Influences of misfit strains on liquid phase heteroepitaxial growth
NASA Astrophysics Data System (ADS)
Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng
2017-10-01
Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin
2018-02-01
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
Vestibular and Visual Contribution to Fish Behavior Under Microgravity
NASA Astrophysics Data System (ADS)
Ijiri, K.
Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions
The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.
Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A
2017-02-01
Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine
2014-01-01
Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation. PMID:24334661
Xu, Kui; Juneau, Philippe
2016-01-01
Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate-suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (ФM) and operational (Ф'M) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299>CPCC632>FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios decreased with high zinc concentrations under HL only in CPCC299, but not under low light (LL) conditions for all the studied strains, suggesting that the three strains have different response mechanisms to high zinc stress when grown under different light regimes. We demonstrated that interactions between light intensity and zinc need to be considered when studying the bloom dynamics of cyanobacteria in freshwater ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Strain and ferroelectric soft-mode induced superconductivity in strontium titanate
NASA Astrophysics Data System (ADS)
Dunnett, K.; Narayan, Awadhesh; Spaldin, N. A.; Balatsky, A. V.
2018-04-01
We investigate the effects of strain on superconductivity with particular reference to SrTiO3. Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the couplings between the order parameter and strains in different directions differ while their sum is fixed, different behaviors under uniaxial and biaxial strain can be understood.
Vibration responses of h-BN sheet to charge doping and external strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei; Yang, Yu; Zheng, Fawei
2013-12-07
Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less
NASA Astrophysics Data System (ADS)
Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.
The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua
2018-06-01
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.
Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C. Y.; Yan, Jinghua; Zhao, Yanlin; Gao, George F.; Liu, Cui Hua; Liu, Changting
2014-01-01
The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721
Swimming behavior of larval Medaka fish under microgravity
NASA Astrophysics Data System (ADS)
Furukawa, R.; Ijiri, K.
Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.
NASA Astrophysics Data System (ADS)
Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang
2009-08-01
Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.
Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang
2014-01-01
The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gomes, Carolina N; Passaglia, Jaqueline; Vilela, Felipe P; Pereira da Silva, Fátima M H S; Duque, Sheila S; Falcão, Juliana P
2018-08-01
Campylobacter spp. have been the most commonly reported gastrointestinal bacterial pathogen in many countries. Consumption of improperly prepared poultry meat has been the main transmission route of Campylobacter spp. Although Brazil is the largest exporter of poultry meat in the world, campylobacteriosis has been a neglected disease in the country. The aim of this study was to characterize 50 Campylobacter coli strains isolated from different sources in Brazil regarding the frequency of 16 virulence genes and their survival capability under five different stress conditions. All strains studied presented the cadF, flaA, and sodB genes that are considered essential for colonization. All strains grew at 4 °C and 37 °C after 24 h. High survival rates were observed when the strains were incubated in BHI with 7.5% NaCl and exposed to acid and oxidative stress. In conclusion, the pathogenic potential of the strains studied was reinforced by the presence of several important virulence genes and by the high growth and survival rates of the majority of those strains under different stress conditions. The results enabled a better understanding of strains circulating in Brazil and suggest that more rigorous control measures may be needed, given the importance of contaminated food as vehicles for Campylobacter coli. Copyright © 2018 Elsevier Ltd. All rights reserved.
Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet
NASA Astrophysics Data System (ADS)
Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.
2013-01-01
Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.
Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range
NASA Astrophysics Data System (ADS)
Boudjema, F.; Khelidj, B.; Lounis, M.
2017-01-01
In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.
Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.
Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E
2017-01-01
The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine metabolite named brevianamide X.
Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui
2011-02-08
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.
2018-05-01
In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.
Phenotypic Signatures Arising from Unbalanced Bacterial Growth
Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong
2014-01-01
Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949
Phenotypic signatures arising from unbalanced bacterial growth.
Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong
2014-08-01
Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.
Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai
2016-02-01
It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Whole Genome Analysis of a Wine Yeast Strain
Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.
2001-01-01
Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902
Ngom, Baba; Liang, Yili; Liu, Xueduan
2014-01-01
A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575
NASA Astrophysics Data System (ADS)
Lee, Kok-Keong; Lim, Phaik-Eem; Poong, Sze-Wan; Wong, Chiew-Yen; Phang, Siew-Moi; Beardall, John
2017-09-01
Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v/F m) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their "eurythermal adaptivity". Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated.
Nitzschke, Annika
2018-01-01
The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, R.; Qin, L.; Brown, S. T.
2012-01-27
We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).
Castillo, T; López, I; Flores, C; Segura, D; García, A; Galindo, E; Peña, C
2018-07-01
The sigma E (AlgU) in Azotobacter vinelandii has been shown to control the expression of cydR gene, a repressor of genes of the alternative respiratory chain, and alginate has been considered a barrier for oxygen diffusion. Therefore, the aim of the present study was to compare the respiratory activity of an alginate nonproducing strain, lacking the sigma factor E (algU-), and polymer-producing strains (algU+) of A. vinelandii under diazotrophic conditions at different aeration conditions. Our results reveal that under diazotrophic and high aeration conditions, A. vinelandii strain OP (algU-) had a specific oxygen consumption rate higher (30 and 54%) than those observed in the OP algU+-complemented strain, named OPAlgU+, and the ATCC 9046 respectively. However, the specific growth rate and biomass yields (based on oxygen and sucrose) were lower for OP cultivations as compared to the algU+ strains. These differences were partially explained by an increase in 1·5-fold of cydA relative expression in the OP strain, as compared to that obtained in the isogenic OPAlgU+ strain. Overall, our results confirm the important role of algU gene on the regulation of respiratory metabolism under diazotrophic growth when A. vinelandii is exposed to high aeration. This study highlights the role of AlgU to control respiration of A. vinelandii when exposed to diazotrophy. © 2018 The Society for Applied Microbiology.
Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy
NASA Astrophysics Data System (ADS)
Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang
2016-07-01
The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.
Strain and electric-field tunable valley states in 2D van der Waals MoTe2/WTe2 heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Zhida; Wang, Xiaocha; Mi, Wenbo
2016-12-01
The strain and electric-field effects on the electronic structure of MoTe2/WTe2 van der Waals heterostructures are investigated by first-principles calculations. The MoTe2/WTe2 heterostructures are indirect band gap semiconductors under different strains except for 2%. At a strain from -6% to 6% under a zero electric field, the band gap is 0.56, 0.62, 0.69, 0.62, 0.46, 0.37 and 0.29 eV, respectively. Meanwhile, spin splitting at the conduction band minimum (CBM) decreases monotonically from 76-1 meV, and that at the valance band maximum (VBM) is 232, 266, 292, 307, 319, 302 and 283 meV. At an electric field from -0.3 to 0.3 V Å-1 under a 2% strain, VBM splitting decreases from 499-77 meV, but CBM splitting almost remains at 33 meV. A semiconductor-metal transition appears at an electric field of -0.3 V Å-1. At different electric fields under a -4% strain, CBM splitting monotonically increases from 37-154 meV, but VBM splitting is 437, 438, 378, 273, 150, 78 and 134 meV, respectively. Our results can provide a more significant basis for spintronic and valleytronic devices.
Hardy, L N; Knox, K W; Brown, R A; Wicken, A J; Fitzgerald, R J
1986-05-01
Extracellular proteins produced by the four human commensal species of mutans streptococci were analysed. The organisms used were Streptococcus mutans, serotypes c, e and f, Streptococcus cricetus, serotype a, Streptococcus rattus, serotype b, and Streptococcus sobrinus, serotypes d and g. They were grown in continuous culture at different generation times and pH values in media containing either glucose or fructose to determine the extent of variation in extracellular protein production that could occur for an individual strain. The results for different organisms grown under the same conditions were then compared. The total amount of protein of molecular mass greater than or equal to 60 kDa varied considerably with the growth conditions and with the strain. Generally more protein was present at a higher pH, conditions under which the organisms also form more lipoteichoic acid. With respect to individual protein components SDS-PAGE proved better than isoelectric focusing for detecting phenotypic responses by a particular strain to environmental changes and differences between the different strains. Differences in the molecular masses of protein components were particularly pronounced in the regions designated P1 (185-200 kDa), P2 (130-155 kDa) and P3 (60-95 kDa). Every strain produced at least one component in the P1 region that cross-reacted with antiserum to the purified protein from S. mutans serotype c, a protein which is indistinguishable from antigens B and I/II. Two components in the P2 region were dominant in the case of S. cricetus and S. sobrinus strains and showed glucosyltransferase (GTF) activity. GTF activity was also detected in the P3 region, particularly with S. mutans strains.
Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.
2016-10-01
Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along <1 1 1> direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to <1 1 1> has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.
Cicotello, Joaquín; Wolf, Irma V; D'Angelo, Luisa; Guglielmotti, Daniela M; Quiberoni, Andrea; Suárez, Viviana B
2018-08-01
The ability of twelve strains belonging to three Leuconostoc species (Leuconostoc mesenteroides, Leuconostoc lactis and Leuconostoc pseudomesenteroides) to grow under diverse sub-lethal technological stress conditions (cold, acidic, alkaline and osmotic) was evaluated in MRS broth. Two strains, Leuconostoc lactis Ln N6 and Leuconostoc mesenteroides Ln MB7, were selected based on their growth under sub-lethal conditions, and volatile profiles in RSM (reconstituted skim milk) at optimal and under stress conditions were analyzed. Growth rates under sub-lethal conditions were strain- and not species-dependent. Volatilomes obtained from the two strains studied were rather diverse. Particularly, Ln N6 (Ln. lactis) produced more ethanol and acetic acid than Ln MB7 (Ln. mesenteroides) and higher amounts and diversity of the rest of volatile compounds as well, at all times of incubation. For the two strains studied, most of stress conditions applied diminished the amounts of ethanol and acetic acid produced and the diversity and levels of the rest of volatile compounds. These results were consequence of the different capacity of the strains to grow under each stress condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tensile behaviour of geopolymer-based materials under medium and high strain rates
NASA Astrophysics Data System (ADS)
Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio
2015-09-01
Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.
Investigation of a ceramic matrix composite under strain controlled fatigue condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudaitis, J.J.; Mall, S.
The fatigue behavior along with damage mechanisms and failure modes of a fiber reinforced ceramic matrix composite with a cross-ply lay-up was investigated under strain controlled mode. Two fatigue conditions involving tension-tension and tension-compression cycling were employed. The strain range versus fatigue life curves for both fatigue conditions were in agreement with each other. However, damage mechanisms and failure modes were different for both cases.
Dirac points and van Hove singularities of silicene under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Xianqing, E-mail: xqlin@zjut.edu.cn; College of Science, Zhejiang University of Technology, Hangzhou 310023; Ni, Jun
2015-04-28
First-principles calculations have been performed to investigate the low energy electronic properties and van Hove singularities (VHSs) of silicene under uniaxial strain. The Dirac points (DPs) persist when silicene is stretched uniaxially, while they are shifted away from the corners (K points) of the first Brillouin zone (FBZ). The relative positions of DPs with respect to the K points for silicene strained along the armchair (AC) or zigzag (ZZ) direction show opposite tendency compared with strained graphene, which is due to the larger deformation of the unit cell of strained silicene than that of strained graphene. Moreover, for silicene undermore » AC or ZZ strain, the Fermi velocities around DPs along the positive and negative directions of the FBZ show rather significant difference. The nature of the VHS just above the Fermi energy undergoes a transition from the π* band to the σ* band for silicene under increasing AC or ZZ strain. These observations suggest uniaxial strain as an effective route to tune the electronic properties of silicene for potential applications in future electronic devices.« less
Warin, Pongsakorn; Rungsiyakull, Pimduen; Rungsiyakull, Chaiy; Khongkhunthian, Pathawee
2018-01-01
To investigate the strains around mini-dental implants (MDIs) and retromolar edentulous areas when using different numbers of MDIs in order to retain mandibular overdentures. Four different prosthetic situations were fabricated on an edentulous mandibular model including a complete denture (CD), and three overdentures, retained by four, three or two MDIs in the interforaminal region with retentive attachments. A static load of 200N was applied on the posterior teeth of the dentures under bilateral or unilateral loading conditions. The strains at the mesial and distal of the MDIs and the retromolar edentulous ridges were measured using twelve strain gauges. Comparisons of the mean microstrains among all strain gauges in all situations were analyzed. The strain distribution determined during bilateral loading experienced a symmetrical distribution; while during unilateral loading, the recorded strains tended to change from compressive strains on the loaded side to tensile strains. Overall, the number of MDIs was found to be passively correlated to the generated compressive strain. The highest strains were recorded in the four MDIs followed by three, two MDIs retained overdenture and CD situations, respectively. The highest strain was found around the terminal MDI. The use of a low number of MDIs tends to produce low strain values in the retromolar denture-bearing area and around the terminal MDIs during posterior loadings. However, when using a high number of MDIs, the overdenture tends to have more stability during function. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Chen, Tao-Hsing; Tsai, Chih-Kai
2015-01-01
In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034
Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu
2015-06-28
The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to determine the underlying cause of differences in pathogenicity of two Eimeria maxima strains (APU1 and APU2) observed during coccidiosis infection. At identical challenge doses, E. maxima APU1 always produces greater intestinal lesions and lower weight gain compared...
Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio
2018-01-01
Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments. PMID:29304187
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang
2016-11-01
A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.
Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS₂.
Bhattacharyya, Swastibrata; Pandey, Tribhuwan; Singh, Abhishek K
2014-11-21
The sensitive dependence of the electronic and thermoelectric properties of MoS₂ on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS₂ can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS₂ emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.
Hrčková, K; Simek, M; Hrouzek, P; Lukešová, A
2010-09-01
The potential for N(2) fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C(2)H(4) per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.
Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Diedrich, Jonathan; Rehse, Steven J.; Palchaudhuri, Sunil
2007-07-01
A pathogenic strain of bacteria, Escherichia coli O157:H7 (enterohemorrhagic E. coli or EHEC), has been analyzed by laser-induced breakdown spectroscopy (LIBS) with nanosecond pulses and compared to three nonpathogenic E. coli strains: a laboratory strain of K-12 (AB), a derivative of the same strain termed HF4714, and an environmental strain, E. coli C (Nino C). A discriminant function analysis (DFA) was performed on the LIBS spectra obtained from live colonies of all four strains. Utilizing the emission intensity of 19 atomic and ionic transitions from trace inorganic elements, the DFA revealed significant differences between EHEC and the Nino C strain, suggesting the possibility of identifying and discriminating the pathogenic strain from commonly occurring environmental strains. EHEC strongly resembled the two K-12 strains, in particular, HF4714, making discrimination between these strains difficult. DFA was also used to analyze spectra from two of the nonpathogenic strains cultured in different media: on a trypticase soy (TS) agar plate and in a liquid TS broth. Strains cultured in different media were identified and effectively discriminated, being more similar than different strains cultured in identical media. All bacteria spectra were completely distinct from spectra obtained from the nutrient medium or ablation substrate alone. The ability to differentiate strains prepared and tested in different environments indicates that matrix effects and background contaminations do not necessarily preclude the use of LIBS to identify bacteria found in a variety of environments or grown under different conditions.
Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu
2016-01-01
Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.
NASA Astrophysics Data System (ADS)
Bolling, Denzell Tamarcus
A significant amount of research has been devoted to the characterization of new engineering materials. Searching for new alloys which may improve weight, ultimate strength, or fatigue life are just a few of the reasons why researchers study different materials. In support of that mission this study focuses on the effects of specimen geometry and size on the dynamic failure of AA2219 aluminum alloy subjected to impact loading. Using the Split Hopkinson Pressure Bar (SHPB) system different geometric samples including cubic, rectangular, cylindrical, and frustum samples are loaded at different strain rates ranging from 1000s-1 to 6000s-1. The deformation properties, including the potential for the formation of adiabatic shear bands, of the different geometries are compared. Overall the cubic geometry achieves the highest critical strain and the maximum stress values at low strain rates and the rectangular geometry has the highest critical strain and the maximum stress at high strain rates. The frustum geometry type consistently achieves the lowest the maximum stress value compared to the other geometries under equal strain rates. All sample types clearly indicated susceptibility to strain localization at different locations within the sample geometry. Micrograph analysis indicated that adiabatic shear band geometry was influenced by sample geometry, and that specimens with a circular cross section are more susceptible to shear band formation than specimens with a rectangular cross section.
Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2
NASA Astrophysics Data System (ADS)
Deng, Shuo; Li, Lijie; Li, Min
2018-07-01
Single layer transition-metal dichalcogenides materials (MoS2, MoSe2, WS2 and WSe2) are investigated using the first-principles method with the emphasis on their responses to mechanical strains. All these materials display the direct band gap under a certain range of strains from compressive to tensile (stable range). We have found that this stable range is different for these materials. Through studying on their mechanical properties again using the first-principles approach, it is unveiled that this stable strain range is determined by the Young's modulus. More analysis on strains induced electronic band gap properties have also been conducted.
Bio inspired Magnet-polymer (Magpol) actuators
NASA Astrophysics Data System (ADS)
Ahmed, Anansa S.; Ramanujan, R. V.
2014-03-01
Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.
Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li
2018-01-01
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9 was increased in drug-sensitive and drug-resistant strains compared to H37Rv, while drug-resistant strains exhibited reduced mazF9 expression compared to drug-sensitive strains. Compared to H37Rv, H37RvΔ mazEF 3,6,9-deletion mutants grew more slowly under both stress conditions, and their ability to survive in host macrophages was also weaker. Furthermore, the host macrophage-apoptosis rate was higher after infection with any of the H37RvΔ mazE F3,6,9 mutants than with the H37Rv strain. The increased viability of MTB drug-resistant strains compared with drug-sensitive strains is likely to be related to differential MazEF mRNA and protein expression. mazEF 3,6,9 TASs contribute to MTB viability under stress conditions.
Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl
2012-06-01
Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.
Energy evolution mechanism in process of Sandstone failure and energy strength criterion
NASA Astrophysics Data System (ADS)
Wang, Yunfei; Cui, Fang
2018-07-01
To reveal the inherent relation between energy change and confining pressure during the process of sandstone damage, and its characteristics of energy storage and energy dissipation in different deformation stage. Obtaining the mechanical parameters by testing the Sandstone of two1 coal seam roof under uniaxial compression in Zhaogu coalmine, using Particle Flow Code (PFC) and fish program to get the meso-mechanical parameters, studying Sandstone energy evolution mechanism under different confining pressures, and deducing energy strength criterion based on energy principle of rock failure, some main researching results are reached as follows: with the increasing of confining pressure, the Sandstone yield stage and ductility increases, but brittleness decreases; Under higher confining pressure, the elastic strain energy of Sandstone before peak approximately keeps constant in a certain strain range, and rock absorbs all the energy which converts into surface energy required for internal damage development; Under lower confining pressure, Sandstone no longer absorbs energy with increasing strain after peak under lower confining pressure, while it sequentially absorbs energy under higher confining pressure; Under lower confining pressure, the energy Sandstone before peak absorbed mainly converts into elastic strain energy, while under higher confining pressure, dissipation energy significantly increases before peak, which indicates that the degree rock strength loss is higher under higher confining pressure; with the increasing of confining pressure, the limit of elastic strain energy increases and there exists a favourable linear variation relationship; At the peak point, the ratio of elastic strain energy to total energy of Sandstone nonlinearly decreases, while the ratio of dissipation energy to total energy nonlinearly increases with the increasing of confining pressure; According to energy evolution mechanism of rock failure, an energy strength criterion is derived. The criterion equation includes lithology constants and three principal stresses, and its physical meaning is clear. This criterion has an evident advantage than Hoek-Brown and Drucker-Prager criterion in calculation accuracy and can commendably describe rock failure characteristics.
Moire strain analysis of paper
R. E. Rowlands; P. K. Beasley; D. E. Gunderson
1983-01-01
Efficient use of paper products involves using modern aspects of materials science and engineering mechanics. This implies the ability to determine simultaneously different components of strain at multiple locations and under static or dynamic conditions. Although measuring strains in paper has been a topic of interest for over 40 years, present capability remains...
Haberbeck, L U; Oliveira, R C; Vivijs, B; Wenseleers, T; Aertsen, A; Michiels, C; Geeraerd, A H
2015-02-01
This study investigated the variation in growth/no growth boundaries of 188 Escherichia coli strains. Experiments were conducted in Luria-Bertani media under 36 combinations of lactic acid (LA) (0 and 25 mM), pH (3.8, 3.9, 4.0, 4.1, 4.2 and 4.3 for 0 mM LA and 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for 25 mM LA) and temperature (20, 25 and 30 °C). After 3 days of incubation, growth was monitored through optical density measurements. For each strain, a so-called purposeful selection approach was used to fit a logistic regression model that adequately predicted the likelihood for growth. Further, to assess the growth/no growth variability for all the strains at once, a generalized linear mixed model was fitted to the data. Strain was fitted as a fixed factor and replicate as a random blocking factor. E. coli O157:H7 strain ATCC 43888 was used as reference strain allowing a comparison with the other strains. Out of the 188 strains tested, 140 strains (∼75%) presented a significantly higher probability of growth under low pH conditions than the O157:H7 strain ATCC 43888, whereas 20 strains (∼11%) showed a significantly lower probability of growth under high pH conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pinto-Almeida, António; Mendes, Tiago; de Oliveira, Rosimeire Nunes; Corrêa, Sheila de Andrade Penteado; Allegretti, Silmara Marques; Belo, Silvana; Tomás, Ana; Anibal, Fernanda de Freitas; Carrilho, Emanuel; Afonso, Ana
2016-01-01
Schistosomiasis is one of the most common human parasitic diseases whose socioeconomic impact is only surpassed by malaria. Praziquantel (PZQ) is the only drug commercially available for the treatment of all schistosome species causing disease in humans. However, there has been stronger evidences of PZQ-resistance on Schistosoma mansoni and thus it is very important to study the phenotypic characteristics associated with it. The aim of this study was to evaluate morphological alterations in S. mansoni PZQ-resistant adult worms and eggs, by comparing a PZQ- resistant strain obtained under PZQ drug pressure with a PZQ-susceptible strain. For this, scanning electronic microscopy was used to assess tegumental responsiveness of both strains under PZQ exposure, and optical microscopy allowed the monitoring of worms and eggs in the presence of the drug. Those assays showed that PZQ-susceptible worms exposed to the drug had more severe tegumental damages than the resistant one, which had only minor alterations. Moreover, contrary to what occurred in the susceptible strain, resistant worms were viable after PZQ exposure and gradually regaining full motility after removal of the drug. Eggs from resistant strain parasites are considerably smaller than those from susceptible strain. Our results suggest that there might be a difference in the tegument composition of the resistant strain and that worms are less responsive to PZQ. Changes observed in egg morphology might imply alterations in the biology of schistosomes associated to PZQ-resistance, which could impact on transmission and pathology of the disease. Moreover, we propose a hypothetical scenario where there is a different egg tropism of the S. mansoni resistant strain. This study is the first comparing two strains that only differ in their resistance characteristics, which makes it a relevant step in the search for resistance determinants. PMID:27199925
NASA Astrophysics Data System (ADS)
Mueller, Richard N.; Howard, J. Lawrence; Sikorra, Charles F.; Swegle, Allan R.
Commercial strain gages were evaluated for proposed strain measurement on a Rene 41 honeycomb test panel to be subjected to temperatures from -423 F to +1600 F. Foil strain gages of three different temperature compensations, a weldable strain gage, and a capacitive strain gage, were tested to determine characteristics of apparent strain, strain sensitivity, and temperature operational limits under stabilized temperature and several heating and cooling temperature rates. Test results show that strain measurement over the total temperature range can be made using a combination of gages.
Ferromagnetic properties of Mn-doped HfS2 monolayer under strain
NASA Astrophysics Data System (ADS)
Ma, Xu; Zhao, Xu; Wu, Ninghua; Xin, Qianqian; Liu, Xiaomeng; Wang, Tianxing; Wei, Shuyi
2017-12-01
Using the first-principles calculations, we investigated electronic and magnetic properties of Mn-doped HfS2 monolayer for 4% and 8% Mn concentration. We study the strain tuning of electronic and magnetic properties of 4% Mn-doped HfS2 monolayer firstly. Our results show that the Mn-doped HfS2 monolayer is magnetic nanomaterial without strain. It keeps this character until the compressive strain comes to -8%, and the magnetism disappear with lager compressive strain. With the increasing tensile strain, the doped system transforms from semiconductor to half-metallic when the tensile strain is equivalent to or greater than 5%. The largest half-metallic gap is 1.307 eV at 5% tensile strain and the magnetic moment always keeps about 3μB, which indicates that Mn-doped HfS2 monolayer can be a candidate for superior half-metallic namomaterial. Furthermore, we find two Mn dopants couple ferromagnetically via antiferromagnetic (AFM) p-d exchange interaction at the environment of 8% concentration. It keeps the properties of magnetic semiconductor under two Mn-doped configurations with different Mn-Mn separations. Our studies predict Mn-doped HfS2 monolayer under strain to be candidates for dilute magnetic semiconductors.
NASA Technical Reports Server (NTRS)
Zamrik, S. Y.
1972-01-01
The effect of out-of-phase strain cycling on the low cycle fatigue of biaxially loaded specimens is discussed. A method to apply phase angles between two strains imposed in two different directions was developed. The data and the proposed theoretical analysis are part of a research program on biaxial strain cycling effect on fatigue life of structural materials.
Effect of strain rate on bake hardening response of BH220 steel
NASA Astrophysics Data System (ADS)
Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay
2015-09-01
This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.
Isolation and characterization of ethanol tolerant yeast strains
Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha
2013-01-01
Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092
Flores, J; Midthun, K; Hoshino, Y; Green, K; Gorziglia, M; Kapikian, A Z; Chanock, R M
1986-01-01
RNA-RNA hybridization was performed to assess the extent of genetic relatedness among human rotaviruses isolated from children with gastroenteritis and from asymptomatic newborn infants. 32P-labeled single-stranded RNAs produced by in vitro transcription from viral cores of the different strains tested were used as probes in two different hybridization assays: undenatured genomic RNAs were resolved by polyacrylamide gel electrophoresis, denatured in situ, electrophoretically transferred to diazobenzyloxymethyl-paper (Northern blots), and then hybridized to the probes under two different conditions of stringency; and denatured genomic double-stranded RNAs were hybridized to the probes in solution and the hybrids which formed were identified by polyacrylamide gel electrophoresis. When analyzed by Northern blot hybridization at a low level of stringency, all genes from the strains tested cross-hybridized, providing evidence for some sequence homology in each of the corresponding genes. However, when hybridization stringency was increased, a difference in gene 4 sequence was detected between strains recovered from asymptomatic newborn infants ("nursery strains") and strains recovered from infants and young children with diarrhea. Although the nursery strains exhibited serotypic diversity (i.e., each of the four strains tested belonged to a different serotype), the fourth gene appeared to be highly conserved. Similarly, each of the virulent strains tested belonged to a different serotype; nonetheless, there was significant conservation of sequence among the fourth genes of three of these viruses. Significantly, the conserved fourth genes of the nursery strains were distinct from the fourth gene of each of the virulent viruses. These results were confirmed and extended during experiments in which the RNA-RNA hybridization was carried out in solution and the resulting hybrids were analyzed by polyacrylamide gel electrophoresis. Under these conditions, the fourth genes of the nursery strains were closely related to each other but not to the fourth genes of the virulent viruses. Full-length hybrids did not form between the fourth genes from the nursery strains and the corresponding genes from the strains recovered from symptomatic infants and young children. Images PMID:3023685
Closure of fatigue cracks at high strains
NASA Technical Reports Server (NTRS)
Iyyer, N. S.; Dowling, N. E.
1985-01-01
Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.
Ab-initio modeling of electromechanical coupling at Si surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, Sandra; Müller, Stefan, E-mail: stefan.mueller@tuhh.de; Michl, Anja
The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain responsemore » of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.« less
NASA Astrophysics Data System (ADS)
Sclauzero, Gabriele; Dymkowski, Krzysztof; Ederer, Claude
2016-12-01
We investigate the effect of epitaxial strain on the Mott metal-insulator transition (MIT) in perovskite systems with d1 and d2 electron configurations of the transition metal (TM) cation. We first discuss the general trends expected from the changes in the crystal-field splitting and in the hopping parameters that are induced by epitaxial strain. We argue that the strain-induced crystal-field splitting generally favors the Mott-insulating state, whereas the strain-induced changes in the hopping parameters favor the metallic state under compressive strain and the insulating state under tensile strain. Thus the two effects can effectively cancel each other under compressive strain, while they usually cooperate under tensile strain, in this case favoring the insulating state. We then validate these general considerations by performing electronic structure calculations for several d1 and d2 perovskites, using a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We isolate the individual effects of strain-induced changes in either hopping or crystal-field by performing DMFT calculations where we fix one type of parameter to the corresponding unstrained DFT values. These calculations confirm our general considerations for SrVO3 (d1) and LaVO3 (d2), whereas the case of LaTiO3 (d1) is distinctly different, due to the strong effect of the octahedral tilt distortion in the underlying perovskite crystal structure. Our results demonstrate the possibility to tune the electronic properties of correlated TM oxides by using epitaxial strain, which allows to control the strength of electronic correlations and the vicinity to the Mott MIT.
Strain distribution in the lumbar vertebrae under different loading configurations.
Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco
2013-10-01
The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
The effect of inbreeding and larval feeding regime on immature development of Aedes albopictus.
Jong, Zheng-Wei; Kassim, Nur Faeza A; Naziri, Muhammad Aiman; Webb, Cameron E
2017-06-01
The fundamental approach to the biological control of Aedes albopictus requires the mass rearing of mosquitoes and the release of highly competitive adults in the field. As the fitness of adults is highly dependent on the development of immatures, we aimed to identify the minimum feeding regime required to produce viable and competitive adults by evaluating three response parameters: development duration, immature mortality, and adult wing length. Our study suggests at least 0.60 mg/larva/day of larval diet composed of dog food, dried beef liver, yeast, and milk powder in a weight ratio of 2:1:1:1 is required to maximize adult fitness. With standardized protocols in mass rearing, intensive studies can be readily conducted on mosquito colonies to facilitate comparisons across laboratories. This study also evaluated the differences in response of laboratory and field strains under different feeding regimes. We found that strain alone did not exert substantial effects on all response parameters. However, the field strain exhibited significantly lower immature mortality than the laboratory strain under the minimum feeding regime. Females and males of the laboratory strain had longer wing lengths under nutritional constraint due to the higher mortality that resulted in reduced interactions with the remaining larvae. Meanwhile, the field strain exhibited heterogeneous duration of immature development compared with the laboratory strain. The disparities demonstrated by the two strains in this study suggest the effect of inbreeding surfaced after a long term of laboratory colonization. Despite the trade-offs resulting from laboratory colonization, the competitiveness of the laboratory strain of Ae. albopictus is comparable to the field strain, provided the larvae are fed optimally. © 2017 The Society for Vector Ecology.
NASA Astrophysics Data System (ADS)
Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina
2017-12-01
The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.
Palevsky, E; Walzer, A; Gal, S; Schausberger, P
2008-06-01
The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.
Cotin-Galvan, Laetitia; Pozzi, Adrien C; Schwob, Guillaume; Fournier, Pascale; Fernandez, Maria P; Herrera-Belaroussi, Aude
2016-01-01
Frankia Sp+ strains maintain their ability to sporulate in symbiosis with actinorhizal plants, producing abundant sporangia inside host plant cells, in contrast to Sp- strains, which are unable to perform in-planta sporulation. We herein examined the role of in-planta sporulation in Frankia infectivity and competitiveness for root infection. Fifteen strains belonging to different Sp+ and Sp- phylogenetic lineages were inoculated on seedlings of Alnus glutinosa (Ag) and A. incana (Ai). Strain competitiveness was investigated by performing Sp-/Sp+ co-inoculations. Plant inoculations were standardized using crushed nodules obtained under laboratory-controlled conditions (same plant species, age, and environmental factors). Specific oligonucleotide primers were developed to identify Frankia Sp+ and/or Sp- strains in the resulting nodules. Single inoculation experiments showed that (i) infectivity by Sp+ strains was significantly greater than that by Sp- strains, (ii) genetically divergent Sp+ strains exhibited different infective abilities, and (iii) Sp+ and Sp- strains showed different host preferences according to the origin (host species) of the inocula. Co-inoculations of Sp+ and Sp- strains revealed the greater competitiveness of Sp+ strains (98.3 to 100% of Sp+ nodules, with up to 15.6% nodules containing both Sp+ and Sp- strains). The results of the present study highlight differences in Sp+/Sp- strain ecological behaviors and provide new insights to strengthen the obligate symbiont hypothesis for Sp+ strains.
