguishable landscape components.

  14. Comparing vegetation cover in the Santee Experimental Forest, South Carolina (USA), before and after hurricane Hugo: 1989-2011

    Treesearch

    Giovanni R. Cosentino

    2013-01-01

    Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a category 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a part of Francis Marion National Forest) in South Carolina. Normalized Difference Vegetation Index (NDVI) and the...

  15. Evapotranspiration, Water Table Fluctuations, and Riparian Restoration: Report Documentary 2007-2008 Work

    DTIC Science & Technology

    2010-09-01

    is delineated in upper third in 2006 image. .............................................................................. 23 Figure 19. NDVI ...values are compared for SPOT imagery from 29 May 2006 and 24 August 2006. Fire areas with reduced NDVI from Malpais fire are clearly seen on both sides...results comparing vegetation type and normalized difference vegetation index ( NDVI ), and (4) presents initial results from the groundwater flow field

  16. Remote sensing techniques for monitoring drought hazards: an intercomparison (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, J. F.; Anderson, M. C.; Wardlow, B. D.; Svoboda, M. D.

    2009-12-01

    Drought events are frequently described using many different terms; for example, recurring climate phenomena, creeping natural hazards, agricultural disasters, and moisture deficiencies. In addition, droughts operate at many different spatial and temporal scales and affect different societal sectors, making them quite challenging to monitor, map, and assess impacts. Because of these factors, determining drought severity often requires using a convergence of evidence assisted by an analysis of multiple drought indicators. Frequent optical and thermal observations collected by daily polar-orbiting and geostationary satellites allow for regular monitoring of the land surface. In recent decades, with the launching of more advanced sensors and the maturation of remote sensing techniques, a variety of tools have been designed for improved understanding and tracking of drought events as they are occurring. These applications are intended to provide key decision makers with timely geospatial drought information to support various drought planning and mitigation activities. Two such tools highlighted in this study, are the Vegetation Drought Response Index (VegDRI) and the Evaporative Stress Index (ESI). While both indices incorporate satellite-based inputs, they are involved in different modeling approaches and observations from different parts of the electromagnetic spectrum. The VegDRI is a hybrid remote sensing and climate based indicator of drought-induced vegetation stress that combines satellite-based vegetation index observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) sensors with climate-based drought index data and other biophysical parameters (such as land use/land cover type and soil characteristics). VegDRI provides near real-time vegetation drought severity information at relatively higher spatial resolution (1-km2) than traditional climatic drought indices such as the Standardized Precipitation Index (SPI) or the U.S. Drought Monitor (USDM), which tend to depicted broad-scale spatial drought patterns. . The ESI is an indicator of anomalous land-surface evaporation and soil moisture deficiency. The ESI is related to the ratio of actual-to-potential evapotranspiration (ET), where actual ET is estimated with a thermal-infrared (TIR) based surface energy balance algorithm. The ESI product is generated in near-real time at 10-km2 resolution over the continental U.S. using TIR imagery from the Geostationary Operational Environmental Satellites (GOES). Because it does not use precipitation data as an input, it is a valuable complement to existing precipitation-based indices and is readily portable to data-poor regions with sparse ground-based rainfall monitoring networks. In this study, we present an intercomparison of the VegDRI and the ESI for the 2009 growing season, highlighting weekly, monthly, and seasonal patterns of moisture flux from soils and vegetation.

  17. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  18. Seasonal Biophysical Dynamics of the Amazon from Space Using MODIS Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Didan, K.; Ratana, P.; Ferreira, L.

    2002-12-01

    We utilized the Terra- Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index (VI) products to analyze the seasonal and spatial patterns of photosynthetic vegetation activity over the Amazon Basin and surrounding regions of Brazil. The seasonal patterns of vegetation activity were studied along two, eco-climatic transects extending from (1) the cerrado region (Brasilia National Park) to the seasonal tropical forest (Tapajos National Forest) and (2) the caatinga biome to the seasonal and per-humid tropical forests. In addition to the climatic transects, we also investigated the seasonal dynamics of altered, land conversion areas associated with pastures and clearcutting land use activities. Both the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) at 250-m, 500-m, and 1-km were used to extract seasonal profile curves. The quality assurance (QA) information of the output products was used in noise removal and data filtering prior to the generation of the seasonal profiles. Histogram analyses were also performed at coarse (biome) scale and fine, site intensive (flux towers) scale. The seasonal patterns of the cerrado and caatinga were very pronounced with distinct dry and wet seasonal trends. We observed decreasing dry-wet seasonal patterns in the transitional areas near Araguaia National Park. In contrast, the seasonal behavior of the tropical forests were much harder to assess, but indicated slight seasonal trends that ran counter to rainfall activity. This may be attributed to new leaf growth in the dry season. We further found MODIS VI seasonal patterns to vary significantly in land converted and land degraded areas.

  19. Assessing Plant Senescence Reflectance Index retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland

    NASA Astrophysics Data System (ADS)

    Ren, S.; Chen, X.; An, S.

    2016-12-01

    Other than green vegetation indices, Plant Senescence Reflectance Index (PSRI) is sensitive to carotenoids/chlorophyll ratio in plant leaves, and shows a reversed bell curve during the growing season. Up to now, performances of PSRI in monitoring vegetation phenology are still unclear. Here, we used Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 to determine PSRI-derived start (SOS) and end (EOS) dates of the growing season in the Inner Mongolian Grassland, and validated the reliability of PSRI-derived SOS and EOS dates using Normalized Difference Vegetation Index (NDVI) derived SOS and EOS dates. Then, we conducted temporal and spatial correlation analyses between SOS/EOS date and climatic factors. Moreover, we revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.

  20. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  1. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale.

    PubMed

    Xu, Shenlai

    2009-04-01

    A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.

  2. Providing a Spatial Context for Crop Insurance in Ethiopia: Multiscale Comparisons of Vegetation Metrics in Tigray

    NASA Astrophysics Data System (ADS)

    Mann, B. F.; Small, C.

    2014-12-01

    Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.

  3. Analysis of the spatial-temporal change and impact factors of the vegetation index in Yulin of China: the effect of forest conservation and grain for green

    NASA Astrophysics Data System (ADS)

    Liu, D.; Luan, J.; Lin, M.; Huang, Q.

    2017-12-01

    Since 1999, China began the Grain for Green program to conserve the forest in the north of China. After 17 years, the vegetation in the north has changed. Vegetation index is an important method to study the regional vegetation change. This study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes and the impact factors of the NDVI in August from 2000 to 2016 at pixel scale in Yulin City of Shaanxi Province in China. The results showed that, on about 96.44% of the region in the Yulin city, vegetation index increased, and the area with increasing NDVI between 0-0.02/a accounts for 93.63% of Yulin city. The area with significant increasing trend accounts for 80.72%. The complex linear regression analysis showed that, the meteorological factors play a positive role in the growth and evolution of vegetation, and human activities also make the vegetation index become more uniform. The area, where the human activities restrain the growth and evolution of the vegetation, is 45.04% of the Yulin area. It is mainly distributed in Fugu County which located in the north of Yulin, and most areas of southern and western parts of Yulin. The area where human activities promote the increase of the vegetation index, accounted for 54.96% of the Yulin area, which indicated that on more than half of the region, human activities have played a positive role in the growth of vegetation. In these areas, the effect of forest conservation, and grain for green (i.e. returning farmland to forests, and returning pasturage to natural grassland) is better.

  4. Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates.

    PubMed

    Chen, L; Mehta, A; Berenbaum, M; Zangerl, A R; Engeseth, N J

    2000-10-01

    Honeys from different floral sources were evaluated for their antioxidant content and for their ability to inhibit enzymatic browning in fruits and vegetables. Antioxidant contents of honeys vary widely from different floral sources, as do their abilities to protect against enzymatic browning. Polyphenol oxidase (PPO) activity was reduced over a range of approximately 2-45% in fruit and vegetable homogenates, corresponding to a reduction in browning index by 2.5-12 units. Soy honey was particularly effective when compared to clover honey, which had a similar antioxidant content. When compared to commercial inhibitors of browning, honeys were less effective; however, in combination they added to the effectiveness of metabisulfite and ascorbic acid. Honey has great potential to be used as a natural source of antioxidants to reduce the negative effects of PPO browning in fruit and vegetable processing.

  5. Study of atmospheric and bidirectional effects on surface reflectance and vegetation index time series: Application to NOAA AVHRR and preparation for future space missions

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    The objectives of the investigation, namely 'to characterize the atmospheric and directional effects on surface reflectance and vegetation index using the First International Satellite Cloud Climatology Project (ISLCSP) Field Experiment (FIFE) data set, develop new algorithms to obtain better Advanced Very High Resolution Radiometer (AVHRR) indices, and define possible improvements for future satellite missions', were addressed in three separate, yet complementary studies. First, it was shown, from theoretical calculations, that visible and near infrared reflectances combined linearly at optimum (one or two) viewing angles relate linearly to the fraction of photosynthetically available radiation absorbed by plants, f(sub par), can be used independently of the type of foliage and substrate, eliminate the effects of sub-pixel spatial heterogeneity, and improve the accuracy of the f(sub par) estimates when compared to the Normalized Difference Vegetation Index, NDVI. Second, it was demonstrated that NDVI, even though it is not a linear combination of radiances or reflectances, can be spatially integrated without significant loss of information from scales of 300 to 1000 m. Third, AVHRR visible and near-infrared reflectances over the FIFE site, separating temporal and bidirectional components and determining the model parameters through an original iterative scheme was successfully modeled. It appears that NDVI generated from the top-of-atmosphere reflectances normalized by the bidirectional effects (as determined in the scheme) is a better vegetation index than maximum NDVI. Details about the three studies are presented.

  6. A National Crop Progress Monitoring System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.

    2011-12-01

    Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.

  7. Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data

    NASA Astrophysics Data System (ADS)

    Shafri, Helmi Z. M.; Anuar, M. Izzuddin; Saripan, M. Iqbal

    2009-10-01

    High resolution field spectroradiometers are important for spectral analysis and mobile inspection of vegetation disease. The biggest challenges in using this technology for automated vegetation disease detection are in spectral signatures pre-processing, band selection and generating reflectance indices to improve the ability of hyperspectral data for early detection of disease. In this paper, new indices for oil palm Ganoderma disease detection were generated using band ratio and different band combination techniques. Unsupervised clustering method was used to cluster the values of each class resultant from each index. The wellness of band combinations was assessed by using Optimum Index Factor (OIF) while cluster validation was executed using Average Silhouette Width (ASW). 11 modified reflectance indices were generated in this study and the indices were ranked according to the values of their ASW. These modified indices were also compared to several existing and new indices. The results showed that the combination of spectral values at 610.5nm and 738nm was the best for clustering the three classes of infection levels in the determination of the best spectral index for early detection of Ganoderma disease.

  8. Investigation of environmental change pattern in Japan. Investigation of the ecological environment index from observation of the regional vegetation cover and their growing condition

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator); Nakajima, I.

    1977-01-01

    The author has identified the following significant results. Practical use of recognition results of LANDSAT data as the base map of the field survey or the retouching work of vegetation and land use has the effective benefit to cut down the cost, labor, and time lower than 10% of a conventional method. Correct and detailed vegetation maps were prepared using combined interpretation of repetition of data of different seasons at warm and temperate forested areas.

  9. Drought in the Rockies

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows the difference between the amount of vegetation in July 2000 and the average July vegetation for North America. Of particular interest are the dry conditions in the western United States. This spring and summer the Rocky Mountains have been relatively dry, and the brown regions stretching from the Canadian to the Mexican border, indicate the effect on the regions' forests. Western Montana and eastern Idaho are particularly parched, and appear darker brown. The dry conditions have contributed to this year's devastating fire season, during which millions of acres have burned in the west. Scientists find that during the growing season, land plants can be used to measure drought. Healthy, thriving plants reflect and absorb visible and near-infrared light differently than plants under stress. These variations in reflectance and absorption can be measured by satellites to produce maps of healthy and stressed vegetation. This image shows Normalized Difference Vegetation Index (NDVI) anomaly, which indicates where vegetation growth was above average (green pixels), below average (brown pixels), or normal (white pixels). For more images and information about measuring vegetation and drought from space visit: Drought and Vegetation Monitoring. Image courtesy NASA Goddard Space Flight Center Biospheric Sciences Branch, based on data from NOAA.

  10. Forecasting and Monitoring Agricultural Drought in the Philippines

    NASA Astrophysics Data System (ADS)

    Perez, G. J.; Macapagal, M.; Olivares, R.; Macapagal, E. M.; Comiso, J. C.

    2016-06-01

    A monitoring and forecasting sytem is developed to assess the extent and severity of agricultural droughts in the Philippines at various spacial scales and across different time periods. Using Earth observation satellite data, drought index, hazard and vulnerability maps are created. The drought index, called Standardized Vegetation-Temperature Ratio (SVTR), is derived using the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). SVTR is evaluated by correlating its values with existing agricultural drought index, particulary Evaporative Stress Index (ESI). Moreover, the performance of SVTR in detecting drought occurrences was assessed for the 2015-2016 drought event. This period is a strong El Niño year and a large portion of the country was affected by drought at varying degrees, making it a good case study for evaluating drought indices. Satellitederived SVTR was validated through several field visits and surveys across different major agricultural areas in the country, and was found to be 73% accurate. The drought hazard and vulnerability maps are produced by utilizing the evapotranspration product of MODIS, rainfall climatology from the Tropical Rainfall Microwave Mission (TRMM) and ancillary data, including irrigation, water holding capacity and land use. Finally, we used statistical techniques to determine trends in NDVI and LST and generate a sixmonth forecast of drought index. Outputs of this study are being assessed by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and the Department of Agriculture Bureau of Soils and Water Management (DABSWM) for future integration in their operations.

  11. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    NASA Astrophysics Data System (ADS)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region's vegetation decline due to drought, shed further light on the future directions and challenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  12. [Remote sensing detection of vegetation health status after ecological restoration in soil and water loss region].

    PubMed

    Hu, Xiu Juan; Xu, Han Qiu; Guo, Yan Bin; Zhang, Bo Bo

    2017-01-01

    This paper proposed a vegetation health index (VHI) to rapidly monitor and assess vegetation health status in soil and water loss region based on remote sensing techniques and WorldView-2 imagery. VHI was constructed by three factors, i.e., the normalized mountain vegetation index, the nitrogen reflectance index and the reflectance of the yellow band, through the principal component transformation, in order to avoid the deviation induced by subjective method of weighted summation. The Hetian Basin of Changting County in Fujian Province, China, was taken as a test area to assess the vegetation health status in soil and water loss region using VHI. The results showed that the VHI could detect vegetation health status with a total accuracy of 91%. The vegetation of Hetian Basin in good, moderate and poor health status accounted for 10.1%, 49.2% and 40.7%, respectively. The vegetation of the study area was still under an unhealthy status because the soil was poor and the growth of newly planted vegetation was not good in the soil and water loss region.

  13. Suppression of vegetation in LANDSAT ETM+ remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Vegetation cover is an impediment to the interpretation of multispectral remote sensing images for geological applications, especially in densely vegetated terrains. In order to enhance the underlying geological information in such terrains, it is desirable to suppress the reflectance component of vegetation. One form of spectral unmixing that has been successfully used for vegetation reflectance suppression in multispectral images is called "forced invariance". It is based on segregating components of the reflectance spectrum that are invariant with respect to a specific spectral index such as the NDVI. The forced invariance method uses algorithms such as software defoliation. However, the outputs of software defoliation are single channel data, which are not amenable to geological interpretations. Crippen and Blom (2001) proposed a new forced invariance algorithm that utilizes band statistics, rather than band ratios. The authors demonstrated the effectiveness of their algorithms on a LANDSAT TM scene from Nevada, USA, especially in open canopy areas in mixed and semi-arid terrains. In this presentation, we report the results of our experimentation with this algorithm on a densely to sparsely vegetated Landsat ETM+ scene. We selected a scene (Path 119, Row 39) acquired on 18th July, 2004. Two study areas located around the city of Hangzhou, eastern China were tested. One of them covers uninhabited hilly terrain characterized by low rugged topography, parts of the hills are densely vegetated; another one covers both inhabited urban areas and uninhabited hilly terrain, which is densely vegetated. Crippen and Blom's algorithm is implemented in the following sequential steps: (1) dark pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship between vegetation index and digital number (DN) values for each band; (4) calculation of a smooth best-fit curve for the above relationships; and finally, (5) selection of a target average DN value and scaling all pixels at each vegetation index level by an amount that shifts the curve to the target digital number (DN). The main drawback of their algorithm is severe distortions of the DN values of non-vegetated areas, a suggested solution is masking outliers such as cloud, water, etc. We therefore extend this algorithm by masking non-vegetated areas. Our algorithm comprises the following three steps: (1) masking of barren or sparsely vegetated areas using a threshold based on a vegetation index that is calculated after atmosphere correction (dark pixel correction and ACTOR were compared) in order to conserve their original spectral information through the subsequent processing; (2) applying Crippen and Blom's forced invariance algorithm to suppress the spectral response of vegetation only in vegetated areas; and (3) combining the processed vegetated areas with the masked barren or sparsely vegetated areas followed by histogram equalization to eliminate the differences in color-scales between these two types of areas, and enhance the integrated image. The output images of both study areas showed significant improvement over the original images in terms of suppression of vegetation reflectance and enhancement of the underlying geological information. The processed images show clear banding, probably associated with lithological variations in the underlying rock formations. The colors of non-vegetated pixels are distorted in the unmasked results but in the same location the pixels in the masked results show regions of higher contrast. We conclude that the algorithm offers an effective way to enhance geological information in LANDSAT TM/ETM+ images of terrains with significant vegetation cover. It is also suitable to other multispectral satellite data have bands in similar wavelength regions. In addition, an application of this method to hyperspectral data may be possible as long as it can provide the vegetation band ratios.

  14. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians

    PubMed Central

    Montalcini, Tiziana; De Bonis, Daniele; Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Accattato, Francesca; Greco, Marta; Foti, Daniela; Romeo, Stefano; Gulletta, Elio; Pujia, Arturo

    2015-01-01

    It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B) = 4.8; β = 0.42). After adjustment for cytokines, log10 interleukin-10 (IL-10) still correlated with resting energy expenditure (p = 0.02). Resting energy expenditure was positively correlated with a specific component of the vegetarian’s diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population. PMID:26193314

  15. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians.

    PubMed

    Montalcini, Tiziana; De Bonis, Daniele; Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Accattato, Francesca; Greco, Marta; Foti, Daniela; Romeo, Stefano; Gulletta, Elio; Pujia, Arturo

    2015-07-17

    It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B) = 4.8; β = 0.42). After adjustment for cytokines, log10 interleukin-10 (IL-10) still correlated with resting energy expenditure (p = 0.02). Resting energy expenditure was positively correlated with a specific component of the vegetarian's diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population.

  16. Trend Patterns of Vegetative Coverage and Their Underlying Causes in the Deserts of Northwest China over 1982 – 2008

    PubMed Central

    Zhang, Tianyi; Wang, Hesong

    2015-01-01

    We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563

  17. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  18. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  19. A Five-Year Analysis of MODIS NDVI and NDWI for Rangeland Drought Assessment: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Brown, J. F.; Verdin, J. P.; Wardlow, B.