Cotin-Galvan, Laetitia; Pozzi, Adrien C.; Schwob, Guillaume; Fournier, Pascale; Fernandez, Maria P.; Herrera-Belaroussi, Aude
2016-01-01
Frankia Sp+ strains maintain their ability to sporulate in symbiosis with actinorhizal plants, producing abundant sporangia inside host plant cells, in contrast to Sp− strains, which are unable to perform in-planta sporulation. We herein examined the role of in-planta sporulation in Frankia infectivity and competitiveness for root infection. Fifteen strains belonging to different Sp+ and Sp− phylogenetic lineages were inoculated on seedlings of Alnus glutinosa (Ag) and A. incana (Ai). Strain competitiveness was investigated by performing Sp−/Sp+ co-inoculations. Plant inoculations were standardized using crushed nodules obtained under laboratory-controlled conditions (same plant species, age, and environmental factors). Specific oligonucleotide primers were developed to identify Frankia Sp+ and/or Sp− strains in the resulting nodules. Single inoculation experiments showed that (i) infectivity by Sp+ strains was significantly greater than that by Sp− strains, (ii) genetically divergent Sp+ strains exhibited different infective abilities, and (iii) Sp+ and Sp− strains showed different host preferences according to the origin (host species) of the inocula. Co-inoculations of Sp+ and Sp− strains revealed the greater competitiveness of Sp+ strains (98.3 to 100% of Sp+ nodules, with up to 15.6% nodules containing both Sp+ and Sp− strains). The results of the present study highlight differences in Sp+/Sp− strain ecological behaviors and provide new insights to strengthen the obligate symbiont hypothesis for Sp+ strains. PMID:26726131
Strain effects on oxygen vacancy energetics in KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
Strain effects on oxygen vacancy energetics in KTaO 3
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...
2017-02-07
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
NASA Astrophysics Data System (ADS)
Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo
2018-02-01
Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.
Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.
NASA Astrophysics Data System (ADS)
Kabirian, Farhoud
Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and domains of constants where convexity holds are determined. Effects of grain refinement induced by Equal Channel Angular Pressing, ECAP, on mechanical responses and texture evolution are investigated. Yield strength in compression increases after ECAP, however, strain-hardening rate drops with number of ECAP passes while failure strain increases. Texture measurements reveal the higher propensity to twinning in the extruded material compared with ECAPed magnesium. Calculated Schmid factor maps are utilized to connect the observed mechanical responses to the texture.
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
Dijk, J A; Stams, A J M; Schraa, G; Ballerstedt, H; de Bont, J A M; Gerritse, J
2003-11-01
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.
Schwarzenauer, Thomas; Lins, Philipp; Reitschuler, Christoph; Illmer, Paul
2012-02-01
A considerable decline in viability of spray dried cells of Geotrichum klebahnii was observed and was attributed to an undefined alteration of the used strain. As common techniques were not able to distinguish the altered from the still viable strains, we used the fatty acid methyl ester (FAME) analysis. On the basis of FAME data we were able to discriminate the three strains under investigation. Especially the ratios of cis/trans fatty acid ratios and of saturated/unsaturated fatty acid were significantly reduced in the less viable strain, pointing to an increased stress level in this strain. These findings clearly show the applicability of the FAME analysis to detect strain alterations and that this method is therefore a suitable, fast and feasible tool for quality assurance.
Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.
2017-01-01
ABSTRACT Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10. The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. PMID:28314727
Curiel, J A; Ruiz-Capillas, C; de Las Rivas, B; Carrascosa, A V; Jiménez-Colmenero, F; Muñoz, R
2011-07-01
The occurrence of in vitro amino acid activity in bacterial strains associated with fresh pork sausages packaged in different atmospheres and kept in refrigeration was studied. The presence of biogenic amines in decarboxylase broth was confirmed by ion-exchange chromatography and by the presence of the corresponding decarboxylase genes by PCR. From the 93 lactic acid bacteria and 100 enterobacteria strains analysed, the decarboxylase medium underestimates the number of biogenic amine-producer strains. 28% of the lactic acid bacteria produced tyramine and presented the tdc gene. All the tyramine-producer strains were molecularly identified as Carnobacterium divergens. Differences on the relative abundance of C. divergens were observed among the different packaging atmospheres assayed. After 28 days of storage, the presence of argon seems to inhibit C. divergens growth, while packing under vacuum seems to favour it. Among enterobacteria, putrescine was the amine more frequently produced (87%), followed by cadaverine (85%); agmatine and tyramine were only produced by 13 and 1%, respectively, of the strains analysed. Packing under vacuum or in an atmosphere containing nitrogen seems to inhibit the growth of enterobacteria which produce simultaneously putrescine, cadaverine, and agmatine. Contrarily, over-wrapping or packing in an atmosphere containing argon seems to favour the growth of agmatine producer-enterobacteria. The production of putrescine and cadaverine was associated with the presence of the corresponding amino acid decarboxylase genes. The biogenic amine-producer strains were included in a wide range of enterobacterial species, including Kluyvera intermedia, Enterobacter aerogenes, Yersinia kristensenii, Serratia grimesii, Serratia ficaria, Yersinia rodhei, Providencia vermicola and Obesumbacterium proteus. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dupuy, Mathieu; Binet, Marie; Bouteleux, Celine; Herbelin, Pascaline; Soreau, Sylvie; Héchard, Yann
2016-03-01
Legionella pneumophila is a pathogenic bacterium commonly found in water and responsible for severe pneumonia. Free-living amoebae are protozoa also found in water, which feed on bacteria by phagocytosis. Under favorable conditions, some L. pneumophila are able to resist phagocytic digestion and even multiply within amoebae. However, it is not clear whether L. pneumophila could infect at a same rate a large range of amoebae or if there is some selectivity towards specific amoebal genera or strains. Also, most studies have been performed using collection strains and not with freshly isolated strains. In our study, we assess the permissiveness of freshly isolated environmental strains of amoebae, belonging to three common genera (i.e. Acanthamoeba, Naegleria and Vermamoeba), for growth of L. pneumophila at three different temperatures. Our results indicated that all the tested strains of amoebae were permissive to L. pneumophila Lens and that there was no significant difference between the strains. Intracellular proliferation was more efficient at a temperature of 40°C. In conclusion, our work suggests that, under favorable conditions, virulent strains of L. pneumophila could equally infect a large number of isolates of common freshwater amoeba genera. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fu, Shu; Chen, Chao; Xiao, Liang; He, Haimin; Xue, Fangsen
2015-01-01
The northernmost Harbin strain (N strain) of the Asian corn borer, Ostrinia furnacalis enters facultative diapause as fully grown larvae in response to short daylengths; whereas the southernmost Ledong strain (S strain) exhibits almost no diapause under the same light conditions. In the present study, we examined the inheritance of diapause induction and termination by crossing the two strains under a range of environmental conditions. The N strain showed a typical long-day response with a critical daylength of approximately15.88 h at 22°C, 15.72 h at 25°C and 15.14 h at 28°C, whereas the S strain showed a weak photoperiodic response at 22°C. The F1 progeny also showed a long-day response at 22, 25 and 28°C. However, the critical daylengths in S ♀ × N ♂ crosses were significantly longer than those in N ♀ × S ♂ crosses, indicating a sex linkage in the inheritance of diapause induction, with the male parent having more influence on the following F1 progeny. The incidence of diapause in S ♀ × N ♂ crosses was the same as in the N strain under short daylengths of 11-13 h, indicating that diapause trait is completely dominant over the non-diapause trait. The critical daylength in backcross to N was significantly longer than it was in backcross to S, showing a grandfather gene effect. Whether the inheritance of diapause fits an additive hypothesis or not was dependent on the rearing photoperiod, and the capacity for diapause was transmitted genetically in the manner of incomplete dominance. The duration of diapause for the reciprocal crosses under different diapause-terminating conditions showed different patterns of inheritance. The results in this study reveal that genetic and genetic-environmental interactions are involved in diapause induction and termination in O. furnacalis. PMID:25706525
Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M
2016-07-01
Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.
2013-02-01
diene monomer ( EPDM ) rubber under high-rate uniaxial compression using an SHPB (5). Additionally, Song and Chen used a strain energy-based function to...describe a one-dimensional constitutive relation to describe the high strain rate behavior of the EPDM rubber , which agreed with the experimental...intermediate rate to about 6 MPa at 500 s -1 . This behavior and rate dependence was similar to the EPDM rubber studied by Chen and Zhang (2), which
Advanced quantitative imaging of musculoskeletal disorders (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chaudhary, Rajeev; Halanski, Matthew; Campagnola, Paul J.
2017-03-01
Previous studies have shown that bone growth acceleration can occur in many animal species after periosteal resection (removal of a strip of periosteum) with minimum morbidity. This has numerous clinical applications, including treatment of limb length differences. Here we use Second Harmonic Generation (SHG) imaging microscopy to evaluate changes in collagen architecture reflective of the different strains the periosteum may encounter during bone growth. Specifically, we image rabbit tibial periosteum strips at -20%, 0%, 5%, and 10% strains. We first quantify these changes using the SHG creation ratio (Forward/Backward) or the initially emitted SHG directionality to provide information on the fibril level of assembly. The in situ (i.e. physiological) strain had the highest creation ratio compared to the non-in situ strains of -20%, 5%, and 10%, which were shown to be significantly different via RCBD statistical analysis. These trends are consistent with SHG phasematching considerations, where more organized fibrils/fibers result in primarily forward emitted components, which here is the physiological strain. We further use the relative SHG conversion efficiency to assess the tissue structure under strain, where this results from the combination of collagen concentration and organization. The 0% strain SHG conversion efficiency was significantly higher than all other strains, where this is expected as the fibers have the highest local density and organization, and is consistent with the emission directionality results. Importantly, due to the underlying physical process, the label-free SHG imaging modality can non-invasively monitor the effect of treatments for bone growth and other orthopedic disorders.
Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.
NASA Astrophysics Data System (ADS)
Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng
2009-06-01
Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.
Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro
2016-01-04
The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.
Gao, Shu-Guang; Zhang, Can; Zhao, Rui-Bo; Liao, Zhan; Li, Yu-Sheng; Yu, Fang; Zeng, Chao; Luo, Wei; Li, Kang-Hua; Lei, Guang-Hua
2013-09-01
The relationship between medial meniscus tear and posterior cruciate ligament (PCL) injury has not been exactly explained. We studied to investigate the biomechanical effect of partial and complete PCL transection on different parts of medial meniscus at different flexion angles under static loading conditions. TWELVE FRESH HUMAN CADAVERIC KNEE SPECIMENS WERE DIVIDED INTO FOUR GROUPS: PCL intact (PCL-I), anterolateral bundle transection (ALB-T), posteromedial bundle transection (PMB-T) and PCL complete transection (PCL-T) group. Strain on the anterior horn, body part and posterior horn of medial meniscus were measured under different axial compressive tibial loads (200-800 N) at 0°, 30°, 60° and 90° knee flexion in each groups respectively. Compared with the PCL-I group, the PCL-T group had a higher strain on whole medial meniscus at 30°, 60° and 90° flexion in all loading conditions and at 0° flexion with 400, 600 and 800 N loads. In ALB-T group, strain on whole meniscus increased at 30°, 60° and 90° flexion under all loading conditions and at 0° flexion with 800 N only. PMB-T exihibited higher strain at 0° flexion with 400 N, 600 N and 800 N, while at 30° and 60° flexion with 800 N and at 90° flexion under all loading conditions. Partial PCL transection triggers strain concentration on medial meniscus and the effect is more pronounced with higher loading conditions at higher flexion angles.
NASA Astrophysics Data System (ADS)
Kamnev, Alexander A.; Tugarova, Anna V.; Biró, Borbála; Kovács, Krisztina; Homonnay, Zoltán; Kuzmann, Ernő; Vértes, Attila
2012-03-01
Preliminary 57Co emission Mössbauer spectroscopic data were obtained for the soil bacterium Azospirillum brasilense Sp7 ( T = 80 K) in frozen 57Co2 + -containing suspensions and in their dried residues. The Mössbauer parameters were compared with those for A. brasilense strain Sp245 differing from strain Sp7 by ecological behaviour. Live cells of both strains showed metabolic transformations of 57Co2 + within an hour. Differences in the parameters observed for the two strains under similar conditions suggest dissimilarities in their metabolic response to Co2 + .
Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.
Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin
2012-07-11
We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.
Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher V; Krych, Aaron J; Hewett, Timothy E
2018-04-01
Female patients sustain noncontact knee ligament injuries at a greater rate compared with their male counterparts. The cause of these differences in the injury rate and the movements that load the ligaments until failure are still under dispute in the literature. This study was designed to determine differences in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains between male and female cadaveric specimens during a simulated athletic task. The primary hypothesis tested was that female limbs would demonstrate significantly greater ACL strain compared with male limbs under similar loading conditions. A secondary hypothesis was that MCL strain would not differ between sexes. Controlled laboratory study. Motion analysis of 67 athletes performing a drop vertical jump was conducted. Kinetic data were used to categorize injury risk according to tertiles, and these values were input into a cadaveric impact simulator to assess ligamentous strain during a simulated landing task. Uniaxial and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect mechanical data for analysis. Conditions of external loads applied to the cadaveric limbs (knee abduction moment, anterior tibial shear, and internal tibial rotation) were varied and randomized. Data were analyzed using 1-way analysis of variance (ANOVA), 2-way repeated-measures ANOVA, and the Fisher exact test. There were no significant differences ( P = .184) in maximum ACL strain between male (13.2% ± 8.1%) and female (16.7% ± 8.3%) specimens. Two-way ANOVA demonstrated that across all controlled external load conditions, female specimens consistently attained at least 3.5% increased maximum ACL strain compared with male specimens ( F 1,100 = 4.188, P = .043); however, when normalized to initial contact, no significant difference was found. There were no significant differences in MCL strain between sexes for similar parameters. When compared with baseline, female specimens exhibited greater values of ACL strain at maximum, initial contact, and after impact (33, 66, and 100 milliseconds, respectively) than male specimens during similar loading conditions, with a maximum strain difference of at least 3.5%. During these same loading conditions, there were no differences in MCL loading between sexes, and only a minimal increase of MCL loading occurred during the impact forces. Our results indicate that female patients are at an increased risk for ACL strain across all similar conditions compared with male patients. These data demonstrate that female specimens, when loaded similarly to male specimens, experience additional strain on the ACL. As the mechanical environment was similar for both sexes with these simulations, the greater ACL strain of female specimens must be attributed to ligament biology, anatomic differences, or muscular stiffness.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
This study examined the effects of attachments on strain in maxillary implant overdentures supported by two or four implants. A maxillary edentulous model with implants inserted into anterior, premolar, and molar areas was fabricated, and three types of unsplinted attachments-ball, locator, and magnet-were set on the implants distributed under various conditions. Maxillary experimental dentures were fabricated, and two strain gauges were attached at the anterior midline on the labial and palatal sides. A vertical occlusal load of 98 N was applied and shear strain of the dentures was measured. On both sides, magnet attachments resulted in the lowest shear strain, while ball attachments resulted in the highest shear strain under most conditions. However, differences in shear strain among the three attachment types were not significant when supported by four implants, especially molar implants. Shear strain of the maxillary implant overdenture was lowest when using magnet attachments. Magnet attachments mounted on four implants are recommended to prevent denture complications when using maxillary implant overdentures.
Analysis of 3D strain in the human medial meniscus.
Kolaczek, S; Hewison, C; Caterine, S; Ragbar, M X; Getgood, A; Gordon, K D
2016-10-01
This study presents a method to evaluate three-dimensional strain in meniscal tissue using medical imaging. Strain is calculated by tracking small teflon markers implanted within the meniscal tissue using computed tomography imaging. The results are presented for strains in the middle and posterior third of the medial menisci of 10 human cadaveric knees, under simulated physiologically relevant loading. In the middle position, an average compressive strain of 3.4% was found in the medial-lateral direction, and average tensile strains of 1.4% and 3.5% were found in the anterior-posterior and superior-inferior directions respectively at 5° of knee flexion with an applied load of 1× body weight. In the posterior position, under the same conditions, average compressive strains of 2.2% and 6.3% were found in the medial-lateral and superior-inferior directions respectively, and an average tensile strain of 3.8% was found in the anterior-posterior direction. No statistically significant difference between strain in the middle or posterior of the meniscus or between the global strains is uncovered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi
2017-07-11
Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.
Florencio, C; Cunha, F M; Badino, A C; Farinas, C S
2015-02-01
The development of new cost-effective bioprocesses for the production of cellulolytic enzymes is needed in order to ensure that the conversion of biomass becomes economically viable. The aim of this study was to determine whether a novel sequential solid-state and submerged fermentation method (SF) could be validated for different strains of the Trichoderma genus. Cultivation of the Trichoderma reesei Rut-C30 reference strain under SF using sugarcane bagasse as substrate was shown to be favorable for endoglucanase (EGase) production, resulting in up to 4.2-fold improvement compared with conventional submerged fermentation. Characterization of the enzymes in terms of the optimum pH and temperature for EGase activity and comparison of the hydrolysis profiles obtained using a synthetic substrate did not reveal any qualitative differences among the different cultivation conditions investigated. However, the thermostability of the EGase was influenced by the type of carbon source and cultivation system. All three strains of Trichoderma tested (T. reesei Rut-C30, Trichoderma harzianum, and Trichoderma sp INPA 666) achieved higher enzymatic productivity when cultivated under SF, hence validating the proposed SF method for use with different Trichoderma strains. The results suggest that this bioprocess configuration is a very promising development for the cellulosic biofuels industry.
Shui, Wenqing; Xiong, Yun; Xiao, Weidi; Qi, Xianni; Zhang, Yong; Lin, Yuping; Guo, Yufeng; Zhang, Zhidan; Wang, Qinhong; Ma, Yanhe
2015-01-01
Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering. PMID:25926660
Temperature evolution of the structural properties of monodomain ferroelectric thin film
NASA Astrophysics Data System (ADS)
Janolin, Pierre-Eymeric; Le Marrec, Françoise; Chevreul, Jacques; Dkhil, Brahim
2007-05-01
The structural evolution of epitaxial monodomain (only 180° domains) ferroelectric PbTiO3 thin film has been investigated, using high-resolution, temperature-dependent, x-ray diffraction. The full set of lattice parameters was obtained from room temperature up to 850K. It allowed the calculation of the different strains stored in the film at room temperature, underlying the difference between the mechanical strain and the misfit strain. The evolution of the misfit strain as a function of temperature was also calculated and was found to be consistent with the theoretical temperature-misfit strain phase diagram. These data strongly suggest that the film remains ferroelectric and tetragonal up to 940K.
Avery, Pasco B; Faull, Jane; Simmonds, Monique S J
2004-01-01
Growth, infectivity and colonization rates for blastospores and conidia of Trinidadian strains T, T10, and T11 of Paecilomyces fumosoroseus (Wize) Brown and Smith were assessed for activity against late fourth-instar nymphs of Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae) under two different photoperiods (24 and 16 hour photophase). A glass-slide bioassay and a fungal development index, modified for both blastospores and conidia, were used to compare the development rates of the fungal strains on the insect hosts. Fewer adult whiteflies emerged from nymphs treated with blastospores and reared under a 16:8 hour light:dark photoperiod than a 24:0 hour photoperiod. Eclosion times of whitefly adults that emerged from nymphs treated with the different strains of conidia were similar over the 8 day experimental period at both light regimes. The percent eclosion of adult whiteflies seems to be directly correlated with the speed of infection of the blastospore or conidial treatment and the photoperiod regime. The longer photophase had a significant positive effect on development index for blastospores; however, a lesser effect was observed for the conidia at either light regime. Blastospore strain T11 offered the most potential of the three Trinidadian strains against T. vaporariorum fourth-instar nymphs, especially under constant light. The glass-slide bioassay was successfully used to compare both blastospores and conidia of P. fumosoroseus. It can be used to determine the pathogenicity and the efficacy of various fungal preparations against aleyrodid pests.
Effect of surface modification on protein retention and cell proliferation under strain.
Dunkers, J P; Lee, H-J; Matos, M A; Pakstis, L M; Taboas, J M; Hudson, S D; Cicerone, M T
2011-07-01
When culturing cells on flexible surfaces, it is important to consider extracellular matrix treatments that will remain on the surface under mechanical strain. Here we investigate differences in laminin deposited on oxidized polydimethylsiloxane (PDMS) with plasma treatment (plasma-only) vs. plasma and aminopropyltrimethoxysilane treatment (silane-linked). We use specular X-ray reflectivity (SXR), transmission electron microscopy (TEM), and immunofluorescence to probe the quantity and uniformity of laminin. The surface coverage of laminin is approximately 45% for the plasma-only and 50% for the silane-linked treatment as determined by SXR. TEM and immunofluorescence reveal additional islands of laminin aggregates on the plasma-only PDMS compared with the relatively smooth and uniform silane-linked laminin surface. We also examine laminin retention under strain and vascular smooth muscle cell viability and proliferation under static and strain conditions. Equibiaxial stretching of the PDMS surfaces shows greatly improved retention of the silane-linked laminin over plasma-only. There are significantly more cells on the silane-linked surface after 4 days of equibiaxial strain. Published by Elsevier Ltd.
Mitsui, Ryoji; Hirota, Mizuho; Tsuno, Takuo; Tanaka, Mitsuo
2010-02-01
Vanillin dehydrogenases (VDHs) were purified and characterized from two bacterial strains that have different pH dependencies for growth. The alkaliphile Micrococcus sp. TA1, isolated from an alkaline spa, can grow on several aromatic compounds such as ferulic acid, vanillin, vanillic acid, and protocatechuic acid under alkaline conditions. The neutrophile Burkholderia cepacia TM1, which was isolated previously, also grew on the above-mentioned compounds because they functioned as the sole carbon source under neutral conditions. Purified VDHs showed activities toward some aromatic aldehydes. These enzymes have the same subunit molecular mass of about 57 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but differed in some of their observed properties. Native molecular masses also differed between the purified enzymes. These were 250 kDa for the enzyme from alkaliphilic strain TA1 and 110 kDa for that from neutrophilic strain TM1, as determined by gel filtration. The enzyme from strain TA1 required NADP(+) as a coenzyme for its activity, but that from strain TM1 required NAD(+). These results are important because this is the first report of an alkaliphilic bacterium consuming lignin monomers.
Murase, Jun; Kawasaki, Michio; De Jonckheere, Johan F
2010-08-01
A heterolobosean amoeba strain 6_5F was isolated from an Italian rice field soil. Although 18S rRNA gene sequence analysis demonstrated that the new isolate was closely related to Stachyamoeba sp. ATCC 50324, further molecular analysis and morphological observation showed distinct differences amongst the two. The 5.8S rRNA gene was successfully amplified and sequenced for strain 6_5F but not for strain ATCC 50324. Trophozoites of strain ATCC 50324 transform into flagellate forms in the late stage of incubation before encystment, while strain 6_5F do not show flagellate forms under different conditions of the flagellation test. Light and electron microscopic observation showed the structural difference of cysts of strain 6_5F from strain ATCC 50324 and also from the type strain Stachyamoeba lipophora. The results show that the strain 6_5F is distinct from Stachyamoeba spp. and we propose a new genus and species for this isolate, Vrihiamoeba italica gen. nov., sp. nov. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Herrera, Carlos M
2014-05-01
Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.
Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew
2014-01-01
Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during discrimination." Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks.
Survival of Acinetobacter baumannii on dry surfaces.
Wendt, C; Dietze, B; Dietz, E; Rüden, H
1997-01-01
Acinetobacter spp. have frequently been reported to be the causative agents of hospital outbreaks. The circumstances of some outbreaks demonstrated the long survival of Acinetobacter in a dry, inanimate environment. In laboratory experiments, we compared the abilities of five Acinetobacter baumannii strains, three Acinetobacter sp. strains from the American Type Culture Collection (ATCC), one Escherichia coli ATCC strain, and one Enterococcus faecium ATCC strain to survive under dry conditions. Bacterial solutions of the 10 strains were inoculated onto four different material samples (ceramic, polyvinyl chloride, rubber, and stainless steel) and stored under defined conditions. We investigated the bacterial counts of the material samples immediately after inoculation, after drying, and after 4 h, 1 day, and 1, 2, 4, 8, and 16 weeks of storage. A statistical model was used to distribute the 40 resulting curves among four types of survival curves. The type of survival curve was significantly associated with the bacterial strain but not with the material. The ability of the A. baumannii strains to survive under dry conditions varied greatly and correlated well with the source of the strain. Strains isolated from dry sources survived better than those isolated from wet sources. An outbreak strain that had caused hospital-acquired respiratory tract infections survived better than the strains from wet sources, but not as well as strains from dry sources. Resistance to dry conditions may promote the transmissibility of a strain, but it is not sufficient to make a strain an epidemic one. However, in the case of an outbreak, sources of Acinetobacter must be expected in the dry environment. PMID:9163451
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
Cheung, Nicole W T
2015-02-01
Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maltodextrin Acceptance and Preference in Eight Mouse Strains.
Poole, Rachel L; Aleman, Tiffany R; Ellis, Hillary T; Tordoff, Michael G
2016-01-01
Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617
Van Voorhies, Wayne A.
2012-01-01
Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study. PMID:22253874
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-07-14
Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Isolation and characterization of acid-sensitive mutants of Pediococcus acidilactici.
Kurdi, Peter; Smitinont, Thitapha; Valyasevi, Ruud
2009-02-01
Acid-sensitive mutants of Pediococcus acidilactici BCC 9545, a starter culture of the Thai fermented pork sausage nham, were isolated as spontaneous neomycin resistant mutants. The mutants generally produced less acid and acidified the culture media less than the parent strain in a 72 h culturing period. Interestingly, the ATPase activities of the mutants did not differ considerably from that of the parent strain in acidic conditions. It was also found that the internal pH values of the mutant strains were somewhat lower in neutral environment, while at pH 5.0 their internal pHs were significantly lower compared to the parent's. Inhibiting the H(+)-ATPase activities in energized cells by N,N'-dicyclohexyl carbodiimide also revealed that protons were leaking from the mutants at neutral pH, which increased under acidic conditions. In contrast, the parent strain exhibited a smaller proton leak and only under acidic conditions. The membrane fatty acid analysis of the mutants indicated that under acidic conditions the mutants had a significantly smaller major unsaturated/saturated fatty acids ratio ((C(18:1)+C(18:3n6))/(C(16:0)+C(18:0))) compared to the parent strain's membrane. Taken together, these observations suggest there is a reasonable possibility that the membrane fatty acid profile differences in the mutants resulted in their acid-sensitivity.
Baek, Sun-Hye; Cha, Hyun-Suk; Cha, Jung-Yul; Moon, Yoon-Shik
2012-01-01
Objective The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [µE]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 µE). Conclusions The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability. PMID:23112947
Liu, Gui-Long; Huang, Shi-Hong; Shi, Che-Si; Zeng, Bin; Zhang, Ke-Shi; Zhong, Xian-Ci
2018-02-10
Using copper thin-walled tubular specimens, the subsequent yield surfaces under pre-tension, pre-torsion and pre-combined tension-torsion are measured, where the single-sample and multi-sample methods are applied respectively to determine the yield stresses at specified offset strain. The rule and characteristics of the evolution of the subsequent yield surface are investigated. Under the conditions of different pre-strains, the influence of test point number, test sequence and specified offset strain on the measurement of subsequent yield surface and the concave phenomenon for measured yield surface are studied. Moreover, the feasibility and validity of the two methods are compared. The main conclusions are drawn as follows: (1) For the single or multi-sample method, the measured subsequent yield surfaces are remarkably different from cylindrical yield surfaces proposed by the classical plasticity theory; (2) there are apparent differences between the test results from the two kinds of methods: the multi-sample method is not influenced by the number of test points, test order and the cumulative effect of residual plastic strain resulting from the other test point, while those are very influential in the single-sample method; and (3) the measured subsequent yield surface may appear concave, which can be transformed to convex for single-sample method by changing the test sequence. However, for the multiple-sample method, the concave phenomenon will disappear when a larger offset strain is specified.
Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim
2013-09-06
Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.
Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio
2018-01-01
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.
2018-01-01
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway. PMID:29432462
NASA Astrophysics Data System (ADS)
Kim, Dae Ho; Christen, Hans M.; Varela, Maria; Lee, Ho Nyung; Lowndes, Douglas H.
2006-05-01
The effect of epitaxial strain on the charge order (CO) transition in Bi0.4Ca0.6MnO3 films was studied by varying the strain's strength and symmetry via the use of SrTiO3 and LaAlO3 substrates having different crystallographic orientations. The film on pseudocubic (001) LaAlO3, under symmetric compressive strain, exhibits a clear CO transition. In the film on a (001) SrTiO3 substrate, under symmetric tensile strain, highly segregated line-shaped features in the Bi distribution are seen in Z-contrast scanning transmission microscopy, accompanied by a strongly broadened CO transition. The asymmetric tensile stress on (011) SrTiO3 results in an apparent compressive strain state with a deviation from tetragonality (i.e., γ ≠90°), accompanied by the sharpest CO transition. These comparisons illustrate the importance of considering both the strength and symmetry of epitaxial strain.
Surface antigens from Escherichia coli O2 and O78 strains of avian origin.
Dho-Moulin, M; van den Bosch, J F; Girardeau, J P; Brée, A; Barat, T; Lafont, J P
1990-01-01
Fimbriae from O2 and O78 virulent strains of avian Escherichia coli were compared with type 1A fimbriae with regard to the apparent molecular weights of their subunits and their antigenic relationships. Under static broth culture conditions, most O78 strains expressed fimbriae closely related to those of type 1A. Under the same culture conditions, another type of fimbriae, sharing some common properties with type 1A fimbriae, was observed only on O2 strains; however, these fimbriae differed from type 1A fimbriae in the apparent molecular weights of their subunits and in the expression of specific epitopes. They were called type 1-like fimbriae. Homologies in lipopolysaccharide and outer membrane protein profiles were also demonstrated among the strains expressing type 1-like fimbriae, which suggests the existence of a clonal relationship among O2:K1 avian E. coli strains. The O78 strains studied did not appear to be clonally related. Images PMID:1968434
Eschstruth, Alexis; Divol, Benoit
2011-08-01
Wine strains of Saccharomyces cerevisiae have no to weak natural pectinase activity, despite their genetic ability to secrete an endo-polygalacturonase. The addition of external pectinase of fungal origin has therefore become a common step of winemaking in order to enhance the extraction of compounds located in the grape berry skins during maceration and to ease wine clarification after maturation. Recently, the strong pectinase activity of a wine strain of Saccharomyces paradoxus has been reported. In this study, the endo-polygalacturonase-encoding gene of S. paradoxus was sequenced and its activity was characterised, compared with that of S. cerevisiae and tested under winemaking conditions through overexpression of both genes individually in S. cerevisiae. A few differences in the amino acids sequences between the two proteins were revealed and the activity of the Pgu1 enzyme of S. paradoxus was shown to be weaker under winemaking conditions. Clear indicators of extracellular activity were observed in the wines made with both recombinant strains (i.e. enzyme activity in cell-free wine, higher methanol concentration and higher free-run wine), but the actual composition of the wines fermented with the mutants was only sparingly altered. Although unexpectedly found in lower concentrations in the latter wines, phenolic compounds were shown to be the most discriminatory components. Overexpressing the PGU1 gene of S. paradoxus or that of S. cerevisiae did not make much difference, showing that the higher activity of S. paradoxus strains under laboratory conditions could be due to a different regulation mechanism rather than to a different sequence of PGU1.
Toledo-Cervantes, Alma; Garduño Solórzano, Gloria; Campos, Jorge E; Martínez-García, Martha; Morales, Marcia
2018-03-01
Scenedesmus obtusiusculus AT-UAM, isolated from Cuatro Ciénegas wetlands in Mexico was taxonomically, molecularly and biochemically compared to S. obtusiusculus CCAP 276/25 (Culture Collection of Algae and Protozoa, Scotland, UK). Analysis of Internal Transcribed Spacer 2 (ITS2) secondary structures confirmed that the mexican strain belongs to S. obtusiusculus with one change in the ITS2 nucleotide sequence. However, both strains exhibited different biochemical and fatty acid profiles and therefore biotechnological potential, emphasizing the need for deeper studies among strains of the same species. Furthermore, the biochemical variations of S. obtusiusculus AT-UAM under nitrogen starvation and different levels of irradiance were evaluated. The maximum lipid production (1730 mg L -1 ) was obtained at 613 μmol m -2 s -1 while the highest carbohydrate content (49%) was achieved at 896 μmol m -2 s -1 . Additionally, this strain was capable of storing lipids (∼52%) and carbohydrates (∼40%) under outdoor condition depending on the light availability in the cultivation broth.
Ziarno, Małgorzata
2015-01-01
Background In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. Objective The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. Design The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Results Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Conclusions Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food. PMID:26546945
Ziarno, Małgorzata; Zaręba, Dorota
2015-01-01
In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food.
Simmons, Chelsey S; Ribeiro, Alexandre J S; Pruitt, Beth L
2013-02-21
Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes.
Simmons, Chelsey S.; Ribeiro, Alexandre J. S.; Pruitt, Beth L.
2013-01-01
Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes. PMID:23287818
Marinho, Marcelo Manzi; Souza, Maria Betânia Gonçalves; Lürling, Miquel
2013-10-01
The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.
Bertrand, Annick; Prévost, Danielle; Bigras, Francine J.; Castonguay, Yves
2007-01-01
Background and Aims The objective of the study was to assess the impact of elevated CO2 in interaction with rhizobial strains on freezing tolerance and cold-induced molecular changes in alfalfa. Methods Alfalfa inoculated with two different strains of rhizobium (A2 and NRG34) was grown and cold acclimated (2 weeks at 2 °C) under either 400 (ambient) or 800 µmol mol−1 (elevated) CO2. Key Results Plants acclimated under 400 µmol mol−1 CO2 were more freezing tolerant than those maintained under 800 µmol mol−1. Cryoprotective sugars typically linked with the acquisition of freezing tolerance such as sucrose, stachyose and raffinose increased in roots in response to low temperature but did not differ between CO2 treatments. Similarly high CO2 did not alter the expression of many cold-regulated (COR) genes although it significantly increased the level of transcripts encoding a COR gene homologous to glyceraldehyde-3-phosphate-dehydrogenase (GAPDH). A significant effect of rhizobial strain was observed on both freezing tolerance and gene expression. Plants of alfalfa inoculated with strain A2 were more freezing tolerant than those inoculated with strain NRG34. Transcripts of COR genes homologous to a pathogenesis-related protein (PR-10) and to a nuclear-targeted protein were markedly enhanced in roots of alfalfa inoculated with strain A2 as compared with strain NRG34. Transcripts encoding the vegetative storage proteins (VSPs) β-amylase and chitinase were more abundant in roots of non-acclimated plants inoculated with strain NRG34 than with strain A2. Conclusions Taken together, the results suggest that elevated CO2 stimulates plant growth and reduces freezing tolerance. The acquisition of cold tolerance is also influenced by the rhizobial strain, as indicated by lower levels of expression of COR genes and sustained accumulation of VSP-encoding transcripts in alfalfa inoculated with strain NRG34 as compared with strain A2. PMID:17218341
Stroheker, Sophie; Dubach, Vivanne; Sieber, Thomas N
2018-05-01
Dark septate endophytes of the Phialocephala fortinii s.l. - Acephala applanata species complex (PAC) are presumed to be the most abundant root colonizing endophytes of conifers across the Northern hemisphere. To test the competitiveness of different PAC strains, PAC-free Picea abies saplings were inoculated with five different PAC strains by planting them in pre-colonized substrates. Saplings were left to grow for six weeks and then transplanted crosswise into a substrate colonized by one of the other four strains for a further two weeks. PAC were isolated and genotyped using microsatellite markers. The power of colonization, i.e. the ability of colonizing roots already colonized by another PAC strain, and the power of retention, i.e. the ability of a resident strain of not being suppressed by an invading PAC strain, were calculated for each strain in every combination. The experiment was run twice under two different climatic conditions. Our results show that PAC strains differ (1) in their ability to colonize PAC-free, non-sterile roots, (2) in resistance against being suppressed by another PAC strain and (3) in their ability to invade roots already colonized by another PAC strain. In addition, both the PAC-PAC and the PAC-host interactions depend on the climatic conditions. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; ...
2015-12-22
Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.
Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less
Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts
2014-01-01
Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272
Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.
Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana
2014-01-01
Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-09-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-01-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect. PMID:18803762
Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E
2016-12-01
Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gunasekera, Thusitha S; Bowen, Loryn L; Zhou, Carol E; Howard-Byerly, Susan C; Foley, William S; Striebich, Richard C; Dugan, Larry C; Ruiz, Oscar N
2017-05-15
Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n -C 8 and n -C 10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. Copyright © 2017 American Society for Microbiology.
Spatially structured superinfection and the evolution of disease virulence.
Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K
2006-06-01
When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.
Parvari, Roh Allah; Aghaei, Habib Allah; Dehghan, Habibollah; Khademi, Abolfazl; Maracy, Mohammad Reza; Dehghan, Somayeh Farhang
2015-01-01
The present study compared the effect of fabric type of working clothes on heat strain responses in different levels of physical workload and under different kinds of weather conditions. Four kinds of working clothing fabric that are greatly popular in Iranian industry were assessed on 18 healthy male at 2 environments: hot and humid (dry temperature [DBt]: 35°C and relative humidity [RH]: 70%) and hot and dry (DBt: 40°C and RH: 40%). The physiological responses such as heart rate and core body temperature were reported. It was found that there were no significant differences between different types of clothing fabric on cardiac and physiological parameters. It can be recommended that 100% cotton clothing ensemble during low-workload activities and 30.2% cotton-69.8% polyester clothing ensemble during moderate-workload activities is used for Iranian workers to maintain the cardiac and physiological strains as low as possible.
Everaert, Nadia; Willemsen, Hilke; Kamers, Bram; Decuypere, Eddy; Bruggeman, Veerle
2011-02-01
It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels. Copyright © 2010 Elsevier Inc. All rights reserved.
Compressive strain induced dynamical stability of monolayer 1T-MX2 (M = Mo, W; X = S, Se)
NASA Astrophysics Data System (ADS)
Li, Xiaoyong; Wu, Musheng; Xu, Bo; Liu, Ruifan; Ouyang, Chuying
2017-11-01
The lattice dynamical properties of 1T-MX2 (M = Mo, W; X = S, Se) under different strains were studied by using density functional perturbation theory method. Our results show that all MX2 with 1T phase in our calculations are dynamical instable under zero strain or tensile strain as obvious imaginary frequencies (soft modes) exist. When 3% biaxial compressive strains are applied, the imaginary frequencies remain except that the absolute values of maximum imaginary frequency decrease. With the increase of compressive strain to be 6%, 1T-MoS2, 1T-MoSe2, 1T-WS2 become stable, whereas 1T-WSe2 has small imaginary frequencies. When biaxial compressive strain reaches 9%, all 1T-MX2 are dynamical stable without imaginary frequencies in the phonon dispersion curves. Energy band structures show that all 1T-MX2 are metallic, regardless of zero strain or compressive strain. Therefore, compressive strain could be a practical approach to enhance the stability of 1T-MX2 while maintaining the metallic property.
Nguyen, Hoa Thanh; Tsuchiya, Maria Claret Lauan; Yoo, Jean; Iida, Midori; Agusa, Tetsuro; Hirano, Masashi; Kim, Eun-Young; Miyazaki, Tatsuhiko; Nose, Masato; Iwata, Hisato
2017-04-01
Dioxins cause various toxic effects through the aryl hydrocarbon receptor (AHR) in vertebrates, with dramatic species and strain differences in susceptibility. Although inbred mouse strains C3H/HeJ-lpr/lpr (C3H/lpr) and MRL/MpJ-lpr/lpr (MRL/lpr) are known as dioxin-sensitive and dioxin-resistant mice, respectively, the molecular mechanism underlying this difference remains unclear. The difference in the hepatic proteome of the two mouse strains treated with vehicle or 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) was investigated by a proteomic approach of two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF). To confirm the strain-difference in response to TBDD treatment, cytochrome P450 (CYP) 1A1 and 1A2 protein levels were measured in both strains. A dose of 10 µg/kg body weight of TBDD induced hepatic CYP1A1 and CYP1A2 expression in both strains, but the expression levels of both CYP1A proteins were higher in C3H/lpr mice than in MRL/lpr mice, supporting that C3H/lpr mice are more sensitive to dioxins than MRL/lpr mice. Proteins that were more induced or suppressed by TBDD treatment in C3H/lpr mice were successfully identified by 2-DE and MALDI-TOF/TOF, including proteins responsible for AHR activation through production of endogenous ligands such as aspartate aminotransferase, indolethylamine N-methyltransferase, and aldehyde dehydrogenases, as well as proteins reducing oxidative stress, such as superoxide dismutase and peroxiredoxins. Taken together, our results provide insights into the molecular mechanism underlying the high dioxin susceptibility of the C3H/lpr strain, in which AHR activation by TBDD is more prompted by the production of endogenous ligands, but the adaptation to oxidative stress is also acquired.
Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M
2018-01-01
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Factors affecting finite strain estimation in low-grade, low-strain clastic rocks
NASA Astrophysics Data System (ADS)
Pastor-Galán, Daniel; Gutiérrez-Alonso, Gabriel; Meere, Patrick A.; Mulchrone, Kieran F.
2009-12-01
The computer strain analysis methods SAPE, MRL and DTNNM have permitted the characterization of finite strain in two different regions with contrasting geodynamic scenarios; (1) the Talas Ala Tau (Tien Shan, Kyrgyzs Republic) and (2) the Somiedo Nappe and Narcea Antiform (Cantabrian to West Asturian-Leonese Zone boundary, Variscan Belt, NW of Iberia). The performed analyses have revealed low-strain values and the regional strain trend in both studied areas. This study also investigates the relationship between lithology (grain size and percentage of matrix) and strain estimates the two methodologies used. The results show that these methods are comparable and the absence of significant finite strain lithological control in rocks deformed under low metamorphic and low-strain conditions.
Partensky, F.; Hoepffner, N.; Li, WKW.; Ulloa, O.; Vaulot, D.
1993-01-01
Two Atlantic (SARG and NATL1) strains and one Mediterranean (MED) strain of Prochlorococcus sp., a recently discovered marine, free-living prochlorophyte, were grown over a range of "white" irradiances (lg) and under low blue light to examine their photoacclimation capacity. All three strains contained divinyl (DV) chlorophylls (Chl) a and b, both distinguishable from "normal" Chls by their red-shifted blue absorption maximum, a Chl c-like pigment at low concentration, zeaxanthin, and [alpha]-carotene. The presence of two phaeophytin b peaks in acidified extracts from both Atlantic strains grown at high lg suggests that these strains also had a normal Chl b-like pigment. In these strains, the total Chl b to DV-Chl a molar ratio decreased from about 1 at 7.5 [mu]mol quanta m-2 s-1 to 0.4 to 0.5 at 133 [mu]mol quanta m-2 s-1. In contrast, the MED strain always had a low DV-Chl b to DV-Chl a molar ratio, ranging between 0.13 at low lg and 0.08 at high lg. The discrepancies between the Atlantic and MED strains could result from differences either in the number of light-harvesting complexes (LHC) II per photosystem II or in the Chl b-binding capacity of the apoproteins constituting LHC II. Photosynthesis was saturated at approximately 5 fg C(fg Chl)-1 h-1 or 6 fg C cell-1 h-1, and growth was saturated at approximately 0.45 d-1 for both MED and SARG strains at 18[deg]C, but saturating irradiances differed between strains. Atlantic strains exhibited increased light-saturated rates and quantum yield for carbon fixation under blue light. PMID:12231684
Wietz, Matthias; Månsson, Maria; Bowman, Jeff S.; Blom, Nikolaj; Ng, Yin
2012-01-01
We isolated 16 antibiotic-producing bacterial strains throughout the central Arctic Ocean, including seven Arthrobacter spp. with almost identical 16S rRNA gene sequences. These strains were numerically rare, as revealed using 454 pyrosequencing libraries. Arthrobacter spp. produced arthrobacilins A to C under different culture conditions, but other, unidentified compounds likely contributed to their antibiotic activity. PMID:22247128
Kulichevskaya, Irina S; Kostina, Lilia A; Valásková, Vendula; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; de Boer, Wietse; Dedysh, Svetlana N
2012-07-01
Two strains of subdivision 1 Acidobacteria, a pink-pigmented bacterium KA1(T) and a colourless isolate WH120(T), were obtained from acidic Sphagnum peat and wood under decay by the white-rot fungus Hyploma fasciculare, respectively. Cells of these isolates were Gram-negative-staining, non-motile, short rods, which were covered by large polysaccharide capsules and occurred singly, in pairs, or in short chains. Strains KA1(T) and WH120(T) were strictly aerobic mesophiles that grew between 10 and 33 °C, with an optimum at 22-28 °C. Both isolates developed under acidic conditions, but strain WH120(T) was more acidophilic (pH growth range 3.5-6.4; optimum, 4.0-4.5) than strain KA1(T) (pH growth range 3.5-7.3; optimum , 5.0-5.5). The preferred growth substrates were sugars. In addition, the wood-derived isolate WH120(T) grew on oxalate, lactate and xylan, while the peat-inhabiting acidobacterium strain KA1(T) utilized galacturonate, glucuronate and pectin. The major fatty acids were iso-C(15:0) and iso-C(17:1)ω8c; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid. The quinone was MK-8. The DNA G+C contents of strains KA1(T) and WH120(T) were 54.1 and 51.7 mol%, respectively. Strains KA1(T) and WH120(T) displayed 97.8% 16S rRNA gene sequence similarity to each other. The closest recognized relatives were Acidobacterium capsulatum and Telmatobacter bradus (93.4-94.3% 16S rRNA gene sequence similarity). These species differed from strains KA1(T) and WH120(T) by their ability to grow under anoxic conditions, the absence of capsules, presence of cell motility and differing fatty acid composition. Based on these differences, the two new isolates are proposed as representing a novel genus, Acidicapsa gen. nov., and two novel species. Acidicapsa borealis gen. nov., sp. nov. is the type species for the new genus with strain KA1(T) (=DSM 23886(T)=LMG 25897(T)=VKM B-2678(T)) as the type strain. The name Acidicapsa ligni sp. nov. is proposed for strain WH120(T) (=LMG 26244(T)=VKM B-2677(T)=NCCB 100371(T)).
Ibáñez, Clara; Pérez-Torrado, Roberto; Morard, Miguel; Toft, Christina; Barrio, Eladio; Querol, Amparo
2017-09-18
Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.
Rustiguel, Cynthia Barbosa; Rosa, José Cesar; Jorge, João Atílio; de Oliveira, Arthur Henrique Cavalcanti; Guimarães, Luis Henrique Souza
2016-02-01
The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-β-D-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.
NASA Astrophysics Data System (ADS)
Saltiel, S.; Bonner, B. P.; Delbridge, B. G.; Ajo Franklin, J. B.
2016-12-01
We have adapted a low-frequency (0.1 - 64 Hz) torsional apparatus to explore the pure shear behavior of rock fractures under low normal stresses, simulating low effective stress environments - shallow depths and/or under high pore pressures. The instrument is unique in this ability to measure under very low confinement as well as to probe partial slip on the outside of asperities, before full slip nucleation occurs. Using a sinusoidal oscillation around this condition, we can probe the stress-strain constitutive relation at a range of strain amplitudes and the rate-dependence of the initiation of asperity slip. We find different, nonlinear, stress-strain constitutive relations for dolomite, rhyolite, and granite fractured samples, but all show softening at high strain amplitudes (above microstrain or micron-scale displacement). All measured samples exhibit qualitatively similar time-series hysteresis loops and frequency-dependence. The low frequency stress-strain loops stiffen at the high strain static end of the sinusoidal oscillation. This shape is determined by harmonic generation in the strain, while the stress signal has low power in harmonics, confirming that the driver and electronics are not the source of this nonlinearity. We also observe that this stiffening cusp does not occur as frequency increases above 8 Hz (opposite to normal dispersion seen at higher normal stresses). We monitor the fracture surface wear with repeated cycles to show the extent of slip on mapped asperities. These observations suggest that a rate dependent, healing, process causes the nonlinear responce of fracture faces under low normal stress to periodic shear. We propose that static friction at the low strain-rate part of the cycle, when given enough time at low oscillation frequencies, causes this stiffening cusp shape in the hysteretic stress-strain curve. An analytic model with idealized contact area is used to constrain the rate-state friction constitutive model parameters needed to provide this dynamic behavior.
NASA Technical Reports Server (NTRS)
Cantu, J. M.; Madigan, C. M.
1974-01-01
A quantitative study of internal torsion in the entire tibial bone was performed by using strain gauges to measure the amount of deformation occuring at different locations. Comparison of strain measurements with physical dimensions of the bone produced the modulus of rigidity and its behavior under increased torque. Computerized analysis of the stress distribution shows that more strain occurs near the torqued ends of the bones where also most of the twisting and fracturing takes place.
Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
Zhang, Xiaohuan; Ge, Yanping; Li, Wenqing; Hu, Yan
2014-01-01
Aim: To explore the mechanisms underlying the different responses of macrophages to distinct Candida albicans strains. Methods: Bone marrow was collected from mice. Macrophages were independently incubated with 3 Candida albicans strains. Results: MyD88 expression in Candida albicans 3683 group was significantly higher than that in Candida albicans 3630 group and Candida albicans SC5314 group, and marked difference was also observed between later two groups (P<0.05). CARD9 expression in Candida albicans 3630 group was higher than that in Candida albicans 3683 group and Candida albicans SC5314 group. Fluorescence intensity was 46.78±0.79 in Candida albicans 3630 group, 32.60±1.31 in Candida albicans 3683 group and 19.40±0.58 in Candida albicans SC5314, and significant difference was observed between any two groups (P<0.05). TNF-α and IL-10 were 18.9843±0.7081 pg/ml and 11.6690±0.3167 pg/ml, respectively, in Candida albicans 3683 group, which were markedly higher than those in Candida albicans 3630 group and Candida albicans SC5314 group (P<0.05 and 0.01). Conclusion: Different Candida albicans strains may induce CARD9 expression and alter the production of ROS, TNF-α and IL-10 in macrophages, which may be one of mechanisms underlying the different killing effects of macrophages on distinct Candida albicans strains. PMID:25664026
Steinrücken, Pia; Prestegard, Siv Kristin; de Vree, Jeroen Hendrik; Storesund, Julia E; Pree, Bernadette; Mjøs, Svein Are; Erga, Svein Rune
2018-03-01
Microalgae could provide a sustainable alternative to fish oil as a source for the omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, growing microalgae on a large-scale is still more cost-intensive than fish oil production, and outdoor productivities vary greatly with reactor type, geographic location, climate conditions and microalgae species or even strains. The diatom Phaeodactylum tricornutum has been intensively investigated for its potential in large-scale production, due to its robustness and comparatively high growth rates and EPA content. Yet, most research have been performed in southern countries and with a single commercial P . tricornutum strain, while information about productivities at higher latitudes and of local strains is scarce. We examined the potential of the climate conditions in Bergen, western Norway for outdoor cultivation of P . tricornutum in flat panel photobioreactors and cultivated three different strains simultaneously, one commercial strain from Spain (Fito) and two local isolates (M28 and B58), to assess and compare their biomass and EPA productivities, and fatty acid (FA) profiles. The three strains possessed similar biomass productivities (average volumetric productivities of 0.20, 0.18, and 0.21 g L - 1 d - 1 ), that were lower compared to productivities reported from southern latitudes. However, EPA productivities differed between the strains (average volumetric productivities of 9.8, 5.7 and 6.9 mg L - 1 d - 1 ), due to differing EPA contents (average of 4.4, 3.2 and 3.1% of dry weight), and were comparable to results from Italy. The EPA content of strain Fito of 4.4% is higher than earlier reported for P . tricornutum (2.6-3.1%) and was only apparent under outdoor conditions. A principal component analysis (PCA) of the relative FA composition revealed strain-specific profiles. However, including data from laboratory experiments, revealed more significant differences between outdoor and laboratory-grown cultures than between the strains, and higher EPA contents in outdoor grown cultures.
Microstructure: Property correlation. [multiaxial fatigue damage evolution in waspaloy
NASA Technical Reports Server (NTRS)
Jayaraman, N.
1990-01-01
Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional (when the axial and torsional strain cycles are in-phase) and non-proportional (when the axial and torsional strain cycles are 90 deg out-of-phase) cyclic conditions. The deformation behavior under these different cyclic conditions were evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions and it was shown that when the slip deformation is predominant, non-proportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under non-proportional cyclic conditions, deformation was through multiple slip as opposed single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.
Raman measurements of Kevlar-29 fiber pull-out test at different strain levels
NASA Astrophysics Data System (ADS)
Wang, Quan; Lei, Zhenkun; Kang, Yilan; Qiu, Wei
2008-11-01
This paper adopted Kevlar-29 fiber monofilament embedding technology to prepare fiber/ epoxy resin tensile specimen. The specimen was pulled on a homemade and portable mini-loading device. At the same time micro-Raman spectroscopy is introduced to detect the distributions of stress on the embedded fiber at different strain levels. The characteristic peak shift of the 1610 cm-1 in Raman band has a linear relationship with the strain or stress. The experimental results show that the fiber axial stress decreases gradually from the embedded fiber-start to the embedded fiber-end at the same strain level. At different strain levels, the fiber axial stress increases along with the applied load. It reveals that there is a larger fiber axial stress distribution under a larger strain level. And the stress transfer is realized gradually from the embedded fiber-start to the fiber-end. Stress concentration exists in the embedded fiber-end, which is a dangerous region for interfacial debonding easily.
Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole
NASA Astrophysics Data System (ADS)
Fang, Te-Hua; Chang, Win-Jin; Wang, Kuan-Yu; Huang, Chao-Chun
2018-06-01
We investigated the mechanical behavior of bismuth telluride nanofilms with holes by using an equilibrium molecular dynamics (MD) approach. The holes had diameters of 20, 30, 40, and 50 Å. The thermal conductivity values of the nanofilms were calculated under different strains at different temperatures using a nonequilibrium MD simulation. The simulation revealed that the thermal conductivity of a bismuth telluride nanofilm with a hole decreases with an increase in hole diameter at different strains. For a film with a perfect structure at 300 K, a 48% reduction (from 0.33 to 0.17 W/m K) in the thermal conductivity was observed at a 7% tensile strain. In addition, the thermal conductivity increased by approximately 39% (from 0.33 to 0.46 W/m K) at a 7% compressive strain. A very low value (0.11 W/m K) of thermal conductivity is obtained for the nanofilm with a hole diameter of 50 Å at a 7% tensile strain at 300 K.
NASA Astrophysics Data System (ADS)
Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao
2018-06-01
In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
Implant overdentures with attachments have been used in clinical practice and the effect of attachments on implant strain has been frequently reported. However, most studies have focused on mandibular overdentures; there are few reports on maxillary overdentures. The purpose of this study was to examine the influence of attachment type on implant strain in maxillary overdentures under various implant configurations. A maxillary edentulous model with implants and experimental overdentures were fabricated. Four strain gauges were attached to each implant, positioned in anterior, premolar, and molar areas. Three types of unsplinted attachments-ball, locator, and magnet-were set on the implants under various implant configurations. A vertical occlusal load of 98 N was applied through the mandibular complete denture, and implant strain was compared using the Kruskal-Wallis test. Ball attachments caused the greatest amount of strain, while magnet attachments caused the least amount under all conditions. For all attachments, two anterior implants caused significantly more strain than four implants (P < .05). No significant difference was observed between subtypes in four-implant configurations except when using locator attachments. When using unsplinted attachments for maxillary implant overdentures, magnet attachments are recommended to reduce implant stress. Using only two implants, especially two anterior implants, is not recommended regardless of attachment type.
Sensitivity of inelastic response to numerical integration of strain energy. [for cantilever beam
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1976-01-01
The exact solution to the quasi-static, inelastic response of a cantilever beam of rectangular cross section subjected to a bending moment at the tip is obtained. The material of the beam is assumed to be linearly elastic-linearly strain-hardening. This solution is then compared with three different numerical solutions of the same problem obtained by minimizing the total potential energy using Gaussian quadratures of two different orders and a Newton-Cotes scheme for integrating the strain energy of deformation. Significant differences between the exact dissipative strain energy and its numerical counterpart are emphasized. The consequence of this on the nonlinear transient responses of a beam with solid cross section and that of a thin-walled beam on elastic supports under impulsive loads are examined.
NASA Technical Reports Server (NTRS)
Ochola, Donasian O.; Sharif, Rabab; Bedford, Joel S.; Keefe, Thomas J.; Kato, Takamitsu A.; Fallgren, Christina M.; Demant, Peter; Costes, Sylvain V.; Weil, Michael M.
2018-01-01
The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.
NASA Astrophysics Data System (ADS)
Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar
2017-08-01
In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.
NASA Technical Reports Server (NTRS)
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
Zhao, A-Na; Ding, Wan-Long; Zhu, Dian-Long
2006-10-01
To screen the Trichodenna spp. for strong antagonist against ginseng root pathogens. The biological characters of ten Trichoderma strains were compared by culturing on different media. And their antagonistic activity against Phytophthora cactorum, Cylindrocarpon destructans and Rhizoctonia solani were measured on PDA. Tv04-2 and Th3080 showed a good growth on soil solution medium and PDA, and also showed high inhibitory efficacy to the three pathogens. The two Trichoderma strains showed different growth rate under light conditions and pH. Trichoderma strains were sensitive to most fungicides used in ginseng root disease controlling, however Tv04-2 was not sensitive to the fungicide Junchong Jueba.
Ramírez, Elisa A; Velázquez, Daniela; Lara, Alvaro R
2016-04-01
To evaluate the combination of a culture medium employing glucoamylase-mediated glucose reléase from a gluco-polysaccharide and an E. coli strain engineered in its glucose transport system for improving plasmid DNA (pDNA) production. The production of pDNA was tested using E. coli DH5α grown in shake-flasks and the recently developed VH33 Δ(recA deoR)-engineered strain, which utilizes glucose more efficiently than wild type strains. Three glucoamylase concentrations for releasing glucose from the polysaccharide carbon source were used: 1, 2 and 3 U l(-1). Both strains reached similar cell densities ranging from 5 to 8.8 g l(-1) under the different conditions. The highest pDNA yields on biomass (YpDNA/X) for both strains were obtained when 3 U enzyme l(-1)were used. Under these conditions, 35 ± 3 mgof pDNA l(-1) were produced by DH5α after 24 h of culture. Under the same conditions, the engineered strain produced 66 ± 1 mgpDNAl(-1) after 20 h. pDNA supercoiled fractionswere close to 80 % for both strains. The pDNA concentration achieved by the engineered E. coli was 89 % higher than that of DH5α. The combination of the engineered strain and enzyme-controlled glucose release is an attractive alternative for pDNA production in shake-flasks.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun
2017-12-01
The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.
Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke
2018-04-01
Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Sigrist, Manfred
2018-05-01
Motivated by recent experiments on Sr2RuO4, the effect of uniaxial strain on the chiral p-wave superconductor is discussed. We study particularly the relation between the topological indices and different pairing states in the superconducting phase through the thermal Hall conductivity, which is proportional to temperature and the Chern number in the very low-temperature limit. We show that the temperature-dependence of the thermal Hall conductivity under uniaxial strain depends strongly on the form of the pairing state. The obtained result may provide a possible experimental probe for the pairing structure in Sr2RuO4.
Kimes, Nikole E; López-Pérez, Mario; Ausó, Eva; Ghai, Rohit; Rodriguez-Valera, Francisco
2014-10-26
Alteromonas macleodii is a ubiquitous gammaproteobacterium shown to play a biogeochemical role in marine environments. Two A. macleodii strains (AltDE and AltDE1) isolated from the same sample (i.e., the same place at the same time) show considerable genomic differences. In this study, we investigate the transcriptional response of these two strains to varying growth conditions in order to investigate differences in their ability to adapt to varying environmental parameters. RNA sequencing revealed transcriptional changes between all growth conditions examined (e.g., temperature and medium) as well as differences between the two A. macleodii strains within a given condition. The main inter-strain differences were more marked in the adaptation to grow on minimal medium with glucose and, even more so, under starvation. These differences suggested that AltDE1 may have an advantage over AltDE when glucose is the major carbon source, and co-culture experiments confirmed this advantage. Additional differences were observed between the two strains in the expression of ncRNAs and phage-related genes, as well as motility. This study shows that the genomic diversity observed in closely related strains of A. macleodii from a single environment result in different transcriptional responses to changing environmental parameters. This data provides additional support for the idea that greater diversity at the strain level of a microbial community could enhance the community's ability to adapt to environmental shifts.
Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior
NASA Astrophysics Data System (ADS)
Rahmat, Meysam
2018-05-01
A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinskiy, S.; National University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 119049; Prokoshkin, S.
2014-02-15
Phase and structure transformations in biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) shape memory alloys (at.%) under and without load in the − 150 to 100 °S temperature range are studied in situ using an original tensile module for a low-temperature chamber of an X-ray diffractometer. Alpha″- and beta-phase lattice parameters, the crystallographic resource of recovery strain, phase and structure transformation sequences, and microstress appearance and disappearance are examined, compared and discussed. For both alloys, the crystallographic resource of recovery strain decreases with temperature increase to become 4.5% for TNZ and 2.5% for TNT alloy (at RT). Loading at low temperaturesmore » leads to additional α″-phase formation and reorientation. Heating under load, as compared to strain-free heating, affects the reverse transformation sequence of both alloys in different ways. For TNZ alloy, strain-free heating results in simultaneous ω→β and α″→β transformations, whereas during heating under stress, they are sequential: β + ω→α″ precedes α″→β. For TNT alloy, strain-free heating results in reverse α″→β transformation, whereas during heating under stress, α″→β transformation is preceded by α″-phase reorientation. - Highlights: • Comparative in situ XRD analysis of Ti–Nb–Zr(Ta) shape memory alloys is realized. • Lattice parameters of β- and α″-phases are calculated in the − 150 to + 100 °C range. • The higher the temperature, the lower the α″→β transformation strain. • Loading at low temperatures results in α″-phase formation and reorientation. • Transformation sequences upon heating with and without loading are different.« less
Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher; Krych, Aaron J; Hewett, Timothy E
2018-03-01
Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Controlled laboratory study. Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males ( F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance ( F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of "maximum ACL strain" demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes.
Buch, Aditi; Archana, G; Naresh Kumar, G
2008-01-01
Most phosphate-solubilizing bacteria (PSB), including the Pseudomonas species, release P from sparingly soluble mineral phosphates by producing high levels of gluconic acid from extracellular glucose, in a reaction catalyzed by periplasmic glucose dehydrogenase, which is an integral component of glucose catabolism of pseudomonads. To investigate the differences in the glucose metabolism of gluconic acid-producing PSB pseudomonads and low gluconic acid-producing/non-PSB strains, several parameters pertaining to growth and glucose utilization under P-sufficient and P-deficient conditions were monitored for the PSB isolate Pseudomonas aeruginosa P4 (producing approximately 46 mM gluconic acid releasing 437 microM P) and non-PSB P. fluorescens 13525. Our results show interesting differences in the channeling of glucose towards gluconate and other catabolic end-products like pyruvate and acetate with respect to P status for both strains. However, PSB strain P. aeruginosa P4, apart from exhibiting better growth under both low and high Pi conditions, differed from P. fluorescens 13525 in its ability to accumulate gluconate under P-solubilizing conditions. These alterations in growth, glucose utilization and acid secretion are correlated with glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate carboxylase activities. The ability to shift glucose towards a direct oxidative pathway under P deficiency is speculated to underlie the differential gluconic acid-mediated P-solubilizing ability observed amongst pseudomonads.
Biochemical characterisation of the esterase activities of wine lactic acid bacteria.
Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir
2007-11-01
Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.
Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains
Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew
2014-01-01
Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and “motivation during discrimination.” Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks. PMID:24586288
Sugar fermentation in probiotic bacteria--an in vitro study.
Hedberg, M; Hasslöf, P; Sjöström, I; Twetman, S; Stecksén-Blicks, C
2008-12-01
Food supplemented with probiotic bacteria is a rapidly growing sector of the market. The aim of the present study was to evaluate and compare the acid production of selected probiotic strains available in commercial products. Six Lactobacillus strains (Lactobacillus plantarum 299v and 931; Lactobacillus rhamnosus GG and LB21; Lactobacillus paracasei subsp. paracasei F19, and Lactobacillus reuteri PTA 5289) were cultivated at 37 degrees C in an anaerobic atmosphere on Man, Rogosa, Shape (MRS) agar for 48 h or MRS broth for 16 h. After centrifugation, the cells were washed and resuspended in sterile phosphate-buffered saline and immediately subjected to a fermentation assay with 12 different carbohydrates (nine sugars and three sugar alcohols) in microtiter plates with a pH indicator. The plates were examined for color changes after 24, 48, and 72 h of incubation under aerobic and anaerobic conditions. Three scores were used: negative (pH > 6.8); weak (pH 5.2-6.8), and positive (pH < 5.2). The strains were characterized with the API 50 CH system to confirm their identity. L. plantarum fermented all the sugars except for melibiose, raffinose, and xylitol. Both L. rhamnosus strains were generally less active although L. rhamnosus GG was slightly more active than strain LB21 in the 5% CO(2) setting. The latter strain exhibited negative reactions for sucrose, maltose, arabinose, and sorbitol under anaerobic conditions. The assays with L. paracasei and L. reuteri had negative or weak reactions for all tested sugars under both aerobic and anaerobic conditions. The metabolic capacity to form acid from dietary sugars differed significantly between the various probiotic strains.