    2006-12-01

    Drought is one of the most costly natural disasters in the United States. Traditionally, drought monitoring has been based on weather station observations, which lack the continuous spatial coverage needed to adequately characterize and monitor detailed spatial patterns of drought conditions. Satellite remote sensing observations can provide a synoptic view of the land and provide a spatial context for measuring drought. A common satellite-based index, the normalized difference vegetation index (NDVI) has a 30-year history of use for vegetation condition monitoring. NDVI is calculated from the visible red and near infrared channels and measures the changes in chlorophyll absorption and reflection in the spongy mesophyll of the vegetation canopy that are reflected in these respective bands. The normalized difference water index (NDWI) is another index, derived from the near-infrared and short wave infrared channels, and reflects changes in both the water content and spongy mesophyll in the vegetation canopy. As a result, the NDWI is influenced by both desiccation and wilting in the vegetation canopy and may be a more sensitive indicator than the NDVI for large- area drought monitoring. The objective of this study was to process and evaluate a 5-year history of 500-meter NDVI and NDWI data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and to investigate methods for measuring and monitoring drought in rangeland over the southern plains of the United States. This initial study included: (1) the development of a climatological database for MODIS NDVI and NDWI, (2) a study of the relationship between the NDVI, NDWI, and drought condition over rangeland, (3) the development of a method to provide threshold NDVI/NDWI values under drought conditions based on the 5-year NDVI/NDWI/drought condition analysis, and (4) the investigation of additional vegetation drought information provided by the NDWI versus the NDVI in a 5-year comparison of the two indices. The MODIS data were obtained from the Land Processes Distributed Active Archive System. Results show strong relationships among NDVI, NDWI, and drought analyzed over grasslands in the Flint Hills region of Kansas and Oklahoma. During the summer months, the average NDVI and NDWI values were consistently lower (NDVI<0.5 and NDWI<0.3) for the tallgrass prairie under drought conditions than under normal climate conditions (NDVI>0.6 and NDWI>0.4). The distinctions between drought conditions and normal climate conditions are based on the historic U.S. Drought Monitor maps and the historic Palmer index data. To take advantage of information contained in both indices, we calculated the difference between NDVI and NDWI (NDVI-NDWI). The difference between NDVI and NDWI slightly increases during the summer drought condition. Based on these analyses, the NDWI appears to be more sensitive than NDVI to drought conditions. The results of statistical analysis of the relationships among these indices will be presented in the poster.

  20. An approach to drought data web-dissemination

    NASA Astrophysics Data System (ADS)

    Angeluccetti, Irene; Perez, Francesca; Balbo, Simone; Cámaro, Walther; Boccardo, Piero

    2017-04-01

    Drought data dissemination has always been a challenge for the scientific community. Firstly, a variety of widely known datasets is currently being used to describe different aspects of this same phenomenon. Secondly, new indexes are constantly being produced by scientists trying to better capture drought events. The present work aims at presenting how the drought monitoring communication issue was addressed by the ITHACA team. The ITHACA drought monitoring system makes use of two indicators: the Standardized Precipitation Index (SPI) and the Seasonal Small Integral Deviation (SSID). The first one is obtained considering the 3-months cumulating interval of the rainfall derived from the TRMM dataset; the second one is the percent deviation from the historical average value of the integral of the NDVI function describing the vegetation season. The SPI and the SSID are 30 and 5 km gridded respectively. The whole time-series of these two indicators (since year 2000 onwards), covering the whole Africa, are published by a WebGIS platform (http://drought.ithacaweb.org). On the one hand, although the SPI has been used for decades in different contexts and little explanation is due when presenting this indicator to an audience with a scientific background, the WebGIS platform shows a guide for its correct interpretation. On the other hand, being the SSID not commonly used in the field of vegetation analysis, the guide shown on the WebGIS platform is essential for the visitor to understand the data. Recently a new index has been created in order to synthesize, for a non-expert audience, the information provided by the indicators. It is aggregated per second order administrative levels and is calculated as follows: (i) a meteorological drought warning is issued when negative SPI and no vegetative season is detected (a blue palette is used); (ii) a warning value is assigned if SSID, SPI, or both, are negative (amber to brown palette is used) i.e., where the vegetative season is ongoing and the SSID is negative, a negative SPI value entails an agricultural drought warning, while a positive SPI implies a vegetation stress warning; (iv) a meteorological drought warning is issued when negative SPI during the vegetation season is detected but vegetation stress effects are not (i.e. positive SSID). The latest available Drought Warning Index is also published on the mentioned WebGIS platform. The index is stored in a database table: a single value is calculated for each administrative level. A table view on the database contains fields describing the geometry of the administrative level polygons and the respective index; this table view is published as a WMS service, by associating the symbology previously described. The WMS service is then captured in order to generate a live map with a series of basic WebGIS functionalities. The integrated index is undoubtedly useful for a non-expert user to understand immediately if a particular region is subject to a drought stress. However, the simplification introduces uncertainty as it implies several assumptions that couldn't be verified at a continental scale.

  1. Analysis of smoke and cloud impact on seasonal and interannual variations in normalized difference vegetation index in Amazon

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Dye, D. G.

    2004-12-01

    Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April and July are the most reliable season to monitor the vegetation.

  2. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    NASA Astrophysics Data System (ADS)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen content upon monsoonal onset, but requires further validation by leaf-level chemistry. This work suggests that the integration of spectral, gas exchange, and soil measurements could be a powerful framework toward advancing our understanding of fire-ecosystem productivity feedbacks across spatiotemporal scales.

  3. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    NASA Astrophysics Data System (ADS)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.

  4. Changing Seasonality of Panarctic Tundra Vegetation in Relationship to Climatic Variables

    NASA Technical Reports Server (NTRS)

    Bhatt, Uma S.; Walker, Donald A.; Raynolds, Martha K.; Bieniek, Peter A.; Epstein, Howard E.; Comiso, Josefino C.; Pinzon, Jorge E.; Tucker, Compton J.; Steele, Michael; Ermold, Wendy; hide

    2017-01-01

    Potential climate drivers of Arctic tundra vegetation productivity are investigated to understand recent greening and browning trends documented by maximum normalized difference vegetation index (NDVI) (MaxNDVI) and time-integrated NDVI (TI-NDVI) for 19822015. Over this period, summer sea ice has continued to decline while oceanic heat content has increased. The increases in summer warmth index (SWI) and NDVI have not been uniform over the satellite record. SWI increased from 1982 to the mid-1990s and remained relatively flat from 1998 onwards until a recent upturn. While MaxNDVI displays positive trends from 19822015, TI-NDVI increased from 1982 until 2001 and has declined since. The data for the first and second halves of the record were analyzed and compared spatially for changing trends with a focus on the growing season. Negative trends for MaxNDVI and TI-NDVI were more common during 19992015 compared to 19821998.

  5. Wetland Feature Extraction in Poyang Lake from Muti-Sensor and Multi-Temporal Images

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Desnos, Yves-Louis; Wang, Yeqiao; Chen, Xiaoling; Zmuda, Andy; Yesou, Herve

    2016-08-01

    Under the high dynamic hydrological variations and impacts from human activities, the nature wetlands of Poyang Lake face major challenges in biodiversity decline and wetland degradation. Variations of Poyang Lake wetlands are difficult to map by a single source or one time remote sensing imagery because the landscape is dominated by herbaceous vegetation and aquatic macrophytes which are altered and controlled by the water level. This study selected and combined time series NDVI, Green Ratio Vegetation Index (GRVI) and Modified Normalized Different Water Index (MNDWI), Backscattering coefficients(σ0) (VV&VH mode), Shannon Entropy (SE) and H/α wishart classification value derived from Sentinel 1A and Sentinel 2A to investigate the spatial-temporal variation of wetlands in autumn and spring growing season with discussions about the possibility of monitoring the wetland vegetation by C-band dual-pol datasets.

  6. Ecohydrological optimality in the Northeast China Transect

    NASA Astrophysics Data System (ADS)

    Cong, Zhentao; Li, Qinshu; Mo, Kangle; Zhang, Lexin; Shen, Hong

    2017-05-01

    The Northeast China Transect (NECT) is one of the International Geosphere-Biosphere Program (IGBP) terrestrial transects, where there is a significant precipitation gradient from east to west, as well as a vegetation transition of forest-grassland-desert. It is remarkable to understand vegetation distribution and dynamics under climate change in this transect. We take canopy cover (M), derived from Normalized Difference Vegetation Index (NDVI), as an index to describe the properties of vegetation distribution and dynamics in the NECT. In Eagleson's ecohydrological optimality theory, the optimal canopy cover (M*) is determined by the trade-off between water supply depending on water balance and water demand depending on canopy transpiration. We apply Eagleson's ecohydrological optimality method in the NECT based on data from 2000 to 2013 to get M*, which is compared with M from NDVI to further discuss the sensitivity of M* to vegetation properties and climate factors. The result indicates that the average M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). Results of water balance also match the field-measured data in the references. The sensitivity analyses show that M* decreases with the increase of leaf area index (LAI), stem fraction and temperature, while it increases with the increase of leaf angle and precipitation amount. Eagleson's ecohydrological optimality method offers a quantitative way to understand the impacts of climate change on canopy cover and provides guidelines for ecorestoration projects.

  7. Comparison of NDVI fields obtained from different remote sensors

    NASA Astrophysics Data System (ADS)

    Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos

    2013-04-01

    Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.

  8. Dietary Patterns and Body Mass Index in Children with Autism and Typically Developing Children

    PubMed Central

    Evans, E. Whitney; Must, Aviva; Anderson, Sarah E.; Curtin, Carol; Scampini, Renee; Maslin, Melissa; Bandini, Linda

    2012-01-01

    To determine whether dietary patterns (juice and sweetened non-dairy beverages, fruits, vegetables, fruits & vegetables, snack foods, and kid’s meals) and associations between dietary patterns and body mass index (BMI) differed between 53 children with autism spectrum disorders (ASD) and 58 typically developing children, ages 3 to 11, multivariate regression models including interaction terms were used. Children with ASD were found to consume significantly more daily servings of sweetened beverages (2.6 versus 1.7, p=0.03) and snack foods (4.0 versus 3.0, p=0.01) and significantly fewer daily servings of fruits and vegetables (3.1 versus 4.4, p=0.006) than typically developing children. There was no evidence of statistical interaction between any of the dietary patterns and BMI z-score with autism status. Among all children, fruits and vegetables (p=0.004) and fruits alone (p=0.005) were positively associated with BMI z-score in our multivariate models. Children with ASD consume more energy-dense foods than typically developing children; however, in our sample, only fruits and vegetables were positively associated with BMI z-score. PMID:22936951

  9. The Influence of Rainfall, Vegetation, Elephants and People on Fire Frequency of Miombo Woodlands, Northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H. H.; Swap, R. J.

    2008-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  10. The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H.; Swap, R.

    2007-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  11. Verification of watershed vegetation restoration policies, arid China

    PubMed Central

    Zhang, Chengqi; Li, Yu

    2016-01-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948

  12. Verification of watershed vegetation restoration policies, arid China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengqi; Li, Yu

    2016-07-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000-2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.

  13. White vegetables: glycemia and satiety.

    PubMed

    Anderson, G Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E

    2013-05-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance.

  14. Assessment of seasonal features based on Landsat time series for tree crown cover mapping in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiu; Heiskanen, Janne; Aynekuly, Ermias; Pellikka, Petri

    2016-04-01

    Tree crown cover (CC) is an important vegetation attribute for land cover characterization, and for mapping and monitoring forest cover. Free data from Landsat and Sentinel-2 allow construction of fine resolution satellite image time series and extraction of seasonal features for predicting vegetation attributes. In the savannas, surface reflectance vary distinctively according to the rainy and dry seasons, and seasonal features are useful information for CC mapping. However, it is unclear if it is better to use spectral bands or vegetation indices (VI) for computation of seasonal features, and how feasible different VI are for CC prediction in the savanna woodlands and agroforestry parklands of West Africa. In this study, the objective was to compare seasonal features based on spectral bands and VI for CC mapping in southern Burkina Faso. A total of 35 Landsat images from November 2013 to October 2014 were processed. Seasonal features were computed using a harmonic model with three parameters (mean, amplitude and phase), and spectral bands, normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), normalized difference water index (NDWI), tasseled cap (TC) indices (brightness, greenness, wetness) as input data. The seasonal features were employed to predict field estimated CC (n = 160) using Random Forest algorithm. The most accurate results were achieved when using seasonal features based on TC indices (R2: 0.65; RMSE: 10.7%) and spectral bands (R2: 0.64; RMSE: 10.8%). GNDVI performed better than NDVI or NDWI, and NDWI resulted in the poorest results (R2: 0.56; RMSE: 11.9%). The results indicate that spectral features should be carefully selected for CC prediction as shown by relatively poor performance of commonly used NDVI. The seasonal features based on three TC indices and all the spectral bands provided superior accuracy in comparison to single VI. The method presented in this study provides a feasible method to map CC based on seasonal features with possibility to integrate medium resolution satellite observation from several sensors (e.g. Landsat and Sentinel-2) in the future.

  15. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.

    PubMed

    Sun, Jian; Qin, Xiaojing; Yang, Jun

    2016-01-01

    The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management.

  16. InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain

    NASA Astrophysics Data System (ADS)

    Contreras, Sergio; Hunink, Johannes E.

    2016-04-01

    We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía (http://infosequia.es) aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.

  17. Estimating aboveground biomass in the boreal forests of the Yukon River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Ji, L.; Wylie, B. K.; Nossov, D.; Peterson, B.; Waldrop, M. P.; McFarland, J.; Alexander, H. D.; Mack, M. C.; Rover, J. A.; Chen, X.

    2011-12-01

    Quantification of aboveground biomass (AGB) in Alaska's boreal forests is essential to accurately evaluate terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. However, regional AGB datasets with spatially detailed information (<500 m) are not available for this extensive and remote area. Our goal was to map AGB at 30-m resolution for the boreal forests in the Yukon River Basin of Alaska using recent Landsat data and ground measurements. We collected field data in the Yukon River Basin from 2008 to 2010. Ground measurements included diameter at breast height (DBH) or basal diameter (BD) for live and dead trees and shrubs (>1 m tall), which were converted to plot-level AGB using allometric equations. We acquired Landsat Enhanced Thematic Mapper Plus (ETM+) images from the Web Enabled Landsat Data (WELD) that provides multi-date composites of top-of-atmosphere reflectance and brightness temperature for Alaska. From the WELD images, we generated a three-year (2008 - 2010) image composite for the Yukon River Basin using a series of compositing criteria including non-saturation, non-cloudiness, maximal normalize difference vegetation index (NDVI), and maximal brightness temperature. Airborne lidar datasets were acquired for two sub-regions in the central basin in 2009, which were converted to vegetation height datasets using the bare-earth digital surface model (DSM) and the first-return DSM. We created a multiple regression model in which the response variable was the field-observed AGB and the predictor variables were Landsat-derived reflectance, brightness temperature, and spectral vegetation indices including NDVI, soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), normalized difference infrared index (NDII), and normalized difference water index (NDWI). Principal component analysis was incorporated in the regression model to remedy the multicollinearity problems caused by high correlations between predictor variables. The model fitted the observed data well with an R-square of 0.62, mean absolute error of 29.1 Mg/ha, and mean bias error of 3.9 Mg/ha. By applying this model to the Landsat mosaic, we generated a 30-m AGB map for the boreal forests in the Yukon River Basin. Validation of the Landsat-derived AGB using the lidar dataset indicated a significant correlation between the AGB estimates and the lidar-derived canopy height. The production of a basin-wide boreal forest AGB dataset will provide an important biophysical parameter for the modeling and investigation of Alaska's ecosystems.

  18. Assessment of soil-vegetation cover condition in river basins applying remote sensing data

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Petrosian, Janna; Shirkin, Leonid; Repkin, Roman

    2017-04-01

    Constant observation of vegetation and soil cover is one of the key issues of river basins ecologic monitoring. Lately remotely determining vegetation indices have been used for this purpose alongside with terrestrial data. It is necessary to consider that observation objects have been continuously changing and these changes are comprehensive and depend on temporal and dimensional parameters. Remote sensing data, embracing vast areas and reflecting various interrelations, allow excluding accidental and short-term changes though concentrating on the transformation of the observed river basin ecosystem environmental condition. The research objective is to assess spatial - temporal peculiarities and the dynamics of soil-vegetation condition of the Klyazma basin as whole and minor river basins within the area. Research objects are located in the centre of European Russia. Data used in our research include both statistic and published data, characterizing soil-vegetation cover of the area, space images («Landsat» ETM+ etc.) Research methods. 1. Dynamics analysis NDVI (Normalized difference vegetation index) 2. Remote data have been correlated to terrestrial measurement results of phytomass reserve, phytoproductivity, soil fertility characteristics, crop capacity (http://biodat.ru) 3. For the digital processing of space images software Erdas Imagine has been used, GIS analysis has been carried out applying Arc GIS. NDVI computation for each image pixel helped to map general condition of the Klyazma vegetation cover and to determine geographic ranges without vegetation or with depressed vegetation. For instance high vegetation index geographic range has been defined which corresponded to Vladimir Opolye characterized with the most fertile grey forest soil in the region. Comparative assessment of soil vegetation cover of minor river basins within the Klyazma basin, judging by the terrestrial data, revealed its better condition in the Koloksha basin which is also located in the area of grey forest soil. Besides here the maximum value of vegetation index for all phytocenosis was detected. In the research the most dynamically changing parts of the Klyazma basin have been determined according to NDVI dynamics analysis. Analyzing the reasons for such changes of NDVI the most significant ecologic processes in the region connected to the changes of vegetation cover condition have been revealed. Fields overgrowing and agricultural crops replacement are the most important of them.

  19. A Rapidly Prototyped Vegetation Dryness Index Developed for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph

    2006-01-01

    A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.

  20. Identification and visualization of dominant patterns and anomalies in remotely sensed vegetation phenology using a parallel tool for principal components analysis

    Treesearch

    Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman

    2013-01-01

    We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m × 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...

  1. The Effects of Atmospheric Constituents on the Normalized Difference Vegetation Index in West Africa.

    DTIC Science & Technology

    1992-01-01

    decades (Nicholson 1989). The combined effects of drought and human activities, such as overgrazing, can adversely effect the Sahelian vegetation. In recent...KOUT) Tillabery, Niger (TILL) Aioun El Atrous, Mauritania (AIOU) Kaolack, Senegal (KAOL) Akjoujt, Mauritania (AKJO) Rufisque, Senegal (RUFI) Atar ...Mauritania ( ATAR ) St. Louis, Senegal (ST L) Boutilimit, Mauritania (BOUT) Letters in parenthesis correspond to Figure 6 parameters in a individual month

  2. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    DTIC Science & Technology

    2010-06-01

    region and compared to nutrient monitoring data. A. Image Data This project uses MODIS normalized difference vegetation index ( NDVI ) to create a time...series of land vegetation canopies. MODIS provides a near-daily repeat time for the elimination of cloud contamination, and NDVI has been widely adopted...steps and NDVI was calculated by the defined formula NDVI = (near-infrared reflectance - red reflectance) / (near-infrared reflectance + red

  3. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared withmore » the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.« less

  4. Optical Sensing of Ecosystem Carbon Fluxes from Tower-mounted Spectrometers

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Cook, B.; Campbell, P. K. E.; Zhang, Q.; Hom, M.; Russ, A.; Kustas, W. P.