Roignant, Jeanne; Badel, Éric; Leblanc-Fournier, Nathalie; Brunel-Michac, Nicole; Ruelle, Julien; Moulia, Bruno; Decourteix, Mélanie
2018-05-11
Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.
Macdonald, K A; McNaughton, L R; Verkerk, G A; Penno, J W; Burton, L J; Berry, D P; Gore, P J S; Lancaster, J A S; Holmes, C W
2007-08-01
With the introduction of a protein milk payment system in New Zealand in 1988, there was an influx of North American (NA) Holstein-Friesian (HF) genetics into New Zealand (NZ) dairy herds, leading to an increase in the average percentage of NA genetics in NZ HF cows--from 2% in 1980 to 38% in 1999. Of interest has been the effect this change has had on farm profitability and on the management required for these animals, as well as the phenotypic changes that have occurred within the national herd under the breeding programs operated in NZ from 1970 to 1990. The objective of this study was to quantify differences in body dimensions, body weights, and puberty-related parameters among 3 strains of HF, representing animals of NZ origin representative of the genetics present in 1970 and 1990 and of NA origin with 1990s genetics. A total of 172 animals born in 1999 were compared. The strains were 1) NZ70, a strain of NZ Friesian (average 7% NA genetics) equivalent to high-genetic-merit (high Breeding Worth) cows farmed in the 1970s; 2) NZ90, a strain of HF of NZ origin (average 24% NA genetics) typical of the animals present in the 1990s; and 3) NA90, a strain of HF of NA origin (average of 91% NA genetics) typical of animals present in the 1990s. The differences in BW among all strains were significant at 6 and 12 mo of age. At 15 and 24 mo, the 2 NZ strains were significantly lighter than the NA90 animals. At 24 mo of age (i.e., prior to first calving), the NA90 strain animals (BW = 515 kg) were 22 and 34 kg heavier than the NZ90 and NZ70 strains. The body length of the NA90 strain was greater than either of the 2 NZ strains; the differences among the NA90 strain and the 2 NZ strains varied from 2 to 6 cm, with the differences generally being greater at older ages. The trend in heart girth difference among strains was similar to that observed for body length. The wither height of the NA90 animals was greater than that of the NZ strains by 1 to 7 cm, although there was no significant difference between the NA90 and NZ90 strains at birth. At puberty the NA90 heifers were 20 d older and 20 kg heavier than the NZ90 heifers, which in turn were 25 kg and 25 d older than the NZ70 heifers. The NA90 strain had a heavier mature body weight, and their older age at puberty suggested either that they mature later or that, under pastoral conditions, their growth rate is limited by their inability to consume sufficient metabolizable energy as grazed pasture, with a consequent delay in puberty. Results from this study will be useful in revising target BW in growing heifers of different germplasm.
The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie
2011-01-01
This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.
Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika
2018-02-01
In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30 ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hastings, J W; Holzapfel, W H; Niemand, J G
1986-10-01
Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium.
Hastings, J W; Holzapfel, W H; Niemand, J G
1986-01-01
Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium. PMID:3096207
Sturm, M E; Assof, M; Fanzone, M; Martinez, C; Ganga, M A; Jofré, V; Ramirez, M L; Combina, M
2015-08-03
Dekkera/Brettanomyces bruxellensis is considered a major cause of wine spoilage, and 4-ethylphenol and 4-ethylguaiacol are the most abundant off-aromas produced by this species. They are produced by decarboxylation of the corresponding hydroxycinnamic acids (HCAs), followed by a reduction of the intermediate 4-vinylphenols. The aim of the present study was to examine coumarate decarboxylase (CD) and vinylphenol reductase (VR) enzyme activities in 5 native D. bruxellensis strains and determine their relation with the production of ethylphenols under 'wine-like' conditions. In addition, biomass, cell culturability, carbon source utilization and organic acids were monitored during 60 days. All strains assayed turned out to have both enzyme activities. No significant differences were found in CD activity, whilst VR activity was variable among the strains. Growth of D. bruxellensis under 'wine-like' conditions showed two growth phases. Sugars were completely consumed during the first growth phase. Transformation of HCAs into ethylphenols also occurred during active growth of the yeast. No statistical differences were observed in volatile phenol levels produced by the strains growing under 'wine-like' conditions, independently of the enzyme activity previously recorded. Furthermore, our results demonstrate a relationship between the physiological state of D. bruxellensis and its ability to produce ethylphenols. Inhibition of growth of D. bruxellensis in wine seems to be the most efficient way to avoid ethylphenol production and the consequent loss of wine quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
Shahid, M; Akram, M S; Khan, M A; Zubair, M; Shah, S M; Ismail, M; Shabir, G; Basheer, S; Aslam, K; Tariq, M
2018-06-01
The study was planned to characterize Planomicrobium sp. MSSA-10 for plant-beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Strain MSSA-10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l -1 NaCl and exhibited 1-aminocyclopropane-1-carboxylic acid deaminase activity up to 1·5 mol l -1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin-resistant derivatives of MSSA-10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Growth-stimulating effect of MSSA-10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Planomicrobium sp. MSSA-10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity. © 2018 The Society for Applied Microbiology.
Zahir, Zahir Ahmad; Ghani, Usman; Naveed, Muhammad; Nadeem, Sajid Mahmood; Asghar, Hafiz Naeem
2009-05-01
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m(-1). Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m(-1). Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m(-1). Similarly, chlorophyll content and K(+)/Na(+) of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.
Effect of strain rate and dislocation density on the twinning behavior in Tantalum
Florando, Jeffrey N.; El-Dasher, Bassem S.; Chen, Changqiang; ...
2016-04-28
The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10 –4/s to 10 3/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount ofmore » pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. Additionally, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less
High pressure phase transformations revisited
NASA Astrophysics Data System (ADS)
Levitas, Valery I.
2018-04-01
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.
High pressure phase transformations revisited.
Levitas, Valery I
2018-04-25
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum theories, and (d) to couple experimental, theoretical, and computational studies of the behavior of a tested sample to extract information about fields of stress and strain tensors and concentration of high pressure phase, transformation criteria and kinetics. The ideal characterization should contain complete information which is required for simulation of the same experiments.
Flores, Anthony R.; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J.; Holder, Michael E.; Petrosino, Joseph F.; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J.; Shelburne, Samuel A.
2015-01-01
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans. PMID:25941374
Flores, Anthony R; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J; Holder, Michael E; Petrosino, Joseph F; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J; Shelburne, Samuel A
2015-05-19
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Temperature affects the morphology and calcification of Emiliania huxleyi strains
NASA Astrophysics Data System (ADS)
Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia
2016-05-01
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
NASA Astrophysics Data System (ADS)
Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi
2002-12-01
We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.
Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V
2005-01-01
The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.
Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu
2013-01-01
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684
Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C
2010-06-01
An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.
Development of hybrid braided composite rods for reinforcement and health monitoring of structures.
Rana, Sohel; Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A Gomes
2014-01-01
In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible.
Development of Hybrid Braided Composite Rods for Reinforcement and Health Monitoring of Structures
Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A. Gomes
2014-01-01
In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible. PMID:24574867
Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels
NASA Astrophysics Data System (ADS)
Karaman, I.; Balzer, M.; Sehitoglu, Huseyin; Maier, H. J.
1998-02-01
The effect of different stress states on the stress-induced martensitic transformation of retained austenite was investigated in carburized 4320 steels with an initial retained austenite content of 15 pct. Experiments were conducted utilizing a specialized pressure rig and comparison between stress-strain behaviors of specimens with different austenitization and tempering histories was performed under these stress states. Experimental results indicated considerable asymmetry between tension and compression, with triaxial stress states resulting in the highest strength levels for the untempered material. Fine carbide precipitates due to low-temperature tempering increased the strength and ductility of the specimens and also changed the austenite-to-martensite transformation behavior. Numerical simulations of stress-strain behaviors under different stress states were obtained, with an existing micromechanical self-consistent framework utilizing the crystallographic theory of austenite/martensite transformation and the minimum complementary free-energy principle. The model was modified for carburized steels upon microstructural investigation and predicted the same trends in effective stress-effective strain behavior as observed experimentally.
Tavanti, Arianna; Pardini, Giacomo; Campa, Daniele; Davini, Paola; Lupetti, Antonella; Senesi, Sonia
2004-01-01
Two karyotypes of oral Candida albicans isolates, named b and c, constituted >80% of a collection from healthy carriers (22 b and 16 c isolates) and oral candidiasis patients who were either infected (31 b and 16 c isolates) or uninfected (13 b and 38 c isolates) with human immunodeficiency virus (HIV). The prevalence of the b and c karyotypes within HIV-positive and HIV-negative patients, respectively, who were suffering from oral candidiasis (P ≤ 0.0001) suggested that these two types possessed different virulence potentials. Since C. albicans proteinases (Saps) are virulence factors in oral candidiasis, we evaluated whether the b and c karyotypes secreted different levels of Saps and expressed different patterns of Sap-encoding genes (SAP1-10). We found that the mean value of Sap activity was significantly lower (P = 0.003) in the commensal type than in the infectious b karyotype, whereas Sap activity in the commensal c type was as high as that registered for the infectious c strains. Marked differences in SAP mRNA expression were observed in commensal strains under non-Sap-inducing conditions, with all SAP genes being expressed only by strains with the c karyotype; interestingly, none of the commensal b strains expressed SAP2. In addition, while all of the SAP1-10 genes were detectable under Sap-inducing conditions, the timing of their expression during growth differed significantly, with mRNAs of SAP1-10 genes detected at 8 and 24 h postinoculation in c and b commensal strains, respectively. This provides the first evidence that commensal oral C. albicans isolates with distinct karyotypes are characterized by different patterns of SAP1-10 gene expression and different levels of Sap secretion. PMID:15472333
Strain rate dependent calcite microfabric evolution at natural conditions
NASA Astrophysics Data System (ADS)
Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde
2014-05-01
Crystal plastic deformational behaviour of calcite has been the focus of many experimental studies. Different strain rates, pressure and temperature conditions have been addressed to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A flanking structure developed in almost pure calcite marble on Syros (Cyclades, Greece). Due to rotation of a planar feature (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation to bulging recrystallization can be observed in the dislocation creep regime. Crystallographic preferred orientations (CPO) and the grade of intracrystalline deformation were measured on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear evidence for grain size sensitive deformation mechanisms at smaller grain sizes (3.6 μm) consistent with experimental observations and determined flaw laws. The results of this study are compared with experimental data, closing the gap between experimental and natural geological strain rates.
Martín, Sonsoles; Lyupina, Yulia; Crespo, José Antonio; González, Begoña; García-Lecumberri, Carmen; Ambrosio, Emilio
2003-05-30
Previously, we have shown that Lewis (LEW) rats acquire faster than Fischer 344 (F344) rats operant food- and morphine-reinforced tasks under fixed-ratio schedules of reinforcement. The first purpose of the present work has been to study if differences in operant responding behavior may participate in the reported differences in morphine self-administration behavior between both inbred rat strains. To this end, we have analyzed the microstructure of responding obtained under a variable-interval (VI) of food reinforcement by calculating the inter-response time (IRT) for each rat strain. LEW rats exhibited shorter IRTs than F344 rats, suggesting that LEW rats may have an inherent high or compulsive operant responding activity. When subjects of both inbred rat strains were submitted to a schedule of morphine reinforcement of high responding requirements such as progressive ratio schedules, LEW rats also reached significantly higher breaking points and final response ratio than F344 rats for i.v. morphine self-administration. Given that there are neurochemical differences between both rat strains and that glutamatergic N-methyl-D-aspartate (NMDA) and dopaminergic D(1) receptors have been involved in operant responding behavior, a second purpose of this work has been to measure basal NMDA and D(1) receptor levels in these rat strains by quantitative receptor autoradiography. Compared to F344 rats, LEW rats showed higher basal NMDA receptor levels in frontal and cingulate cortex, caudate putamen, central amygdaloid nuclei, and intermediate white layer of superior colliculus, and higher basal D(1) receptor levels in several areas of hippocampus and thalamus, and substantia nigra pars reticulata. Taken together, these results suggest that an inherent high operant responding activity of LEW rats may have a role in the previous reported faster acquisition of opiate-reinforced behavior in operant self-administration paradigms under fixed-ratio schedules of reinforcement. In addition, a basal higher NMDA and D(1) receptor levels of LEW rats compared to F344 rats may participate in the neurochemical background that mediates the behavioral differences between both inbred rat strains.
Strain rate dependent calcite microfabric evolution - an experiment carried out by nature
NASA Astrophysics Data System (ADS)
Rogowitz, A.; Huet, B.; Grasemann, B.; Habler, G.
2013-12-01
The deformation behaviour of calcite has been studied extensively in a number of experiments. Different strain rates and pressure and temperature conditions have been used to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A secondary shear zone (flanking structure) developed in almost pure calcite marble on Syros (Greece). Due to rotation of an elliptical inclusion (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation (SGR) to bulging (BLG) recrystallization can be observed in the dislocation creep regime. Textures and the degree of intracrystalline deformation have been measured by electron back scatter diffraction (EBSD). At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear evidence for grain size sensitive deformation mechanisms at smaller grain sizes (3.6 μm) consistent with experimental observations and determined flaw laws. Although mylonitic layers evolve at high (10^-10 s^-1) and intermediate strain rates (10^-11 s^-1) by SGR recrystallization we observe variations in texture leading to the assumption that at varying strain rates different gliding systems were active. The results of this study are compared with experimental data, closing the gap between experimental and natural geological strain rates.
Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.
Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C
2017-07-01
An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.
Noble, N A; Tanaka, K R
1981-02-01
We have studied the erythrocyte enzyme phosphofructokinase (PFK) from two strains of Long-Evans rats with genetically determined differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels. The DPG difference is due to two alleles at one locus. With one probable exception, the genotype at this locus is always associated with the hemoglobin (Hb) electrophoretic phenotype, due to a polymorphism at the III beta-globin locus. The enzyme PFK has been implicated in the DPG difference because glycolytic intermediate levels suggest that this enzyme has a higher in vivo activity in High-DPG strain rats, although the total PFK activity does not differ. We report here that partially purified erythrocyte PFK from Low-DPG strain cells is inhibited significantly more at physiological levels of DPG (P less than 0.01) than PFK from High-DPG strain erythrocytes. Citrate and adenosine triphosphate also inhibit the Low-DPG enzyme more than the High-DPG enzyme. Therefore, a structurally different PFK, with a greater sensitivity to inhibitors, may explain the lower DPG and ATP levels observed in Low-DPG strain animals. These data support a two-locus (Hb and PFK) hypothesis and provide a gene marker to study the underlying genetic and physiologic relationships of these loci.
Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.
Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D
2010-01-01
Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.
NASA Astrophysics Data System (ADS)
Nacif el Alaoui, Reda
Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.
Sharp, Richard J.; Williams, Ralph A. D.
1988-01-01
Seventeen pink-pigmented strains of the genus Thermus were isolated from samples collected from thermal areas of Iceland. The strains were examined by using phenotypic characterization and DNA:DNA homology and were compared with recognized strains. Visually, the strains could be divided into three groups based on their pigmentation; however, spectroscopic studies of the pigments indicated little difference among them. Most strains required a vitamin supplement for growth and used fructose, maltose, mannose, or sucrose as the sole carbon source. In the presence of nitrate, two strains were able to grow under anaerobic conditions. The optimum growth temperature was 60°C; growth did not occur at 30 or 70°C. PMID:16347714
[Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].
Kutyrev, V V; Smirnova, N I
2003-01-01
The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.
Mekala, Lakshmi Prasuna; Mohammed, Mujahid; Chintalapati, Sasikala; Chintalapati, Venkata Ramana
2018-01-05
Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13 C 6 -phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.
Arai, T; Ando, T; Kusakabe, A; Ullah, M A
1983-01-01
We surveyed plasmids in naturally occurring Vibrio parahemolyticus strains isolated in Japan and Bangladesh. Among the strains isolated in Japan, about half of the strains isolated from stools of patients of domestic diarrhea outbreaks as well as of travelers returning from East Asia were found to have plasmids, but no strains from foods had plasmids. In contrast, among the strains isolated in Bangladesh, none of the four strains isolated from patients had plasmids, but two out of eight strains isolated from water had plasmids, suggesting that plasmids are common in strains from the water in Bangladesh. All plasmids so far reported in V. parahemolyticus were detected in strains isolated from stools of patients. Incidences of plasmids in this organism were not so high in either area. In Japan, all plasmids were detected in strains from human intestines at 37 C, but in Bangladesh, where the temperature is around 30-40 C, the plasmids were detected in strains from the natural environment. These results suggested the possibility that these plasmids can come from different bacteria under rather high temperatures and that incidences of plasmids are influenced by the incidences of plasmids in bacteria present in the vicinity of V. parahemolyticus strains. None of these plasmids were found to have any relation to the biological characters tested.
Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R
2013-12-01
Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji
2017-05-01
Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Zhonghua; Gao, Yulu; Yang, Hua; Bao, Haiyang; Qin, Lianhua; Zhu, Changtai; Chen, Yawen; Hu, Zhongyi
2016-01-01
Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.
NASA Astrophysics Data System (ADS)
Zhao, Qiwen; Yang, Lianfa; He, Yulin
2018-05-01
The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.
2014-01-01
In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.
Virulence characteristics of Escherichia coli in nosocomial urinary tract infection.
Ikäheimo, R; Siitonen, A; Kärkkäinen, U; Mäkelä, P H
1993-06-01
We examined 148 strains of Escherichia coli isolated from the urine from patients with nosocomial urinary tract infection (UTI). The prevalence of P fimbriation was only 11.5%. Of the strains, 17.6% expressed non-P M(R) adhesins (defined as strains expressing mannose-resistant but not P-specific hemagglutination); 33.1% produced hemolysin, and 15.2% expressed type 1C fimbriae. O6 was the most common group of O antigens (12.2%), closely followed by O75 (9.5%); both of these groups are relatively uncommon (4.5% and 1%, respectively) in fecal strains isolated from healthy adults. Of the strains with O6 and O75 antigens, 78.8% and 79% produced hemolysin, but of all other strains causing UTI, only 21% produced hemolysin. Of the strains with O6 antigens, 61% expressed non-P M(R) adhesins, but only 12% of all other strains causing UTI expressed non-P M(R) adhesins. There were no significant differences in the prevalence of virulence properties between strains isolated from patients with or without an underlying medical illness or between strains causing different clinical categories of UTI. We conclude that the prevalence of bacterial virulence factors is low among patients with nosocomial UTI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au
2014-05-05
Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less
Wang, Yali; Gao, Yuan; Li, Chao; Gao, Hong; Zhang, Cheng-Cai; Xu, Xudong
2018-07-01
Anabaena sp. strain PCC 7120 is a model strain for molecular studies of cell differentiation and patterning in heterocyst-forming cyanobacteria. Subtle differences in heterocyst development have been noticed in different laboratories working on the same organism. In this study, 360 mutations, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels; 1 to 3 bp), fragment deletions, and transpositions, were identified in the genomes of three substrains. Heterogeneous/heterozygous bases were also identified due to the polyploidy nature of the genome and the multicellular morphology but could be completely segregated when plated after filament fragmentation by sonication. hetC is a gene upregulated in developing cells during heterocyst formation in Anabaena sp. strain PCC 7120 and found in approximately half of other heterocyst-forming cyanobacteria. Inactivation of hetC in 3 substrains of Anabaena sp. PCC 7120 led to different phenotypes: the formation of heterocysts, differentiating cells that keep dividing, or the presence of both heterocysts and dividing differentiating cells. The expression of P hetZ - gfp in these hetC mutants also showed different patterns of green fluorescent protein (GFP) fluorescence. Thus, the function of hetC is influenced by the genomic background and epistasis and constitutes an example of evolution under way. IMPORTANCE Our knowledge about the molecular genetics of heterocyst formation, an important cell differentiation process for global N 2 fixation, is mostly based on studies with Anabaena sp. strain PCC 7120. Here, we show that rapid microevolution is under way in this strain, leading to phenotypic variations for certain genes related to heterocyst development, such as hetC This study provides an example for ongoing microevolution, marked by multiple heterogeneous/heterozygous single nucleotide polymorphisms (SNPs), in a multicellular multicopy-genome microorganism. Copyright © 2018 American Society for Microbiology.
Koroleva, G A; Lashkevich, V A; Voroshilova, M K
1977-01-01
Multiplication of virulent and vaccine strains of poliovirus type I, II and III in laboratory animals of different species was studied comparatively. The main criterion of virus reproduction was the production of the photoresistant virus progeny after inoculation of the animals with proflavin-photosensitized virus strains. On the whole, virulent poliovirus strains were characterized by replication in a wide range of hosts (monkeys, cotton rats, white mice, guinea pigs, rabbits, chickens, chick embryos), a low infective dose, production of the photoresistant progeny to a high titre, clinically overt disease in some animal species. The vaccine strains multiplied in a norrower range of hosts, had a high infective dose, a low titre of virus progeny, and caused no clinical symptoms of infection. These differences may serve as a marker for differentiation between virulent and attenuated strains in vivo. Administration of guanidine before inoculation of newborn cotton rats completely prevented or delayed by several days the production of photoresistant virus progeny. This fact confirms the stability of the proflavin-poliovirus complex under conditions ruling out virus replication.
Lattice strain measurements on sandstones under load using neutron diffraction
NASA Astrophysics Data System (ADS)
Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.
2000-11-01
Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.
Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T
2015-11-21
The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.
Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun
2014-01-01
Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature.
Barberis, Carla; Astoreca, Andrea; Fernandez-Juri, María Guillermina; Dalcero, Ana María; Magnoli, Carina
2010-01-01
The effect of mixtures of antioxidants butylated hydroxyanisol (BHA) and propyl paraben (PP) on lag phase, growth rate and ochratoxin A (OTA) production by four Aspergillus section Nigri strains was evaluated on peanut meal extract agar (PMEA) under different water activities (aw). The antioxidant mixtures used were: BHA + PP (mM), M1 (0.5 + 0.5), M2 (1.0 + 0.5), M3 (2.5 + 0.5), M4 (0.5 + 1.0), M5 (1.0 + 1.0), M6 (2.5 + 1.0), M7 (5.0 + 2.5) and M8 (10 + 2.5). The mixture M8 completely suppressed mycelial growth for all strains. A significant stimulation in OTA production was observed with mixtures M1 to M5 mainly at the highest aw; whereas M6, M7 and M8 completely inhibited OTA production in all strains assayed; except M6 in A. carbonarius strain (RCP G). These results could enable a future intervention strategy to minimize OTA contamination. PMID:22069644
Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe
NASA Astrophysics Data System (ADS)
Bai, Zhitong; Fan, Yue
2018-03-01
The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.
Matson, Liana M; McCarren, Hilary S; Cadieux, C Linn; Cerasoli, Douglas M; McDonough, John H
2018-01-15
Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences. Published by Elsevier B.V.
Jamal, Mamdoh T; Pugazhendi, Arulazhagan
2018-06-01
A halophilic bacterial consortium was enriched from Red Sea saline water and sediment samples collected from Abhor, Jeddah, Saudi Arabia. The consortium potentially degraded different low (above 90% for phenanthrene and fluorene) and high (69 ± 1.4 and 56 ± 1.8% at 50 and 100 mg/L of pyrene) molecular weight polycyclic aromatic hydrocarbons (PAHs) at different concentrations under saline condition (40 g/L NaCl concentration). The cell hydrophobicity (91° ± 1°) and biosurfactant production (30 mN/m) confirmed potential bacterial cell interaction with PAHs to facilitate biodegradation process. Co-metabolic study with phenanthrene as co-substrate during pyrene degradation recorded 90% degradation in 12 days. The consortium in continuous stirred tank reactor with petroleum refinery wastewater showed complete and 90% degradation of low and high molecular weight PAHs, respectively. The reactor study also revealed 94 ± 1.8% chemical oxygen demand removal by the halophilic consortium under saline condition (40 g/L NaCl concentration). The halophilic bacterial strains present in the consortium were identified as Ochrobactrum halosaudis strain CEES1 (KX377976), Stenotrophomonas maltophilia strain CEES2 (KX377977), Achromobacter xylosoxidans strain CEES3 (KX377978) and Mesorhizobium halosaudis strain CEES4 (KX377979). Thus, the promising halophilic consortium was highly recommended to be employed in petroleum saline wastewater treatment process.
Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui
2014-05-25
Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata. Copyright © 2014 Elsevier B.V. All rights reserved.
Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.
Della-Bianca, B E; Gombert, A K
2013-12-01
Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.
NASA Astrophysics Data System (ADS)
Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric
2013-02-01
The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong
2018-03-01
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ribeiro, V B; Destro, M T
2014-09-01
Control of Listeria monocytogenes in food processing facilities is a difficult issue because of the ability of this microorganism to form biofilms and adapt to adverse environmental conditions. Survival at high concentrations of sodium chloride and growth at refrigeration temperatures are two other important characteristics of L. monocytogenes isolates. The aim of this study was to compare the growth characteristics under stress conditions at different temperatures of L. monocytogenes serotypes responsible for the majority of clinical cases from different sources. Twenty-two L. monocytogenes isolates, 12 from clinical cases (8 serotype 4b and 4 serotype 1/2a) and 10 from food (6 serotype 4b and 4 serotype 1/2a), and an L. monocytogenes Scott A (serotype 4b) reference strain were analyzed for the ability to grow in brain heart infusion broth plus 1.9 M NaCl (11%) at 4, 10, and 25°C for 73, 42, and 15 days, respectively. The majority of L. monocytogenes strains was viable or even grew at 4°C and under the high osmotic conditions usually used to control pathogens in the food industry. At 10°C, most strains could adapt and grow; however, no significant difference (P > 0.05) was found for lag-phase duration, maximum growth rate, and maximum cell density. At 25°C, all strains were able to grow, and populations increased by up 5 log CFU/ml. Clinical strains had a significantly longer lag phase and lower maximum cell density (P < 0.05) than did food strains. Regarding virulence potential, no significant differences in hemolytic activity were found among serotypes; however, serotype 4b strains were more invasive in Caco-2 cells than were serotype 1/2a strains (P < 0.05). The global tendency of decreasing NaCl concentrations in processed foods for health reasons may facilitate L. monocytogenes survival and growth in these products. Therefore, food companies must consider additional microbial growth barriers to assure product safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumazawa, S.; Mitsui, A.
Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N/sub 2/ as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact thatmore » the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O/sub 2/ evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O/sub 2/ on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7. 32 references, 5 figures.« less
Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori.
Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee
2016-01-01
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori . Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA . This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.
Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori
Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee
2016-01-01
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains. PMID:28018334
Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza
2015-08-05
Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón
2016-09-15
Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.
Characteristics of Sleep and Wakefulness inWild-Derived Inbred Mice
HIYOSHI, Hideyuki; TERAO, Akira; OKAMATSU-OGURA, Yuko; KIMURA, Kazuhiro
2014-01-01
Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness. PMID:24770646
Geisert, M; Rose, T; Bauer, W; Zahn, R K
1987-01-01
Pigment analysis of Nanochlorum eucaryotum on two strains grown under different gaseous conditions was performed. Air-gassed control cultures did not differ qualitatively with respect to the content of chlorophylls a and b, carotenes alpha and beta, lutein, violaxanthin, neoxanthin and cryptoxanthin in comparison with cultures grown under natural gas. The absolute pigment content per cell increased in cultures grown with natural gas. Growth of N. eucaryotum depends on CO2 which is present in concentrations up to 2.0 vol% in natural gas. N. eucaryotum cannot utilize methane and is therefore not methylotrophic. In cultures of N. eucaryotum grown with natural gas and in air-gassed cultures under nitrogen deficient conditions the secondary carotenoids canthaxanthin and astaxanthin could be detected. In air-gassed cultures of strain N. eucaryotum Colona the same secondary carotenoids have been found, while secondary carotenoids were never found in strain N. eucaryotum Mainz. Cell walls of N. eucaryotum always contain sporopollenin as confirmed by isolation, elemental analysis, infrared absorption spectrophotometry, acetolysis-resistance and electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajilar, Shahin, E-mail: shajilar@iastate.edu; Shafei, Behrouz, E-mail: shafei@iastate.edu
The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanicalmore » properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.« less
Peris, D; Pérez-Través, L; Belloch, C; Querol, A
2016-02-01
Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Establishment and application of mechanical strain loading system of multi-channel cells].
Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin
2012-02-01
Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.
Tanaka-Tsuno, Fumiko; Mizukami-Murata, Satomi; Murata, Yoshinori; Nakamura, Toshihide; Ando, Akira; Takagi, Hiroshi; Shima, Jun
2007-10-01
In the modern baking industry, high-sucrose-tolerant (HS) and maltose-utilizing (LS) yeast were developed using breeding techniques and are now used commercially. Sugar utilization and high-sucrose tolerance differ significantly between HS and LS yeasts. We analysed the gene expression profiles of HS and LS yeasts under different sucrose conditions in order to determine their basic physiology. Two-way hierarchical clustering was performed to obtain the overall patterns of gene expression. The clustering clearly showed that the gene expression patterns of LS yeast differed from those of HS yeast. Quality threshold clustering was used to identify the gene clusters containing upregulated genes (cluster 1) and downregulated genes (cluster 2) under high-sucrose conditions. Clusters 1 and 2 contained numerous genes involved in carbon and nitrogen metabolism, respectively. The expression level of the genes involved in the metabolism of glycerol and trehalose, which are known to be osmoprotectants, in LS yeast was higher than that in HS yeast under sucrose concentrations of 5-40%. No clear correlation was found between the expression level of the genes involved in the biosynthesis of the osmoprotectants and the intracellular contents of the osmoprotectants. The present gene expression data were compared with data previously reported in a comprehensive analysis of a gene deletion strain collection. Welch's t-test for this comparison showed that the relative growth rates of the deletion strains whose deletion occurred in genes belonging to cluster 1 were significantly higher than the average growth rates of all deletion strains. Copyright 2007 John Wiley & Sons, Ltd.
The effect of different zooxanthellae on the growth of experimentally reinfected hosts.
Kinzie, R A; Chee, G S
1979-06-01
1. A method is given enabling the differential effects of different strains of zooxanthellae on host growth to be assessed. This technique uses the increase in the number of tentacles as the measure of growth. 2. Aposymbiotic polyps of the anemone Aiptasia pulchella reinfected with strains of Symbiodinium microadriaticum isolated from the anemone Aiptasia pulchella and the scyphozoan Cassiopea xamachana grow as well as normal Aiptasia polyps. 3. Aposymbiotic Aiptasia polyps reinfected with zooxanthellae from the gastropod Melibe pilosa and the clam Tridacna maxima grew no better than polyps lacking zooxanthellae. 4. These results lead to the conclusion that strains of zooxanthellae differ in their ability to enhance growth of Aiptasia polyps under the experimental conditions and that these differences may have important ecological consequences.
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Phuong, Le T. T.; Nguyen, Chuong V.
2018-06-01
The effect of strain on the structural and electronic properties of monolayer phosphorene is studied by using first-principle calculations based on the density functional theory. The intra- and inter-bond length and bond angle for monolayer phosphorene is also evaluated. The intra- and inter-bond length and the bond angle for phosphorene show an opposite tendency under different directions of the applied strain. At the equilibrium state, monolayer phosphorene is a semiconductor with a direct band gap at the Γ-point of 0.91 eV. A direct-indirect band gap transition is found in monolayer phosphorene when both the compression and tensile strain are simultaneously applied along both zigzag and armchair directions. Under the applied compression strain, a semiconductor-metal transition for monolayer phosphorene is observed at -13% and -10% along armchair and zigzag direction, respectively. The direct-indirect and phase transition will largely constrain application of monolayer phosphorene to electronic and optical devices.
Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803.
Pade, Nadin; Erdmann, Sabrina; Enke, Heike; Dethloff, Frederik; Dühring, Ulf; Georg, Jens; Wambutt, Juliane; Kopka, Joachim; Hess, Wolfgang R; Zimmermann, Ralf; Kramer, Dan; Hagemann, Martin
2016-01-01
Cyanobacteria are phototrophic prokaryotes that convert inorganic carbon as CO2 into organic compounds at the expense of light energy. They need only inorganic nutrients and can be cultivated to high densities using non-arable land and seawater. This has made cyanobacteria attractive organisms for the production of biofuels and chemical feedstock. Synechocystis sp. PCC 6803 is one of the most widely used cyanobacterial model strains. Based on its available genome sequence and genetic tools, Synechocystis has been genetically modified to produce different biotechnological products. Efficient isoprene production is an attractive goal because this compound is widely used as chemical feedstock. Here, we report on our attempts to generate isoprene-producing strains of Synechocystis using a plasmid-based strategy. As previously reported, a codon-optimized plant isoprene synthase (IspS) was expressed under the control of different Synechocystis promoters that ensure strong constitutive or light-regulated ispS expression. The expression of the ispS gene was quantified by qPCR and Western blotting, while the amount of isoprene was quantified using GC-MS. In addition to isoprene measurements in the headspace of closed culture vessels, single photon ionization time-of-flight mass spectrometry (SPI-MS) was applied, which allowed online measurements of isoprene production in open-cultivation systems under various conditions. Under standard conditions, a good correlation existed between ispS expression and isoprene production rate. The cultivation of isoprene production strains under NaCl-supplemented conditions decreased isoprene production despite enhanced ispS mRNA levels. The characterization of the metabolome of isoprene-producing strains indicated that isoprene production might be limited by insufficient precursor levels. Transcriptomic analysis revealed the upregulation of mRNA and regulatory RNAs characteristic of acclimation to metabolic stress. Our best production strains produced twofold higher isoprene amounts in the presence of low NaCl concentrations than previously reported strains. These results will guide future attempts to establish isoprene production in cyanobacterial hosts.
Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys.
Jones, R D; Di Gioacchino, F; Lim, H; Edwards, T E J; Schwalbe, C; Battaile, C C; Clegg, W J
2018-06-06
When a material that contains precipitates is deformed, the precipitates and the matrix may strain plastically by different amounts causing stresses to build up at the precipitate-matrix interfaces. If premature failure is to be avoided, it is therefore essential to reduce the difference in the plastic strain between the two phases. Here, we conduct nanoscale digital image correlation to measure a new variable that quantifies this plastic strain difference and show how its value can be used to estimate the associated interfacial stresses, which are found to be approximately three times greater in an Fe-Ni 2 AlTi steel than in the more ductile Ni-based superalloy CMSX-4 ® . It is then demonstrated that decreasing these stresses significantly improves the ability of the Fe-Ni 2 AlTi microstructure to deform under tensile loads without loss in strength.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films
NASA Astrophysics Data System (ADS)
Bhoi, Biswanath; Kim, Bosung; Kim, Yongsub; Kim, Min-Kwan; Lee, Jae-Hyeok; Kim, Sang-Koog
2018-05-01
Yttrium iron garnet (YIG:Y3Fe5O12) thin films were grown on (111) gadolinium gallium garnet (Gd3Ga5O12, GGG) substrates using pulsed-laser deposition under several different deposition and annealing conditions. X-ray diffraction measurements revealed that the crystallographical orientation of the YIG films is pseudomorphic to and the same as that of the GGG substrate, with a slight rhombohedral distortion along the surface normal. Furthermore, X-ray reciprocal space mapping evidenced that in-situ annealed YIG films during film growth are under compressive strain, whereas ex-situ annealed films have two different regions under compressive and tensile strain. The saturation magnetization ( 4 π M S ) of the films was found to vary, according to the deposition conditions, within the range of 1350 to 1740 G, with a very low coercivity of H C < 5 Oe. From ferromagnetic resonance (FMR) measurements, we estimated the effective saturation magnetization ( 4 π M e f f ) to be 1810 to 2530 G, which are larger than that of single crystalline bulk YIG (˜1750 G). Such high values of 4 π M e f f are attributable to the negative anisotropy field ( H U ) that increases in size with increasing compressive in-plane strain induced in YIG films. The damping constant ( α G ) of the grown YIG films was found to be quite sensitive to the strain employed. The lowest value of α G obtained was 2.8 × 10-4 for the case of negligible strain. These results suggest a means of tailoring H U and α G in the grown YIG films by the engineering of strain for applications in spintronics and magneto-optical devices.
Bonilla, A; Sarria, A L F; Algar, E; Muñoz Ledesma, F J; Ramos Solano, B; Fernandes, J B; Gutierrez Mañero, F J
2014-01-01
Ten PGPR from different backgrounds were assayed on Papaver somniferum var. Madrigal to evaluate their potential as biotic elicitors to increase alkaloid content under the rationale that some microbe associated molecular patterns (MAMPs) are able to trigger plant metabolism. First, the 10 strains and their culture media at two different concentrations were tested for their ability to trigger seed germination. Then, the best three strains were tested for their ability to increase seedling growth and alkaloid levels under greenhouse conditions. Only three strains and their culture media enhanced germination. Then, germination enhancing capacity of these best three strains, N5.18 Stenotrophomonas maltophilia, Aur9 Chryseobacterium balustinum and N21.4 Pseudomonas fluorescens was evaluated in soil. Finally, the three strains were applied on seedlings at two time points, by soil drench or by foliar spray. Photosynthesis was measured, plant height was recorded, capsules were weighted and alkaloids analyzed by HPLC. Only N5.18 delivered by foliar spray significantly increased plant height coupled to an increase in total alkaloids and a significant increase in opium poppy straw dry weight; these increases were supported by a better photosynthetic efficiency. The relative contents of morphine, thebaine, codeine and oripavine were affected by this treatment causing a significant increase in morphine coupled to a decrease in thebaine, demonstrating the effectivity of MAMPs from N5.18 in this plant species. Considering the increase in capsule biomass and alkaloids together with the acceleration of germination, strain N5.18 appears as a good candidate to elicit plant metabolism and consequently, to increase productivity of Papaver somniferum. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.
2018-05-01
We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.
Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.
2018-04-01
The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.
Ratcheting in a nonlinear viscoelastic adhesive
NASA Astrophysics Data System (ADS)
Lemme, David; Smith, Lloyd
2017-11-01
Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.
Effect of strain rate and dislocation density on the twinning behavior in tantalum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.
2016-04-15
The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a givenmore » amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less
NASA Astrophysics Data System (ADS)
Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.
2003-09-01
This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.
Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S
2016-02-01
Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.
Vital, Marius; Chai, Benli; Østman, Bjørn; Cole, James; Konstantinidis, Konstantinos T; Tiedje, James M
2015-01-01
Escherichia coli spans a genetic continuum from enteric strains to several phylogenetically distinct, atypical lineages that are rare in humans, but more common in extra-intestinal environments. To investigate the link between gene regulation, phylogeny and diversification in this species, we analyzed global gene expression profiles of four strains representing distinct evolutionary lineages, including a well-studied laboratory strain, a typical commensal (enteric) strain and two environmental strains. RNA-Seq was employed to compare the whole transcriptomes of strains grown under batch, chemostat and starvation conditions. Highly differentially expressed genes showed a significantly lower nucleotide sequence identity compared with other genes, indicating that gene regulation and coding sequence conservation are directly connected. Overall, distances between the strains based on gene expression profiles were largely dependent on the culture condition and did not reflect phylogenetic relatedness. Expression differences of commonly shared genes (all four strains) and E. coli core genes were consistently smaller between strains characterized by more similar primary habitats. For instance, environmental strains exhibited increased expression of stress defense genes under carbon-limited growth and entered a more pronounced survival-like phenotype during starvation compared with other strains, which stayed more alert for substrate scavenging and catabolism during no-growth conditions. Since those environmental strains show similar genetic distance to each other and to the other two strains, these findings cannot be simply attributed to genetic relatedness but suggest physiological adaptations. Our study provides new insights into ecologically relevant gene-expression and underscores the role of (differential) gene regulation for the diversification of the model bacterial species. PMID:25343512
Permethrin resistance in Aedes albopictus (Diptera: Culicidae) and associated fitness costs.
Chan, Hiang Hao; Zairi, Jaal
2013-03-01
Insecticide resistance has become a serious issue in vector management programs. Information on insecticidal resistance and its associated mechanisms is important for successful insecticide resistance management. The selection of a colony of permethrin-resistant Aedes albopictus (Skuse) (Diptera: Culicidae), originating from Penang Island, Malaysia, yielded high larval-specific resistance to permethrin and cross-resistance to deltamethrin. Synergism assays showed that the major mechanism underlying this resistance involves cytochrome P450 monooxygenase. The resistance is autosomal, polygenically inherited and incompletely dominant (D = 0.26). Resistant larvae were reared under different conditions to assess the fitness costs. Under high larval density, larval development time of the resistant SGI strain was significantly longer than the susceptible VCRU strain. In both high- and low-density conditions SGI showed a lower rate of emergence and survival compared with the VCRU strain. Resistant larvae were more susceptible to predation by Toxorhynchites splendens (Wiedemann) (Diptera: Culicidae) larvae. The body size of SGI females reared under high-density conditions was larger compared with females of the susceptible strain. SGI females survived longer when starved than did VCRU females. The energy reserve upon eclosion was positively correlated with the size of the adults.
NASA Astrophysics Data System (ADS)
Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing
2013-04-01
Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.
Quasi-bound states in strained graphene
NASA Astrophysics Data System (ADS)
Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David
In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.
Qu, Yajin; Liu, Litao; Niu, Yujuan; Qu, Yue; Li, Ning; Sun, Wei; Lv, Chuanwei; Wang, Pengfei; Zhang, Guihua; Liu, Sidang
2016-10-01
Subgroup J avian leukosis virus (ALV-J) causes a neoplastic disease in infected chickens. The ALV-J strain NX0101, which was isolated from broiler breeders in 2001, mainly induced formation of myeloid cell tumors. However, strain HN10PY01, which was recently isolated from laying hens, mainly induces formation of myeloid cell tumors and hemangioma. To identify the molecular pathological mechanism underlying changes in host susceptibility and tumor classification induced by these two types of ALV-J strains, chicken embryo fibroblasts derived from chickens with different genetic backgrounds (broiler breeders and laying hens) and an immortalized chicken embryo fibroblasts (DF-1) were prepared and infected with strain NX0101 or HN10PY01, respectively. The 50% tissue culture infective dose (TCID50) and levels of ALV group-specific antigen p27 and heat shock protein 70 in the supernatant collected from the ALV-J infected cells were detected. Moreover, mRNA expression levels of tumor-related genes p53, c-myc, and Bcl-2 in ALV-J-infected cells were quantified. The results indicated that the infection of ALV-J could significantly increase mRNA expression levels of p53, c-myc, and Bcl-2 Strain HN10PY01 exhibited a greater influence on the three tumor-related genes in each of the three types of cells when compared with strain NX0101, and the TCID50 and p27 levels in the supernatant collected from HN10PY01-infected cells were higher than those collected from NX0101-infected cells. These results indicate that the infection of the two ALV-J strains influenced the gene expression levels in the infected cells, while the newly isolated strain HN10PY01 showed higher replication ability in cells and induced higher expression levels of tumor-related genes in infected cells. Furthermore, virus titers and expression levels of tumor-related genes and cellular stress responses of cells with different genetic backgrounds when infected with each of the two ALV-J strain were different, indicating that genetic backgrounds influenced the capabilities of the virus to infect and proliferate. The findings of this study provide useful data to further elucidate the mechanism underlying host susceptibility and tumor classification in ALV-J-infected chickens and cells. © 2016 Poultry Science Association Inc.
Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B
2014-09-01
Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A systems biology perspective of wine fermentations.
Pizarro, Francisco; Vargas, Felipe A; Agosin, Eduardo
2007-11-01
The yeast Saccharomyces cerevisiae is an important industrial microorganism. Nowadays, it is being used as a cell factory for the production of pharmaceuticals such as insulin, although this yeast has long been utilized in the bakery to raise dough, and in the production of alcoholic beverages, fermenting the sugars derived from rice, wheat, barley, corn and grape juice. S. cerevisiae has also been extensively used as a model eukaryotic system. In the last decade, genomic techniques have revealed important features of its molecular biology. For example, DNA array technologies are routinely used for determining gene expression levels in cells under different physiological conditions or environmental stimuli. Laboratory strains of S. cerevisiae are different from wine strains. For instance, laboratory yeasts are unable to completely transform all the sugar in the grape must into ethanol under winemaking conditions. In fact, standard culture conditions are usually very different from winemaking conditions, where multiple stresses occur simultaneously and sequentially throughout the fermentation. The response of wine yeasts to these stimuli differs in some aspects from laboratory strains, as suggested by the increasing number of studies in functional genomics being conducted on wine strains. In this paper we review the most recent applications of post-genomic techniques to understand yeast physiology in the wine industry. We also report recent advances in wine yeast strain improvement and propose a reference framework for integration of genomic information, bioinformatic tools and molecular biology techniques for cellular and metabolic engineering. Finally, we discuss the current state and future perspectives for using 'modern' biotechnology in the wine industry.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Schilaty, Nathan D.; Bates, Nathaniel A.; Nagelli, Christopher; Krych, Aaron J.; Hewett, Timothy E.
2018-01-01
Background: Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. Purpose/Hypothesis: The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Study Design: Controlled laboratory study. Methods: Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Results: Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males (F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance (F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of “maximum ACL strain” demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Conclusion: Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. Clinical Relevance: KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes. PMID:29568787
Vázquez, M M.; Azcón, R; Barea, J M.
2001-07-01
The effect of double inoculation with two strains of Sinorhizobium meliloti [the wild type (WT) strain GR4 and its genetically modified (GM) derivative GR4(pCK3)], and two species of arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Glomus intraradices) was examined in a microcosm system on three species of Medicago (M. nolana, M. rigidula, M. rotata). Two water regimes (80 and 100% water holding capacity, WHC) were assayed. The efficiency of each AM fungus increasing plant growth, nutrient content, nodulation and water-stress tolerance was related to the Sinorhizobium strains and Medicago species. This indicates selective and specific compatibilities between microsymbionts and the common host plant. Differential effects of the mycorrhizal isolates were not associated with their colonizing ability. Nodulation and mycorrhizal dependency (MD) changed in each plant genotype in accordance with the Sinorhizobium strain and AM fungi involved. Generally, Medicago sp. MD decreased under water-stress conditions even when these conditions did not affect AM colonization (%). Proline accumulation in non-mycorrhizal plant leaves was increased by water stress, except in M. rotata plants. Differences in proline accumulation in AM-colonized plants suggest that both the AM fungus and the Sinorhizobium strain were able to induce different degrees of osmotic adjustment. Mycorrhizal plants nodulated by the WT strain accumulated more proline in M. rigidula and M. rotata under water stress than non-mycorrhizal plants. Conversely, mycorrhizal plants nodulated by the GM strain accumulated less proline in response to both AM colonization and drought. These results indicated changes in the synthesis of this nitrogenous osmoregulator product associated with microbial inoculation and drought tolerance. Mycorrhizal plants nodulated by the GM Sinorhizobium strain seem to suffer less from the detrimental effect of water stress, since under water limitation relative plant growth, percentage of AM colonization, root dry weight and the highest R/S ratio remained the same. The fact that GM nodulated plants are better adapted to drought stress could be of practical interest and the management of GM microorganism inoculation may be crucial for biotechnological approaches to improving crop yield in dry environments.
NASA Astrophysics Data System (ADS)
Watanabe, Yukio
2018-05-01
In the calculations of tetragonal BaTiO3, some exchange-correlation (XC) energy functionals such as local density approximation (LDA) have shown good agreement with experiments at room temperature (RT), e.g., spontaneous polarization (PS), and superiority compared with other XC functionals. This is due to the error compensation of the RT effect and, hence, will be ineffective in the heavily strained case such as domain boundaries. Here, ferroelectrics under large strain at RT are approximated as those at 0 K because the strain effect surpasses the RT effects. To find effective XC energy functionals for strained BaTiO3, we propose a new comparison, i.e., a criterion. This criterion is the properties at 0 K given by the Ginzburg-Landau (GL) theory because GL theory is a thermodynamic description of experiments working under the same symmetry-constraints as ab initio calculations. With this criterion, we examine LDA, generalized gradient approximations (GGA), meta-GGA, meta-GGA + local correlation potential (U), and hybrid functionals, which reveals the high accuracy of some XC functionals superior to XC functionals that have been regarded as accurate. This result is examined directly by the calculations of homogenously strained tetragonal BaTiO3, confirming the validity of the new criterion. In addition, the data points of theoretical PS vs. certain crystallographic parameters calculated with different XC functionals are found to lie on a single curve, despite their wide variations. Regarding these theoretical data points as corresponding to the experimental results, analytical expressions of the local PS using crystallographic parameters are uncovered. These expressions show the primary origin of BaTiO3 ferroelectricity as oxygen displacements. Elastic compliance and electrostrictive coefficients are estimated. For the comparison of strained results, we show that the effective critical temperature TC under strain <-0.01 is >1000 K from an approximate method combining ab initio results with GL theory. In addition, in a definite manner, the present results show much more enhanced ferroelectricity at large strain than the previous reports.
Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel
2000-01-01
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802
Lu, L.; Huang, J. W.; Fan, D.; ...
2016-08-29
In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less
Investigation of deformation twinning under complex stress states in a rolled magnesium alloy
Wu, Wei; Chuang, Chih-Pin; Qiao, Dongxiao; ...
2016-05-15
We employed a specially designed semi-circular notch specimen in the current study to generate the various strain conditions, including uniaxial, biaxial, shear, and plane strains, which was utilized to explore the evolution of different deformation twinning systems under complex loading conditions. We found that when using in situ synchrotron X-ray diffraction mapping method, that the extensive double twins were activated during loading, while nearly no extension twinning activity was detected. After the formation of {10.1} and {10.3} compression twins, they transformed into {10.1}-{10.2} and {10.3}-{10.2} double twins instantaneously at the early stage of deformation. The lattice strain evolutions in differentmore » hkls were mapped at selected load levels during the loading-unloading sequence. Finally, the relationship between the macroscopic straining and microscopic response was established.« less
Fei, Peng; Jiang, Yujun; Feng, Jing; Forsythe, Stephen J.; Li, Ran; Zhou, Yanhong; Man, Chaoxin
2017-01-01
This study evaluated the antimicrobial and desiccation resistance of Cronobacter sakazakii and Cronobacter malonaticus isolates from powdered infant formula and processing environments. The antimicrobial susceptibility tests showed that the 70 Cronobacter strains, representing 19 sequence types, were susceptible to the most of the antibiotics except for amoxicillin-clavulanate, ampicillin, and cefazolin. Furthermore, the growth of six C. sakazakii and two C. malonaticus strains from different sequence types (STs) in hyperosmotic media was measured. The growth of the two C. sakazakii strains (CE1 and CE13) from the neonatal pathovars ST4 and ST8, were significantly higher (p < 0.05) than that of other strains. C. malonaticus strain CM35 (ST201) was the slowest grower in all strains, and most could not grow in more than 8% NaCl solution. Also the survival of these strains under desiccation conditions was followed for 1 year. The viable count of Cronobacter spp. under desiccation conditions was reduced on average by 3.02 log cycles during 1 year, with CE13 (ST8) being the most desiccation resistant strain. These results will improve our understanding of the persistence of the two closely related species C. sakazakii and C. malonaticus which are of concern for neonatal and adult health. PMID:28303125
2014-01-01
Background There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S. cerevisiae strains, the industrial strain MA-R4 and the laboratory strain MA-B4, were employed to investigate the differences between anaerobic fermentation of xylose and glucose, and general differences between recombinant yeast strains, through genome-wide transcription analysis. Results In MA-R4, many genes related to ergosterol biosynthesis were expressed more highly with glucose than with xylose. Additionally, these ergosterol-related genes had higher transcript levels in MA-R4 than in MA-B4 during glucose fermentation. During xylose fermentation, several genes related to central metabolic pathways that typically increase during growth on non-fermentable carbon sources were expressed at higher levels in both strains. Xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways, even under anaerobic conditions. In addition, several genes involved in spore wall metabolism and the uptake of ammonium, which are closely related to the starvation response, and many stress-responsive genes mediated by Msn2/4p, as well as trehalose synthase genes, increased in expression when fermenting with xylose, irrespective of the yeast strain. We further observed that transcript levels of genes involved in xylose metabolism, membrane transport functions, and ATP synthesis were higher in MA-R4 than in MA-B4 when strains were fermented with glucose or xylose. Conclusions Our transcriptomic approach revealed the molecular events underlying the response to xylose or glucose and differences between MA-R4 and MA-B4. Xylose-utilizing S. cerevisiae strains may recognize xylose as a non-fermentable carbon source, which induces a starvation response and adaptation to oxidative stress, resulting in the increased expression of stress-response genes. PMID:24467867
Chacon, Guillermo E; Dillard, Frederick Matt; Clelland, Nancy; Rashid, Robert
2005-07-01
To determine if a specific resorbable plating system provides similar fixation, in terms of strain distribution under load, to a titanium system when the Champy technique is applied for the treatment of a mandibular angle fracture. A formalin-fixed cadaver mandible was harvested just before the study. A bicortical osteotomy was then made using a diamond disc extending in an oblique direction in the area of the angle. It was then passively fixated with a 4-hole 2.0-mm miniplate. Two stacked rosette strain gauges were bonded to the mandible on either side of the fracture. Each rosette had 3 strain gauges arranged in specific degrees relative to each other. The mandible was then placed on a dynanometer and 30 lb loads were delivered on the ipsilateral molar. Static resistance was placed in the condylar neck region to simulate the glenoid fossa. Loading was repeated 10 times with a period of 3 minutes between loads. Measurements were recorded for each strain gauge after loads were in place for 30 seconds. The same process was repeated using a 4-hole 2.1-mm resorbable miniplate. The strains were then used to calculate the maximum and minimum strains for each rosette. Hooke's law was used to calculate the principal stresses. Differences were observed between the strain gauges for each individual plating system. There was variability within the resorbable plate measurements as shown by the standard deviation. Using the REML ANOVA test, a significant difference was found between the 2 materials. In this in vitro study, there were significant biomechanical differences observed between a 2.0-mm titanium miniplate and a 2.1-mm resorbable miniplate when used to treat a mandibular angle fracture following Champy's principles. Based on our finding, both systems cannot be used interchangeably for the treatment of mandibular angle fractures under the same clinical conditions.
Belikov, Sergei I.; Kondratov, Ilya G.; Potapova, Ulyana V.; Leonova, Galina N.
2014-01-01
Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates. PMID:24740396
Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile
2016-01-01
Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195
NASA Astrophysics Data System (ADS)
Liu, Jia; Li, Jing; Zhang, Zhong-ping
2013-04-01
In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.
An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V
Mishurova, Tatiana; Cabeza, Sandra; Artzt, Katia; Haubrich, Jan; Klaus, Manuela; Genzel, Christoph; Requena, Guillermo; Bruno, Giovanni
2017-01-01
Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. PMID:28772706
Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith
2014-01-06
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ~50 and ~120 times greater than those of conventional metallic strain sensors.
Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith
2014-01-01
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors. PMID:24399158
Han, Hui; Sheng, Xiafang; Hu, Jingwen; He, Linyan; Wang, Qi
2018-06-18
In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Viscoplasticity based on overstress with a differential growth law for the equilibrium stress
NASA Technical Reports Server (NTRS)
Krempl, E.; Mcmahon, J. J.; Yao, D.
1985-01-01
Two coupled, nonlinear differential equations are proposed for the modeling of the elastic and rate (time) dependent inelastic behavior of structural metals in the absence of recovery and aging. The structure of the model is close to the unified theories but contains essential differences. It is shown that the model reproduces almost elastic regions upon initial loading and in the unloading regions of the hysteresis loop. Under loading, unloading and reloading in strain control the model simulated the experimentally observed sharp transition from nearly elastic to inelastic behavior. When a formulation akin to existing unified theories is adopted the almost elastic regions reduce the points and the transition upon reloading is very gradual. For different formulations the behavior under sudden in(de)creases of the strain rate by two orders of magnitude is simulated by numerical experiments and differences are noted. The model represents cyclically neutral behavior and contains three constants and two positive, decreasing functions. The determination of constants and functions from monotonic loading with strain rate changes and relaxation periods is described.
Genetic basis of allochronic differentiation in the fall armyworm.
Hänniger, Sabine; Dumas, Pascaline; Schöfl, Gerhard; Gebauer-Jung, Steffi; Vogel, Heiko; Unbehend, Melanie; Heckel, David G; Groot, Astrid T
2017-03-06
Very little is known on how changes in circadian rhythms evolve. The noctuid moth Spodoptera frugiperda (Lepidoptera: Noctuidae) consists of two strains that exhibit allochronic differentiation in their mating time, which acts as a premating isolation barrier between the strains. We investigated the genetic basis of the strain-specific timing differences to identify the molecular mechanisms of differentiation in circadian rhythms. Through QTL analyses we identified one major Quantitative trait chromosome (QTC) underlying differentiation in circadian timing of mating activity. Using RADtags, we identified this QTC to be homologous to Bombyx mori C27, on which the clock gene vrille is located, which thus became the major candidate gene. In S. frugiperda, vrille showed strain-specific polymorphisms. Also, vrille expression differed significantly between the strains, with the rice-strain showing higher expression levels than the corn-strain. In addition, RT-qPCR experiments with the other main clock genes showed that pdp1, antagonist of vrille in the modulatory feedback loop of the circadian clock, showed higher expression levels in the rice-strain than in the corn-strain. Together, our results indicate that the allochronic differentiation in the two strains of S. frugiperda is associated with differential transcription of vrille or a cis-acting gene close to vrille, which contributes to the evolution of prezygotic isolation in S. frugiperda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.
1986-10-01
Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showingmore » a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.« less
Wang, Qiuzhen; Sen, Biswarup; Liu, Xianhua; He, Yaodong; Xie, Yunxuan; Wang, Guangyi
2018-08-01
Heterotrophic marine protists (Thraustochytrids) have received increasingly global attention as a renewable, sustainable and alternative source of biodiesel because of their high ability of saturated fatty acids (SFAs) accumulation. Yet, the influence of extrinsic factors (nutrients and environmental conditions) on thraustochytrid culture and optimal conditions for high SFAs production are poorly described. In the present study, two different thraustochytrid strains, Schizochytrium sp. PKU#Mn4 and Thraustochytriidae sp. PKU#Mn16 were studied for their growth and SFAs production profiles under various conditions (carbon, nitrogen, temperature, pH, KH 2 PO 4 , salinity, and agitation speed). Of the culture conditions, substrates (C and N) source and conc., temperature, and agitation speed significantly influenced the cell growth and SFAs production of both strains. Although both the strains were capable of growth and SFAs production in the broad range of culture conditions, their physiological responses to KH 2 PO 4 , pH, and salinity were dissimilar. Under their optimal batch culture conditions, peak SFAs productions of 3.3g/L and 2.2g/L with 62% and 49% SFAs contents (relative to total fatty acids) were achieved, respectively. The results of 5-L fed-batch fermentation under optimal conditions showed a nearly 4.5-fold increase in SFAs production (i.e., 7.5g/L) by both strains compared to unoptimized conditions. Of the two strains, the quality of biodiesel produced from the fatty acids of PKU#Mn4 met the biodiesel standard defined by ASTM6751. This study, to the knowledge of the authors, is the first comprehensive report of optimal fermentation conditions demonstrating enhanced SFAs production by strains belonging to two different thraustochytrid genera and provides the basis for large-scale biodiesel production. Copyright © 2018. Published by Elsevier B.V.
Radiant extinction of gaseous diffusion flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.
1995-01-01
The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.
Spontaneous axial myopia and emmetropization in a strain of wild-type guinea pig (Cavia porcellus).
Jiang, Liqin; Schaeffel, Frank; Zhou, Xiangtian; Zhang, Sen; Jin, Xi; Pan, Miaozhen; Ye, Lingying; Wu, Xiaomin; Huang, Qinzhu; Lu, Fan; Qu, Jia
2009-03-01
To describe a wild-type guinea pig strain with an incidence of spontaneous axial myopia, minimal pupil responses, lack of accommodation, and apparently normal spatial vision. Such a strain is of interest because it may permit the exploration of defective emmetropization and mapping of the underlying quantitative trait loci. Twenty-eight guinea pigs were selected from 220 animals based on binocular myopia (exceeding -1.50 diopter [D]) or anisometropia (difference between both eyes exceeding 10 D) at 4 weeks of age. Refractions and pupil responses were measured with eccentric infrared photoretinoscopy, corneal curvature by modified conventional keratometer, and axial lengths by A-scan ultrasonography once a week. Twenty-one guinea pigs were raised under a normal 12-hour light/12-hour dark cycle. From a sample of 18 anisometropic guinea pigs, 11 were raised under normal light cycle and 7 were raised in the dark to determine the extent to which visual input guides emmetropization. Spatial vision was tested in an automated optomotor drum. In 10 guinea pigs with myopia in both eyes, refractive errors ranged from -15.67 D to -1.50 D at 3 weeks with a high interocular correlation (R = 0.82); axial length and corneal curvature grew almost linearly over time. Strikingly, two patterns of recovery were observed in anisometropic guinea pigs: in 12 (67%) anisometropia persisted, and in 6 (33%) it declined over time. These ratios remained similar in dark-reared guinea pigs. Unlike published strains, all guinea pigs of this strain showed weak pupil responses and no signs of accommodation but up to 3 cyc/deg of spatial resolution. This strain of guinea pigs has spontaneous axial refractive errors that may be genetically or epigenetically determined. Interestingly, it differs from other published strains that show no refractive errors, vivid accommodation, or pupil responses.
Dattenböck, Christoph; Tisch, Doris; Schuster, Andre; Monroy, Alberto Alonso; Hinterdobler, Wolfgang; Schmoll, Monika
2018-01-01
Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei . Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.
Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.
Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M
2015-03-01
The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.
Livingstone, Morag; Wheelhouse, Nicholas; Ensor, Hannah; Rocchi, Mara; Maley, Stephen; Aitchison, Kevin; Wattegedera, Sean; Wilson, Kim; Sait, Michelle; Siarkou, Victoria; Vretou, Evangelia; Entrican, Gary; Dagleish, Mark; Longbottom, David
2017-01-01
This study investigated the pathogenesis of two variant strains (LLG and POS) of Chlamydia abortus, in comparison to a typical wild-type strain (S26/3) which is known to be responsible for late term abortion in small ruminants. Challenge with the three strains at mid-gestation resulted in similar pregnancy outcomes, with abortion occurring in approximately 50-60% of ewes with the mean gestational lengths also being similar. However, differences were observed in the severity of placental pathology, with infection appearing milder for strain LLG, which was reflected in the lower number of organisms shed in vaginal swabs post-partum and less gross pathology and organisms present in placental smears. Results for strain POS were somewhat different than LLG with a more focal restriction of infection observed. Post-abortion antibody responses revealed prominent differences in seropositivity to the major outer membrane protein (MOMP) present in elementary body (EB) preparations under denaturing conditions, most notably with anti-LLG and anti-POS convalescent sera where there was no or reduced detection of MOMP present in EBs derived from the three strains. These results and additional analysis of whole EB and chlamydial outer membrane complex preparations suggest that there are conformational differences in MOMP for the three strains. Overall, the results suggest that gross placental pathology and clinical outcome is not indicative of bacterial colonization and the severity of infection. The results also highlight potential conformational differences in MOMP epitopes that perhaps impact on disease diagnosis and the development of new vaccines.
NASA Astrophysics Data System (ADS)
Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl
2013-02-01
Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.
Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun
2014-01-01
Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature. PMID:25250024
Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.
Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608
Testing and Life Prediction for Composite Rotor Hub Flexbeams
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2004-01-01
A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.
Behavioural analysis of four mouse strains in an anxiety test battery.
van Gaalen, M M; Steckler, T
2000-10-01
Differences in locomotor activity, exploratory activity and anxiety-like behaviour of C57BL/6ChR,C57BL/6J, Swiss Webster/J and A/J strain were investigated in an anxiety battery. The battery consisted of paradigms studying spontaneous behaviour after a mild stressor, tasks of innate anxiety (light-dark box, elevated plus maze, novel object exploration), response to a conflict situation (Vogel conflict), conditioned fear and response to inescapable swim stress. Locomotor activity was studied in an open field and compared with locomotion in the other tests. Exploratory behaviour was studied in a 16-hole board task. The data confirm previous studies suggesting that A/J mice are a relatively anxious strain. Also, the data indicated that locomotor activity was independent of the paradigm employed, while the rank order of strain-dependent effects on anxiety-related behaviour changed as a function of the task under study. Our data provide further support for the notion that choice of strain is essential in studies of anxiety-related behaviour. Influence of strain should be considered in pharmacological and lesion studies, as well as in studies with mutant mice. In addition, the data indicate that different anxiety paradigms tax different aspects of anxiety, suggesting that a battery of different tests should be used in studies of anxiety-related behaviour.
Bhaskaran, Manoj; Cornwell, Paul D; Sorden, Steven D; Elwell, Michael R; Russell, Natalie R; Pritt, Michael L; Vahle, John L
2018-01-01
Inhibitors of Bruton's tyrosine kinase (BTK) are under development as potential therapies for various autoimmune diseases. In repeat-dose toxicity studies, small-molecule BTK inhibitors (BTKi) have been reported to cause a constellation of histologic effects at the pancreatic endocrine-exocrine interface in male rats; however, similar findings were not reported in other species. Since the BTKi-induced pancreatic effect is morphologically similar to well-documented spontaneous changes (predominantly characterized by insular/peri-insular hemorrhage, pigment deposition, chronic inflammation, and fibrosis) that are known to vary by rat strain, we investigated potential strain-dependent differences in the pancreatic effects of a small-molecule BTKi, LY3337641. Following 13 weeks of LY3337641 treatment, Crl:CD(SD) rats were most sensitive, Crl:WI(Han) rats were of intermediate sensitivity, and Hsd:SD rats were least sensitive. These strain differences appear to be related to differences in rate of weight gain across strains and sexes; however, a definitive mechanism was not determined. This study demonstrated that BTKi-induced pancreatic effects were highly dependent on rat strain and correlated with differences in the incidence and severity of the spontaneous background change. When considered with the lack of pancreas effects in nonrat species, these changes in rats are unlikely predictive of similar changes in humans administered a BTK inhibitor.