    2016-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. To fully understand these measurements requires descriptions of temporal and bidirectional variability. The NASA FUSION tower-mounted system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. This comprehensive tower measurement dataset can provide insights into interpretation of satellite or aircraft observations. Data were collected in the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) cornfields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center in conjunction with CO2 eddy covariance fluxes throughout the growing season. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. We find significant bidirectional effects. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.

  5. Vegetation classification and soil moisture calculation using land surface temperature (LST) and vegetation index (VI)

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi

    2002-03-01

    In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.

  6. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms

    PubMed Central

    Hassanein, Mohamed; El-Sheimy, Naser

    2018-01-01

    Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055

  7. ncreasing altitudinal spring phenology gradient of vegetation over the last decade in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shen, M.; Piao, S.

    2013-12-01

    Vegetation spring phenology in temperate and cold regions is widely expected to advance with temperature elevation and is often used as an indicator of regional climatic change. The Qinghai-Tibetan Plateau (QTP) has experienced intensive warming recently, but substantial contradictions exist about the changes of vegetation spring phenology. We investigated spatiotemporal variations in green-up dates in the QTP from 2000 to 2011 determined through five methods using four satellite-derived datasets including the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR), Système Pour l'Observation de la Terre, and MODerate resolution Imaging Spectroradiometer (MODIS), and the enhanced vegetation index from MODIS. On regional scale, no significant temporal trends (all P > 0.05) were found in the green-up dates, consistently among all the vegetation indices and methods. This insignificance was resulted from the substantial spatial heterogeneity of trends in green-up date, with delay by greater than 0.5 day yr-1 in the southwest region, and extensive advance in the other areas, although the temperature elevation was region-wide. These changes doubled the altitudinal gradient of green-up date, from 0.63 day 100m-1 in the early 2000s to 1.30 days 100m-1 in the early 2010s. The delay in the southwest region and high altitudes was likely caused by the decline in spring precipitation, despite the increasing spring temperature. This study suggests that spring precipitation is an important regulator of phenological response to climatic warming in QTP, and that, even in cold region, delay of vegetation spring phenology does not necessarily indicate spring cooling. Besides, the phenological changes retrieved from the widely used AVHRR NDVI differed from those from the other 3 vegetation indices, necessitating the use of multi-datasets while monitoring vegetation dynamics from space.

  8. Post-fire Vegetation Regeneration Dynamics to Topography and Burn Severity in two contrasting ecosystems: the Case of the Montane Cordillera Ecozones of Western Canada & that of a Typical Mediterranean site in Greece

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; Petropoulos, George P.; Kalivas, Dionissios; Griffirths, Hywel M.; Louka, Panagiota

    2015-04-01

    Altering land cover dynamics is currently regarded as the single most important variable of global change affecting ecological systems. Wildfires are an integral part of many terrestrial ecosystems and are considered to dramatically affect land cover dynamics at a variety of spatial and temporal scales. In this context, knowledge of the spatio-temporal distribution of post-fire vegetation recovery dynamics is of key importance. In this study, we explore the relationships between vegetation recovery dynamics to topography and burn severity for two different ecosystems using a chronosequence of Landsat TM data images analysis. One of our experimental sites is the Okanagan Mountain Park, located in the Montane Cordillera Ecozones of western Canada at which a fire occurred in 2003. The other is Mt. Parnitha, located in Greece, representing a typical Mediterranean setting. The spatio-temporal patterns of regrowth for 8 years following the fire events were quantified based on the analysis of 2 widely used indices, the Normalized Difference Vegetation Index (NDVI) and the Regeneration Index (RI). Burn severity was derived from the differenced Normalized Burn Ratio (dNBR) index computed from the Landsat TM images. Topographical information for the studied area was obtained from the ASTER global operational product. Relationships of vegetation regrowth to both topography and burn severity was quantified using a series of additional statistical metrics. In overall, results indicated noticeable differences in the recovery rates of both ecosystems to the pre-fire patterns. Re-growth rates appeared to be somewhat higher in north-facing slopes in comparison to south facing ones for both experimental sites, in common with other similar studies in different ecosystems. Lastly, areas of lower burn severity exhibited a higher recovery rate compared to areas of high severity burns. Results are presented in detail and an explanation of the main observation trends is also attempted to be provided. To our knowledge, this study is one of the few attempting to explore the relationships between post-fire vegetation regrowth and topography or burn severity, particularly so in such a comparative and systematic manner between two contrasting ecosystem types. It corroborates the significance of EO technology as a successful and cost-effective solution in providing information related to post-fire regeneration assessment. Keywords: post-fire vegetation regeneration, topography, burn severity, Landsat, remote sensing, Cordillera Ecozones, Canada, Mt. Parnitha, Greece

  9. Study on Remote Sensing Image Characteristics of Ecological Land: Case Study of Original Ecological Land in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    An, G. Q.

    2018-04-01

    Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  10. River pollution remediation monitored by optical and infrared high-resolution satellite images.

    PubMed

    Trivero, Paolo; Borasi, Maria; Biamino, Walter; Cavagnero, Marco; Rinaudo, Caterina; Bonansea, Matias; Lanfri, Sofia

    2013-09-01

    The Bormida River Basin, located in the northwestern region of Italy, has been strongly contaminated by the ACNA chemical factory. This factory was in operation from 1892 to 1998, and contamination from the factory has had deleterious consequences on the water quality, agriculture, natural ecosystems and human health. Attempts have been made to remediate the site. The aims of this study were to use high-resolution satellite images combined with a classical remote sensing methodology to monitor vegetation conditions along the Bormida River, both upstream and downstream of the ACNA chemical factory site, and to compare the results obtained at different times before and after the remediation process. The trends of the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) along the riverbanks are used to assess the effect of water pollution on vegetation. NDVI and EVI values show that the contamination produced by the ACNA factory had less severe effects in the year 2007, when most of the remediation activities were concluded, than in 2006 and 2003. In 2007, the contamination effects were noticeable up to 6 km downstream of the factory, whereas in 2003 and 2006 the influence range was up to about 12 km downstream of the factory. The results of this study show the effectiveness of remediation activities that have been taking place in this area. In addition, the comparison between NDVI and EVI shows that the EVI is more suitable to characterise the vegetation health and can be considered an additional tool to assess vegetation health and to monitor restoration activities.

  11. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  12. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  13. Landsat-TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe

    NASA Technical Reports Server (NTRS)

    Hugh-Jones, M.; Barre, N.; Nelson, G.; Wehnes, K.; Warner, J.; Garvin, J.; Garris, G.

    1992-01-01

    The feasibility of identifying specific habitats of the African bont tick, Amblyomma variegatum, from Landsat-TM images was investigated by comparing remotely sensed images of visible farms in Grande Terre (Guadeloupe) with field observations made in the same period of time (1986-1987). The different tick habitates could be separated using principal component analysis. The analysis clustered the sites by large and small variance of band values, and by vegetation and moisture indexes. It was found that herds in heterogeneous sites with large variances had more ticks than those in homogeneous or low variance sites. Within the heterogeneous sites, those with high vegetation and moisture indexes had more ticks than those with low values.

  14. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  15. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D.; Norwine, J. (Principal Investigator)

    1981-01-01

    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  16. A remote sensing based vegetation classification logic for global land cover analysis

    USGS Publications Warehouse

    Running, Steven W.; Loveland, Thomas R.; Pierce, Lars L.; Nemani, R.R.; Hunt, E. Raymond

    1995-01-01

    This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.

  17. Community structure and quality after 10 years in two central Ohio mitigation bank wetlands.

    PubMed

    Spieles, Douglas J; Coneybeer, Meagan; Horn, Jonathan

    2006-11-01

    We evaluate two 10-year-old mitigation bank wetlands in central Ohio, one created and one with restored and enhanced components, by analysis of vegetation characteristics and by comparison of the year-10 vegetation and macroinvertebrate communities with reference wetlands. To assess different measures of wetland development, we compare the prevalence of native hydrophytes with an index of floristic quality and we evaluate the predictability of these parameters in year 10, given 5 years of data. Results show that the mitigation wetlands in this study meet vegetation performance criteria of native hydrophyte establishment by year 5 and maintain these characteristics through year 10. Species richness and floristic quality, as well as vegetative similarity with reference wetlands, differ among mitigation wetlands in year 1 and also in their rate of change during the first 10 years. The prevalence of native hydrophytes is reasonably predictable by year 10, but 5 years of monitoring is not sufficient to predict future trends of floristic quality in either the created or restored wetland. By year 10, macroinvertebrate taxa richness does not statistically differ among these wetlands, but mitigation wetlands differ from reference sites by tolerance index and by trophic guild dominance. The created wetland herbivore biomass is significantly smaller than its reference, whereas detritivore biomass is significantly greater in the created wetland and smaller in the restored wetland as compared with respective reference wetlands. These analyses illustrate differences in measures of wetland performance and contrast the monitoring duration necessary for legal compliance with the duration required for development of more complex indicators of ecosystem integrity.

  18. Monitoring Thermal Status of Ecosystems with MODIS Land-Surface Temperature and Vegetation Index Products

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    2002-01-01

    The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.

  19. Comparisons of MODIS vegetation index products with biophysical and flux tower measurements

    NASA Astrophysics Data System (ADS)

    Sirikul, Natthanich

    Vegetation indices (VI) play an important role in studies of global climate and biogeochemical cycles, and are also positively related to many biophysical parameters and satellite products, such as leaf area index (LAI), gross primary production (GPP), land surface water index (LSWI) and land surface temperature (LST). In this study we found that VI's had strong relationships with some biophysical products, such as gross primary production, yet were less well correlated with biophysical structural parameters, such as leaf area index. The relationships between MODIS VI's and biophysical field measured LAI showed poor correlation at semi-arid land and broadleaf forest land cover type whereas cropland showed stronger correlations than the other vegetation types. In addition, the relationship between the enhanced vegetation index (EVI)-LAI and normalized difference vegetation index (NDVI)-LAI did not show significant differences. Comparisons of the relationships between the EVI and NDVI with tower-measured GPP from 11 flux towers in North America, showed that MODIS EVI had much stronger relationships with tower-GPP than did NDVI, and EVI was better correlated with the seasonal dynamics of GPP than was NDVI. In addition, there were no significant differences among the 1x1, 3x3 and 7x7 pixel sample sizes. The comparisons of VIs from the 3 MODIS products from which VI's are generated (Standard VI (MOD13)), Nadir Adjusted Surface Reflectance (NBAR (MOD43)), and Surface Reflectance (MOD09)), showed that MODIS NBAR-EVI (MOD43) was best correlated with GPP compared with the other VI products. In addition, the MODIS VI - tower GPP relationships were significantly improved using NBAR-EVI over the more complex canopy structures, such as the broadleaf and needleleaf forests. The relationship of tower-GPP with other MODIS products would be useful in more thorough characterization of some land cover types in which the VI's have encountered problems. The land surface temperature (LST) product were found useful for empirical estimations of GPP in needleleaf forests, but were not useful for the other land cover types, whereas the land surface water index (LSWI) was more sensitive to noise from snowmelt, ground water table levels, and wet soils than to the canopy moisture levels. Also the MODIS EVI was better correlated with LST than was NDVI. Finally, the cross-site comparisons of GPP and multi-products from MODIS showed that the relationships between EVI and GPP were the strongest while LST and GPP was the weakest. EVI may thus be useful in scaling across landscapes, including heterogeneous ones, for regional estimations of GPP, especially if BRDF effects have been taken into account (such as with the NBAR product). Thus, the relationships of EVI-GPP over space and time would potentially provide much useful information for studies of the global carbon cycle.

  20. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  1. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  2. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events

    USDA-ARS?s Scientific Manuscript database

    Drought poses significant water and food security concerns in many parts of the world and can lead to negative agricultural, economic, and environmental impacts. The Vegetation Drought Response Index (VegDRI) approach has the flexibility to be adapted for other regions of the world using the climate...

  3. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation Over the Northern Hemisphere for the Period 1982-2008

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Ho, Chang-Hoi; Gim, Hyeon-Ju; Brown, Molley E.

    2011-01-01

    Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982 2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. Keywords: climate change, growing season, NDVI (normalized difference vegetation index), Northern Hemisphere, phenology,

  4. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2011-06-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  5. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  6. Previous Gardening Experience and Gardening Enjoyment Is Related to Vegetable Preferences and Consumption Among Low-Income Elementary School Children.

    PubMed

    Evans, Alexandra; Ranjit, Nalini; Fair, Cori N; Jennings, Rose; Warren, Judith L

    2016-10-01

    To examine if gardening experience and enjoyment are associated with vegetable exposure, preferences, and consumption of vegetables among low-income third-grade children. Cross-sectional study design, using baseline data from the Texas! Grow! Eat! Go! Twenty-eight Title I elementary schools located in different counties in Texas. Third-grade students (n = 1,326, 42% Hispanic) MAIN OUTCOME MEASURES: Gardening experience, gardening enjoyment, vegetable exposure, preference, and consumption. Random-effects regression models, adjusted for age, sex, ethnicity, and body mass index percentile of child, estimated means and standard errors of vegetable consumption, exposure, and preference by levels of gardening experience and enjoyment. Wald χ 2 tests evaluated the significance of differences in means of outcomes across levels of gardening experience and enjoyment. Children with more gardening experience had greater vegetable exposure and higher vegetable preference and consumed more vegetables compared with children who reported less gardening experience. Those who reported that they enjoyed gardening had the highest levels of vegetable exposure, preference, and consumption. Garden-based interventions can have an important and positive effect on children's vegetable consumption by increasing exposure to fun gardening experiences. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  7. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.

    PubMed

    Xu, Hao-Jie; Wang, Xin-Ping; Yang, Tai-Bao

    2017-02-01

    Central Eurasian vegetation is critical for the regional ecological security and the global carbon cycle. However, climatic impacts on vegetation growth in Central Eurasia are uncertain. The reason for this uncertainty lies in the fact that the response of vegetation to climate change showed nonlinearity, seasonality and differences among plant functional types. Based on remotely sensed vegetation index and in-situ meteorological data for the years 1982-2013, in conjunction with the latest land cover type product, we analyzed how vegetation growth trend varied across different seasons and evaluated vegetation response to climate variables at regional, biome and pixel scales. We found a persistent increase in the growing season NDVI over Central Eurasia during 1982-1994, whereas this greening trend has stalled since the mid-1990s in response to increased water deficit. The stalled trend in the growing season NDVI was largely attributed by summer and autumn NDVI changes. Enhanced spring vegetation growth after 2002 was caused by rapid spring warming. The response of vegetation to climatic factors varied in different seasons. Precipitation was the main climate driver for the growing season and summer vegetation growth. Changes in temperature and precipitation during winter and spring controlled the spring vegetation growth. Autumn vegetation growth was mainly dependent on the vegetation growth in summer. We found diverse responses of different vegetation types to climate drivers in Central Eurasia. Forests were more responsive to temperature than to precipitation. Grassland and desert vegetation responded more strongly to precipitation than to temperature in summer but more strongly to temperature than to precipitation in spring. In addition, the growth of desert vegetation was more dependent on winter precipitation than that of grasslands. This study has important implications for improving the performance of terrestrial ecosystem models to predict future vegetation response to climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert

    2017-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  9. How useful are meteorological drought indicators to assess agricultural drought impacts across Europe?

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Tanguy, Maliko; Hannaford, Jamie; Stahl, Kerstin

    2016-04-01

    Drought monitoring and early warning (M&EW) is an important component of agricultural and silvicultural risk management. Meteorological indicators such as the Standardized Precipitation Index (SPI) are widely used in operational M&EW systems and for drought hazard assessment. Meteorological drought yet does not necessarily equate to agricultural drought given differences in drought susceptibility, e.g. crop-specific vulnerability, soil water holding capacity, irrigation and other management practices. How useful are meteorological indicators such as SPI to assess agricultural drought? Would the inclusion of vegetation indicators into drought M&EW systems add value for the agricultural sector? To answer these questions, it is necessary to investigate the link between meteorological indicators and agricultural impacts of drought. Crop yield or loss data is one source of information for drought impacts, yet mostly available as aggregated data at the annual scale. Remotely sensed vegetation stress data offer another possibility to directly assess agricultural impacts with high spatial and temporal resolution and are already used by some M&EW systems. At the same time, reduced crop yield and satellite-based vegetation stress potentially suffer from multi-causality. The aim of this study is therefore to investigate the relation between meteorological drought indicators and agricultural drought impacts for Europe, and to intercompare different agricultural impact variables. As drought indicators we used SPI and the Standardized Precipitation Evaporation Index (SPEI) for different accumulation periods. The focus regarding drought impact variables was on remotely sensed vegetation stress derived from MODIS NDVI (Normalized Difference Vegetation Index) and LST (Land Surface Temperature) data, but the analysis was complemented with crop yield data and text-based information from the European Drought Impact report Inventory (EDII) for selected countries. A correlation analysis between meteorological drought indicators and remotely sensed vegetation stress at the EU NUTS3 region level revealed a high correlation between the two types of indicators for many regions; however some spatial variability was observed in (i) strength of correlation, (ii) performance of SPI versus SPEI, and (iii) best linked SPI/SPEI time scale. We additionally explored whether geographic properties like climate, soil texture, land use, and location explain the observed spatial patterns. Our study revealed that climatically dryer areas (water limited) showed high correlations between SPI/SPEI and vegetation stress, whereas the wettest parts of Europe (radiation limited regions) showed negative correlations especially for short accumulation periods, suggesting that for these regions, short droughts could actually be beneficial for vegetation growth. These findings suggest that relying solely on meteorological indicators for agricultural risk assessment in some regions might be inadequate. Overall, such information may help to tailor agricultural drought M&EW systems to specific regions.

  10. Forecasting vegetation greenness with satellite and climate data

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    A new and unique vegetation greenness forecast (VGF) model was designed to predict future vegetation conditions to three months through the use of current and historical climate data and satellite imagery. The VGF model is implemented through a seasonality-adjusted autoregressive distributed-lag function, based on our finding that the normalized difference vegetation index is highly correlated with lagged precipitation and temperature. Accurate forecasts were obtained from the VGF model in Nebraska grassland and cropland. The regression R2 values range from 0.97-0.80 for 2-12 week forecasts, with higher R2 associated with a shorter prediction. An important application would be to produce real-time forecasts of greenness images.

  11. Integrating reconstructed scatterometer and advanced very high resolution radiometer data for tropical forest inventory

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1995-11-01

    A scientific effort is currently underway to assess tropical forest degradation and its potential impact on Earth's climate. Because of the large continental regions involved, Advanced Very High Resolution Radiometer (AVHRR) imagery and its derivative vegetation index products with resolutions between 1 and 12 km are typically used to inventory the Earth's equatorial vegetation. Archival AVHRR imagery is also used to obtain a temporal baseline of historical forest extent. Recently however, 50-km Seasat-A Scatterometer (SASS) Ku-band imagery (acquired in 1978) has been reconstructed to approximately equals 4-km resolution, making it a supplement to AVHRR imagery for historical vegetation assessment. In order to test the utility of reconstructed Ku-band scatterometer imagery for this purpose, seasonal AVHRR vegetation index and SASS images of identical resolutions were constructed. Using the imagery, discrimination experiments involving 18 vegetation categories were conducted for a central South America study area. The results of these experiments indicate that AVHRR vegetation- index images are slightly superior to reconstructed SASS images for differentiating between equatorial vegetation classes when used alone. However, combining the scatterometer imagery with the vegetation-index images provides discrimination superior to any other combination of the data sets. Using the two data sets together, 90.3% of the test data could be correctly classified into broad classes of equatorial forest, degraded woodland/forest, woodland/savanna, and caatinga.