Hutsell, Blake A.; Newland, M. Christopher
2013-01-01
Previous studies of inbred mouse strains have shown reinforcer-strain interactions that may potentially mask differences among strains in memory performance. The present research examined the effects of two qualitatively different reinforcers (heterogeneous mix of flavored pellets and sweetened-condensed milk) on responding maintained by fixed-ratio schedules of reinforcement in three inbred strains of mice (BALB/c, C57BL/6, & DBA/2). Responses rates for all strains were a bitonic (inverted U) function of the size of the fixed-ratio schedule and were generally higher when responding was maintained by milk. For the DBA/2 and C57BL/6 and to a lesser extent the BALB/c, milk primarily increased response rates at moderate fixed ratios, but not at the largest fixed ratios tested. A formal model of ratio-schedule performance, Mathematical Principles of Reinforcement (MPR), was applied to the response rate functions of individual mice. According to MPR, the differences in response rates maintained by pellets and milk were mostly due to changes in motoric processes as indicated by changes in the minimum response time (δ) produced by each reinforcer type and not specific activation (a), a model term that represents value and is correlated with reinforcer magnitude and the break point obtained under progressive ratio schedules. In addition, MPR also revealed that, although affected by reinforcer type, a parameter interpreted as the rate of saturation of working memory (λ), differed among the strains. PMID:23357283
Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives.
Mazas, M; López, M; Martínez, S; Bernardo, A; Martin, R
1999-04-01
Heat resistance of Bacillus cereus spores (ATCC 7004, 4342, and 9818) heated in different types of milk (skim, whole, and concentrated skim milk), skim milk containing stabilizing additives (sodium citrate, monopotassium phosphate, or disodium phosphate, 0.1%), and cream was investigated. Thermal resistance experiments were performed at temperatures within the range of 92 to 115 degrees C under continuous monitoring of pH. For strain 4342 no significant differences (P < 0.05) in D values were detected in any case. For strains 7004 and 9818 higher D values of about 20% were obtained in whole and concentrated skim milk than those calculated in skim milk. From all stabilizing additives tested, only sodium citrate and sodium phosphate increased the heat resistance for strain 9818. However, when the menstruum pH was measured at the treatment temperature, different pH values were found between the heating media. The differences in heat resistance observed could be due to a pH effect rather than to the difference in the substrates in which spores were heated. In contrast, when cream (fat content 20%) was used, lower D values were obtained, especially for strains 7004 and 9818. z values were not significantly modified by the milk composition, with an average z value of 7.95+/-0.20 degrees C for strain 7004, 7.88+/-0.10 degrees C for strain 4342, and 9.13+/-0.16 degrees C for strain 9818.
Volova, T G; Trusova, M Y; Kalacheva, G S; Kozhevnicov, I V
2006-11-01
Physiological-biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO(2), fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is beta-hydroxybutyric acid (more than 99 mol %); the identified minor components are beta-hydroxyvaleric acid (0.25-0.72 mol %) and beta-hydroxyhexanoic acid (0.08-1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.
Sanil, D; Shetty, V; Shetty, N J
2014-06-01
Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.
Croken, Matthew; Ma, Yan Fen; Markillie, Lye Meng; ...
2014-11-13
Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identify 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observe close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysismore » (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identify 1,526 genes that are differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identify ribosomal proteins as being expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.« less
Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin
2017-01-01
ABSTRACT The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB. Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments. PMID:28625982
Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin; Rychli, Kathrin
2017-08-15
The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481 , and two homologous genes of the nonpathogenic species Listeria innocua : lin0464 , coding for a putative transcriptional regulator, and lin0465 , encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σ B Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments. Copyright © 2017 Harter et al.
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
The Effects of Stress State on the Strain Hardening Behaviors of TWIP Steel
NASA Astrophysics Data System (ADS)
Liu, F.; Dan, W. J.; Zhang, W. G.
2017-05-01
Twinning-Induced Plasticity (TWIP) steels have received great attention due to their excellent mechanical properties as a result of austenite twinning during straining. In this paper, the effects of stress state on the strain hardening behaviors of Fe-20Mn-1.2C TWIP steel were studied. A twinning model considering stress state was presented based on the shear-band framework, and a strain hardening model was proposed by taking dislocation mixture evolution into account. The models were verified by the experimental results of uniaxial tension, simple shear and rolling processes. The strain hardening behaviors of TWIP steel under different stress states were predicted. The results show that the stress state can improve the austenite twining and benefit the strain hardening of TWIP steel.
Effect of route on inoculation on host resistance to Nocardia.
Beaman, B L; Maslan, S; Scates, S; Rosen, J
1980-01-01
Virulent strains of Nocardia asteroides and Nocardia caviae were injected into mice by five different routes. When these organisms were grown to the same stage of growth in the same medium and otherwise prepared identically, it was found that they differed significantly in their ability to infect and kill the host, depending entirely upon the route of inoculation. Thus, N. caviae 112 was 30 times more virulent than N. asteroides GUH-2 when administered intranasally, whereas N. asteroides was at least 10 times more pathogenic than N. caviae when injected intravenously. They had similar degrees of virulence when given intraperitoneally. N. asteroides GUH-2 induced a more persistent and progressive infection than N. caviae 112 when injected into the footpads of mice; however, the latter strain was more lethal for the animals when given by this route. Different routes of infecting mice indicate a compartmentalization of the host response to different strains of nocardia. Therefore, the use of different strains of nocardia under carefully controlled and defined conditions should make it possible to dissect the nocardia-host interactions at the cellular levels. Images Fig. 1 PMID:6991437
Modeling of NiTiHf using finite difference method
NASA Astrophysics Data System (ADS)
Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad
2018-03-01
NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.
Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression
NASA Astrophysics Data System (ADS)
Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.
2018-06-01
In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.
Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression
NASA Astrophysics Data System (ADS)
Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.
2018-02-01
In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.
Rieger, Dirk; Peschel, Nicolai; Dusik, Verena; Glotz, Silvia; Helfrich-Förster, Charlotte
2012-02-01
The ability to adapt to different environmental conditions including seasonal changes is a key feature of the circadian clock. Here, we compared the ability of 3 Drosophila melanogaster wild-type strains to adapt rhythmic activity to long photoperiods simulated in the laboratory. Fruit flies are predominantly crepuscular with activity bouts in the morning (M) and evening (E). The M peak follows dawn and the E peak follows dusk when the photoperiod is extended. We show that this ability is restricted to a certain extension of the phase angle between M and E peaks, such that the E peak does not delay beyond a certain phase under long days. We demonstrate that this ability is significantly improved by simulated twilight and that it depends additionally on the genetic background and the ambient temperature. At 20 °C, the laboratory strain CantonS had the most flexible phase angle between M and E peaks, a Northern wild-type strain had an intermediate one, and a Southern wild-type strain had the lowest flexibility. Furthermore, we found that the 3 strains differed in clock light sensitivity, with the CantonS and the Northern strains more light sensitive than the Southern strain. These results are generally in accord with the recently discovered polymorphisms in the timeless gene (tim) that affect clock light sensitivity.
Markovian and non-Markovian light-emission channels in strained quantum wires.
Lopez-Richard, V; González, J C; Matinaga, F M; Trallero-Giner, C; Ribeiro, E; Sousa Dias, M Rebello; Villegas-Lelovsky, L; Marques, G E
2009-09-01
We have achieved conditions to obtain optical memory effects in semiconductor nanostructures. The system is based on strained InP quantum wires where the tuning of the heavy-light valence band splitting has allowed the existence of two independent optical channels with correlated and uncorrelated excitation and light-emission processes. The presence of an optical channel that preserves the excitation memory is unambiguously corroborated by photoluminescence measurements of free-standing quantum wires under different configurations of the incoming and outgoing light polarizations in various samples. High-resolution transmission electron microscopy and electron diffraction indicate the presence of strain effects in the optical response. By using this effect and under certain growth conditions, we have shown that the optical recombination is mediated by relaxation processes with different natures: one a Markov and another with a non-Markovian signature. Resonance intersubband light-heavy hole transitions assisted by optical phonons provide the desired mechanism for the correlated non-Markovian carrier relaxation process. A multiband calculation for strained InP quantum wires was developed to account for the description of the character of the valence band states and gives quantitative support for light hole-heavy hole transitions assisted by optical phonons.
An Accurately Controlled Antagonistic Shape Memory Alloy Actuator with Self-Sensing
Wang, Tian-Miao; Shi, Zhen-Yun; Liu, Da; Ma, Chen; Zhang, Zhen-Hua
2012-01-01
With the progress of miniaturization, shape memory alloy (SMA) actuators exhibit high energy density, self-sensing ability and ease of fabrication, which make them well suited for practical applications. This paper presents a self-sensing controlled actuator drive that was designed using antagonistic pairs of SMA wires. Under a certain pre-strain and duty cycle, the stress between two wires becomes constant. Meanwhile, the strain to resistance curve can minimize the hysteresis gap between the heating and the cooling paths. The curves of both wires are then modeled by fitting polynomials such that the measured resistance can be used directly to determine the difference between the testing values and the target strain. The hysteresis model of strains to duty cycle difference has been used as compensation. Accurate control is demonstrated through step response and sinusoidal tracking. The experimental results show that, under a combination control program, the root-mean-square error can be reduced to 1.093%. The limited bandwidth of the frequency is estimated to be 0.15 Hz. Two sets of instruments with three degrees of freedom are illustrated to show how this type actuator could be potentially implemented. PMID:22969368
Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan; Carvajal Nunez, Ursula; Krumwiede, David
Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believedmore » the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.« less
Contact force and mechanical loss of multistage cable under tension and bending
NASA Astrophysics Data System (ADS)
Ru, Yanyun; Yong, Huadong; Zhou, Youhe
2016-10-01
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.
Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.
2013-01-01
The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628
Szopinska, Aleksandra; Christ, Eva; Planchon, Sebastien; König, Helmut; Evers, Daniele; Renaut, Jenny
2016-02-01
During fermentation oenological yeast cells are subjected to a number of different stress conditions and must respond rapidly to the continuously changing environment of this harsh ecological niche. In this study we gained more insights into the cell adaptation mechanisms by linking proteome monitoring with knowledge on physiological behaviour of different strains during fermentation under model winemaking conditions. We used 2D-DIGE technology to monitor the proteome evolution of two newly discovered environmental yeast strains Saccharomyces bayanus and triple hybrid Saccharomyces cerevisiae × Saccharomyces kudriavzevii × S. bayanus and compared them to data obtained for the commercially available S. cerevisiae strain. All strains examined showed (i) different fermentative behaviour, (ii) stress resistance as well as (iii) susceptibility to stuck fermentation which was reflected in significant differences in protein expression levels. During our research we identified differentially expressed proteins in 155 gel spots which correspond to 70 different protein functions. Differences of expression between strains were observed mainly among proteins involved in stress response, proteins degradation pathways, cell redox homeostasis and amino acids biosynthesis. Interestingly, the newly discovered triple hybrid S. cerevisiae × S. kudriavzevii × S. bayanus strain which has the ability to naturally restart stuck fermentation showed a very strong induction of expression of two proteolytic enzymes: Pep4 and Prc1 that appear as numerous isoforms on the gel image and which may be the key to its unique properties. This study is an important step towards the better understanding of wine fermentations at a molecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Fan; Rydzewski, Kerstin; Kutzner, Erika; Häuslein, Ina; Schunder, Eva; Wang, Xinzhe; Meighen-Berger, Kevin; Grunow, Roland; Eisenreich, Wolfgang; Heuner, Klaus
2017-01-01
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella. PMID:28680859
Micro finite element analysis of dental implants under different loading conditions.
Marcián, Petr; Wolff, Jan; Horáčková, Ladislava; Kaiser, Jozef; Zikmund, Tomáš; Borák, Libor
2018-05-01
Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structural analysis of LaVO3 thin films under epitaxial strain
NASA Astrophysics Data System (ADS)
Meley, H.; Karandeep, Oberson, L.; de Bruijckere, J.; Alexander, D. T. L.; Triscone, J.-M.; Ghosez, Ph.; Gariglio, S.
2018-04-01
Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3) and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath
Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening)more » under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.« less
Influence of aeration during propagation of pitching yeast on fermentation and beer flavor.
Cheong, Chul; Wackerbauer, Karl; Kang, Soon Ah
2007-02-01
The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.
Actin and microtubule networks contribute differently to cell response for small and large strains
NASA Astrophysics Data System (ADS)
Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.
2017-09-01
Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.
Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo
2016-12-01
SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.
The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates
NASA Technical Reports Server (NTRS)
Luo, H.; Lu, H.; Leventis, N.
2006-01-01
Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi-static loading condition. The Poisson s ratio was determined to be 0.162 in nonlinear regime under high strain rates. CSA samples failed generally by splitting, but were much more ductile than native silica aerogels.
Holtappels, M; Vrancken, K; Schoofs, H; Deckers, T; Remans, T; Noben, J P; Valcke, R
2015-06-18
Erwinia amylovora is a Gram-negative bacterium that causes the destructive disease fire blight affecting most members of the Rosaceae family, of which apple and pear are economically the most important hosts. E. amylovora has been considered as a homogeneous species in whole, although significant differences in virulence patterns have been observed. However, the underlying causes of the differences in virulence remain to be discovered. In a first-time comparative proteomic approach using E. amylovora, 2D differential in-gel electrophoresis (DIGE) was used to identify proteins that could explain the gradual difference in virulence between four different strains. Two important proteins were identified, FliC and CheY, both involved in flagella structure, motility and chemotaxis, which were more abundant in the least virulent strain. In the highly virulent strains the protein GalF, involved in amylovoran production, was more abundant, which was consistent with the higher expression of the gene and the higher amylovoran content in this strain in vitro. Together, these results confirm the involvement of amylovoran in virulence, but also imply an indirect role of flagellin in virulence as elicitor of plant defence. This research provides new insights into our current understanding of the virulence of Erwinia amylovora. This plant-pathogen is considered a homogeneous species although different strains show differences in virulence. Despite the efforts made on the genomic level which resulted in the discovery of virulence factors, the reason for the different virulence patterns between strains has not yet been identified. In our lab we used a comparative proteomic approach, which has never been published before, to identify proteins involved in these differences between strains and hereby possibly involved in virulence. Our results provide interesting insights in virulence and present us with the opportunity to glance into the proteome of E. amylovora. Copyright © 2015. Published by Elsevier B.V.
Leng, Yifei; Bao, Jianguo; Song, Dandan; Li, Jing; Ye, Mao; Li, Xu
2017-09-19
Certain bacteria are resistant to antibiotics and can even transform antibiotics in the environment. It is unclear how the molecular mechanisms underlying the resistance and biotransformation processes vary under different environmental conditions. The objective of this study is to investigate the molecular mechanisms of tetracycline resistance and biotransformation by Stenotrophomonas maltophilia strain DT1 under various background nutrient conditions. Strain DT1 was exposed to tetracycline for 7 days with four background nutrient conditions: no background (NB), peptone (P), peptone plus citrate (PC), and peptone plus glucose (PG). The biotransformation rate follows the order of PC > P > PG > NB ≈ 0. Genomic analysis showed that strain DT1 contained tet(X1), a gene encoding an FAD-binding monooxygenase, and eight peroxidase genes that could be relevant to tetracycline biotransformation. Quantitative proteomic analyses revealed that nodulation protein transported tetracycline outside of cells; hypoxanthine-guanine phosphoribosyltransferase facilitated the activation of the ribosomal protection proteins to prevent the binding of tetracycline to the ribosome and superoxide dismutase and peroxiredoxin-modified tetracycline molecules. Comparing different nutrient conditions showed that the biotransformation rates of tetracycline were positively correlated with the expression levels of superoxide dismutase.
Lorme, Kenneth J; Naqvi, Syed A
2003-01-01
There is epidemiologic evidence that chiropractors are a high-risk group for low-back disorders. However, to date there are no known biomechanical studies to determine whether their workstations may be a contributing factor. To investigate whether chiropractors' workstation table height or the tasks they perform make them susceptible to low-back strain. As well as investigating low-back strain, a screening was performed to determine whether chiropractors' upper extremities were at risk for undue strain as workstation table height was varied. Experimental pilot study. A university ergonomic laboratory. An adjustable manipulation table was set at 3 different heights: 465 mm, 665 mm and 845 mm. Each of the 7 volunteer chiropractors were fitted with a triaxial electrogoniometer and were videotaped and photographed for analysis while performing spinal manipulation to the cervical, thoracic, and lumbar spine of a volunteer patient at each workstation table height. Two biomechanical models, one static and one dynamic, were used to record the dependent variables. A screening of various upper extremity variables was also performed with the static model. For the subjects under study, a significant difference was found for the variables maximum sagittal flexion, disk compression force, and ligament strain as table height was varied. For the lumbar and thoracic manipulation tasks, the medium table height (655 mm) was found to create the least low-back strain. For the cervical manipulation task, the high table height (845 mm) was found to be the least straining on the low-back. The low height table (465 mm) was the most straining for all tasks. Upper extremities were not significantly affected by changes to table height. Significant differences were found for the task performed for axial rotational velocity, disk compression force, ligament strain, maximum sagittal flexion, dominant (right) elbow moment, and dominant (right) shoulder moment variables. There was no significant interaction between table height and task performed. Workstation table height was found to have a significant effect on low-back load of subjects under study. The results of this study demonstrate an overall unacceptably high amount of sagittal flexion, ligament strain, and disk compression force on the chiropractor subjects in the tasks performed.
Mathieu-Denoncourt, Annabelle; Letendre, Corinne; Auger, Jean-Philippe; Segura, Mariela; Aragon, Virginia; Lacouture, Sonia; Gottschalk, Marcelo
2018-01-01
Streptococcus suis and Haemophilus parasuis are normal inhabitants of the porcine upper respiratory tract but are also among the most frequent causes of disease in weaned piglets worldwide, causing inflammatory diseases such as septicemia, meningitis and pneumonia. Using an in vitro model of infection with tracheal epithelial cells or primary alveolar macrophages (PAMs), it was possible to determine the interaction between S. suis serotype 2 and H. parasuis strains with different level of virulence. Within H. parasuis strains, the low-virulence F9 strain showed higher adhesion levels to respiratory epithelial cells and greater association levels to PAMs than the high-virulence Nagasaki strain. Accordingly, the low-virulence F9 strain induced, in general, higher levels of pro-inflammatory cytokines than the virulent Nagasaki strain from both cell types. In general, S. suis adhesion levels to respiratory epithelial cells were similar to H. parasuis Nagasaki strain. Yet, S. suis strains induced a significantly lower level of pro-inflammatory cytokine expression from epithelial cells and PAMs than those observed with both H. parasuis strains. Finally, this study has shown that, overall and under the conditions used in the present study, S. suis and H. parasuis have limited in vitro interactions between them and use probably different host receptors, regardless to their level of virulence. PMID:29316613
Li, Peng; Wang, Dechen; Yan, Jinli; Zhou, Jianuan; Deng, Yinyue; Jiang, Zide; Cao, Bihao; He, Zifu; Zhang, Lianhui
2016-01-01
Ralstonia solanacearum species complex is a devastating group of phytopathogens with an unusually wide host range and broad geographical distribution. R. solanacearum isolates may differ considerably in various properties including host range and pathogenicity, but the underlying genetic bases remain vague. Here, we conducted the genome sequencing of strain EP1 isolated from Guangdong Province of China, which belongs to phylotype I and is highly virulent to a range of solanaceous crops. Its complete genome contains a 3.95-Mb chromosome and a 2.05-Mb mega-plasmid, which is considerably bigger than reported genomes of other R. solanacearum strains. Both the chromosome and the mega-plasmid have essential house-keeping genes and many virulence genes. Comparative analysis of strain EP1 with other 3 phylotype I and 3 phylotype II, III, IV strains unveiled substantial genome rearrangements, insertions and deletions. Genome sequences are relatively conserved among the 4 phylotype I strains, but more divergent among strains of different phylotypes. Moreover, the strains exhibited considerable variations in their key virulence genes, including those encoding secretion systems and type III effectors. Our results provide valuable information for further elucidation of the genetic basis of diversified virulences and host range of R. solanacearum species. PMID:27833603
A new laboratory cultivation of Paramecium bursaria using non-pathogenic bacteria strains.
Bator, Tomasz
2010-01-01
In most studies dealing with the laboratory cultivation of paramecia (Paramecium bursaria), Klebsiella pneumoniae bacteria are used to inoculate the medium. However, Klebsiella pneumoniae is a typical pathogen, and its use is always associated with a risk of infection. The aim of the present research was to examine non-pathogenic bacteria strains as components of the medium for Paramecium bursaria. The paramecia were incubated on lettuce infusions bacterized with different bacteria strains: Bacillus subtilis DSM 10, Bacillus megaterium DSM 32, Escherichia coli DSM 498, Micrococcus luteus DSM 348. A strain derived from the natural habitat of Paramecium bursaria was used as the control one. Experiments were conducted under constant light and in the dark. Paramecia cells were counted under a stereomicroscope on consecutive days of incubation. The obtained results show that the most intensive growth of Paramecium bursaria occurs in the presence of Escherichia coli DSM 498. The use of this strain as a component of the medium allows one to obtain a high number of ciliates regardless of the light conditions. It can be concluded that the Paramecium bursaria cultivation procedure can be modified by using the non-pathogenic bacteria strain Escherichia coli DSM 498 instead of Klebsiella pneumoniae.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less
[In-vitro activity of rabeprazole, lansoprazole, and esomeprazole against Helicobacter pylori].
He, Li-hua; Yin, Yan; You, Yuan-hai; Yan, Xiao-mei; Zhang, Jian-zhong
2003-06-01
To investigate the antimicrobial activity of Pariet, Tekpron, Nexium, respectively, against Helicobacter pylori (H. pylori) in vitro. Antimicrobial effects of these medicines were evaluated through detection of MICs for 3 H. pylori strains isolated from different countries. The MIC(99) contents were 2.25 mg/L, 42.5 mg/L and 360 mg/L, respectively, for the three medicines. The strains under testing exhibited the same susceptibility to each medicine. Nexium did not inhibit the bacteria under the concentration of 3.6 - 36 mg/L with more and bigger H. pylori colonies seen when compared with controls. The growth inhibitory activity appeared to be different among the three PPI medicines under investigation, with Rabeprazole the most potential agent of the three. Data suggested that the action of growth inhibition in vitro was resting on the characteristic of the given PPI as well as the supplements of the medicine.
El-Gendy, Mervat Morsy Abbas Ahmed; Al-Zahrani, Salha Hassan Mastour; El-Bondkly, Ahmed Mohamed Ahmed
2017-09-01
Among all fungal endophytes isolates derived from different ethno-medical plants, the hyper-yield L-asparaginase and L-glutaminase wild strains Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20 using rice straw under solid-state fermentation (SSF) were selected. The selected strains were used as parents for the intergeneric protoplast fusion program to construct recombinant strain for prompt improvement production of these enzymes in one recombinant strain. Among 21 fusants obtained, the recombinant strain AYA 20-1, with 2.11-fold and 2.58-fold increase in L-asparaginase and L-glutaminase activities more than the parental isolates Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20, respectively, was achieved using rice straw under SSF. Both therapeutic enzymes L-asparaginase and L-glutaminase were purified and characterized from the culture supernatant of the recombinant AYA 20-1 strain with molecular weights of 50.6 and 83.2 kDa, respectively. Both enzymes were not metalloenzymes. Whereas thiol group blocking reagents such as p-chloromercurybenzoate and iodoacetamide totally inhibited L-asparaginase activity, which refer to sulfhydryl groups and cysteine residues involved in its catalytic activity, they have no effect toward L-glutaminase activity. Interestingly, potent anticancer, antioxidant, and antimicrobial activities were detected for both enzymes.
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Evolution of dispersal and life history strategies – Tetrahymena ciliates
Fjerdingstad, Else J; Schtickzelle, Nicolas; Manhes, Pauline; Gutierrez, Arnaud; Clobert, Jean
2007-01-01
Background Considerable attention has focused on how selection on dispersal and other core life-history strategies (reproductive effort, survival ability, colonization capacity) may lead to so-called dispersal syndromes. Studies on genetic variation in these syndromes within species could importantly increase our understanding of their evolution, by revealing whether traits co-vary across genetic lineages in the manner predicted by theoretical models, and by stimulating further hypotheses for experimental testing. Yet such studies remain scarce. Here we studied the ciliated protist Tetrahymena thermophila, a particularly interesting organism due to cells being able to transform into morphs differing dramatically in swim-speed. We investigated dispersal, morphological responses, reproductive performance, and survival in ten different clonal strains. Then, we examined whether life history traits co-varied in the manner classically predicted for ruderal species, examined the investment of different strains into short- and putative long-distance dispersal, while considering also the likely impact of semi-sociality (cell aggregation, secretion of 'growth factors') on dispersal strategies. Results Very significant among-strain differences were found with regard to dispersal rate, morphological commitment and plasticity, and almost all core life-history traits (e.g. survival, growth performance and strategy), with most of these traits being significantly intercorrelated. Some strains showed high short-distance dispersal rates, high colonization capacity, bigger cell size, elevated growth performance, and good survival abilities. These well performing strains, however, produced fewer fast-swimming dispersal morphs when subjected to environmental degradation than did philopatric strains performing poorly under normal conditions. Conclusion Strong evidence was found for a genetic covariation between dispersal strategies and core life history traits in T. thermophila, with a fair fit of observed trait associations with classic colonizer models. However, the well performing strains with high colonization success and short-distance dispersal likely suffered under a long-distance dispersal disadvantage, due to producing fewer fast-swimming dispersal morphs than did philopatric strains. The smaller cell size at carrying capacity of the latter strains and their poor capacity to colonize as individual cells suggest that they may be adapted to greater levels of dependency on clone-mates (stronger sociality). In summary, differential exposure to selection on competitive and cooperative abilities, in conjunction with selective factors targeting specifically dispersal distance, likely contributed importantly to shaping T. thermophila dispersal and life history evolution. PMID:17683620
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping; Du, Hongfei
2015-11-01
In this paper, we focus on the local mechanical response of superelastic NiTi SMA at different temperatures under uniaxial loading. In situ DIC is applied to measure the local strain of the specimen. Based on the experimental results, two types of mechanical response, which are characterized with localized phase transformation and homogenous phase transformation, are identified, respectively. Motivated by residual strain accumulation phenomenon of the superelastic mechanical response, we conduct controlled experiments, and infer that for a given material point, all (or most) of the irreversibility is accumulated when the transformation front is traversing the material point. A robust constitutive model is established to explain the experimental phenomena and we successfully simulate the evolution of local strain that agrees closely with the experimental results.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan
2016-09-01
We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.
Gisi, Daniel; Willi, Laurent; Traber, Hubert; Leisinger, Thomas; Vuilleumier, Stéphane
1998-01-01
Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 s−1, respectively, and the Km values are 9 and 59 μM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants. PMID:9546153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna
2012-01-01
The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less
NASA Astrophysics Data System (ADS)
Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia
2018-02-01
The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.
The Time-Dependency of Deformation in Porous Carbonate Rocks
NASA Astrophysics Data System (ADS)
Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.
2016-12-01
Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.
Lee, K H; Ruby, E G
1994-04-01
Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.
Lee, K H; Ruby, E G
1994-01-01
Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization. PMID:8144466
Huang, Wei; Zaheri, Alireza; Jung, Jae-Young; Espinosa, Horacio D; Mckittrick, Joanna
2017-12-01
Bighorn sheep (Ovis canadensis) rams hurl themselves at each other at speeds of ∼9 m/s (20 mph) to fight for dominance and mating rights. This necessitates impact resistance and energy absorption mechanisms, which stem from material-structure components in horns. In this study, the material hierarchical structure as well as correlations between the structure and mechanical properties are investigated. The major microstructural elements of horns are found as tubules and cell lamellae, which are oriented with (∼30⁰) angle with respect to each other. The cell lamellae contain keratin cells, in the shape of pancakes, possessing an average thickness of ∼2 µm and diameter of ∼20-30 µm. The morphology of keratin cells reveals the presence of keratin fibers and intermediate filaments with diameter of ∼200 nm and ∼12 nm, respectively, parallel to the cell surface. Quasi-static and high strain rate impact experiments, in different loading directions and hydration states, revealed a strong strain rate dependency for both dried and hydrated conditions. A strong anisotropy behavior was observed under impact for the dried state. The results show that the radial direction is the most preferable impact orientation because of its superior energy absorption. Detailed failure mechanisms under the aforementioned conditions are examined by bar impact recovery experiments. Shear banding, buckling of cell lamellae, and delamination in longitudinal and transverse direction were identified as the cause for strain softening under high strain rate impact. While collapse of tubules occurs in both quasi-static and impact tests, in radial and transverse directions, the former leads to more energy absorption and impact resistance. Bighorn sheep (Ovis canadensis) horns show remarkable impact resistance and energy absorption when undergoing high speed impact during the intraspecific fights. The present work illustrates the hierarchical structure of bighorn sheep horn at different length scales and investigates the energy dissipation mechanisms under different strain rates, loading orientations and hydration states. These results demonstrate how horn dissipates large amounts of energy, thus provide a new path to fabricate energy absorbent and crashworthiness engineering materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Salaita, Louai G; Yilmaz, Burak; Seidt, Jeremy D; Clelland, Nancy L; Chien, Hua-Hong; McGlumphy, Edwin A
2017-08-01
Many aftermarket abutments for cement-retained crowns are available for the tapered screw-vent implant. Aftermarket abutments vary widely, from stock to custom abutments and in materials such as zirconia, titanium, or a combination of the two. How these aftermarket abutments perform under occlusal loads with regard to strain distribution is not clear. The purpose of this in vitro study was to measure and compare the different strains placed upon the bone around implants by 9 different abutments for cement-retained crowns on an implant with an internal hexagonal platform. Nine 4.1×11.5-mm tapered screw-vent implants were placed into a 305×51×8-mm resin block for strain measurements. Five abutment specimens of each of the 9 different abutments (N=45) were evaluated with 1 of the 9 implants. Monolithic zirconia crowns were then fabricated for each of the 9 different abutments, the crowns were cyclically loaded (maximum force 225 N) at 30 degrees, twice at a frequency of 2 Hz, and the strain was measured and recorded. The strain to the resin block was determined using a 3-dimensional digital image correlation (3D DIC) technique. Commercial image correlation software was used to analyze the strain around the implants. Data for maximal and minimal principal strains were compared using analysis of variance with a Tukey-Kramer post hoc test (α=.05). Strain measurements showed no significant differences among any of the abutments for minimal (compression) principal strains (P>.05). For maximal (tensile) principal strains, the zirconia abutment showed the highest, and the patient-specific abutment showed the second-highest strain around the implant, with the zirconia being significantly greater than all abutments, with the exception of the patient-specific abutment, and the patient-specific abutment being significantly greater than the straight contoured abutment in titanium and also zirconia (P<.05). The name brand patient specific titanium and Atlantis zirconia abutments conferred the most tensile strain to the implants. When selecting an abutment for a cement-retained crown on a tapered screw-vent implant, practitioners should consider the abutment material and the manufacturer of the abutment because not all abutments that fit in an individual implant transmit the strains in the same way. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Mukherjee, P K; Sherkhane, P D; Murthy, N B
1999-07-01
Trichoderma pseudokoningii MTCC 3011 is a very useful strain for biological control of the plant pathogen Sclerotium rolfsii under post-harvest conditions. In the present investigation, several benomyl-tolerant phenotypic mutants of this strain have been generated using a two step mutagenesis-chemical followed by gamma irradiation. The mutants differed from the wild type strain in antibiotic and disease control potential. Some of the mutants are superior to the wild type in biocontrol potential on S. rolfsii.
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-05-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-07-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression
Baeza, F. Javier; Garcés, Pedro
2017-01-01
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797
Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.
Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro
2017-11-24
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.
Strain rate effects on the mechanical behavior of two Dual Phase steels in tension
NASA Astrophysics Data System (ADS)
Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.
2016-05-01
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.
Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun
2017-09-26
Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-05-01
Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.