  12. Development and Analysis of Global, High-Resolution Diagnostic Metrics for Vegetation Monitoring, Yield Estimation and Famine Mitigation

    NASA Astrophysics Data System (ADS)

    Anderson, B. T.; Zhang, P.; Myneni, R.

    2008-12-01

    Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.

  13. Improving the prediction of African savanna vegetation variables using time series of MODIS products

    NASA Astrophysics Data System (ADS)

    Tsalyuk, Miriam; Kelly, Maggi; Getz, Wayne M.

    2017-09-01

    African savanna vegetation is subject to extensive degradation as a result of rapid climate and land use change. To better understand these changes detailed assessment of vegetation structure is needed across an extensive spatial scale and at a fine temporal resolution. Applying remote sensing techniques to savanna vegetation is challenging due to sparse cover, high background soil signal, and difficulty to differentiate between spectral signals of bare soil and dry vegetation. In this paper, we attempt to resolve these challenges by analyzing time series of four MODIS Vegetation Products (VPs): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR) for Etosha National Park, a semiarid savanna in north-central Namibia. We create models to predict the density, cover, and biomass of the main savanna vegetation forms: grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive and relatively rapid field methodology and measured herbaceous and woody vegetation during both the dry and wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegetation field measured variables. We then compared the optimal time span of VP time series to predict ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) models were superior to single year or single date models. Our results show that NDVI-based PLSR models yield robust prediction of tree density (R2 = 0.79, relative Root Mean Square Error, rRMSE = 1.9%) and tree cover (R2 = 0.78, rRMSE = 0.3%). EVI provided the best model for shrub density (R2 = 0.82) and shrub cover (R2 = 0.83), but was only marginally superior over models based on other VPs. FPAR was the best predictor of vegetation biomass of trees (R2 = 0.76), shrubs (R2 = 0.83), and grass (R2 = 0.91). Finally, we addressed an enduring challenge in the remote sensing of semiarid vegetation by examining the transferability of predictive models through space and time. Our results show that models created in the wetter part of Etosha could accurately predict trees' and shrubs' variables in the drier part of the reserve and vice versa. Moreover, our results demonstrate that models created for vegetation variables in the dry season of 2011 could be successfully applied to predict vegetation in the wet season of 2012. We conclude that extensive field data combined with multiyear time series of MODIS vegetation products can produce robust predictive models for multiple vegetation forms in the African savanna. These methods advance the monitoring of savanna vegetation dynamics and contribute to improved management and conservation of these valuable ecosystems.

  14. Utilizing a Tower Based System for Optical Sensing of Ecosystem Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Campbell, P. K. E.; Landis, D.; Kustas, W. P.

    2015-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone

  15. RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)

    NASA Astrophysics Data System (ADS)

    Kefauver, Shawn C.; El-Haddad, George; Vergara-Diaz, Omar; Araus, José Luis

    2015-10-01

    Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven costeffective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R2 values up to 0.65, compared to 0.56 for NDVI. . Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions for wheat and maize. Results using UAVs (Unmanned Aerial Vehicles) have produced similar results demonstrating the robust strengths, and limitations, of the more cost-effective RGB picture indexes.

  16. Diurnal variations in maize and soybean vegetation indices from continuous measurements of ground-based spectral reflectance

    NASA Astrophysics Data System (ADS)

    Arkebauer, T. J.; Walter-Shea, E. A.

    2017-12-01

    Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.

  17. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  18. Vegetation dynamics and responses to climate change and human activities in Central Asia.

    PubMed

    Jiang, Liangliang; Guli Jiapaer; Bao, Anming; Guo, Hao; Ndayisaba, Felix

    2017-12-01

    Knowledge of the current changes and dynamics of different types of vegetation in relation to climatic changes and anthropogenic activities is critical for developing adaptation strategies to address the challenges posed by climate change and human activities for ecosystems. Based on a regression analysis and the Hurst exponent index method, this research investigated the spatial and temporal characteristics and relationships between vegetation greenness and climatic factors in Central Asia using the Normalized Difference Vegetation Index (NDVI) and gridded high-resolution station (land) data for the period 1984-2013. Further analysis distinguished between the effects of climatic change and those of human activities on vegetation dynamics by means of a residual analysis trend method. The results show that vegetation pixels significantly decreased for shrubs and sparse vegetation compared with those for the other vegetation types and that the degradation of sparse vegetation was more serious in the Karakum and Kyzylkum Deserts, the Ustyurt Plateau and the wetland delta of the Large Aral Sea than in other regions. The Hurst exponent results indicated that forests are more sustainable than grasslands, shrubs and sparse vegetation. Precipitation is the main factor affecting vegetation growth in the Kazakhskiy Melkosopochnik. Moreover, temperature is a controlling factor that influences the seasonal variation of vegetation greenness in the mountains and the Aral Sea basin. Drought is the main factor affecting vegetation degradation as a result of both increased temperature and decreased precipitation in the Kyzylkum Desert and the northern Ustyurt Plateau. The residual analysis highlighted that sparse vegetation and the degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the wetland delta of the Large Aral Sea were mainly triggered by human activities: the excessive exploitation of water resources in the upstream areas of the Amu Darya basin and oil and natural gas extraction in the southern part of the Karakum Desert and the southern Ustyurt Plateau. The results also indicated that after the collapse of the Soviet Union, abandoned pastures gave rise to increased vegetation in eastern Kazakhstan, Kyrgyzstan and Tajikistan, and abandoned croplands reverted to grasslands in northern Kazakhstan, leading to a decrease in cropland greenness. Shrubs and sparse vegetation were extremely sensitive to short-term climatic variations, and our results demonstrated that these vegetation types were the most seriously degraded by human activities. Therefore, regional governments should strive to restore vegetation to sustain this fragile arid ecological environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Changes in Meadow Vegetation Cover in Kings Canyon National Park (California) Based on Three Decades of Landsat Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat (30 meter resolution) image analysis over the past 25 years in Kings Canyon National Park was used to track changes in the normalized difference vegetation index (NDVI). Results showed that NDVI values from the wet year of 2010 were significantly lower than NDVI values from the comparatively dry year of 2013 in the majority of meadow areas in the National Park.

  20. White Vegetables: Glycemia and Satiety12

    PubMed Central

    Anderson, G. Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E.

    2013-01-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance. PMID:23674805

  1. Spectral radiance estimates of leaf area and leaf phytomass of small grains and native vegetation

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Brown, B. S.; Millard, J. P.

    1986-01-01

    Similarities and/or dissimilarities in radiance characteristics were studied among barley (Hordeum vulgare L.), oats (Avena fatua L.), spring and winter wheat (Triticum aestivum L.), and short-grass prairie vegetation. The site was a Williams loam soil (fine-loamy mixed, Typic Argiborolls) near Sidney, Montana. Radiances were measured with a truck-mounted radiometer. The radiometer was equipped with four wavelength bands: 0.45 to 0.52, 0.52 to 0.60, 0.63 to 0.69, and 0.76 to 0.90 micron. Airborne scanner measurements were made at an altitude of 600 m four times during the season under clear sky conditions. The airborne scanner was equipped with the same four bands as the truck-mounted radiometer plus the following: 1.00 to 1.30, 1.55 to 1.75, 2.08 to 2.35, and 10.4 to 12.5 microns. Comparisons using individual wave bands, the near IR/red, (0.76 to 0.90 micron)/(0.63 to 0.69 micron) ratio and the normalized difference vegetation index, ND = (IR - red)/(IR + red), showed that only during limited times during the growing season were some of the small grains distinguishable from one another and from native rangeland vegetation. There was a common relation for all small grains between leaf area index and green leaf phytomass and between leaf area index or green leaf phytomass and the IR/red ratio.

  2. Comparison of North and South American biomes from AVHRR observations

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Dye, Dennis; Kerber, Arlene; Kalb, Virginia

    1987-01-01

    Previous analysis of the North American continent with AVHRR-derived vegetation index measurements showed a strong relation between known patterns of vegetation seasonality, productivity and the spectral vegetation index measurements. This study extends that analysis to South America to evaluate the degree to which these findings extend to tropical regions. The results show that the spectral vegetation index measurements provide a general indicator of vegetation activity across the major biomes of the Western Hemisphere of the earth, including tropical regions. The satellite-observed patterns are strongly related to the known climatology of the continents and may offer a means to improve understanding of global bioclimatology. For example, South America is shown to have a longer growing season with much earlier spring green-up than North America. The time integral of the measurements, computed from 12 composited monthly values, produces a value that is related to published net primary productivity data. However, limited net primary production data does not allow complete evaluation of satellite-observed contrasts between North and South American biomes. These results suggest that satellite-derived spectral vegetation index measurements are of great potential value in improving knowledge of the earth's biosphere.

  3. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    PubMed

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  4. [Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland].

    PubMed

    Mao, Zhi-Gang; Gu, Xiao-Hong; Liu, Jin-E; Ren, Li-Juan; Wang, Guo-Xiang

    2010-08-01

    Through vegetation investigation and soil analysis, this paper studied the evolvement of soil quality during natural vegetation succession and after farmland reclamation in the Yancheng coastal wetland of Jiangsu Province. Along with the process of vegetation succession, the soil physical, chemical, and biological properties in the wetland improved, which was manifested in the improvement of soil physical properties and the increase of soil nutrient contents, microbial biomass, and enzyme activities. Different vegetation type induced the differences in soil properties. Comparing with those in salt marshes, the soil salt content in reclaimed farmlands decreased to 0.01 - 0.04%, the soil microbial biomass and enzyme activities increased, and the soil quality improved obviously. The soil quality index (SQI) in the wetland was in the order of mudflat (0.194) < Suaeda salsa flat (0.233) < Imperata cylindrica flat (0.278) < Spartina alterniflora flat (0.446) < maize field (0.532) < cotton field (0.674) < soybean field (0.826), suggesting that positive vegetation succession would be an effective approach in improving soil quality.

  5. Assessing change in sensitivity of tropical vegetation to climate based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Claessen, J.; Martens, B.; Verhoest, N.; Molini, A.; Miralles, D. G.

    2017-12-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. Future responses can be better understood by analysing the past using time series of different vegetation diagnostics observed from space, both in the optical and microwave domain. In this contribution, the climatic drivers (air temperature, precipitation, and incoming radiation) of these different vegetation diagnostics are analysed using a monthly global data-cube of 32 years at a 0.25° resolution. To do so, we analyse the wavelet coherence between each vegetation index and the climatic drivers of vegetation. The use of wavelet coherence allows unveiling the different response and sensitivity of the diverse vegetation indices to their climatic drivers, simultaneously in the time and frequency domains. Our results show that the wavelet-based statistics are suitable for extracting information from the different vegetation indices. Areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. At higher latitudes, the positive trends in all vegetation diagnostics agree with the hypothesis of a greening pattern, which is coherent with the increase in temperature. At the same time, substantial differences can be observed between the responses of the different vegetation indices as well. As an example, the VOD - thought to be a close proxy for vegetation water content - shows a larger sensitivity to precipitation than traditional optical indices such as the NDVI. Further, important temporal changes in the wavelet coherence between vegetation and climate are identified. For instance, the Amazonian rainforest shows an increased correspondence with precipitation dynamics, indicating positive shifts in ecosystem sensitivity to water availability, which can arguably be related to an increase in the amplitude of the seasonal cycle in rainfall. These results are in line with the expected intensification of the water cycle due to climate change and point to the complex response of the biosphere to climatic changes.

  6. Spatiotemporal analysis of sandfly fauna (Diptera: Psychodidae) in an endemic area of visceral leishmaniasis at Pantanal, central South America.

    PubMed

    Casaril, Aline Etelvina; Monaco, Neiva Zandonaide Nazario; de Oliveira, Everton Falcão; Eguchi, Gabriel Utida; Paranhos Filho, Antonio Conceição; Pereira, Luciana Escalante; Oshiro, Elisa Teruya; Galati, Eunice Aparecida Bianchi; Mateus, Nathália Lopes Fontoura; de Oliveira, Alessandra Gutierrez

    2014-08-15

    Environmental changes caused by urbanization can cause alterations in the ecology and behavior of sandflies and in the epidemiology of leishmaniasis. Geotechnological tools allow the analysis and recognition of spatiotemporal patterns by monitoring and mapping risk areas of this vector-borne disease. This study aims to describe the sandfly fauna in the municipality of Corumbá and to compare it with the data described in a three-year period from 1984 to 1986 by Galati. A further aim was to analyze the influence of environmental changes on the composition of the fauna. Captures were conducted weekly from April 2012 to March 2013, in intra and peridomicile areas with automatic light traps, from 6:00 pm to 6:00 am. The following indices were calculated for both periods analyzed: Standardized Index of Species Abundance (SISA), Shannon's diversity index (H) and Pielou's index (J). The Normalized Difference Vegetation Index (NDVI) was extracted from a remote sensing LANDSAT-5 image. In total, 7,370 specimens (6,169 males and 1,201 females) were collected, distributed among 12 species. Lutzomyia cruzi was the most frequent species (93,79%) and the first in the ranking of standardized species abundance index in both studies. The dominance of the species Lu. cruzi in the neighborhoods of Maria Leite and Centro was demonstrated by the low equitability index. The neighborhood of Cristo Redentor had the greatest diversity of sandflies in the present study and the second greatest in the study performed by Galati et al. (Rev Saúde Pública 31:378-390, 1997). Analyzing the satellite images and the NDVI from 1984 and 2010, the largest amount of dense vegetation was found in the neighborhood of Cristo Redentor. It was, therefore, possible to show how changes caused due to urbanization have affected the density and distribution of Lu. cruzi and other species over time. Moreover, the data suggest that different populations of sandflies adapt in different ways according to environmental conditions and the adaptation does not necessarily depends on the presence of high vegetation cover.

  7. Spectral Unmixing of Vegetation, Soil and Dry Carbon in Arid Regions: Comparing Multispectral and Hyperspectral Observations

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Heidebrecht, Kathleen B.

    2001-01-01

    Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use and climate variability in and and semi-arid regions. However, remote sensing of vegetation change in these environments is difficult for several reasons. First, individual plant canopies are typically small and do not reach the spatial scale of typical Landsat-like satellite image pixels. Second, the phenological status and subsequent dry carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout and and semi-arid regions. Detection of only the 'green' part of the vegetation using a metric such as the normalized difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these ecosystems. Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from disturbance.

  8. Vegetation colonization of permafrost-related landslides, Ellesmere Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Cannone, Nicoletta; Lewkowicz, Antoni G.; Guglielmin, Mauro

    2010-12-01

    Relationships between vegetation colonization and landslide disturbance are analyzed for 12 active-layer detachments of differing ages located in three areas of the Fosheim Peninsula, Ellesmere Island (80°N). We discuss vegetation as an age index for landslides and a way to assess the time needed for complete recolonization of the surfaces since landslide detachment. Vegetation on undisturbed terrain is similar in the three areas but is more highly developed and complex inland due to a warmer summer climate. On a regional scale, the location of the area is as important as the effect of landslide age on vegetation colonization because of the influence of mesoclimatic conditions on vegetation development. On a landscape scale, there is a positive relationship between landslide age and vegetation development, as represented by total vegetation cover, floristic composition, and successional stage. Consequently, vegetation can be used at this scale as an indicator of landslide age. Fifty years are required to restore vegetation patches to a floristic composition similar to communities occurring in undisturbed conditions, but with lower floristic richness and a discontinuous cover and without well-developed layering. The shorter time needed for landslide recovery in the area with the warmest summer climate confirms the sensitivity of arctic vegetation to small differences in air temperature. This could trigger a set of interlinked feedbacks that would amplify future rates of climate warming.

  9. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen

    2018-04-01

    Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of -2.77 days/10a and 4.57 days/10a ( P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale ( P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) ( P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn ( P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.

  10. Contribution of Phenological and Physiological Variations on Northern Vegetation Productivity Changes over Last Three Decades

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram

    2015-01-01

    Plant phenology and maximum photosynthetic state determine spatiotemporal variability of gross primary productivity (GPP) of vegetation. Recent warming induced impacts accelerate shifts of phenology and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we investigate 1) how vegetation phenology and physiological status (maximum photosynthesis) are evolved over last three decades and 2) how such components (phenology and physiological status) contribute on inter-annual variation of the GPP during the last three decades. We utilized both long-term remotely sensed (GIMMS (Global Inventory Modeling and Mapping Studies), NDVI3g (Normalized Difference Vegetation Index 3rd generation) and MODIS (Moderate Resolution Imaging Spectroradiometer)) to extract larger scale phenology metrics (growing season start, end and duration); and productivity (i.e., growing season integrated vegetation index, GSIVI) to answer these questions. For evaluation purpose, we also introduced field-measured phenology and productivity datasets (e.g., FLUXNET) and possible remotely-sensed and modeled metrics at continental and regional scales. From this investigation, we found that onset of the growing season has advanced by 1.61 days per decade and the growing season end has delayed by 0.67 days per decade over the circumpolar region. This asymmetric extension of growing season results in a longer growing-season trend (2.96 days per decade) and widespread increasing vegetation-productivity trend (2.96 GSIVI per decade) over Northern land. However, the regionally-diverged phenology shift and maximum photosynthetic state contribute differently characterized productivity, inter-annual variability and trend. We quantified that about 50 percent, 13 percent and 6.5 percent of Northern land's inter-annual variability are dominantly controlled by the onset of the growing season, the end of the growing season and the maximum photosynthetic state, respectively. Productivity characterization over the other approximately 30 percent region has been driven by these co-dominant drivers. Our study clearly shows that regionally different contribution of phenological and physiological components on characterizing vegetation production over the last three decades.

  11. Land and atmosphere interactions using satellite remote sensing and a coupled mesoscale/land surface model

    NASA Astrophysics Data System (ADS)

    Hong, Seungbum

    Land and atmosphere interactions have long been recognized for playing a key role in climate and weather modeling. However their quantification has been challenging due to the complex nature of the land surface amongst various other reasons. One of the difficult parts in the quantification is the effect of vegetation which are related to land surface processes such soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examined the effects of vegetation and its relationship with soil moisture on the simulated land-atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Then, this study evaluates the model improvements for each simulation method.

  12. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.

    2018-03-01

    Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class

  13. Assessing the Influence of Precipitation Variability on the Vegetation Dynamics of the Mediterranean Rangelands using NDVI and Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis; Tsanis, Ioannis

    2017-04-01

    Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.

  14. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013

    USDA-ARS?s Scientific Manuscript database

    Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and funct...

  15. Remotely sensed vegetation moisture as explanatory variable of Lyme borreliosis incidence

    NASA Astrophysics Data System (ADS)

    Barrios, J. M.; Verstraeten, W. W.; Maes, P.; Clement, J.; Aerts, J. M.; Farifteh, J.; Lagrou, K.; Van Ranst, M.; Coppin, P.

    2012-08-01

    The strong correlation between environmental conditions and abundance and spatial spread of the tick Ixodes ricinus is widely documented. I. ricinus is in Europe the main vector of the bacterium Borrelia burgdorferi, the pathogen causing Lyme borreliosis (LB). Humidity in vegetated systems is a major factor in tick ecology and its effects might translate into disease incidence in humans. Time series of two remotely sensed indices with sensitivity to vegetation greenness and moisture were tested as explanatory variables of LB incidence. Wavelet-based multiresolution analysis allowed the examination of these signals at different temporal scales in study sites in Belgium, where increases in LB incidence were reported in recent years. The analysis showed the potential of the tested indices for disease monitoring, the usefulness of analyzing the signal in different time frames and the importance of local characteristics of the study area for the selection of the vegetation index.

  16. Crop Surveillance Demonstration Using a Near-Daily MODIS Derived Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Ryan, Robert E.; Blonski, Slawomir; Prados, Don

    2005-01-01

    Effective response to crop disease outbreaks requires rapid identification and diagnosis of an event. A near-daily vegetation index product, such as a Normalized Difference Vegetation Index (NDVI), at moderate spatial resolution may serve as a good method for monitoring quick-acting diseases. NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Terra and Aqua satellites has the temporal, spatial, and spectral properties to make it an excellent coarse-resolution data source for rapid, comprehensive surveillance of agricultural areas. A proof-of-concept wide area crop surveillance system using daily MODIS imagery was developed and tested on a set of San Joaquin cotton fields over a growing season. This area was chosen in part because excellent ground truth data were readily available. Preliminary results indicate that, at least in the southwestern part of the United States, near-daily NDVI products can be generated that show the natural variations in the crops as well as specific crop practices. Various filtering methods were evaluated and compared with standard MOD13 NDVI MODIS products. We observed that specific chemical applications that produce defoliation, which would have been missed using the standard 16-day product, were easily detectable with the filtered daily NDVI products.

  17. Distribution of green open space in Malang City based on multispectral data

    NASA Astrophysics Data System (ADS)

    Hasyim, A. W.; Hernawan, F. P.

    2017-06-01

    Green open space is one of the land that its existence is quite important in urban areas where the minimum area is set to reach 30% of the total area of the city. Malang which has an area of 110,6 square kilometers, is one of the major cities in East Java Province that is prone to over-land conversion due to development needs. In support of the green space program, calculation of green space is needed precisely so that remote sensing which has high accuracy is now used for measurement of green space. This study aims to analyze the area of green open space in Malang by using Landsat 8 image in 2015. The method used was the vegetation index that is Normalized Difference Vegetation Index (NDVI). From the study obtained the calculation of green open space was better to use the vegetation index method to avoid the occurrence of misclassification of other types of land use. The results of the calculation of green open space using NDVI found that the area of green open space in Malang City in 2015 reached 39% of the total area.

  18. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content). Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRRmode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived products are detailed in the second part of this two-paper series.

  19. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops

    NASA Astrophysics Data System (ADS)

    Kross, Angela; McNairn, Heather; Lapen, David; Sunohara, Mark; Champagne, Catherine

    2015-02-01

    Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.

  20. High-resolution IKONOS satellite imagery for normalized difference vegetative index-related assessment applied to land clearance studies

    NASA Astrophysics Data System (ADS)

    Lavers, Chris R.; Mason, Travis

    2017-07-01

    High-resolution satellite imagery permits verification of human rights land clearance violations across international borders as a result of unstable regimes or socio-economic upheaval. Without direct access to these areas to validate allegations of human rights abuse, the use of remote sensing tools, techniques, and data is extremely important. Humanitarian assessment can benefit from software-based solutions, involving radiometrically calibrated normalized difference vegetation index and temporal change imagery. We discuss the introduction of a matrix filter approach for change detection studies to help assist rapid building detection over large search areas against a bright background to evaluate internally displaced people in the 2005 Porta Farm Zimbabwe clearances. Future wide-scale near real-time space-based monitoring with a range of digital filters would be of great benefit to international human rights observers and human rights networks.

  1. Spatial generalised linear mixed models based on distances.

    PubMed

    Melo, Oscar O; Mateu, Jorge; Melo, Carlos E

    2016-10-01

    Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.

  2. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D. H.; Norwine, J.

    1981-01-01

    A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  3. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  4. Vegetation dynamic characteristics and its responses to climate change in Jinghe River watershed of Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Chang, F.; Liu, W.; Zhou, H.; Ning, T.; Wang, Y.

    2017-12-01

    The Jinghe River is a second-order tributary of the Yellow River, and located in the middle-south part of the Loess Plateau. The watershed area is 45421km², with the mean annual precipitation (P) being about 508mm and aridity index 2.09. For a long time, soil and water loss in this watershed is severe, resulting in very fragile ecological environment. The GIMMS-normalized vegetation index NDVI is used to reflect condition of vegetation cover, and P and Penman potential evapotranspiration (ET) to represent climate water and heat conditions. The annual actual ET is estimated as the difference between P and runoff (ignoring the change of watershed water storage during each hydrological year, May to April of the following year). These concepts were introduced to discuss the dynamic characteristics of vegetation cover and its response to climate change. Results showed that the mean annual NDVI value was 0.51, showing a stable increasing trend from 2000 with an annual increasing rate of 8.7×10¯³. This result is consistent with the implementation of the project that converts farmland to forests and grassland and has achieved remarkable success in the Loess Plateau since 1999. It also indicates that the positive impact of human activity has been strengthened under the background of climate change. From 1982 to 2012, the annual actual ET was 464mm, accounting for 93.6% of annual P over the same period. The NDVI value of main growing season (5-9 months) is significantly correlated with annual P and annual humid index (ratio of annual P to annual potential ET). Vegetation water consumption is the main part of land surface ET, and the relationship between annual actual ET and NDVI value over the same period is also significant. The NDVI value, P and potential ET variation varied substantially within the Jinghe River watershed, and their relationships in different regions at an inter-annual scale are different. Currently, we are investigating the influence of the changes in interannual and seasonal water-heat conditions and their matching features on vegetation cover change and ET processes using the Budyko-Fu model, and further quantify the contributions of climate change and human activities individually, providing scientific basis for ecological construction.

  5. Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan'an City, China.

    PubMed

    Zhang, Xinping; Wang, Dexiang; Hao, Hongke; Zhang, Fangfang; Hu, Youning

    2017-07-26

    In this study Yan'an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990-2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990-2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon's diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment.

  6. Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan’an City, China

    PubMed Central

    Zhang, Xinping; Hao, Hongke; Zhang, Fangfang; Hu, Youning

    2017-01-01

    In this study Yan’an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment. PMID:28933770

  7. Estimating grassland curing with remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chaivaranont, Wasin; Evans, Jason P.; Liu, Yi Y.; Sharples, Jason J.

    2018-06-01

    Wildfire can become a catastrophic natural hazard, especially during dry summer seasons in Australia. Severity is influenced by various meteorological, geographical, and fuel characteristics. Modified Mark 4 McArthur's Grassland Fire Danger Index (GFDI) is a commonly used approach to determine the fire danger level in grassland ecosystems. The degree of curing (DOC, i.e. proportion of dead material) of the grass is one key ingredient in determining the fire danger. It is difficult to collect accurate DOC information in the field, and therefore ground-observed measurements are rather limited. In this study, we explore the possibility of whether adding satellite-observed data responding to vegetation water content (vegetation optical depth, VOD) will improve DOC prediction when compared with the existing satellite-observed data responding to DOC prediction models based on vegetation greenness (normalised difference vegetation index, NDVI). First, statistically significant relationships are established between selected ground-observed DOC and satellite-observed vegetation datasets (NDVI and VOD) with an r2 up to 0.67. DOC levels estimated using satellite observations were then evaluated using field measurements with an r2 of 0.44 to 0.55. Results suggest that VOD-based DOC estimation can reasonably reproduce ground-based observations in space and time and is comparable to the existing NDVI-based DOC estimation models.

  8. (How) Can We Use Satellite Data to Estimate Effects of Extreme Drought on Photosynthesis?

    NASA Astrophysics Data System (ADS)

    Vicca, S.; Balzarolo, M.; Filella, I.; Granier, A.; Herbst, M.; Knohl, A.; Longdoz, B.; Mund, M.; Nagy, Z.; Pintér, K.; Rambal, S.; Verbesselt, J.; Verger, A.; Zeileis, A.; Zhang, C.; Penuelas, J.

    2017-12-01

    Severe droughts can strongly impact photosynthesis (GPP), but the tool best suited for large-scale and long-term monitoring, satellite imagery, has yet to prove its ability to detect drought effects on GPP. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect effect of a strong drought (that started during the European heatwave of 2003) on GPP in a beech forest in France (Hesse). While vegetation state remained largely unaffected by the drought, Eddy Covariance data revealed a substantial decrease in GPP and GPP recovered only after about three years. This three-year reduction in GPP was, however not detected by severaly commonly used reflectance indices (like NDVI and FAPAR) or by MODIS GPP product. Only he Enhanced Vegetation Index (EVI) and the Photochemical Reflectance Index (PRI) detected the drought effect, but the PRI only after normalization for absorbed light. These results were compared to a two other forests where a severe drought event had affected GPP and these data confirmed that especially the PRI normalized for absorbed light provides useful information about vegetation functioning that is not captured by other remote sensing indicators under test.

  9. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2018-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature ( Tnav), it correlates negatively with the number of warmest night days ( Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  10. Utilizing multisource remotely sensed data to dynamically monitor drought in China

    NASA Astrophysics Data System (ADS)

    Liu, Sanchao; Li, Wenbo

    2011-12-01

    Drought is one of major nature disaster in the world and China. China has a vast territory and very different spatio-temporal distribution weather condition. Therefore, drought disasters occur frequently throughout China, which may affect large areas and cause great economic loss every year. In this paper, geostationary meteorological remote sensing data, FY-2C/D/E VISSR and three quantitative remotely sensed models including Cloud Parameters Method (CPM), Vegetation Supply Water Index (VSWI), and Temperature Vegetation Dryness Index (TVDI) have been used to dynamically monitor severe drought in southwest China from 2009 to 2010. The results have effectively revealed the occurrence, development and disappearance of this drought event. The monitoring results can be used for the relevant disaster management departments' decision-making works.

  11. Role of geospatial technology in identifying natural habitat of malarial vectors in South Andaman, India.

    PubMed

    Shankar, Shiva; Agrawal, Deepak Kumar

    2016-03-01

    Malaria is a serious disease which has repeatedly threatened Andaman, an island territory of India. Uncharted dense vegetation and inaccessibility are the salient features of the area and the major areas are covered by remotely sensed data to identify the malaria vector's natural habitat. The present investigation appraises the role of geospatial technologies in identifying the natural habitat of malarial vectors. The base map was prepared from Survey of India's toposheets, the landuse map was prepared from indices techniques like normalised difference vegetation index (NDVI), normalised difference water index (NDWI), modified normalised difference water index (MNDWI), normalised difference pond index (NDPI), and normalized difference turbidity index (NDTI) in conjugation with visual interpretation. The soil moisture content map was reproduced from the soil atlas of Andaman and Nicobar Islands followed by generation of an aspect profile from ASTER-GDEM satellite data. Both the landuse map and aspect profile were validated for accuracy in the field. A weighted overlay analysis of the classes like landuse, soil moisture and aspect profile of the study area resulted in identification of the potential natural habitat map of malaria vector surrounding the areas of Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets. The natural habitat of malaria vector indicated that Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets are within the proximity of 2.5 km from the prime habitat location with more number of malaria positive cases. Also these hamlets are surrounded by dense evergreen forest and the land surface is draped by clay loam and clay soil texture exhibiting high soil moisture content warranting high rates of survival and proliferation of the vector ensuring resurgence of malaria every year. It is thus concluded that application of geospatial technologies plays an important role in identifying the natural habitat of malaria vector.

  12. New Microwave-Based Missions Applications for Rainfed Crops Characterization

    NASA Astrophysics Data System (ADS)

    Sánchez, N.; Lopez-Sanchez, J. M.; Arias-Pérez, B.; Valcarce-Diñeiro, R.; Martínez-Fernández, J.; Calvo-Heras, J. M.; Camps, A.; González-Zamora, A.; Vicente-Guijalba, F.

    2016-06-01

    A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.

  13. Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices

    NASA Astrophysics Data System (ADS)

    Hsieh, C. J.; Chompuchan, C.

    2014-12-01

    Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.

  14. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.

  15. Comparison of Huanjing and Landsat satellite remote sensing of the spatial heterogeneity of Qinghai-Tibet alpine grassland

    NASA Astrophysics Data System (ADS)

    Wang, Junbang; Sun, Wenyi

    2014-11-01

    Remote sensing is widely applied in the study of terrestrial primary production and the global carbon cycle. The researches on the spatial heterogeneity in images with different sensors and resolutions would improve the application of remote sensing. In this study two sites on alpine meadow grassland in Qinghai, China, which have distinct fractal vegetation cover, were used to test and analyze differences between Normalized Difference Vegetation Index (NDVI) and enhanced vegetation index (EVI) derived from the Huanjing (HJ) and Landsat Thematic Mapper (TM) sensors. The results showed that: 1) NDVI estimated from HJ were smaller than the corresponding values from TM at the two sites whereas EVI were almost the same for the two sensors. 2) The overall variance represented by HJ data was consistently about half of that of Landsat TM although their nominal pixel size is approximately 30m for both sensors. The overall variance from EVI is greater than that from NDVI. The difference of the range between the two sensors is about 6 pixels at 30m resolution. The difference of the range in which there is not more corrective between two vegetation indices is about 1 pixel. 3) The sill decreased when pixel size increased from 30m to 1km, and then decreased very quickly when pixel size is changed to 250m from 30m or 90m but slowly when changed from 250m to 500m. HJ can capture this spatial heterogeneity to some extent and this study provides foundations for the use of the sensor for validation of net primary productivity estimates obtained from ecosystem process models.

  16. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Caballero, Isabel; Silva, Gustavo; Parra, Pedro-Cecilio; Vázquez, Águeda; Caldeira, Rui

    2017-06-01

    A forest fire started on August 8th, 2016 in several places on Madeira Island causing damage and casualties. As of August 10th the local media had reported the death of three people, over 200 people injured, over 950 habitants evacuated, and 50 houses damaged. This study presents the preliminary results of the assessment of several spectral indices to evaluate the burn severity of Madeira fires during August 2016. These spectral indices were calculated using the new European satellite Sentinel-2A launched in June 2015. The study confirmed the advantages of several spectral indices such as Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVIreXn) using red-edge spectral bands to assess the post-fire conditions. Results showed high correlation between NDVI, GNDVI, NBR and NDVIre1n spectral indices and the analysis performed by Copernicus Emergency Management Service (EMSR175), considered as the reference truth. Regarding the red-edge spectral indices, the NDVIre1n (using band B5, 705 nm) presented better results compared with B6 (740 nm) and B7 (783 nm) bands. These preliminary results allow us to assume that Sentinel-2 will be a valuable tool for post-fire monitoring. In the future, the two twin Sentinel-2 satellites will offer global coverage of the Madeira Archipelago every five days, therefore allowing the simultaneous study of the evolution of the burnt area and reforestation information with high spatial (up to 10 m) and temporal resolution (5 days).

  17. Vegetative and reproductive phenology of a floodplain tree species Barringtonia acutangula from North East India.

    PubMed

    Nath, Shikhasmita; Nath, Arun Jyoti; Das, Ashesh Kumar

    2016-03-01

    Vegetative and reproductive phenology of Barringtonia acutangula, a floodplain tree species was studied at Chatla floodplain, Assam North East India with the aim to investigate vegetative and reproductive phenology under stressful environment of seasonal submergence and to assess the impact of environmental variables (temperature and precipitation) on tree phenophases. Quantitative assessment was made at 15 day interval for all the phenophases (leaf initiation, leaf-fall, flowering and fruiting) by tagging 40 (forty) trees over aperiod of two years (2012-14).To test seasonal influence on the phenology of Barringtonia acutangula different phenophases were correlated with environmental variables and statistical spearman's rank correlation coefficient was employed. Aridity index was computed that delineate influence of rainfall and temperature together on any phenophases. Leaf initiation showed positively significant correlation with temperature (r(s) = 0.601, p = < .05) during the year 2012-2013 whereas it was significantly correlated with rainfall (r(s) = 0.583, p = < .05) and aridity index (r(s) = 0.583, p = < .05) during the year 2013-2014. Leaf-fall was significant negatively correlated with temperature (r(s) = -0.623, p = < .05), rainfall (r(s) = -0.730, p = < .01) and aridity index (r(s) = -0.730, p = < .01) for both the studied years. Flowering was significantly influenced by temperature (r(s) = 0.639, p = < .05), rainfall (r(s) = 0.890, p = < .01) and aridity index (r(s) = 0.890, p = < .01) while in one month lag flowering was significantly correlated with rainfall (r(s) = 0.678, p = < .01) in 2012-13. Fruiting was also positively significant with temperature (r(s) = 0.795, P < .05), rainfall (r(s) = 0.835, P < .01) and aridity index (r(s) = 0.835, P < .01) for both the years. During one month lag period fruiting was positively correlated with temperature, rainfall and aridity index in both the years. Temperature, rainfall and aridity index were major determinants of the various vegetative and reproductive phenology of B. acutangula and any changes in these variables in future due to climate change, might have profound effect on phenophases of this tree species.

  18. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB® that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane's destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  19. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  20. The Impacts of Typical Drought Events on Terrestrial Vegetation in China

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wu, J.; Zhou, H.; Han, X.

    2018-04-01

    In our study, according to the statistical results of standardized precipitation evapotranspiration index (SPEI), we chose two drought events which occurred in the North China during 2001 and in the Southwest China from 2009 to 2010. And two of the Global Land Surface Satellite (GLASS) products had been used to evaluate the impacts of drought on vegetation, including the leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR). The results show that: (1) In the development process of a drought event, the anomaly of remote sensing parameters (LAI and FAPAR) usually falls firstly and then rises as the drought changes from moderate to severe and then to moderate. This indicates that the effects of drought on vegetation remote sensing parameters are closely related to the severity of drought disaster. (2) The response of different vegetation types to the drought disaster is different. Compared with the forests, the response of grasslands to drought disaster is earlier. For example, the duration affected by drought disaster in grassland is longer 1/3 than the forests in the Southwest China. (3) Irrigation is an effective measure to mitigate the effects of drought. Irrigated croplands are less affected by drought than non-irrigated croplands and grasslands. In the North China, the decrease amplitude of irrigated croplands' remote sensing parameters is about half of non-irrigated croplands'.

  1. Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Virtanen, Tarmo; Kondratyev, Vladimir; Laurila, Tuomas; Linkosalmi, Maiju; Mikola, Juha; Nyman, Johanna; Räsänen, Aleksi; Tuovinen, Juha-Pekka; Aurela, Mika

    2017-09-01

    Vegetation in the arctic tundra typically consists of a small-scale mosaic of plant communities, with species differing in growth forms, seasonality, and biogeochemical properties. Characterization of this variation is essential for understanding and modeling the functioning of the arctic tundra in global carbon cycling, as well as for evaluating the resolution requirements for remote sensing. Our objective was to quantify the seasonal development of the leaf-area index (LAI) and its variation among plant communities in the arctic tundra near Tiksi, coastal Siberia, consisting of graminoid, dwarf shrub, moss, and lichen vegetation. We measured the LAI in the field and used two very-high-spatial resolution multispectral satellite images (QuickBird and WorldView-2), acquired at different phenological stages, to predict landscape-scale patterns. We used the empirical relationships between the plant community-specific LAI and degree-day accumulation (0 °C threshold) and quantified the relationship between the LAI and satellite NDVI (normalized difference vegetation index). Due to the temporal difference between the field data and satellite images, the LAI was approximated for the imagery dates, using the empirical model. LAI explained variation in the NDVI values well (R 2 adj. 0.42-0.92). Of the plant functional types, the graminoid LAI showed the largest seasonal amplitudes and was the main cause of the varying spatial patterns of the NDVI and the related LAI between the two images. Our results illustrate how the short growing season, rapid development of the LAI, yearly climatic variation, and timing of the satellite data should be accounted for in matching imagery and field verification data in the Arctic region.