A Fatigue Life Prediction Method Based on Strain Intensity Factor
Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing
2017-01-01
In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition. PMID:28773049
Skovager, Anne; Whitehead, Kathryn; Wickens, David; Verran, Joanna; Ingmer, Hanne; Arneborg, Nils
2013-09-01
Magnetron sputtering was used to produce nanocomposite TiN and TiN/Ag coatings on stainless steel surfaces. The surface chemistry (EDX), physicochemical properties (contact angles), topography and roughness parameters (WLP and AFM) of the fine polished stainless steel (FPSS), TiN and TiN/8.6 at.% Ag surfaces were examined. Real-time initial adhesion of two Listeria monocytogenes strains (EGDe and 64) to the three surfaces was determined under flow conditions, and their attachment strength after adhesion was measured using atomic force microscopy (AFM). The anti-listerial properties of the surfaces were determined using LIVE/DEAD staining. Our results demonstrate that FPSS, TiN and TiN/8.6 at.% Ag possessed different surface properties, which may influence both attachment strength and anti-listerial properties. There were no significant (p>0.05) differences in the initial adhesion of the two L. monocytogenes strains to the three different surfaces. Attachment studies showed that the two L. monocytogenes strains did not attach to FPSS under wetted conditions. However, both strains attached to TiN and TiN/8.6 at.% Ag surfaces, although with less strength to TiN/8.6 at.% Ag than to TiN surfaces. The TiN/8.6 at.% Ag surface showed marked anti-listerial properties as compared with FPSS and TiN. Initial adhesion, attachment strength and anti-listerial properties were found to be strain dependent. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti
2016-05-01
Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.
Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus.
Mengeling, W L; Pejsak, Z; Paul, P S
1984-11-01
Attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus (PPV) were titrated in vivo and in vitro under similar conditions to provide a better understanding of some of the factors involved in virulence of PPV in causing maternal reproductive failure of swine. Both strains cause fetal death when they are injected directly into fetal fluids, but only strain NADL-8 does so when administered to pregnant swine. The strains were tested for their hemagglutinating activity (HA), median cell culture infective dose (CCID50), median fetal infective dose (FID50), and median fetal lethal dose (FLD50). The FID50 and FLD50 were determined by injecting virus directly into the amniotic fluid of fetuses in utero at 44 +/- 2 days of gestation and collecting the fetuses 15 +/- 1 days later. Both strains had an HA titer of 64, suggesting that there is a similar number of virions in stock preparations. However, other measurements differed markedly. The CCID50, FID50, and FLD50 were 10(5.5), 10(3.5), and 10(0.5), respectively, for strain NADL-2, and 10(4.5), 10(7.7), and 10(6.3), respectively, for strain NADL-8. Collectively, the values indicate that more than 10,000 times as much strain NADL-2 would need to reach the conceptus transplacentally to establish infection. These observations may help to explain the different consequences of oronasal exposure of pregnant swine to these strains of PPV.
Monteiro, R; Hébraud, M; Chafsey, I; Poeta, P; Igrejas, G
2016-08-11
β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Escherichia coli strains 5A, 10A, 12A and 23B isolated from Seagulls feces, are cefotaxime-resistant strains that produces extended-spectrum beta-lactamases. Bacterial resistance to these antibiotics occurs predominantly through structural modification on the penicillin-binding proteins and enzymatic inactivation by extended-spectrum β-lactamases. Using classical proteomic techniques (2D-GE) coupled to mass spectrometry and bioinformatics extended analysis, in this study, we report several significant differences in cytoplasmic proteins expression when the strains were submitted to antibiotic stress and when the resistant strains were compared with a non-resistant strain. A total of 79 differentially expressed spots were collected for protein identification. Significant level of expression was found in antibiotic resistant proteins like β-lactamase CTX-M-1 and TEM and also in proteins related with oxidative stress. This approach might help us understand which pathways form barriers for antibiotics, another possible new pathways involved in antibiotic resistance to devise appropriate strategies for their control already recognized by the World Health Organization and the European Commission. This study highlights the protein differences when a resistant strain is under antibiotic pressure and how different can be a sensible and resistant strain at the protein level. This survey might help us to understand the specifics barriers for antibiotics and which pathways are involved in its resistance crosswise the wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.
Harouni, Ahmed A.; Hossain, Jakir; Jacobs, Michael A.; Osman, Nael F.
2012-01-01
Introduction Early detection of breast lesions using mammography has resulted in lower mortality-rates. However, some breast lesions are mammography occult and magnetic resonance imaging (MRI) is recommended, but has lower specificity. It is possible to achieve higher specificity by using Strain-ENCoded (SENC) MRI and/or magnetic resonance elastography(MRE). SENC breast MRI can measure the strain properties of breast tissue. Similarly, MRE is used to measure elasticity (i.e., shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are 3–13 times stiffer than normal tissue and benign tumors. Methods We have developed a Strain-ENCoded (SENC) breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enabled us to use SENC MRI with high spatial resolution (1×1×5mm3) instead of Fast SENC(FSENC). Simple controls and multiple safety measures were added to ensure accurate, repeatable and safe in-vivo experiments. Results Phantom experiments showed that SENC breast MRI has higher SNR and CNR than FSENC under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of less than one mm with a 1% strain difference. Conclusion SENC breast MR images have higher SNR and CNR than FSENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting. PMID:21440464
Rivarola, María Elisa; Tauro, Laura Beatriz; Llinás, Guillermo Albrieu; Contigiani, Marta Silvia
2014-01-01
Saint Louis encephalitis virus caused an outbreak of febrile illness and encephalitis cases in Córdoba, Argentina, in 2005. During this outbreak, the strain CbaAr-4005 was isolated from Culex quinquefasciatus mosquitoes. We hypothesised that this epidemic variant would be more virulent in a mouse model than two other non-epidemic strains (78V-6507 and CorAn-9275) isolated under different epidemiological conditions. To test this hypothesis, we performed a biological characterisation in a murine model, including mortality, morbidity and infection percentages and lethal infection indices using the three strains. Mice were separated into age groups (7, 10 and 21-day-old mice) and analysed after infection. The strain CbaAr-4005 was the most infective and lethal of the three variants, whereas the other two strains exhibited a decreasing mortality percentage with increasing animal age. The strain CbaAr-4005 produced the highest morbidity percentages and no significant differences among age groups were observed. The epidemic strain caused signs of illness in all inoculated animals and showed narrower ranges from the onset of symptoms than the other strains. CbaAr-4005 was the most virulent for Swiss albino mice. Our results highlight the importance of performing biological characterisations of arbovirus strains likely to be responsible for emerging or reemerging human diseases. PMID:24810175
Hezayen, F F; Rehm, B H; Tindall, B J; Steinbüchel, A
2001-05-01
A novel extremely halophilic member of the Archaea, strain 40T, was isolated from Egypt (Aswan). This isolate requires at least 1.6 M sodium chloride for growth and exhibits optimal growth between 37 and 42 degrees C. Determination of the entire 16S rRNA gene sequence revealed the highest similarity to the type strain of Natrialba asiatica (> 99%). Polar lipid analysis indicated that strain 40T and Natrialba asiatica have essentially identical compositions, indicating that the former is a member of genus Natrialba. However, physiological and biochemical data provided evidence that Natrialba asiatica strains B1T and 172P1T, as well as strain 40T, are sufficiently different to be divided in three different species. The G+C content of strain 40T was 61.5+/-0.6 mol%. In addition, DNA-DNA hybridization data supported the placement of the isolate in a new species in the genus Natrialba, Natrialba aegyptiaca sp. nov., and indicated that Natrialba asiatica strain B1T should also be placed in a separate species, Natrialba taiwanensis sp. nov. Morphological studies of strain 40T indicated clearly that this isolate appears in three completely different cell shapes (cocci, rods, tetrads) under different conditions of growth, including different sodium chloride concentrations and different growth temperatures. Another interesting property of strain 40T is the ability to produce an extracellular polymer, which was found to be composed predominantly of glutamic acid (85% w/w), representing poly(glutamic acid), carbohydrates (12.5% w/w) and unidentified compounds (2.5% w/w). Among the Archaea, production of an extracellular polysaccharide has been described for some members of the genera Haloferax and Haloarcula.
The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release
NASA Astrophysics Data System (ADS)
Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.
2017-06-01
The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.
Pérez-Través, Laura; Lopes, Christian A; Querol, Amparo; Barrio, Eladio
2014-01-01
Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99-100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains.
On the Complexity of the Saccharomyces bayanus Taxon: Hybridization and Potential Hybrid Speciation
Pérez-Través, Laura; Lopes, Christian A.; Querol, Amparo; Barrio, Eladio
2014-01-01
Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99–100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains. PMID:24705561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn; Wang, Jing
2016-01-15
Direct gap Ge{sub 1−x}Sn{sub x} alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge{sub 1−x}Sn{sub x} alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorablemore » for high-performance direct gap Ge{sub 1−x}Sn{sub x} electronic devices.« less
Kirby, Anne V.; White, Tamira J.; Baranek, Grace T.
2015-01-01
Caring for children with disabilities contributes to increased levels of parent stress, or caregiver strain. However, the potential relationship of sensory features to strain among caregivers of children with autism spectrum disorder (ASD) and other developmental disabilities (DD) is unknown. Sensory features include over-reactions, under-reactions, and unusual interests in sensations, which may negatively impact family functioning. This descriptive study confirmed three caregiver strain types (i.e., objective, subjective internalized, subjective externalized) and explored differences among ASD (n=71) and DD (n=36) groups, with the ASD group reporting higher levels. Furthermore, this study explored the contribution of sensory features to caregiver strain, finding differential contributions to strain in the ASD group and covariate contributions (i.e., child cognition, mother’s education) in the DD group. PMID:25551265
Microscopic Origin of Strain Hardening in Methane Hydrate
Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi
2016-01-01
It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239
Caballero, P; Troncoso, M; Patterson, S I; López Gómez, C; Fernandez, R; Sosa, M A
2016-10-01
The type A of neurotoxin produced by Clostridium botulinum is the prevalent serotype in strains of Mendoza. The soil is the main reservoir for C.botulinum and is possibly one of the infection sources in infant botulism. In this study, we characterized and compared autochthonous C. botulinum strains and their neurotoxins. Bacterial samples were obtained from the soil and from fecal samples collected from children with infant botulism. We first observed differences in the appearance of the colonies between strains from each source and with the A Hall control strain. In addition, purified neurotoxins of both strains were found to be enriched in a band of 300 kDa, whereas the A-Hall strain was mainly made up of a band of ∼600 kDa. This finding is in line with the lack of hemagglutinating activity of the neurotoxins under study. Moreover, the proteolytic activity of C. botulinum neurotoxins was evaluated against SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins from rat brain. It was observed that both, SNAP 25 (synaptosomal-associated protein 25) and VAMP 2 (vesicle-associated membrane protein) were cleaved by the neurotoxins isolated from the soil strains, whereas the neurotoxins from infant botulism strains only induced a partial cleavage of VAMP 2. On the other hand, the neurotoxin from the A-Hall strain was able to cleave both proteins, though at a lesser extent. Our data indicate that the C.botulinum strain isolated from the soil, and its BoNT, exhibit different properties compared to the strain obtained from infant botulism patients, and from the A-Hall archetype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bécavin, Christophe; Bouchier, Christiane; Lechat, Pierre; Archambaud, Cristel; Creno, Sophie; Gouin, Edith; Wu, Zongfu; Kühbacher, Andreas; Brisse, Sylvain; Pucciarelli, M. Graciela; García-del Portillo, Francisco; Hain, Torsten; Portnoy, Daniel A.; Chakraborty, Trinad; Lecuit, Marc; Pizarro-Cerdá, Javier; Moszer, Ivan; Bierne, Hélène; Cossart, Pascale
2014-01-01
ABSTRACT For nearly 3 decades, listeriologists and immunologists have used mainly three strains of the same serovar (1/2a) to analyze the virulence of the bacterial pathogen Listeria monocytogenes. The genomes of two of these strains, EGD-e and 10403S, were released in 2001 and 2008, respectively. Here we report the genome sequence of the third reference strain, EGD, and extensive genomic and phenotypic comparisons of the three strains. Strikingly, EGD-e is genetically highly distinct from EGD (29,016 single nucleotide polymorphisms [SNPs]) and 10403S (30,296 SNPs), and is more related to serovar 1/2c than 1/2a strains. We also found that while EGD and 10403S strains are genetically very close (317 SNPs), EGD has a point mutation in the transcriptional regulator PrfA (PrfA*), leading to constitutive expression of several major virulence genes. We generated an EGD-e PrfA* mutant and showed that EGD behaves like this strain in vitro, with slower growth in broth and higher invasiveness in human cells than those of EGD-e and 10403S. In contrast, bacterial counts in blood, liver, and spleen during infection in mice revealed that EGD and 10403S are less virulent than EGD-e, which is itself less virulent than EGD-e PrfA*. Thus, constitutive expression of PrfA-regulated virulence genes does not appear to provide a significant advantage to the EGD strain during infection in vivo, highlighting the fact that in vitro invasion assays are not sufficient for evaluating the pathogenic potential of L. monocytogenes strains. Together, our results pave the way for deciphering unexplained differences or discrepancies in experiments using different L. monocytogenes strains. PMID:24667708
Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials
NASA Astrophysics Data System (ADS)
Yekani Fard, Masoud
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Noebe, R. D.
2013-01-01
This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.
pH feedback and phenotypic diversity within bacterial functional groups of the human gut.
Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn
2014-02-07
Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-01-01
A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
Marin-Menguiano, Miriam; Romero-Sanchez, Sandra; Barrales, Ramón R; Ibeas, Jose I
2017-03-06
Fino is the most popular sherry wine produced in southern Spain. Fino is matured by biological aging under a yeast biofilm constituted of Saccharomyces cerevisiae yeasts. Although different S. cerevisiae strains can be identified in such biofilms, their diversity and contribution to wine character have been poorly studied. In this work, we analyse the flor yeast population in five different wineries from the Montilla-Moriles D.O. (Denominación de Origen) in southern Spain. Yeasts present in wines of different ages were identified using two different culture-dependent molecular techniques. From 2000 individual yeast isolates, five different strains were identified with one of them dominating in four out of the five wineries analysed, and representing 76% of all the yeast isolates collected. Surprisingly, this strain is similar to the predominant strain isolated twenty years ago in Jerez D.O. wines, suggesting that this yeast is particularly able to adapt to such a stressful environment. Fino wine produced with pure cultures of three of the isolated strains resulted in different levels of acetaldehyde. Because acetaldehyde levels are a distinctive characteristic of fino wines and an indicator of fino aging, the use of molecular techniques for yeast identification and management of yeast populations may be of interest for fino wine producers looking to control one of the main features of this wine. Copyright © 2016 Elsevier B.V. All rights reserved.
[Development of poliovirus infection in laboratory animals of different species].
Koroleva, G A; Lashkevich, V A; Voroshilova, M K
1975-01-01
The capacity of vaccine and virulent strains of poliomyelitis virus to multiply in laboratory animals of different species was studied. Virus reproduction was judged by formation of photoresistant virus progeny in response to inoculation of the animals with photosensitized virus. Multiplication of virulent poliomyelitis virus strains observed in the majority of animal species examined (monkeys, newborn and adult cotton rats, newborn and adult white mice, chickens, chick embryos) resulted in active formation of photoresistant virus population and in some cases was accompanied by clinical symptoms of the disease. Multiplication of vaccine strains was observed in a smaller number of animal species and was limited, as a rule. Among non-primate animals, newborn cotton rats were most susceptible to poliovirus infection. Newborn guinea pigs were the only species of laboratory animals in which no multiplication of any of the six strains under study could be detected.
Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation
NASA Technical Reports Server (NTRS)
Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.
1999-01-01
In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.
Harada, Jiro; Saga, Yoshitaka; Oh-oka, Hirozo; Tamiaki, Hitoshi
2005-11-01
Two sub-strains of the anoxygenic photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 were derived from the same clone and could be discriminated only by their possession of either bacteriochlorophyll (BChl) c or d as the major pigment in the peripheral light-harvesting antenna system, chlorosome (Saga Y et al. (2003) Anal Sci 19: 1575-1579). In the presence of a proper amount of oxygen in the initial culture medium, the BChl d strain showed longer retardation on its growth initiation than the BChl c strain, indicating that the latter was advantageous for survival under aerobic light conditions which produced reactive oxygen species in vivo. The result would be ascribable to the difference of the midpoint potentials between two kinds of chlorosomes formed by self-aggregates of BChl c and d as measured by their fluorescence quenching.
NASA Astrophysics Data System (ADS)
Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun
2017-10-01
Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.
Ferrigo, Davide; Raiola, Alessandro; Bogialli, Sara; Bortolini, Claudio; Tapparo, Andrea; Causin, Roberto
2015-05-20
The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (<20%) in comparison to control cultures. Transcriptional studies with seven biosynthetic genes showed a significant increase in transcript levels in the strain that made more fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.
NASA Astrophysics Data System (ADS)
Bugge, F.; Bege, R.; Blume, G.; Feise, D.; Sumpf, B.; Werner, N.; Zeimer, U.; Paschke, K.; Weyers, M.
2018-06-01
Highly strained InxGa1-xAs QWs are commonly used for laser diodes in the wavelength range beyond 1100 nm, but they suffer from strain induced formation of defects. The effect of different laser structures and different laser layouts on the aging behavior was investigated. If grown and processed under optimized conditions, laser diodes emitting at 1120 nm, 1156 nm and 1180 nm have lifetimes of several 1000 h up to more than 20,000 h in dependence on structure or indium content. Laser diodes with three different emission wavelength were mounted in a microoptical bench with a second harmonic generation crystal. From these benches laser emission in the green-yellow spectral range with more than 800 mW output power was obtained.
Karaulov, Alexander; Aleshkin, Vladimir; Slobodenyuk, Vladimir; Grechishnikova, Olga; Afanasyev, Stanislav; Lapin, Boris; Dzhikidze, Eteri; Nesvizhsky, Yuriy; Evsegneeva, Irina; Voropayeva, Elena; Afanasyev, Maxim; Aleshkin, Andrei; Metelskaya, Valeria; Yegorova, Ekaterina; Bayrakova, Alexandra
2010-01-01
Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S-23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S-23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga) have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration.
NASA Astrophysics Data System (ADS)
Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; Li, Jianlin; Simunovic, Srdjan; Turner, John A.; Gorney, Phillip
2018-02-01
Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. The critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. The results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.
Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; ...
2017-12-16
Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. Themore » critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. In conclusion, the results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.« less
NASA Astrophysics Data System (ADS)
Ding, Zong-ye; Hu, Qiao-dan; Zeng, Long; Li, Jian-guo
2016-11-01
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ•mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate ( θ)-flow stress ( σ) and -∂ θ/∂ σ-σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.
Further Characterization of Genetically Distinct Groups of Acidovorax citrulli Strains.
Zivanovic, M; Walcott, R R
2017-01-01
Bacterial fruit blotch of cucurbits (BFB) is caused by the gram-negative bacterium Acidovorax citrulli, whose populations can be distinguished into two genetically distinct groups, I and II. Based on visual assessment of BFB severity on cucurbit seedlings and fruit after inoculation under greenhouse conditions, group I A. citrulli strains have been reported to be moderately to highly virulent on several cucurbit hosts, whereas group II strains have exhibited high virulence on watermelon but low virulence on other cucurbits. Additionally, group I strains are recovered from a range of cucurbit hosts, while group II strains are predominantly found on watermelon. The goal of this research was to develop tools to characterize and rapidly distinguish group I and II A. citrulli strains. We first sought to determine whether quantification of A. citrulli colonization of cucurbit seedling tissue reflects the differences between group I and II strains established by visual assessment of BFB symptom severity. Spray inoculation of melon seedlings with cell suspensions containing approximately 1 × 10 4 CFU/ml resulted in significantly higher (P = 0.01) population growth of M6 (group I; mean area under population growth curve [AUPGC] = 43.73) than that of AAC00-1 (group II; mean AUPGC = 39.33) by 10 days after inoculation. We also investigated the natural spread of bacterial cells and the resulting BFB incidence on watermelon and melon seedlings exposed to three group I and three group II A. citrulli strains under mist chamber conditions. After 5 days of exposure, the mean BFB incidence on melon seedlings exposed to representative group II A. citrulli strains was significantly lower (25 and 3.98% in experiments 1 and 2, respectively) than on melon seedlings exposed to representative group I strains (94.44 and 76.11% in experiments 1 and 2, respectively), and on watermelon seedlings exposed to representative group I and II strains (70 to 93.33%). Finally, we developed a polymerase chain reaction assay based on the putative type III secretion effector gene, Aave_2166, to rapidly distinguish group I and II A. citrulli strains. This assay will be important for future epidemiological studies on BFB.
NASA Astrophysics Data System (ADS)
Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong
2018-04-01
The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.
Bravo-Ferrada, Bárbara Mercedes; Hollmann, Axel; Brizuela, Natalia; La Hens, Danay Valdés; Tymczyszyn, Elizabeth; Semorile, Liliana
2016-09-01
Five Oenococcus oeni strains, selected from spontaneous malolactic fermentation (MLF) of Patagonic Pinot noir wine, were assessed for their use as MLF starter cultures. After the individual evaluation of tolerance to some stress conditions, usually found in wine (pH, ethanol, SO2, and lysozyme), the behavior of the strains was analyzed in MLO broth with 14 % ethanol and pH 3.5 in order to test for the synergistic effect of high ethanol level and low pH and, finally, in a wine-like medium. Although the five strains were able to grow in MLO broth under low pH and/or high ethanol, they must be acclimated to grow in a wine-like medium. Additionally, glycosidase and tannase activities were evaluated, showing differences among the strains. The potential of the strains to ferment citrate was tested and two of the five strains showed the ability to metabolize this substrate. We did not detect the presence of genes encoding histidine, tyrosine descarboxylase, and putrescine carbamoyltransferase. All the strains tested exhibited good growth capacity and ability to consume L-malic acid in a wine-like medium after cell acclimation, and each of them showed a particular enzyme profile, which might confer different organoleptic properties to the wine.
Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A
2017-08-01
Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.
Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study
NASA Astrophysics Data System (ADS)
Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.
57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.
a Study on Strain Rate Effect in Collision Analysis of Rolling STOCK
NASA Astrophysics Data System (ADS)
Kim, Seung Rok; Koo, Jeong Seo
In this paper, the strain rate effect of energy absorption members in rolling stock is studied using the virtual testing model (VTM) for Korean high speed train (KHST). The VTM of KHST was simulated for two different strain rate conditions. The VTM is composed of FE models for structures, and nonlinear spring/damper models for dynamic components. To simplify numerical model for the full rake KHST, the first three units consist of full flexible multi-body dynamic models, and the remainder does 1-D spring/damper/mass models. To evaluate the strain rate effect of KHST, the crash simulation was performed under the accident scenario for a collision with a rigid mass of 15 tons at 110kph. The numerical results show that the overall crash response of the train is not largely affected as much as expected, but individual components have some different deformations according to strain rate. The deformation of the front end structure without strain rate effect is larger than that with it. However, the deformation of the rear end structure without strain rate effect is smaller than that with it. Finally, the intrusion of the driver's cabin is overestimated for no strain rate effect when compared to the case with it.
Constitutive Behavior Modelling of AA1100-O AT Large Strain and High Strain Rates
NASA Astrophysics Data System (ADS)
Testa, Gabriel; Iannitti, Gianluca; Ruggiero, Andrew; Gentile, Domenico; Bonora, Nicola
2017-06-01
Constitutive behavior of AA1100-O, provided as extruded bar, was investigated. Microscopic observation showed that the cross-section has a peculiar microstructure consisting in the inner core with a large grain size surrounded by an external annulus with finer grains. Low and high strain rates tensile tests were carried out at different temperature ranging from -190 ° C to 100 ° C. Constitutive behavior was modelled using a modified version of Rusinek & Klepaczko model. Parameters were calibrated on tensile test results. Tests and numerical simulations of symmetric Taylor (RoR) and dynamic tensile extrusion (DTE) tests at different impact velocities were carried out in order to validate the model under complex deformation paths.
Analysis of thermoelastic characteristics in a thick walled FGM cylinder
NASA Astrophysics Data System (ADS)
Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal
2017-12-01
This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.
Natural variation in non-coding regions underlying phenotypic diversity in budding yeast
Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.
2016-01-01
Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953
Nandre, Vinod S; Bachate, Sachin P; Salunkhe, Rahul C; Bagade, Aditi V; Shouche, Yogesh S; Kodam, Kisan M
2017-05-01
Nutrient availability in nature influenced the microbial ecology and behavior present in existing environment. In this study, we have focused on isolation of arsenic-oxidizing cultures from arsenic devoid environment and studied effect of carbon starvation on rate of arsenite oxidation. In spite of the absence of arsenic, a total of 40 heterotrophic, aerobic, arsenic-transforming bacterial strains representing 18 different genera were identified. Nineteen bacterial species were isolated from tannery effluent and twenty-one from tannery soil. A strong co-relation between the carbon starvation and arsenic oxidation potential of the isolates obtained from the said niche was observed. Interestingly, low carbon content enhanced the arsenic oxidation ability of the strains across different genera in Proteobacteria obtained. This represents the impact of physiological response of carbon metabolism under metal stress conditions. Enhanced arsenic-oxidizing ability of the strains was validated by the presence of aio gene and RT-PCR, where 0.5- to 26-fold up-regulation of arsenite oxidase gene in different genera was observed. The cultures isolated from tannery environment in this study show predominantly arsenic oxidation ability. This detoxification of arsenic in lack of carbon content can aid in effective in situ arsenic bioremediation.
Zuchowska, Magdalena; Jaenicke, Elmar; König, Helmut; Claus, Harald
2015-11-01
The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast. Copyright © 2015 John Wiley & Sons, Ltd.
Zeaki, Nikoleta; Budi Susilo, Yusak; Pregiel, Anna; Rådström, Peter; Schelin, Jenny
2015-01-01
The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards. PMID:26690218
Cruz-Perez, Benjamin; Tang, Junhua; Morris, Hugh J.; Palko, Joel R.; Pan, Xueliang; Hart, Richard T.; Liu, Jun
2014-01-01
This study aimed to characterize the mechanical responses of the sclera, the white outer coat of the eye, under equal-biaxial loading with unrestricted shear. An ultrasound speckle tracking technique was used to measure tissue deformation through sample thickness, expanding the capabilities of surface strain techniques. Eight porcine scleral samples were tested within 72 hours postmortem. High resolution ultrasound scans of scleral cross-sections along the two loading axes were acquired at 25 consecutive biaxial load levels. An additional repeat of the biaxial loading cycle was performed to measure a third normal strain emulating a strain gauge rosette for calculating the in-plane shear. The repeatability of the strain measurements during identical biaxial ramps was evaluated. A correlation-based ultrasound speckle tracking algorithm was used to compute the displacement field and determine the distributive strains in the sample cross-sections. A Fung type constitutive model including a shear term was used to determine the material constants of each individual specimen by fitting the model parameters to the experimental stress-strain data. A non-linear stress-strain response was observed in all samples. The meridian direction had significantly larger strains than the circumferential direction during equal-biaxial loadings (P’s<0.05). The stiffness along the two directions were also significantly different (P=0.02) but highly correlated (R2=0.8). These results showed that the mechanical properties of the porcine sclera were nonlinear and anisotropic under biaxial loading. This work has also demonstrated the feasibility of using ultrasound speckle tracking for strain measurements during mechanical testing. PMID:24438767
High throughput screening of CO2-tolerating microalgae using GasPak bags
2013-01-01
Background Microalgae are diverse in terms of their speciation and function. More than 35,000 algal strains have been described, and thousands of algal cultures are maintained in different culture collection centers. The ability of CO2 uptake by microalgae varies dramatically among algal species. It becomes challenging to select suitable algal candidates that can proliferate under high CO2 concentration from a large collection of algal cultures. Results Here, we described a high throughput screening method to rapidly identify high CO2 affinity microalgae. The system integrates a CO2 mixer, GasPak bags and microplates. Microalgae on the microplates will be cultivated in GasPak bags charged with different CO2 concentrations. Using this method, we identified 17 algal strains whose growth rates were not influenced when the concentration of CO2 was increased from 2 to 20% (v/v). Most CO2 tolerant strains identified in this study were closely related to the species Scenedesmus and Chlorococcum. One of Scenedesmus strains (E7A) has been successfully tested in in the scale up photo bioreactors (500 L) bubbled with flue gas which contains 10-12% CO2. Conclusion Our high throughput CO2 testing system provides a rapid and reliable way for identifying microalgal candidate strains that can grow under high CO2 condition from a large pool of culture collection species. This high throughput system can also be modified for selecting algal strains that can tolerate other gases, such as NOx, SOx, or flue gas. PMID:24341988
Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity
NASA Astrophysics Data System (ADS)
Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.
2017-10-01
The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.
Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu
2017-12-28
One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host insect.
Gonano, M; Hein, I; Zangerl, P; Rammelmayr, A; Wagner, M
2009-05-01
Austrian veterinary (n=91), dairy (n=86), and human strains (n=48) of Staphylococcus aureus were tested for various phenotypic properties including clumping factor, egg-yolk reaction, production of thermonuclease and susceptibility to 14 antibiotics. In addition the expression of enterotoxins (A-E), and the presence of enterotoxin genes sea to sej and tst was determined. Significant differences in antimicrobial susceptibility were found with 84.6% of veterinary, 57.0% of dairy, and 20.8% of human strains susceptible to all antibiotics tested (P<0.0005). More human strains produced enterotoxins (41.7%) than veterinary (9.9%) and dairy strains (12.6%) while 40.7% and 38.5% of veterinary, 47.7% and 52.3% of dairy, and 77.1% and 87.5% of human strains were se- and tst-positive, respectively. AFLP analysis revealed nine clusters with over- or under-representation of strains with specific characteristics. Strains clustered according to origin (veterinary, dairy, and human) and/or presence of toxin genes and antimicrobial resistance.
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali
2012-12-30
Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tuning strain of granular matter by basal assisted Couette shear
NASA Astrophysics Data System (ADS)
Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert
2017-06-01
We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.
Finite element prediction on the chassis design of UniART4 racing car
NASA Astrophysics Data System (ADS)
Zaman, Z. I.; Basaruddin, K. S.; Basha, M. H.; Rahman, M. T. Abd; Daud, R.
2017-09-01
This paper presents the analysis and evaluation of the chassis design for University Automotive Racing Team No. 4 (UniART4) car based on finite element analysis. The existing UniART4 car chassis was measured and modelled geometrically using Solidwork before analysed in FEA software (ANSYS). Four types of static structural analysis were used to predict the chassis design capability under four different loading conditions; vertical bending, lateral bending, lateral torsion and horizontal lozenging. The results showed the chassis subjected to the highest stress and strain under horizontal lozenging, whereas the minimum stress and strain response was obtained under lateral bending. The present analysis result could provide valuable information in predicting the sustainability of the current UniART car chassis design.
Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji
2004-12-01
By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.
Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E
2014-12-01
Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Avramova, Marta; Cibrario, Alice; Peltier, Emilien; Coton, Monika; Coton, Emmanuel; Schacherer, Joseph; Spano, Giuseppe; Capozzi, Vittorio; Blaiotta, Giuseppe; Salin, Franck; Dols-Lafargue, Marguerite; Grbin, Paul; Curtin, Chris; Albertin, Warren; Masneuf-Pomarede, Isabelle
2018-03-07
Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO 2 ). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.
Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions
NASA Astrophysics Data System (ADS)
Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu
2014-05-01
Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
Ductile Fracture Initiation of Anisotropic Metal Sheets
NASA Astrophysics Data System (ADS)
Dong, Liang; Li, Shuhui; He, Ji
2017-07-01
The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
Dynamic strain distribution of FRP plate under blast loading
NASA Astrophysics Data System (ADS)
Saburi, T.; Yoshida, M.; Kubota, S.
2017-02-01
The dynamic strain distribution of a fiber re-enforced plastic (FRP) plate under blast loading was investigated using a Digital Image Correlation (DIC) image analysis method. The testing FRP plates were mounted in parallel to each other on a steel frame. 50 g of composition C4 explosive was used as a blast loading source and set in the center of the FRP plates. The dynamic behavior of the FRP plate under blast loading were observed by two high-speed video cameras. The set of two high-speed video image sequences were used to analyze the FRP three-dimensional strain distribution by means of DIC method. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile using a strain gauge and it was shown that the strain profile under the blast loading by DIC method is quantitatively accurate.
Campos-Herrera, Raquel; Gutiérrez, Carmen
2009-02-01
Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.