  2. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  3. Predicting Vegetation Condition from ASCAT Soil Water Index over Southwest India

    NASA Astrophysics Data System (ADS)

    Pfeil, Isabella Maria; Hochstöger, Simon; Amarnath, Giriraj; Pani, Peejush; Enenkel, Markus; Wagner, Wolfgang

    2017-04-01

    In India, extreme water scarcity events are expected to occur on average every five years. Record-breaking droughts affecting millions of human beings and livestock are common. If the south-west monsoon (summer monsoon) is delayed or brings less rainfall than expected, a season's harvest can be destroyed despite optimal farm management, leading to, in the worst case, life-threatening circumstances for a large number of farmers. Therefore, the monitoring of key drought indicators, such as the healthiness of the vegetation, and subsequent early warning is crucial. The aim of this work is to predict vegetation state from earth observation data instead of relying on models which need a lot of input data, increasing the complexity of error propagation, or seasonal forecasts, that are often too uncertain to be used as a regression component for a vegetation parameter. While precipitation is the main water supply for large parts of India's agricultural areas, vegetation datasets such as the Normalized Difference Vegetation Index (NDVI) provide reliable estimates of vegetation greenness that can be related to vegetation health. Satellite-derived soil moisture represents the missing link between a deficit in rainfall and the response of vegetation. In particular the water available in the root zone plays an important role for near-future vegetation health. Exploiting the added-value of root zone soil moisture is therefore crucial, and its use in vegetation studies presents an added value for drought analyses and decision-support. The soil water index (SWI) dataset derived from the Advanced Scatterometer (ASCAT) on board the Metop satellites represents the water content that is available in the root zone. This dataset shows a strong correlation with NDVI data obtained from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is exploited in this study. A linear regression function is fit to the multi-year SWI and NDVI dataset with a temporal resolution of eight days, returning a set of parameters for every eight-day period of the year. Those parameters are then used to predict vegetation health based on the SWI up to 32 days after the latest available SWI and NDVI observations. In this work, the prediction was carried out for multiple eight-day periods in the year 2015 for three representative districts in India, and then compared to the actually observed NDVI during these periods, showing very similar spatial patterns in most analyzed regions and periods. This approach enables the prediction of vegetation health based on root zone soil moisture instead of relying on agro-meteorological models which often lack crucial input data in remote regions.

  4. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  5. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE PAGES

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  6. Comparison of Sub-pixel Classification Approaches for Crop-specific Mapping

    EPA Science Inventory

    The Moderate Resolution Imaging Spectroradiometer (MODIS) data has been increasingly used for crop mapping and other agricultural applications. Phenology-based classification approaches using the NDVI (Normalized Difference Vegetation Index) 16-day composite (250 m) data product...

  7. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  8. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.

  9. What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil?

    PubMed

    Neves, S P S; Funch, R; Conceição, A A; Miranda, L A P; Funch, L S

    2016-06-01

    A transect was used to examine the environmental and biological descriptors of a compact vegetation mosaic in the Chapada Diamantina in northeastern Brazil, including the floristic composition, spectrum of plant life forms, rainfall, and soil properties that defined areas of cerrado (Brazilian savanna), caatinga (seasonally dry tropical forest thorny, deciduous shrub/arboreal vegetation) and cerrado-caatinga transition vegetation. The floristic survey was made monthly from April/2009 to March/2012. A dendrogram of similarity was generated using the Jaccard Index based on a matrix of the species that occurred in at least two of the vegetation types examined. The proportions of life forms in each vegetation type were compared using the chi-square test. Composite soil samples were analyzed by simple variance (ANOVA) to examine relationships between soil parameters of each vegetation type and the transition area. The monthly precipitation levels in each vegetation type were measured and compared using the chi-square test. A total of 323 species of angiosperms were collected distributed in 193 genera and 54 families. The dendrogram demonstrated strong difference between the floristic compositions of the cerrado and caatinga, sharing 2% similarity. The chi-square test did not demonstrate any significant statistical differences between the monthly values of recorded rainfall. The organic matter and clay contents of the soilsin the caatinga increased while sand decreased, and the proportions of therophyte, hemicryptophyte, and chamaephyte life forms decreased and phanerophytes increased. We can therefore conclude that the floristic composition and the spectrum of life forms combined to define the cerrado and caatinga vegetation along the transect examined, with soil being the principal conditioning factor determining the different vegetation types, independent of precipitation levels.

  10. Peat drainage conditions assessment in Scotland

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Artz, Rebekka; Donaldson-Selby, Gillian; Aitkenhead, Matt; Donnelly, David; Gimona, Alessandro

    2017-04-01

    Large areas of Scotland are covered in peat, providing an important sink of carbon but also a notable source of emission where peatlands are not in good condition. However, despite data from designated sites that peat degradation is common, a detailed spatial assessment of the condition of most peatlands across the whole of Scotland is missing. An assessment of peatland drainage was carried out at >600 random sampling locations with an expert-based estimation of presence or absence of drainage ditches within a 500 metre block using 25 cm resolution aerial imagery. The resulting dataset was modelled using a scorpan-kriging approach, in particular using Generalised Additive Models for the description of the trend. Remote sensing images from different sensors (i.e. MODIS, Landsat and Sentinel 1 and 2) were used. In particular we used indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity. When considering MODIS indices we used time series and phenological summaries. The model provides also uncertainty of the estimations. The derived dataset can then be used in the decision making process for the selection of sites for restoration, emissions estimation and accounting.

  11. Leaf area index retrieval using Hyperion EO-1 data-based vegetation indices in Himalayan forest system

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra; Singh, Sarnam

    2016-04-01

    Present Study is being taken to retrieve Leaf Area Indexn(LAI) in Himalayan forest system using vegetation indices developed from Hyperion EO-1 hyperspectral data. Hemispherical photograph were captured in the month of March and April, 2012 at 40 locations, covering moist tropical Sal forest, subtropical Bauhinia and pine forest and temperate Oak forest and analysed using an open source GLA software. LAI in the study region was ranging in between 0.076 m2/m2 to 6.00 m2/m2. These LAI values were used to develop spectral models with the FLAASH corrected Hyperion measurements.Normalized difference vegetation index (NDVI) was used taking spectral reflectance values of all the possible combinations of 170 atmospherically corrected channels. The R2 was ranging from lowest 0.0 to highest 0.837 for the band combinations of spectral region 640 nm and 670 nm. The spectral model obtained was, spectral reflectance (y) = 0.02x LAI(x) - 0.0407.

  12. Use of vegetation indices to estimate intercepted solar radiation and net carbon dioxide exchange of a grass canopy

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Whiting, Gary J.; Hartman, Jean M.

    1989-01-01

    Results are presented from field experiments relating spectral reflectance to intercepted photosynthetically active radiation (PAR) and net CO2 exchange in a natural canopy composed of the marsh cordgrass (Spartina alterniflora). Reflectance measurements made by a hand-held radiometer with Landsat TM spectral wavebands are used to compute remote sensing indices such as the normalized difference vegetation index. Consideration is given to the impact of standing dead canopy material on the relationship between intercepted PAR and spectral vegetation indices and the impact of changes in photosynthetic efficiency on the relationship between vegetation indices and CO2 exchange rates. The results suggest that quantitative remote assessment of photosynthesis and net gas exchange in natural vegetation is feasible, especially if the analysis incorporates information on biological responses to environmental variables.

  13. Representation of vegetation by continental data sets derived from NOAA-AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.

    1991-01-01

    Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.

  14. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  15. [Survey and evaluation of heavy metal in the major vegetables in Shaanxi Province].

    PubMed

    Nie, Xiaoling; Cheng, Guoxia; Wang, Minjuan; Wang, Caixia; Du, Kejun

    2015-09-01

    To evaluate the contamination condition of the Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province. The Pb and Cd contents were determined by inductively coupled plasma mass spectrometry, and the As contents were determined by hydride generation-atomic fluorescence spectrometry, and the Hg contents were determined by mercury vapourmeter. One factor contamination index was employed to evaluate the metal pollution situation of different types of vegetables. Moreover, the health risk after intake of those heavy metals through vegetables were described. In ten kinds of vegetables of Shaanxi Province, the Pb contents in cowpea reached the alertness level, while the contents of Cd, Hg and As were below the safety level. What' s more, the contents of the Pb, Cd, Hg and As were below the safety level in other nine vegetables, and the over standard rate of were Hg > Pb > Cd > As. The contamination extents of Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province were low.

  16. Relationships between canopy greenness and CO2 dynamics of a Mediterranean deciduous forest assessed with webcam imagery and MODIS vegetation indices

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Papale, D.; Richardson, A. D.

    2009-04-01

    Phenological observations of foliar development and senescence are needed to understand the relationship between canopy properties and seasonal productivity dynamics (e.g., carbon uptake) of terrestrial ecosystems. Traditional phenological ground observations based on a visual observation of different vegetation growth phases (from first leaf opening, to first leaf flowering, full bloom until senescence) are laborious and typically limited to observations on just a few individual subjects. On the contrary, remote sensing techniques appear to offer the potential for assessing long-term variability in primary productivity at a global scale (Field et al., 1993). Recent studies have shown that biochemical and biophysical canopy properties can be measured with a quantifiable uncertainty that can be incorporated in the land-biosphere models (Ustin et al., 2004a; Ollinger et al 2008). Canopy greenness can be quantified by the use of vegetation indices (VIs) as, for example, Normalized Difference Vegetation Index (NDVI, Rouse et al., 1974; Deering, 1978), but a disadvantage of this approach is that there are uncertainties associated with these indices (due to the spatial and temporal resolution of the data), and the interpretation of a specific VI value, in the context of on-the-ground phenology, is not clear. Improved ground-based datasets are needed to validate and improve remotely-sensed phenological indices. Continuous monitoring of vegetation canopies with digital webcams (Richardson et al. 2007) may offer a direct link between phenological changes in canopy state and what is "seen" by satellite sensors. The general objective of this study is to analyze the relationship between biosphere-atmosphere CO2 exchange (measured by eddy covariance) and phenological canopy status, or greenness, of a Mediterranean deciduous broadleaf forest in central Italy (Roccarespampani, 42°24' N, 11°55' E). Canopy greenness is quantify using two different approaches: from digital webcam images, using indices derived from red, green and blue (RGB) color channel brightness (RGBi, after Richardson et al. 2007) and with VIs (e.g. NDVI, SR, MSR, GRDI, NCI, CI and SLAVI) derived from MODIS surface reflectance data (MOD09A1). Since MOD09A1 reflectance data represent the maximum surface reflectance of each band for a consecutive 8-day period, webcam imagery, as fluxes data, acquired whit half-hourly temporal resolution have been time averaged on 8 day period. Evaluation of performance of RGBi-VIs, RGBi-CO2flux and MODIS-CO2flux relationships were performed by linear regression analyses using the classical least squares (LS) statistical technique. Among all calculated vegetation indexes, GRDI (Green Red Difference Index: Gitelson et al., 2002) and SLAVI (Specific Leaf Area Vegetation Index: Lymburner et al., 2000) showed best linear fit with webcam RGBi greenness. SLAVI was also one of the vegetation indices best correlated with mean daily CO2 flux (R2=0.79). Finally, the relationship between RGBi and CO2 flux had a R2 of 0.67. Concluding, both webcam and MODIS greenness indices offer potential for assessing seasonal variation in the productivity of terrestrial ecosystems. Future work will focus on reducing the uncertainties inherent in these approaches, and integrating field observations of phenology into this study.

  17. The assessment of anthropogenic impact on the environment in East Fennoscandia based on the Normalized Difference Vegetation Index data

    NASA Astrophysics Data System (ADS)

    Miulgauzen, Daria; Pankratova, Lubov

    2017-04-01

    Being a part of Eurasian "cold sector", ecosystems of East Fennoscandia may fit in the category of the most vulnerable to any external impact, including anthropogenic one. The productivity of plant communities can serve as an indicator representing the state of ecosystems, especially in disturbed areas. The present research is aimed at the environmental impact assessment caused by the Pechenganikel Mining and Metallurgical Plant based on the plant communities' productivity data on the example of ecosystems of East Fennoscandia. Vegetation productivity was assessed on the basis of the Normalized Difference Vegetation Index (NDVI) which is often used for screenings to quantify plant canopy. The essence of the method is that of the difference between the spectral reflectance of vegetation in red and near-infrared regions. The index was calculated on the satellite images of Landsat 8 in IDRISI Kilimanjaro (Clark Labs) according to the equation: N DV I = N-IR- RED-; N IR +RED NIR - spectral reflectance measurements in near-infrared region, RED - spectral reflectance measurements in red region. To compare the index calculations with the information on the state of plant communities, the field studies were carried out in the area of 380 km2 in the vicinity of the Pechenganikel Mining and Metallurgical Plant (Kola Peninsula, Nikel urban-type settlement). As a result, there was created a map in MapInfo Professional 12.5 (Pitney Bowes Software) that represents the vegetation damage at a scale of 1:100,000. The field research has revealed the morphogenetic discrepancy between the soil-plant cover of the area in question and the one of "zonal" ecosystems. Plant communities have been widely modified or destroyed because of air pollution and there are numerous disturbances in the soil profile structure. In terms of vegetation productivity, the analysis of the NDVI figures has shown that the closer the pollution source (Pechenganikel Plant) is, the more significant the productivity decrease is. In addition, the published data on the content of heavy metals (Ni, Cu), which are the main components of the Plant's emissions, found in plants (berries and mushrooms) in the area in question (Environmental condition of Kuetsyarvi lake and its surroundings. Michurin A. N., Tatarinskiy V. N. (Ed.). St. Petersburg., 2003. 144 pp. (in Russian)), field data on vegetation cover, soils and topography, as well as calculations of the NDVI helped to identify the zones with different damage intensity, to define their shape and local interpenetration. Southwestern winds prevailing in the area were determined to contribute to spreading of pollution in the area and to widening of the zones with low NDVI to the south-east from the source. Thus, the research findings have proved the fact that anthropogenic impact of the Pechenganikel Mining and Metallurgical Plant induced ecosystem degradation in East Fennoscandia. The NDVI enabled to shift the research from the "spot" field data to the level of areal generalizations; therefore, it should be applied in further studies dedicated to the problem of sustainable development.

  18. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the Advanced Land Observing Satellite (ALOS) using 5×5 maximum filtering algorithms. The results for pistachio forest showed the coefficient regression of NDVI, SAVI, MSAVI, OSAVI, and TRVI were (R2= 0.68, 0.67, 0.68, 0.68, and 0.71) respectively. The results for juniper forest showed the coefficient regression of NDVI, SAVI, MSAVI, OSAVI, and TRVI were (R2= 0.51, 0.52, 0.51, 0.52, and 0.56) respectively. I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  19. Emerging Stress and Relative Resiliency of Giant Sequoia Groves Experiencing Multiyear Dry Periods in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Su, Yanjun; Bales, Roger C.; Ma, Qin; Nydick, Koren; Ray, Ram L.; Li, Wenkai; Guo, Qinghua

    2017-11-01

    The relative greenness and wetness of Giant Sequoia (Sequoiadendron giganteum) groves and the surrounding Sierra Nevada, California forests were investigated using patterns in vegetation indices from Landsat imagery for the period 1985-2015. Vegetation greenness (normalized difference vegetation index) and thus forest biomass in groves increased by about 6% over that 30 year period, suggesting a 10% increase in evapotranspiration. No significant change in the surrounding nongrove forest was observed. In this period, local temperature measurements showed an increase of about 2.2°C. The wetness of groves (normalized difference wetness index) showed no overall long-term trend but responded to changes in annual water-year precipitation and temperature. The long-term trends of grove greenness and wetness varied by elevation, with the lower rain-snow transition elevation zone (1,700-2,100 m) marking a change from an increasing trend at lower elevations to a decreasing trend at higher elevations. The 2011-2015 drought brought an unprecedented drop in grove wetness, over 5 times the 1985-2010 standard deviation, and wetness in SEGI groves dropped 50% more than in nongrove areas. Overall, the wetness and greenness of SEGI groves showed a larger response to the warming climate and drought than nongrove areas. The influence of droughts on the wetness of SEGI groves reflected effects of both the multidecadal increase in forest biomass and the effects of warmer drought-year temperatures on the evaporative demand of current grove vegetation, plus sufficient regolith water storage of rain and snowmelt to sustain that vegetation through seasonal and multiyear dry periods.

  20. Optical Sensing of Ecosystem Carbon Fluxes Combining Spectral Reflectance Indices with Solar Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Middleton, E.; Corp, L. A.; Campbell, P. K.; Kustas, W. P.

    2014-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.

  1. Optical Sensing of Ecosystem Carbon Fluxes Combining Spectral Reflectance Indices with Solar Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Corp, L.; Campbell, P. K.; Cook, B. D.; Middleton, E.; Cheng, Y.; Zhang, Q.; Russ, A.; Kustas, W. P.

    2013-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations can observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. This sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.

  2. Correlation between the habitats productivity and species richness (amphibians and reptiles) in Portugal through remote sensed data

    NASA Astrophysics Data System (ADS)

    Teodoro, A. C.; Sillero, N.; Alves, S.; Duarte, L.

    2013-10-01

    Several biogeographic theories propose that the species richness depends on the structure and ecosystems diversity. The habitat productivity, a surrogate for these variables, can be evaluated through satellite imagery, namely using vegetation indexes (e.g. NDVI). We analyzed the correlation between species richness (from the Portuguese Atlas of Amphibians and Reptiles) and NDVI (from Landsat, MODIS, and Vegetation images). The species richness database contains more than 80000 records, collected from bibliographic sources (at 1 or 10 km of spatial resolution) and fieldwork sampling stations (recorded with GPS devices). Several study areas were chosen for Landsat images (three subsets), and all Portugal for MODIS and Vegetation images. The Landsat subareas had different climatic and habitat characteristics, located in the north, center and south of Portugal. Different species richness datasets were used depending on the image spatial resolution: data with metric resolution were used for Landsat, and with 1 km resolution, for MODIS and Vegetation images. The NDVI indexes and all the images were calculated/processed in an open source software (Quantum GIS). Several plug-ins were applied in order to automatize several procedures. We did not find any correlation between the species richness of amphibians and reptiles (not even after separating both groups by species of Atlantic and Mediterranean affinity) and the NDVI calculated with Landsat, MODIS and Vegetation images. Our results may fail to find a relationship because as the species richness is not correlated with only one variable (NDVI), and thus other environmental variables must be considered.

  3. Comparison of fruit and vegetable intakes during weight loss in males and females.

    PubMed

    Williams, R L; Wood, L G; Collins, C E; Callister, R

    2016-01-01

    Globally, fruit and vegetable intakes are well below recommendations despite ample evidence to link insufficient intake with increased risk of overweight and obesity. Intakes of fruits and vegetables in the general population differ between males and females, and although there is growing evidence of intakes in men and women during weight loss, evidence that directly compares intakes in men and women during weight loss is lacking. This study aimed to identify any differences between males and females in fruit and vegetable intakes and plasma carotenoid concentrations during weight loss, and determine whether there is a relationship between any changes in fruit and vegetable intakes and weight change in both males and females. Men and women (n=100; body mass index 25-40 kg/m(2)) aged 18-60 years were selected for the study. Dietary intake of fruits and vegetables was assessed using the Australian Eating Survey and fasting blood was collected to assess plasma carotenoids, which were determined by high-performance liquid chromatography. There was little change in fruit or vegetable intakes during weight loss, although men tended to increase fruit intakes. Changes in intakes were influenced by baseline intakes, with males and females with the highest intakes at baseline reducing intakes. Males had better correlations between fruit and vegetable intakes and plasma carotenoid concentrations than females, and fruit and vegetable intakes during weight loss appear to predict weight loss for males but not females. Fruit and vegetable intake during weight loss does not appear to differ largely between males and females.

  4. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  5. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Above Ground Carbon Stock Estimates of Mangrove Forest Using Worldview-2 Imagery in Teluk Benoa, Bali

    NASA Astrophysics Data System (ADS)

    Candra, E. D.; Hartono; Wicaksono, P.

    2016-11-01

    Mangrove forests have a role as an absorbent and a carbon sink to a reduction CO2 in the atmosphere. Based on the previous studies found that mangrove forests have the ability to sequestering carbon through photosynthesis and carbon burial of sediment effectively. The value and distribution of carbon stock are important to understand through remote sensing technology. In this study, will estimate the carbon stock using WorldView-2 imagery with and without distinction mangrove species. Worldview-2 is a high resolution image with 2 meters spatial resolution and eight spectral bands. Worldview-2 potential to estimate carbon stock in detail. Vegetation indices such as DVI (Difference Vegetation Index), EVI (Enhanced Vegetation Index), and MRE-SR (Modified Red Edge-Simple Ratio) and field data were modeled to determine the best vegetation indices to estimate carbon stocks. Carbon stock estimated by allometric equation approach specific to each species of mangrove. Worldview-2 imagery to map mangrove species with an accuracy of 80.95%. Total carbon stock estimation results in the study area of 35.349,87 tons of dominant species Rhizophora apiculata, Rhizophora mucronata and Sonneratia alba.

  7. Remotely-sensed detection of effects of extreme droughts on gross primary production.

    PubMed

    Vicca, Sara; Balzarolo, Manuela; Filella, Iolanda; Granier, André; Herbst, Mathias; Knohl, Alexander; Longdoz, Bernard; Mund, Martina; Nagy, Zoltan; Pintér, Krisztina; Rambal, Serge; Verbesselt, Jan; Verger, Aleixandre; Zeileis, Achim; Zhang, Chao; Peñuelas, Josep

    2016-06-15

    Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.

  8. Estimation of Canopy Clumping Index From MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Wei, S.; Fang, H.

    2016-12-01

    The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.

  9. Co-evolution of Climate, Soil, and Vegetation and their interplay with Hydrological Partitioning at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, X.; Brooks, P. D.; Troch, P. A. A.; McIntosh, J. C.

    2014-12-01

    Landscape, climate, and vegetation interactions play a fundamental role in controlling the distribution of available water in hillslopes and catchments. In mid-latitudes, terrain aspect can regulate surface and subsurface hydrological processes, which not only affect the partitioning of energy and precipitation on short time scales, but also soil development, vegetation characteristics on long time scales. In Redondo Peak in northern New Mexico, a volcanic resurgent dome, first order streams drain different slopes around the mountain. In this setting, we study three adjacent first order catchments that share similar physical characteristics, but drain different aspects, allowing for an empirical study of how topographically controlled microclimate and soil influence the integrated hydrological and vegetation response. From 2008 to 2012, catchments were compared for the way they partition precipitation and how vegetation responds to variable water fluxes. Meteorological variables were monitored in 5 stations around Redondo Peak and surface runoff was monitored at the catchments' outlets. Hydrological partitioning at the catchment scale was estimated with the Horton Index, defined as the ratio between vaporization and wetting and it represents a measure of catchment-scale vegetation water use. Vegetation response was estimated using remotely sensed vegetation greenness (NDVI) derived from MODIS every 16 days with a spatial resolution of 250 m. Results show that the predominantly north facing catchment has the largest and least variable baseflow and discharge, consistent with greater mineral weathering fluxes and longer water transit times. In addition, vaporization, wetting and Horton Index, as well as NDVI, are smaller in the north facing catchment compared to the south east facing catchments. The predominant terrain aspect controls soil development, which affects the partitioning of precipitation and vegetation response at the catchment scale. These results also demonstrate how landscape evolution (e.g. depth of weathering profile) can affect various hydrologic processes, including streamflow response to precipitation and water residence time. In turn these processes are first-order controls on the sensitivity of the landscape to land use and climate change.

  10. Cotton NDVI response to applied N at different soil EC levels

    USDA-ARS?s Scientific Manuscript database

    Many fields in the southeastern Coastal Plain are highly variable in soil physical properties and are irregular in shape. These two conditions may make it difficult to determine the ‘best’ area in the field to place nitrogen (N) -rich strips for normalized difference vegetative index (NDVI) -based s...

  11. Metrics for determining hydrophytic vegetation in wetland delineation: a clarification on the prevalence index

    Treesearch

    Diane De Steven

    2015-01-01

    A recent publication and an article in Wetland Science & Practice (Lichvar and Gillrich 2014b, 2014a) discuss two metrics for determining if vegetation is hydrophytic for purposes of U.S. wetland delineations, the Prevalence Index (PI) and a proposed Hydrophytic Cover Index (HCI). Based on Wentworth et al. (1988), the PI is a weighted average of ordinal scores (1-5...

  12. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.

  13. NDVI (Normalized Difference Vegetation Index) signatures of transient ecohydrological systems: The case of post-mining landscapes

    NASA Astrophysics Data System (ADS)

    Brück, Yasemine; Schulte Overberg, Philipp; Pohle, Ina; Hinz, Christoph

    2017-04-01

    Assessing ecohydrological systems that undergo state transitions due to environmental change is becoming increasingly important. One system that can be used to study severe disturbances are post-mining landscapes as they usually are associated with complete removal of vegetation and afterwards subsequent ecosystem restoration or spontaneous rehabilitation in line with natural succession. Within this context it is of interest, whether and how (fast) the land cover in these areas returns to conditions comparable to those in the undisturbed surrounding or those prior mining. Many aspects of mine site rehabilitation depend on climatic, geomorphic and ecological settings, which determine at which rate vegetation may be re-established. In order to identify general patterns of vegetation establishment, we propose to use NDVI (Normalized Difference Vegetation Index) time series for mine affected land to estimate rate of recovery across climate regions and ecoregions. In this study we analysed the MODIS Terra Satellite 8 day-composite NDVI for areas influenced by surface mining in different climates from 2001 to 2015. The locations have been chosen based on their extent and the data availability of mining and rehabilitation activities. We selected coal extraction as a case study as strip mining generates well-defined chronosequences of disturbance. The selected mining areas are located in equatorial, arid, warm temperate or snow climates with different precipitation and temperature conditions according to the Köppen-Geiger classification. We analysed the NDVI time series regarding significant characteristics of the re-vegetation phase. We applied hierarchical cluster analysis to capture the spatial heterogeneity between different pixels (ca. 250 * 250 m2 each) in and around each open cast mine. We disentangled seasonality, trend and residual components in the NDVI time series by Seasonal and Trend decomposition using LOESS. As expected the time of the removal of vegetation can be clearly identified from the NDVI time series and provides the starting point of disturbance. The cluster analysis allowed us to distinguish between the non-mining land, the mine and the restored land of different ages. Based on these clusters, the time series decomposition revealed the dominance of the trend of increasing NDVI in areas undergoing the restoration process as well as the prevailing seasonality of the oldest restored sites. The determined phase of a dominant trend component, lasting until the NDVI is in the range of the surrounding landscape or the pre-mining conditions, is in the scale of a decade. The impacts of different hydroclimatic regimes and different rehabilitation strategies on long term NDVI development are currently being investigated. Furthermore, coherence analysis will be applied to quantify short term influences of hydrometeorological variables on vegetation development.

  14. Understanding the yield gap in wheat production

    USDA-ARS?s Scientific Manuscript database

    Remote sensing has been used to assess various components of agricultural systems for several decades. Utilization of different wavebands in various combinations to form vegetative indices have been used to estimate ground cover, biomass, leaf chlorophyll content, light interception, leaf area index...

  15. The spectral changes of deforestation in the Brazilian tropical savanna.

    PubMed

    Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R

    2015-01-01

    The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.

  16. Estimating soil organic and aboveground woody carbon stock in a protected dry Miombo ecosystem, Zimbabwe: Landsat 8 OLI data applications

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Muchena, Richard; Masocha, Mhosisi; Shoko, Cletah

    2018-06-01

    Accurate and reliable soil organic carbon stock estimation is critical in understanding forest role to regional carbon cycles. So far, the total carbon pool in dry Miombo ecosystems is often under-estimated. In that regard this study sought to model the relationship between the aboveground woody carbon pool and the soil carbon pool, using both ground-based and remote sensing methods. To achieve this objective, the Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI) computed from the newly launched Landsat 8 OLI satellite data were used. Correlation and regression analysis were used to relate Soil Organic Carbon (S.O.C), aboveground woody carbon and remotely sensed vegetation indices. Results showed a soil organic carbon in the upper soil layer (0-15 cm) was positively correlated with aboveground woody carbon and this relationship was significant (r = 0.678; P < 0.05) aboveground carbon. However, there were no significant correlations (r = -0.11, P > 0.05) between SOC in the deeper soil layer (15-30 cm) and aboveground woody carbon. These findings imply that (relationship between aboveground woody carbon and S.O.C) aboveground woody carbon stocks can be used as a proxy to estimate S.O.C in the top soil layer (0-15 cm) in dry Miombo ecosystems. Overall, these findings underscore the potential and significance of remote sensing data in understanding savanna ecosystems contribution to the global carbon cycle.

  17. HOW STRONG IS THE RELATIONSHIP BETWEEN RAINFALL VARIABILITY AND CAATINGA PRODUCTIVITY? A CASE STUDY UNDER A CHANGING CLIMATE.

    PubMed

    Salimon, Cleber; Anderson, Liana

    2017-05-22

    Despite the knowledge of the influence of rainfall on vegetation dynamics in semiarid tropical Brazil, few studies address and explore quantitatively the various aspects of this relationship. Moreover, Northeast Brazil is expected to have its rainfall reduced by as much as 60% until the end of the 21st Century, under scenario AII of the IPCC Report 2010. We sampled and analyzed satellite-derived monthly rainfall and a vegetation index data for 40 sites with natural vegetation cover in Paraíba State, Brazil from 2001 to 2012. In addition, the anomalies for both variables were calculated. Rainfall variation explained as much as 50% of plant productivity, using the vegetation index as a proxy, and rainfall anomaly explained 80% of the vegetation productivity anomaly. In an extreme dry year (2012), with 65% less rainfall than average for the period 2001-2012, the vegetation index decreased by 25%. If such decrease persists in a long term trend in rainfall reduction, this could lead to a disruption in this ecosystem functioning and the dominant vegetation could become even more xeric or desert-like, bringing serious environmental, social and economical impacts.

  18. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.

    PubMed

    Eliku, Temesgen; Leta, Seyoum

    2017-04-01

    Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg -1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg -1 ), Pb (0.54 ± 0.11 mg kg -1 ), Zn (14.4 ± 0.72 mg kg -1 ), Cu (2.84 ± 0.27 mg kg -1 ), and Ni (1.09 ± 0.11 mg kg -1 ) in Cabbage and for Cr (2.63 ± 0.11 mg kg -1 ) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.

  19. Forested floristic quality index: An assessment tool for forested wetland habitats using the quality and quantity of woody vegetation at Coastwide Reference Monitoring System (CRMS) vegetation monitoring stations

    USGS Publications Warehouse

    Wood, William B.; Shaffer, Gary P.; Visser, Jenneke M.; Krauss, Ken W.; Piazza, Sarai C.; Sharp, Leigh Anne; Cretini, Kari F.

    2017-02-08

    The U.S. Geological Survey, in cooperation with the Coastal Protection and Restoration Authority of Louisiana and the Coastal Wetlands Planning, Protection and Restoration Act, developed the Forested Floristic Quality Index (FFQI) for the Coastwide Reference Monitoring System (CRMS). The FFQI will help evaluate forested wetland sites on a continuum from severely degraded to healthy and will assist in defining areas where forested wetland restoration can be successful by projecting the trajectories of change. At each CRMS forested wetland site there are stations for quantifying the overstory, understory, and herbaceous vegetation layers. Rapidly responding overstory canopy cover and herbaceous layer composition are measured annually, while gradually changing overstory basal area and species composition are collected on a 3-year cycle.A CRMS analytical team has tailored these data into an index much like the Floristic Quality Index (FQI) currently used for herbaceous marsh and for the herbaceous layer of the swamp vegetation. The core of the FFQI uses basal area by species to assess the quality and quantity of the overstory at each of three stations within each CRMS forested wetland site. Trees that are considered by experts to be higher quality swamp species like Taxodium distichum (bald cypress) and Nyssa aquatica (water tupelo) are scored higher than tree species like Triadica sebifera (Chinese tallow) and Salix nigra (black willow) that are indicators of recent disturbance. This base FFQI is further enhanced by the percent canopy cover in the overstory and the presence of indicator species at the forest floor. This systemic approach attempts to differentiate between locations with similar basal areas that are on different ecosystem trajectories. Because of these varying states of habitat degradation, paired use of the FQI and the FFQI is useful to interpret the vegetative data in transitional locations. There is often an inverse relation between the health of the overstory and health of the herbaceous community beneath it because of resource competition (for example, light) and differing environmental preferences between the two communities. The herbaceous layer vegetation responds rapidly to basic environmental factors such as flooding, salinity, and nutrients and can offer insight into the sustainability of swamps on a temporal scale shorter than tha of the slowly growing woody vegetation.The FFQI will be available via the CRMS spatial viewer (http://lacoast.gov/crms2/home.aspx), and a new score will be calculated annually for each CRMS forested wetland site as data are collected to establish trends, to compare among sites, and to evaluate specific restoration projects when applicable. The FFQI will identify forested wetland areas in need of restoration and conservation and will help define targets and trajectories for restoration planning.

  20. Spatiotemporal variability and assessment of drought in the Wei River basin of China

    NASA Astrophysics Data System (ADS)

    Cai, Siyang; Zuo, Depeng; Xu, Zongxue; Han, Xianming; Gao, Xiaoxi

    2018-06-01

    The temporal and spatial variations of drought in the Wei River basin (WRB) were investigated by calculating the meteorological drought Index (Standardized Precipitation Index, SPI) and the agricultural drought index (Vegetation Health Index, VHI). Monthly precipitation and air temperature were from 22 meteorological stations over the region from 1960 to 2015. Monthly Normalized Difference Vegetation Index (NDVI) and 8-days Land Surface Temperature (LST) were provided from the National Aeronautics and Space Administration (NASA) for the period 2000-2015 were also adopted. The results showed that the drought initially increased and then decreased, reaching at the maximum value in 1990s. The spatial pattern of meteorological drought showed that the drought in northern WRB was heavier than that in southern WRB before 1990s, after that, the situation had the opposite. By comparing the agricultural drought index (VHI) with crop yield, it was proved that VHI was applicable in the WRB and could well reflect the fluctuation of agricultural drought. The WRB suffered from serious agricultural drought in 2000, 2001, 2007 and 2008. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature in the Wei River basin.

  1. [Correlationships between the coverage of vegetation and the quality of groundwater in the lower reaches of the Tarim River].

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen

    2010-03-01

    The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.

  2. Post-Katrina Land-Cover, Elevation, and Volume Change Assessment along the South Shore of Lake Pontchartrain, Louisiana, U.S.A.

    DTIC Science & Technology

    2011-01-01

    was greater than 1 or less than 0. The second was a Normalized Difference Vegetation Index ( NDVI ) band ratio between a near-infrared band (738 nm) and...separation methods worked well, neither produced perfect results. Ultimately, the NDVI method was chosen because it could also be used to further...In addition, it is a broadly tested method often used to identify and measure vegetation (Tucker, 1979). The NDVI result was also used to separate

  3. USACE National Coastal Mapping Program and the Next Generation of Data Products

    DTIC Science & Technology

    2010-06-01

    Difference Vegetation Index ( NDVI ) equation. This equation uses a near infrared band (NIR) at 738 nm and a red band (RED) at 624 nm [6]. This equation is...shown in (1), NIR - RED / NIR + RED = NDVI value. (1) The pixels that have a NDVI value less than -0.05 are then classified into the...classify these pixels as the “No Lidar” class. Step 5 utilizes the NDVI equation, (1), to separate out the vegetation pixels from the non

  4. Concepts for Sensor Data Fusion to Detect Vegetation Stress and Implications on Ecosystem Health Following Hurricane Katrina

    DTIC Science & Technology

    2008-09-01

    Description NDVI Narrow-band Normalized Difference Vegetation Index (can check all possible two-band combinations, and determine best band combinations...were calculated for each site. The band indices were: • NDVI (Hyperion bands 45 & 33) (Figure 2) • NDWI (Hyperion bands 51 & 109) • PRI (Hyperion...between categories for these groups. NDVI and NDWI were very close to achiev- ing a significant result, and were still particularly good at separating two

  5. Computer program documentation for the pasture/range condition assessment processor

    NASA Technical Reports Server (NTRS)

    Mcintyre, K. S.; Miller, T. G. (Principal Investigator)

    1982-01-01

    The processor which drives for the RANGE software allows the user to analyze LANDSAT data containing pasture and rangeland. Analysis includes mapping, generating statistics, calculating vegetative indexes, and plotting vegetative indexes. Routines for using the processor are given. A flow diagram is included.

  6. Atmospheric optical depth effects on angular anisotropy of plant canopy reflectance

    NASA Technical Reports Server (NTRS)

    Deering, Donald W.; Eck, Thomas F.

    1987-01-01

    The effects of varying atmospheric aerosol optical depth on the bidirectional reflectance distribution of vegetation canopies is investigated. The reflectance distributions of two pasture grass canopies and one soya bean canopy under different sky irradiance distributions were measured, and the data were analyzed in the visible and IR spectral bands. It is observed that, for the pasture grass canopies, the change in reflectance is due to the percentage of shadowed area viewed by the sensor, and for the soya bean, the specular reflection effect and increased diffuse irradiance penetration into the canopy cause reflectance changes. It is detected that the reflectivity for the soya bean canopy on a hazy day is lower than on a clear day; however, the opposite change is observed for the pasture grass. It is also detected that the normalized difference vegetation index values differ under clear and hazy conditions for the same vegetation canopy conditions.

  7. Relationship of multispectral satellite data to land surface evaporation from the Australian continent

    NASA Technical Reports Server (NTRS)

    Smith, R. C. G.; Choudhury, B. J.

    1990-01-01

    Based on NOAA-9 AVHRR and Nimbus-7 SMMR satellite data, satellite indices of vegetation from the Australian continent are calculated for the period of May 1986 to April 1987. Visible (VIS) and near infrared (NIR) reflectances and the normalized difference (ND) vegetation index are calculated from the AVHRR sensor. The microwave polarization difference (PD) is also calculated as the difference between the vertically and horizontally polarized brightness temperatures at 37 GHz. ND, PD, VIS, and NIR indices were plotted against rainfall and water balance estimates of evaporation. It is concluded that direct satellite monitoring of annual evaporation across the Australian continent using PD or VIS satellite indices of vegetation biomass appears possible for areas with evaporation less than 600 mm/y and that use of the ND relationship at continental scale may underpredict monthly evaporation of forests relative to agriculture.

  8. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  9. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiya; Li, Peijun

    2018-01-01

    Accurate and timely information regarding the extent and spatial distribution of urban areas on regional and global scales is crucially important for both scientific and policy-making communities. Stable nighttime light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provides a unique proxy of human settlement and activity, which has been used in the mapping and analysis of urban areas and urbanization dynamics. However, blooming and saturation effects of DMSP/OLS NTL data are two unresolved problems in regional urban area mapping and analysis. This study proposed a new urban index termed the Temperature and Vegetation Adjusted NTL Urban Index (TVANUI). It is intended to reduce blooming and saturation effects and to enhance urban features by combining DMSP/OLS NTL data with Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer onboard the Terra satellite. The proposed index was evaluated in two study areas by comparison with established urban indices. The results demonstrated the proposed TVANUI was effective in enhancing the variation of DMSP/OLS light in urban areas and in reducing blooming and saturation effects, showing better performance than three established urban indices. The TVANUI also significantly outperformed the established urban indices in urban area mapping using both the global-fixed threshold and the local-optimal threshold methods. Thus, the proposed TVANUI provides a useful variable for urban area mapping and analysis on regional scale, as well as for urbanization dynamics using time-series DMSP/OLS and related satellite data.

  10. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  11. Phenopix: a R package to process digital images of a vegetation cover

    NASA Astrophysics Data System (ADS)

    Filippa, Gianluca; Cremonese, Edoardo; Migliavacca, Mirco; Galvagno, Marta; Morra di Cella, Umberto; Richardson, Andrew

    2015-04-01

    Plant phenology is a globally recognized indicator of the effects of climate change on the terrestrial biosphere. Accordingly, new tools to automatically track the seasonal development of a vegetation cover are becoming available and more and more deployed. Among them, near-continuous digital images are being collected in several networks in the US, Europe, Asia and Australia in a range of different ecosystems, including agricultural lands, deciduous and evergreen forests, and grasslands. The growing scientific interest in vegetation image analysis highlights the need of easy to use, flexible and standardized processing techniques. In this contribution we illustrate a new open source package called "phenopix" written in R language that allows to process images of a vegetation cover. The main features include: (i) define of one or more areas of interest on an image and process pixel information within them, (ii) compute vegetation indexes based on red green and blue channels, (iii) fit a curve to the seasonal trajectory of vegetation indexes and extract relevant dates (aka thresholds) on the seasonal trajectory; (iv) analyze image pixels separately to extract spatially explicit phenological information. The utilities of the package will be illustrated in detail for two subalpine sites, a grassland and a larch stand at about 2000 m in the Italian Western Alps. The phenopix package is a cost free and easy-to-use tool that allows to process digital images of a vegetation cover in a standardized, flexible and reproducible way. The software is available for download at the R forge web site (r-forge.r-project.org/projects/phenopix/).

  12. House dust as possible route of environmental exposure to cadmium and lead in the adult general population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogervorst, Janneke; Plusquin, Michelle; Vangronsveld, Jaco

    2007-01-15

    Contaminated soil particles and food are established routes of exposure. We investigated the relations between biomarkers of exposure to cadmium and lead, and the metal loading rates in house dust in the adult residents of an area with a soil cadmium concentration of >=3mg/kg (n=268) and a reference area (n=205). We determined the metal concentrations in house dust allowed to settle for 3 months in Petri dishes placed in the participants' bedrooms. The continuously distributed vegetable index was the first principal component derived from the metal concentrations in six different vegetables. The biomarkers of exposure (blood cadmium 9.2 vs. 6.2nmol/L;more » 24-h urinary cadmium 10.5 vs. 7.0nmol; blood lead 0.31 vs. 0.24{mu}mol/L), the loading rates of cadmium and lead in house dust (0.29 vs. 0.12 and 7.52 vs. 3.62ng/cm{sup 2}/92 days), and the vegetable indexes (0.31 vs. -0.44 and 0.13 vs. -0.29 standardized units) were significantly higher in the contaminated area. A two-fold increase in the metal loading rate in house dust was associated with increases (P<0.001) in blood cadmium (+2.3%), 24-h urinary cadmium (+3.0%), and blood lead (+2.0%), independent of the vegetable index and other covariates. The estimated effect sizes on the biomarkers of internal exposure were three times greater for house dust than vegetables. In conclusion, in the adult population, house dust is potentially an important route of exposure to heavy metals in areas with contaminated soils, and should be incorporated in the assessment of health risks.« less

  13. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  14. Determining Relative Contributions of Vegetation and Topography to Burn Severity from LANDSAT Imagery

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  15. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object-oriented segmentation data, and finally get the rice extent map. At last, by using the time series analysis, the peak count was obtained for each rice area to ensure the crop intensity. In this work, the rice ground point from a GVG crowdsourcing smartphone and rice area statistical results from National Bureau of Statistics were used to validate and evaluate our result.

  16. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts

    PubMed Central

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0–4, 0–9 and 0–6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010, respectively. Overall, vegetation greenness declines during the 2005 and 2010 extreme droughts were adversely influenced by precipitation, radiation and temperature; this study provides evidence of the influence of multiple climatic factors on vegetation during the 2005 and 2010 Amazon droughts. PMID:28426691

  17. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts.

    PubMed

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0-4, 0-9 and 0-6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010, respectively. Overall, vegetation greenness declines during the 2005 and 2010 extreme droughts were adversely influenced by precipitation, radiation and temperature; this study provides evidence of the influence of multiple climatic factors on vegetation during the 2005 and 2010 Amazon droughts.

  18. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).

  19. Comparison Between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel - 1 Images

    NASA Astrophysics Data System (ADS)

    Roychowdhury, K.

    2016-06-01

    Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  20. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    PubMed

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P < 0.01). Soil quality, salt vegetation and soil fungi were influenced by each other.

  1. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) data vegetative index calculation processor user's manual

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.

  2. [Monitoring temporal dynamics in leaf area index of the temperate broadleaved deciduous forest in Maoershan region, Northeast China with tower-based radiation measurements.

    PubMed

    Liu, Fan; Wang, Chuan Kuan; Wang, Xing Chang

    2016-08-01

    Broadband vegetation indices (BVIs) derived from routine radiation measurements on eddy flux towers have the advantage of high temporal resolutions, and thus have the potential to obtain detailed information of dynamics in canopy leaf area index (LAI). Taking the temperate broadleaved deciduous forest around the Maoershan flux tower in Northeast China as a case, we investigated the controlling factors and smoothing method of four BVI time-series, i.e., broadband norma-lized difference vegetation index (NDVI B ), broadband enhanced vegetation index (EVI B ), the ratio of the near-infrared radiation reflectance to photosynthetically active radiation reflectance (SR NP ), and the ratio of the shortwave radiation reflectance to photosynthetically active radiation reflectance (SR SP ). We compared the seasonal courses of the BVIs with the LAI based on litterfall collection method. The values for each BVI were slightly different among the three calculation methods by Huemmrich, Wilson, and Jenkins, but showed similar seasonal patterns. The diurnal variations in BVIs were mainly influenced by the solar elevation and the angle between the solar elevation and slope, but the BVIs were relatively stable around 12:30. The noise of daily BVI time-series could be effectively smoothed by a threshold of clearness index (K). The seasonal courses of BVIs for each time of day around the noon had similar patterns, but their thresholds of K and the percen-tages of remaining data were different. Therefore, the daily values of BVIs might be optimized based on the smoothing and the proportion of remaining data. The NDVI B was closely correlated linearly with the LAI derived from the litterfall collection method, while the EVI B , SR NP , and SR SP had a logarithmic relationship with the LAI. The NDVI B had the advantage in tracking the seasonal dyna-mics in LAI and extrapolating LAI to a broader scale. Given that most eddy flux towers had equipped with energy balance measurements, a network of monitoring canopy LAI could be readily achieved if the reflectance of photosynthetically active radiation was measured synchronously.

  3. Weight loss effects from vegetable intake: a 12-month randomised controlled trial.

    PubMed

    Tapsell, L C; Batterham, M J; Thorne, R L; O'Shea, J E; Grafenauer, S J; Probst, Y C

    2014-07-01

    Direct evidence for the effects of vegetable intake on weight loss is qualified. The study aimed to assess the effect of higher vegetable consumption on weight loss. A single blind parallel controlled trial was conducted with 120 overweight adults (mean body mass index=29.98 kg/m(2)) randomised to two energy deficit healthy diet advice groups differing only by doubling the serving (portion) sizes of vegetables in the comparator group. Data were analysed as intention-to-treat using a linear mixed model. Spearmans rho bivariate was used to explore relationships between percentage energy from vegetables and weight loss. After 12 months, the study sample lost 6.5±5.2 kg (P<0.001 time) with no difference between groups (P>0.05 interaction). Both groups increased vegetable intake and lost weight in the first 3 months, and the change in weight was significantly correlated with higher proportions of energy consumed as vegetables (rho=-0.217, P=0.024). Fasting glucose, insulin and triglyceride levels decreased (P<0.001 time) and high-density lipoprotein cholesterol levels increased (P<0.001 time), with no difference between groups. Weight loss was sustained for 12 months by both groups, but the comparator group reported greater hunger satisfaction (P=0.005). Advice to consume a healthy low-energy diet leads to sustained weight loss, with reductions in cardiovascular disease risk factors regardless of an emphasis on more vegetables. In the short term, consuming a higher proportion of the dietary energy as vegetables may support a greater weight loss and the dietary pattern appears sustainable.

  4. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  5. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  6. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  7. Retrofitted green roofs and walls and improvements in thermal comfort

    NASA Astrophysics Data System (ADS)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  8. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  9. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  10. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  11. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    NASA Astrophysics Data System (ADS)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined near real-time, as MODIS NDVI, 8-day composite data become available, affording an effective forecasting and hindcasting tool.

  12. Green neighborhoods, food retail and childhood overweight: differences by population density.

    PubMed

    Liu, Gilbert C; Wilson, Jeffrey S; Qi, Rong; Ying, Jun

    2007-01-01

    This study examines relationships between overweight in children and two environmentalfactors--amount of vegetation surrounding a child's place of residence and proximity of the child's residence to various types of food retail locations. We hypothesize that living in greener neighborhoods, farther from fast food restaurants, and closer to supermarkets would be associated with lower risk of overweight. Cross-sectional study. Network of primary care pediatric clinics in Marion County, Indiana. We acquired data for 7334 subjects, ages 3 to 18 years, presenting for routine well-child care. Neighborhood vegetation and proximity to food retail were calculated using geographic information systems for each subject using circular and network buffers. Child weight status was defined using body mass index percentiles. Analysis. We used cumulative logit models to examine associations between an index of overweight, neighborhood vegetation, and food retail environment. After controlling for individual socio-demographics and neighborhood socioeconomic status, measures of vegetation and food retail significantly predicted overweight in children. Increased neighborhood vegetation was associated with decreased risk for overweight, but only for subjects residing in higher population density regions. Increased distance between a subject's residence and the nearest large brand name supermarkets was associated with increased risk of overweight, but only for subjects residing in lower population density regions. This research suggests that aspects of the built environment are determinants of child weight status, ostensibly by influencing physical activity and dietary behaviors.

  13. Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study.

    PubMed

    Chan, Q; Stamler, J; Brown, I J; Daviglus, M L; Van Horn, L; Dyer, A R; Oude Griep, L M; Miura, K; Ueshima, H; Zhao, L; Nicholson, J K; Holmes, E; Elliott, P

    2014-06-01

    Inverse associations have been reported of overall vegetable intake to blood pressure (BP); whether such relations prevail for both raw and cooked vegetables has not been examined. Here we report cross-sectional associations of vegetable intakes with BP for 2195 Americans ages 40-59 in the International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) using four standardized multi-pass 24-h dietary recalls and eight BP measurements. Relations to BP of raw and cooked vegetables consumption, and main individual constituents were assessed by multiple linear regression. Intakes of both total raw and total cooked vegetables considered separately were inversely related to BP in multivariate-adjusted models. Estimated average systolic BP differences associated with two s.d. differences in raw vegetable intake (68 g per 1000 kcal) and cooked vegetable intake (92 g per 1000 kcal) were -1.9 mm Hg (95% confidence interval (CI): -3.1, -0.8; P=0.001) and -1.3 mm Hg (95% CI: -2.5, -0.2; P=0.03) without body mass index (BMI) in the full model; -1.3 mm Hg (95% CI: -2.4, -0.2; P=0.02) and -0.9 mm Hg (95% CI: -2.0, 0.2; P=0.1) with additional adjustment for BMI. Among commonly consumed individual raw vegetables, tomatoes, carrots, and scallions related significantly inversely to BP. Among commonly eaten cooked vegetables, tomatoes, peas, celery, and scallions related significantly inversely to BP.

  14. Non-Lambertian effects on remote sensing of surface reflectance and vegetation index

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kaufman, Y. J.

    1986-01-01

    This paper discusses the effects of non-Lambertian reflection from a homogeneous surface on remote sensing of the surface reflectance and vegetation index from a satellite. Remote measurement of the surface characteristics is perturbed by atmospheric scattering of sun light. This scattering tends to smooth the angular dependence of non-Lambertian surface reflectances, an effect that is not present in the case of Lambertian surfaces. This effect is calculated to test the validity of a Lambertian assumption used in remote sensing. For the three types of vegetations considered in this study, the assumption of Lambertian surface can be used satisfactorily in the derivation of surface reflectance from remotely measured radiance for a view angle outside the backscattering region. Within the backscattering region, however, the use of the assumption can result in a considerable error in the derived surface reflectance. Accuracy also deteriorates with increasing solar zenith angle. The angular distribution of the surface reflectance derived from remote measurements is smoother than that at the surface. The effect of surface non-Lambertianity on remote sensing of vegetation index is very weak. Since the effect is similiar in the visible and near infrared part of the solar spectrum for the vegetations treated in this study, it is canceled in deriving the vegetation index. The effect of the diffuse skylight on surface reflectance measurements at ground level is also discussed.

  15. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st decade of January, by averaging over all years in the record. We analyzed both: 1) Time variation of NDVI from 1998 to 2005 of pixels for the fire affected and fire unaffected areas. 2) Post-fire NDVI spatial patterns on each image date were compared to the pre-fire pattern to determine the extent to which the pre-fire pattern was re-established, and the rate of this recovery. Results show the ability of vegetation to recovery after a single fire. Nevertheless, such ability can be strongly reduced by successive fires. The recursive fire occurrence can significantly diminish the green biomass especially when disturbances occur at short intervals of time.

  16. Detection of Powdery Mildew in Two Winter Wheat Plant Densities and Prediction of Grain Yield Using Canopy Hyperspectral Reflectance

    PubMed Central

    Cao, Xueren; Luo, Yong; Zhou, Yilin; Fan, Jieru; Xu, Xiangming; West, Jonathan S.; Duan, Xiayu; Cheng, Dengfa

    2015-01-01

    To determine the influence of plant density and powdery mildew infection of winter wheat and to predict grain yield, hyperspectral canopy reflectance of winter wheat was measured for two plant densities at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 in the 2009–2010 and 2010–2011 seasons. Reflectance in near infrared (NIR) regions was significantly correlated with disease index at GS 10.5.3, 10.5.4, and 11.1 at two plant densities in both seasons. For the two plant densities, the area of the red edge peak (Σdr 680–760 nm), difference vegetation index (DVI), and triangular vegetation index (TVI) were significantly correlated negatively with disease index at three GSs in two seasons. Compared with other parameters Σdr 680–760 nm was the most sensitive parameter for detecting powdery mildew. Linear regression models relating mildew severity to Σdr 680–760 nm were constructed at three GSs in two seasons for the two plant densities, demonstrating no significant difference in the slope estimates between the two plant densities at three GSs. Σdr 680–760 nm was correlated with grain yield at three GSs in two seasons. The accuracies of partial least square regression (PLSR) models were consistently higher than those of models based on Σdr 680760 nm for disease index and grain yield. PLSR can, therefore, provide more accurate estimation of disease index of wheat powdery mildew and grain yield using canopy reflectance. PMID:25815468

  17. The use of LANDSAT digital data to detect and monitor vegetation water deficiencies. [South Dakota

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1977-01-01

    A technique devised using a vector transformation of LANDSAT digital data to indicate when vegetation is undergoing moisture stress is described. A relation established between the remote sensing-based criterion (the Green Index Number) and a ground-based criterion (Crop Moisture Index) is discussed.

  18. How does spatial and temporal resolution of vegetation index impact crop yield estimation?

    USDA-ARS?s Scientific Manuscript database

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...

  19. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  20. A new tower-based hyperspectral system for the estimation of CO2 fluxes and biophysical parameters in a subalpine grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Vescovo, L.; Gianelle, D.; Marcolla, B.; Zaldei, A.; Sakowska, K.

    2013-12-01

    Linking optical remote sensing with carbon fluxes and biophysical parameters is critical to exploit spatial and temporal extensive information useful for validating model simulations at different scales. Proximal sensing is fundamental to quantify and understand the seasonal dynamics of ecosystems and to upscale the observations carried out at the ground level. In this study, we present the results from an ongoing research project at the FLUXNET eddy covariance site of Monte Bondone (Italy). The site is located at 1550 m a.s.l. on a mountain plateau in the Italian Alps (Viote del Monte Bondone). The area is managed as an extensively-managed meadow, cut once a year, and dominated by Nardus stricta and Festuca nigrescens. The climate of this area is sub-continental (warm and wet summer), with precipitation peaks in spring and autumn. A new hyperspectral system (WhiteRef Box, developed by Fondazione Edmund Mach in collaboration with the Institute of Biometeorology, CNR, Italy) based on the ASD FieldSpec spectrometer (spectral range 350-2500 nm, resolution ~3 nm at 700 nm) was designed to acquire continuous radiometric measurements. The system was installed on the eddy covariance tower at a height of 6 m, with a field of view of 25°. To obtain reflectance values, white panel radiance spectra and canopy radiance spectra were collected every 5 minutes between 10:00 a.m. and 1:00 p.m. (solar time) during the growing season of 2013. In addition, measurements of biophysical parameters such as above-ground biomass, fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Plant Area Index, Canopy Chlorophyll Content, Canopy Water Content and Green Herbage Ratio were performed at weekly intervals within the spectrometer footprint (~5 m2). In this work, we present some preliminary results regarding the potential of spectral vegetation indices - based on VNIR and SWIR spectral bands- for capturing seasonal trends of CO2 fluxes as well as vegetation biophysical parameters dynamics. Spectral vegetation indices sensitive to chlorophyll content (such as Meris Terrestrial ChIorophyll Index, Vogelmann Indices) showed a good linear correlation with fAPAR, daily Gross Primary Production and chlorophyll content (R2> 0.8 for all the three variables). The SWIR-based Vegetation Indices (e.g. Normalised Difference Infrared Index, Moisture Stress Index) confirmed their ability to estimate Canopy Water Content. Most of the analyzed indices showed to be linearly related with Green Herbage Ratio (explaining more than 80% of variance). The Near Infrared Difference Index (Vescovo et al., 2012) confirmed his potential in predicting canopy structural parameters such as Plant Area Index and biomass (R2> 0.90).

Top