NASA Astrophysics Data System (ADS)
Lysgaard, Maria L.; Eckford-Soper, Lisa; Daugbjerg, Niels
2018-05-01
Continued anthropogenic carbon emissions are expected to cause a decline in global average pH of the oceans to a projected value of 7.8 by the end of the century. Understanding how harmful algal bloom (HAB) species will respond to lowered pH levels will be important when predicting future HAB events and their ecological consequences. In this study, we examined how manipulated pH levels affected the growth rate of three strains of Prymnesium parvum from North America, Denmark and Japan. Triplicate strains were grown under pH conditions ranging from 6.6 to 9.1 to simulate plausible future levels. Different tolerances were evident for all strains. Significantly higher growth rates were observed at pH 6.6-8.1 compared to growth rates at pH 8.6-9.1 and a lower pH limit was not observed. The Japanese strain (NIES-1017) had the highest maximum growth rate of 0.39 divisions day-1 at pH 6.6 but a low tolerance (0.22 divisions day-1) to high levels (pH 9.1) with growth declining markedly after pH 7.6. The Danish (SCCAP K-0081) and North American (UTEX LB 2797) strains had maximum growth rates of 0.26 and 0.35 divisions day-1, respectively between pH 6.6-8.1. Compared to the other two strains the Danish strain had a statistically lower growth rate across all pH treatments. Strain differences were either attributed to their provenance or the length of time the strain had been in culture.
Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.
Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto
2016-06-28
In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.
Continuous culture methodology for the screening of microalgae for oil.
Del Río, Esperanza; Armendáriz, Ana; García-Gómez, Elena; García-González, Mercedes; Guerrero, Miguel G
2015-02-10
A basic criterion in the selection of microalgae suitable as source of oil for biodiesel should be their actual capacity to produce lipids or, more properly, the fatty acid yield. Performance assessment of 10 preselected microalgae under both batch and continuous culture points to the latter approach as the most adequate for evaluating fatty acid productivity. Differences were patent in continuous culture among strains that otherwise had analogous oil accumulation potential under batch culture. Some promising strains under batch culture (like Muriella aurantiaca and Monoraphidium braunii) exhibited, however, values for actual fatty acid productivity lower than 40 mgL(-1)d(-1) in continuous regime. The analysis performed in photochemostat under continuous culture regime revealed the great potential of Chlorococcum olefaciens, Pseudokirchneriella subcapitata and Scenedesmus almeriensis as oil producing microalgae. Fatty acid productivity levels over 90 mgL(-1)d(-1) were recorded for the latter strains under moderate nitrogen limitation, conditions which led to an enrichment in saturated and monounsaturated fatty acids, a more suitable profile as raw material for biodiesel. The continuous culture methodology employed represents a sound procedure for screening microalgae for biofuel production, providing a reliable evaluation of their fatty acid production capacity, under conditions close to those of outdoor production systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Cuicui; Zhang, Kai; Xie, Jun; Liu, Qigen; Yu, Deguang; Wang, Guangjun; Yu, Ermeng; Gong, Wangbao; Li, Zhifei
2017-10-01
This work evaluates the application potential of a new indigenous aerobic denitrifier, strain Pseudomonas CW-2, isolated from a largemouth bass culture pond. The rate of ammonium-N removal by strain CW-2 was approximately 97% at a DO concentration of 5.2 mg/L. Furthermore, when nitrate and ammonia coexisted, the strain gave priority to assimilating ammonia, and thereafter to denitrification. Under optimal cultivation conditions, citrate and acetate were the carbon resources, C/N was 8, dissolved oxygen was 5.2 mg/L, and pH was 7; the removal rate of ammonium reached nearly 90%. The changing patterns of different bacteria in strain CW-2-treated and the control pond water were also compared. Lower levels of ammonia, nitrite, and phosphates were observed in the treated water as compared with the controls. Meanwhile, phylum-level distributions of the bacterial OTUs revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Nitrospirae continuously changed their relative abundances in relation to carbon and the addition of strain CW-2; this finding implies that the conventional denitrification process was weakened under the effects of carbon or the presence of strain CW-2. We propose that strain CW-2 is a promising organism for the removal of ammonium in intensive fish culture systems, according to our evaluations of its denitrification performance.
Kitzing, C; Pröschold, T; Karsten, U
2014-02-01
Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m(-2) UV-A, <0.5 W m(-2) UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day(-1). The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g(-1) dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34-12.02 mg(-1) DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.
Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains
Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina
2016-01-01
Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773
Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume
NASA Astrophysics Data System (ADS)
Maier-Kiener, Verena; Durst, Karsten
2017-11-01
Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.
Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria.
Rani, Rupa; Kumar, Vipin
2017-07-01
Sixty endosulfan tolerant bacterial strains were isolated from pesticide stressed agricultural soils. Five most tolerant strains were tested for plant growth promoting (PGP) activities and endosulfan degradation under different optimizing conditions in broth and soil. The strains PRB101 and PRB77 were the most efficient in terms of endosulfan degradation and PGP activities and showed solubilization indexes of 3.3 and 3.1 mm, indole acetic acid production of 71 and 68 μg mL -1 , siderophore zones of 13 mm each at the recommended dosage, respectively. Hydrogen cyanide and ammonia production remained unaffected in the presence of endosulfan. PRB101 and PRB77 strains were able to degrade 74% and 70% of endosulfan in broth and 67% and 63% in soil, respectively. Based on 16S rDNA analysis, the strains PRB101 and PRB77 exhibited 99% homology with Bacillus sp. KF984414 and Bacillus sp. LN849696, respectively.
Shen, Wan-Ling; Chen, Chen-Sheng; Hsu, Ming-Lun
2010-01-01
To evaluate the influence of implant collar geometry on the distribution of stress and strain in the crestal compact bone contiguous to an implant collar for four types of bone under axial and oblique loads. Finite element models of threaded implants with three kinds of implant collar designs (divergent, straight, and convergent) with their corresponding suprastructures embedded in the posterior mandible were created with ANSYS software. Eight different test conditions incorporating four types of bone (orthotropic and effectively isotropic in part 1 and high and low densities in part 2) under separate 100-N axial and 35.6-degree oblique forces were created to investigate the stress and strain distributions in the crestal compact bone around the implant collars. In all eight conditions, the divergent collar demonstrated the lowest maximum von Mises and principal stresses and strains in the crestal compact bone contiguous to the implant collar, followed by the straight and convergent collars. The oblique load induced higher peak values than the axial load. The orthotropic design amplified and increased the pathologic microstrains and tensile stresses in the crestal compact bone compared to the effectively isotropic design, especially in models with a convergent collar design. In part 2 of the study, the maximum von Mises stresses and strains increased with a decrease in the cancellous bone density. Under oblique loading, the convergent and straight collars showed pathologic microstrain values as well as excessive ultimate tensile stresses in the orthotropic bone model with low-density cancellous bone. Within the limitations, it was concluded that stress and strain distributions in the adjacent compact bone are influenced by the implant collar design. The divergent implant collar design was associated with the lowest stress and strain concentrations in the crestal compact bone.
Qiu, Liguo; Shi, Xiang; Yu, Simeng; Han, Qian; Diao, Xiaoping; Zhou, Hailong
2018-01-01
Ammonia stress can inhibit the survival and growth, and even cause mortality of shrimp. In this study, ammonia-metabolizing enzyme activities and gene expression were compared between two strains of L. vannamei under different ammonia-N (NH4+) concentrations (3.4, 13.8, and 24.6 mg/L). The results showed that elevated ammonia concentrations mainly increased glutamine synthetase (GSase) activities while inhibiting transglutaminase (TGase) activities in the muscle of both strains. Thus, we concluded that L. vannamei could accelerate the synthesis of glutamine from glutamate and NH4+ to alleviate ammonia stress. Compared with the muscle, the hepatopancreas plays a major role in ammonia stress and might be a target tissue to respond to the ammonia stress. Compared to the control group, the treatment of high ammonia concentrations reduced the hepatopancreas TGase (TG) gene expression and increased the gene expression rates of glutamate dehydrogenase-β (GDH-β) and GSase (GS) in both the muscle and the hepatopancreas of the two strains (p < 0.05). These genes (GDH-β and GS) in strain B were not only expressed earlier but also at levels higher than the expression range of strain A. At the gene level, strain B showed a more rapid and positive response than strain A. These data might help reveal the physiological responses mechanisms of shrimp adapt to ammonia stress and speed up the selective breeding process in L. vannamei. PMID:29628893
Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila.
Philippe, Anne-Sophie; Jeanson, Raphael; Pasquaretta, Cristian; Rebaudo, Francois; Sueur, Cedric; Mery, Frederic
2016-03-30
Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions. © 2016 The Author(s).
An exponential scaling law for the strain dependence of the Nb3Sn critical current density
NASA Astrophysics Data System (ADS)
Bordini, B.; Alknes, P.; Bottura, L.; Rossi, L.; Valentinis, D.
2013-07-01
The critical current density of the Nb3Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb3Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature.
Creep and dynamic viscoelastic behavior of endodontic fiber-reinforced composite posts.
Papadogiannis, D; Lakes, R S; Palaghias, G; Papadogiannis, Y
2009-10-01
Fiber-reinforced composite (FRC) posts have gained much interest recently and understanding of their viscoelastic properties is important as they can be used in stress-bearing posterior restorations. The aim of this study was to evaluate the creep behavior and the viscoelastic properties of four commercial FRC posts under different temperatures and different storage conditions. The FRC posts tested were Glassix, C-Post, Carbonite and Snowlight. For the creep measurements a constant load below the proportional limit of the posts was applied and the angular deformation of the specimens was recorded. The viscoelastic parameters were determined by using dynamic torsional loading under four different conditions. All materials were susceptible to creep and exhibited linear viscoelastic behavior. Residual strain was observed in all FRC posts. The viscoelastic properties were affected by the increase of temperature and water storage (p<0.001) resulting in their decline. Carbon fiber posts exhibited better performance than glass fiber posts. FRC posts exhibit permanent strains under regular masticatory stresses that can be generated in the oral cavity. Their properties are susceptible to changes in temperature, while direct contact with water also affects them deleteriously.
Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Guang; Hu, Jia-Mian; Zhang, Jinxian
Phase-field approach is used to predict the thickness effect on the domain stability in ferroelectric thin films. The strain relaxation mechanism and critical thickness for dislocation formation from both Matthews-Blakeslee (MB) and People-Bean (PB) models are employed. Thickness - strain domain stability diagrams are obtained for PbTiO3 thin films under different strain relaxation models. The relative domain fractions as a function of film thickness are also calculated and compared with experiment measurements in PbTiO3 thin films grown on SrTiO3 and KTaO3 substrates.
Analysis of Crushing Response of Composite Crashworthy Structures
NASA Astrophysics Data System (ADS)
David, Matthew; Johnson, Alastair F.; Voggenreiter, H.
2013-10-01
The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.
Steady-state temperature determination on the base of hysteresis loop energy for CuZn37 brass
NASA Astrophysics Data System (ADS)
Lipski, Adam; Skibicki, Dariusz; Pejkowski, Łukasz
2017-03-01
This paper presents the verification of the relationship between the temperature and the hysteresis loop energy for the CuZn37 brass under multiaxial fatigue loading. Fatigue tests were performed on the hollow specimens subjected to fully reversed tension-compression, torsion, proportional loading, 90° out-of-phase non-proportional loading and two another non-proportional loadings with frequency differences. All test were strain-controlled. Calculations of a plastic strain energy were based on midlife strain hysteresis loops data. The calculated specimen temperatures were compared with temperatures observed by thermographic camera.
Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt
2018-05-03
There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2 = 0.76), elastic modulus (R 2 = 0.63), failure energy (R 2 = 0.38), and minimum stress (R 2 = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Jun Juan; Yan, Ai Hua; Wang, Wei; Li, Ji Quan; Li, Yu Ling
2016-11-18
Two strains of phosphate-solubilizing bacteria were isolated from the rhizosphere of Pinus tabuliformis in iron tailings vegetation restoration areas in Malan Town, Qianan City, Hebei Pro-vince. The bacterial strain D2 with strong phosphate-solubilizing capacity was obtained via screening with plate and shake flask. Based on the morphology, physiology and biochemistry, and the sequence analysis of 16S rDNA, the D2 was identified as a member of Pantoea sp. A fermentation experiment was conducted to investigate the effect of carbon and nitrogen sources on the phosphate-solubilizing capacity of the strain D2; under different nitrogen sources, the organic acids in liquid culture, as well as their types and contents were determined by high performance liquid chromatography. The results showed that the strain D2 was capable of efficiently solubilizing tricalcium phosphate, and the highest value of available phosphorus was up to 392.13 mg·L -1 in liquid culture. The strain D2 displayed the strongest phosphate-solubilizing capability when glucose and ammonium sulfate were used as carbon and nitrogen sources in the culture media, respectively. Under varied nitrogen sources, the resulting organic acids and their types and contents were different. When the nitrogen source in culture media was ammonium sulfate, ammonium chloride, potassium nitrate, sodium nitrate or ammonium nitrate, all four organic acids, including oxalic acid, formic acid, acetic acid and citric acid, were produced. In addition, malic acid was uniquely produced when ammonium sulfate, ammonium chloride or ammonium nitrate was used as the nitrogen source. By Pearson's correlation analysis, a significant positive correlation between the acetic acid content and the available phosphorus content was found (r=0.886, P<0.05), suggesting that acetic acid produced by strain D2 played an important role in promoting inorganic phosphorus dissolution, which was most likely to be one of the important phosphate-solubilizing mechanisms of the strain.
NASA Astrophysics Data System (ADS)
Liu, Yanyu; Mao, Pingli; Zhang, Feng; Liu, Zheng; Wang, Zhi
2018-04-01
In order to investigate the effect of temperature on the anisotropic behaviour of AZ31 magnesium alloy rolling sheet under high strain rate deformation, the Split Hopkinson Pressure Bar was used to analyse the dynamic mechanical properties of AZ31 magnesium alloy rolling sheet in three directions, rolling direction(RD), transverse direction (TD) and normal direction (ND). The texture of the rolling sheet was characterised by X-ray analysis and the microstructure prior and after high strain rate deformation was observed by optical microscope (OM). The results demonstrated that AZ31magnesium alloy rolling sheet has strong initial {0 0 0 2} texture, which resulted at the obvious anisotropy in high strain rate deformation at 20 °C. The anisotropy reflected in stress-strain curve, yield stress, peak stress and microstructure. The anisotropy became much weaker when the deformation temperature increased up to 250 °C. Continuing to increase the deformation temperature to 350 °C the anisotropy of AZ31 rolling sheet essentially disappeared. The decreasing tendency of anisotropy with increasing temperature was due to the fact that when the deformation temperature increased, the critical resolved shear stress (CRSS) for pyramidal 〈c + a〉 slip, which was the predominant slip mechanism for ND, decreased close to that of twinning, which was the predominant deformation mechanism for RD and TD. The deformation mechanism at different directions and temperatures and the Schmid factor (SF) at different directions were discussed in the present paper.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Li, Dongliang; Liu, Xinrong; Liu, Xianshan
2015-07-02
Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.
Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain
NASA Astrophysics Data System (ADS)
Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie
2017-04-01
Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in natural mylonites. The formation of SC-fabrics is enhanced by anisotropy of the matrix, which facilitates strain partitioning in low-strain S-domains and high strain C-domains.
Muthuraj, Muthusivaramapandian; Kumar, Vikram; Palabhanvi, Basavaraj; Das, Debasish
2014-03-01
The present study reports evaluation of an indigenous microalgal isolate Chlorella sp. FC2 IITG as a potential candidate for biodiesel production. Characterization of the strain was performed under photoautotrophic, heterotrophic, and mixotrophic cultivation conditions. Further, an open-pond cultivation of the strain under outdoor conditions was demonstrated to evaluate growth performance and lipid productivity under fluctuating environmental parameters and in the presence of potential contaminants. The key findings were: (1) the difference in cultivation conditions resulted in significant variation in the biomass productivity (73-114 mg l⁻¹ day⁻¹) and total lipid productivity (35.02-50.42 mg l⁻¹ day⁻¹) of the strain; (2) nitrate and phosphate starvation were found to be the triggers for lipid accumulation in the cell mass; (3) open-pond cultivation of the strain under outdoor conditions resulted in biomass productivity of 44 mg l⁻¹ day⁻¹ and total lipid productivity of 10.7 mg l⁻¹ day⁻¹; (4) a maximum detectable bacterial contamination of 7 % of the total number of cells was recorded in an open-pond system; and (5) fatty acid profiling revealed abundance of palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2), which are considered to be the key elements for suitable quality biodiesel.
Verma, Prashant; Doyley, Marvin M
2017-09-01
We derived the Cramér Rao lower bound for 2-D estimators employed in quasi-static elastography. To illustrate the theory, we modeled the 2-D point spread function as a sinc-modulated sine pulse in the axial direction and as a sinc function in the lateral direction. We compared theoretical predictions of the variance incurred in displacements and strains when quasi-static elastography was performed under varying conditions (different scanning methods, different configuration of conventional linear array imaging and different-size kernels) with those measured from simulated or experimentally acquired data. We performed studies to illustrate the application of the derived expressions when performing vascular elastography with plane wave and compounded plane wave imaging. Standard deviations in lateral displacements were an order higher than those in axial. Additionally, the derived expressions predicted that peak performance should occur when 2% strain is applied, the same order of magnitude as observed in simulations (1%) and experiments (1%-2%). We assessed how different configurations of conventional linear array imaging (number of active reception and transmission elements) influenced the quality of axial and lateral strain elastograms. The theoretical expressions predicted that 2-D echo tracking should be performed with wide kernels, but the length of the kernels should be selected using knowledge of the magnitude of the applied strain: specifically, longer kernels for small strains (<5%) and shorter kernels for larger strains. Although the general trends of theoretical predictions and experimental observations were similar, biases incurred during beamforming and subsample displacement estimation produced noticeable differences. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P
2016-01-01
Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.
Selifonov, S A; Starozoĭtov, I I
1990-12-01
It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.
Tavakoli, J; Costi, J J
2018-04-15
While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM), its clinical relevance is not fully understood. Moreover, no studies have measured the direct tensile and shear failure and viscoelastic properties of the ILM. Therefore, the aim of this study was, for the first time, to measure the viscoelastic and failure properties of the ILM in both the tension and shear directions of loading. Using an ovine model, isolated ILM samples were stretched to 40% of their initial length at three strain rates of 0.1%s -1 (slow), 1%s -1 (medium) and 10%s -1 (fast) and a ramp test to failure was performed at a strain rate of 10%s -1 . The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates, and the viscoelastic and failure properties were not significantly different under tension and shear loading. We found a strain rate dependent response of the ILM during dynamic loading, particularly at the fastest rate. The ILM demonstrated a significantly higher capability for energy absorption at slow strain rates compared to medium and fast strain rates. A significant increase in modulus was found in both loading directions and all strain rates, having a trend of larger modulus in tension and at faster strain rates. The finding of no significant difference in failure properties in both loading directions, was consistent with our previous ultra-structural studies that revealed a well-organized (±45°) elastic fibre orientation in the ILM. The results from this study can be used to develop and validate finite element models of the AF at the tissue scale, as well as providing new strategies for fabricating tissue engineered scaffolds. While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM) of the annulus in the disc no studies have measured the direct mechanical failure and viscoelastic properties of the ILM. The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates. The failure properties of the ILM were not significantly different under tension and shear. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dadrasnia, Arezoo; Azirun, Mohd Sofian; Ismail, Salmah Binti
2017-11-28
When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH. Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH 3 -N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI. Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH 3 -N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.
An equivalent-time-lines model for municipal solid waste based on its compression characteristics.
Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin
2017-10-01
Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ditenberg, I. A.; Tymentsev, A. N.; Korznikov, A. V.
2015-04-01
Using the method of transmission electron microscopy, peculiar features of evolution of microstructure and variations in microhardness of Та are investigated under torsional loading in the Bridgman anvil as a function of plastic deformation at room temperature. A quantitative examination of grain and defect's structure of the material under study and the values of local internal stresses is performed in different loading stages. The mechanisms of formation of submicrocrystalline and nanostructured states are analyzed and so is the microstructure variation as a function of the defect-structure characteristics, strain level, and spacing from the axis of torsion.
Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates
Min, Fanlu; Yao, Zhanhu; Jiang, Teng
2014-01-01
The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355
A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)
NASA Astrophysics Data System (ADS)
Kalos, A.; Kavvadas, M.
2017-11-01
The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...
2017-11-04
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
A 12 year EDF study of concrete creep under uniaxial and biaxial loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric
This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less
Giant strain control of magnetoelectric effect in Ta|Fe|MgO
Odkhuu, Dorj
2016-01-01
The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 103 fJV−1m−1. We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d–Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d–O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments. PMID:27597448
NASA Astrophysics Data System (ADS)
Honarvar, Mohammad
Needle-based intervention insertion is one of the common surgical techniques used in many diagnostic and therapeutic percutaneous procedures. The success of such procedures highly depends on the accuracy of needle placement at target locations. An active needle has the potential to enhance the accuracy of needle placement as well as to improve clinical outcome. Bending forces provided by the attached actuators can assist the maneuverability in order to reach the targets following a desired trajectory. There are three major research parts in the development of active needle project in the Composites Laboratory of Temple University. They are thermomechanical characterization of shape memory alloy (SMA) or Nitinol as an actuator for smart needle, mechanical modeling and design of smart needles, and study of tissue needle interaction. The characterization of SMA is the focus of this dissertation. Unique thermomechanical properties of Nitinol known as shape memory effect and superelasticity make it applicable for different fields such as biomedical, structural and aerospace engineering. These unique behaviors are due to the comparatively large amount of recoverable strain which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain (also known as residual strain); which limits their applicability. Therefore, for applications that rely on the strain response in repetitive loading and unloading cycles, it is important to understand the generation of the unrecovered strain in the Nitinol wires. In this study, the unrecovered strain of Nitinol wires with various diameters was investigated, using two experimental approaches: constant stress and uniaxial tensile tests. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible at temperatures of 70 to 80°C depending on the wire diameter. Wire diameters varied from 0.10 to 0.29 mm were tested and different ranges of critical stress were found for different wire diameters. The transformation temperatures of different wire diameters at zero stress have been achieved by performing the Differential Scanning Calorimetry (DSC) test. The actuation force created by Nitinol wire is measured through constant strain experiment. X-Ray Diffraction (XRD) study was also performed to investigate the phase of Nitinol wires under various thermomechanical loading conditions. In summary, the effect of wire diameter on the required critical stresses to avoid the unrecovered strain between first and second cycle of heating and cooling are presented and the results of both mechanical tests are justified by the results obtained from the XRD study.
Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping
2012-12-01
The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunal, K.; Aluru, N. R., E-mail: aluru@illinois.edu
We investigate the effect of size on intrinsic dissipation in nano-structures. We use molecular dynamics simulation and study dissipation under two different modes of deformation: stretching and bending mode. In the case of stretching deformation (with uniform strain field), dissipation takes place due to Akhiezer mechanism. For bending deformation, in addition to the Akhiezer mechanism, the spatial temperature gradient also plays a role in the process of entropy generation. Interestingly, we find that the bending modes have a higher Q factor in comparison with the stretching deformation (under the same frequency of operation). Furthermore, with the decrease in size, themore » difference in Q factor between the bending and stretching deformation becomes more pronounced. The lower dissipation for the case of bending deformation is explained to be due to the surface scattering of phonons. A simple model, for phonon dynamics under an oscillating strain field, is considered to explain the observed variation in dissipation rate. We also studied the scaling of Q factor with initial tension, in a beam under flexure. We develop a continuum theory to explain the observed results.« less
High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System
NASA Astrophysics Data System (ADS)
Riallant, Fanny; Cormier, Jonathan; Longuet, Arnaud; Milhet, Xavier; Mendez, José
2014-01-01
The failure mechanisms of a NiAlPt/electron beam physical vapor deposition yttria-stabilized-zirconia thermal barrier coating system deposited on the AM1 single crystalline substrate have been investigated under pure creep conditions in the temperature range from 1273 K to 1373 K (1000 °C to 1100 °C) and for durations up to 1000 hours. Doubly tapered specimens were used allowing for the analysis of different stress states and different accumulated viscoplastic strains for a given creep condition. Under such experiments, two kinds of damage mechanisms were observed. Under low applied stress conditions ( i.e., long creep tests), microcracking is localized in the vicinity of the thermally grown oxide (TGO). Under high applied stress conditions, an unconventional failure mechanism at the substrate/bond coat interface is observed because of large creep strains and fast creep deformation, hence leading to a limited TGO growth. This unconventional failure mechanism is observed although the interfacial bond coat/top coat TGO thickening is accelerated by the mechanical applied stress beyond a given stress threshold.
Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors
NASA Astrophysics Data System (ADS)
Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan
Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.
The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying
2016-11-01
The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.
Torosian, Stephen D; Regan, Patrick M; Doran, Tara; Taylor, Michael A; Margolin, Aaron
2009-09-01
Multiple barriers such as inspections, testing, and proper storage conditions are used to minimize the risk of contaminated food. Knowledge of which barriers, such as refrigeration, are effective in preventing pathogen growth and persistence, can help direct the focus of efforts during food sampling. In this study, the doubling times were evaluated for 10 strains of Yersinia pestis of different genetic background cultured in heart infusion broth (HIB) kept at 4 degrees C +/- 1 degrees C under static conditions. Nine out of the 10 strains were able to grow at 4 degrees C +/- 1 degrees C. Apparent doubling times for 7 of the strains ranged from 41 to 50 h. Strain Harbin and strain D1 had apparent doubling times of 65 and 35 h, respectively, and strain O19 Ca-6 did not grow at all. Analysis of variance showed that the averaged growth data (colony forming units per mL) between strains that grew were not significantly different. The data presented here demonstrate that refrigeration alone is not an effective barrier to prevent static growth of Y. pestis in HIB. These findings provide the preliminary impetus to investigate Y. pestis growth in a variety of food matrices that may provide a similar environment as HIB.
Bacterial Transport Experiments in Fractured Crystalline Bedrock
Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.
2003-01-01
The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Zhong-ping; Li, Chun-wang
2018-03-01
This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.
Peri-Implant Strain in an In Vitro Model.
Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul
2015-10-01
An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.
Electronic structure and optical properties of CuAlO2 under biaxial strain.
Ghosh, C K; Sarkar, D; Mitra, M K; Chattopadhyay, K K
2012-06-13
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ε < 9.13%) effect on elastic, electronic and optical properties of CuAlO(2). All the elastic constants (c(11), c(12), c(13), c(33)) except c(44) decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO(2).
Electronic structure and optical properties of CuAlO2 under biaxial strain
NASA Astrophysics Data System (ADS)
Ghosh, C. K.; Sarkar, D.; Mitra, M. K.; Chattopadhyay, K. K.
2012-06-01
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ɛ < 9.13%) effect on elastic, electronic and optical properties of CuAlO2. All the elastic constants (c11, c12, c13, c33) except c44 decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO2.
Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2.
Lloyd, David; Liu, Xinghui; Christopher, Jason W; Cantley, Lauren; Wadehra, Anubhav; Kim, Brian L; Goldberg, Bennett B; Swan, Anna K; Bunch, J Scott
2016-09-14
We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.
NASA Astrophysics Data System (ADS)
Li, Faxin; Wang, Qiangzhong; Miao, Hongchen
2017-08-01
The widely used ferroelectric ceramics based actuators always suffer from small output strains (typically ˜0.1%-0.15%). Non-180° domain switching can generate a large strain in ferroelectrics but it is usually irreversible. In this work, we tailored the domain structures in a soft lead titanate zirconate (PZT) ceramic by periodical orthogonal poling. The non-180° switching in this domain-engineered PZT ceramics turns to be reversible, resulting in a local giant actuation strain of nearly 0.6% under a field of 2 kV/mm at 0.1 Hz. The large interfacial stresses between regions with different poling directions during electric loading/unloading were thought to be responsible for the reversible non-180° domain switching. The switching strain drops quickly with the increasing frequency, and stabilized at about 0.2% at or above 1.0 Hz. The large actuation strain remains quite stable after 104 cycles of loading, which is very promising for low-frequency, large-strain actuators.
NASA Astrophysics Data System (ADS)
Scholz, R.; Mueller, R.
1998-10-01
Strain controlled fatigue tests have been performed in torsion at 400°C on type 316L stainless steel samples in both 20% cold worked and annealed conditions during an irradiation with 19 MeV deuterons. A hold-time was imposed in the loading cycle. For the cold worked (cw) material, at shear strain ranges of 1.13% and 1.3%, irradiation creep induced stress relaxation led to the built up of a mean stress. The fatigue life was significantly reduced in comparison to thermal control tests. For the annealed (ann) material, tested under similar experimental conditions, irradiation creep effects were negligibly small compared to cyclic and irradiation hardening. The fatigue life was only slightly reduced. Continuous cycling tests conducted under irradiation conditions lay in the scatter band of the thermal control tests. The difference in fatigue life between continuous cycling and hold-time tests is attributed mainly to the observed difference in irradiation hardening.
Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Michael D; Takamura, Y; Mehta, A
Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.
NASA Astrophysics Data System (ADS)
Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.
2010-10-01
New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.
NASA Astrophysics Data System (ADS)
Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.
2011-03-01
New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.
Mire, Chad E.; Satterfield, Benjamin A.; Geisbert, Joan B.; Agans, Krystle N.; Borisevich, Viktoriya; Yan, Lianying; Chan, Yee-Peng; Cross, Robert W.; Fenton, Karla A.; Broder, Christopher C.; Geisbert, Thomas W.
2016-01-01
Nipah virus (NiV) is a paramyxovirus that causes severe disease in humans and animals. There are two distinct strains of NiV, Malaysia (NiVM) and Bangladesh (NiVB). Differences in transmission patterns and mortality rates suggest that NiVB may be more pathogenic than NiVM. To investigate pathogenic differences between strains, 4 African green monkeys (AGM) were exposed to NiVM and 4 AGMs were exposed to NiVB. While NiVB was uniformly lethal, only 50% of NiVM-infected animals succumbed to infection. Histopathology of lungs and spleens from NiVB-infected AGMs was significantly more severe than NiVM-infected animals. Importantly, a second study utilizing 11 AGMs showed that the therapeutic window for human monoclonal antibody m102.4, previously shown to rescue AGMs from NiVM infection, was much shorter in NiVB-infected AGMs. Together, these data show that NiVB is more pathogenic in AGMs under identical experimental conditions and suggests that postexposure treatments may need to be NiV strain specific for optimal efficacy. PMID:27484128
Chmelař, D; Hájek, M; Janečková, J; Vobejdová, J; Martineková, P; Kašíková, A
The aim of the study was to draw attention to the risk posed by anaerobic bacteria of the Bacteroides fragilis (BAFR) group, isolated particularly from abdominal lesions, and to assess the possible role of these species in colorectal cancer. A correlation has previously been suggested between the detection of the bacteria of the genus Bacteroides in patients on a meat-based diet and intestinal and, in particular, colorectal cancer. Given that the species of the BAFR group are major producers of endotoxins, measurements and statistical analysis of endotoxin production were used to compare the Bacteroides strains isolated from clinical specimens of patients with colon cancer, rectal cancer, and other abdominal lesions. Endotoxin production was detected in bacterial strains of the BAFR group (B. fragilis, B. thetaiotaomicron, B. distasonis, and B. vulgatus) isolated from clinical specimens of patients with rectal cancer, colon cancer, and intestinal cancer and was compared with that in strains from samples of patients with inflammatory conditions (anal abscess, appendicitis, skin abscess, etc.) under anaerobic and microaerophilic (with 5% of oxygen) culture conditions. The production of endotoxins was detected quantitatively using the Pyrosate LAL assay kit (Limulus Amoebocyte Lysate Test, BIOGENIX, CR) in four species of the BAFR group after anaerobic and microaerophilic culture. Five strains of each isolated Bacteroides species from each type of specimens were tested (in total 140 BAFR strains). The amount of endotoxin was given in endotoxin units per ml (EU/ml). Endotoxin production by bacteria under microaerophilic culture conditions was several times higher in comparison with strictly anaerobic culture.The difference was statistically significant (F1.269 = 160, p <0.0001). As regards the effect of oxygen on endotoxin production, the amount of endotoxins produced under microaerophilic culture conditions (average 889.1 EU/ml) was 2.5 times as high as that observed under anaerobic culture conditions (358.2 EU/ml), regardless of the bacteroides species and diagnosis. These results suggest that the amount of free oxygen in the environment affects the amount of endotoxin generated by the Bacteroides strains. The results show that endotoxin production by the Bacteroides strains under microaerophilic culture conditions is several times as high as that under strictly anaerobic culture conditions.
Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Tomohiro; Bunn, Jeffrey R.; Fancher, Christopher M.
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-raymore » diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.« less
NASA Astrophysics Data System (ADS)
Fan, Jingjing; Feng, Ruimin; Wang, Jin; Wang, Yanbin
2017-07-01
Geological sequestration of CO2 in coal seams is of significant interest to both academia and industry. A thorough laboratory investigation of mechanical and flow behaviors is crucial for understanding the complex response of coalbeds to CO2 injection-enhanced coalbed methane recovery (CO2-ECBM) operation. In this work, systematic experiments were carried out on cylindrical coal core specimens under different uniform confining stresses. The coal deformation caused by variations in effective stress as well as the sorption-induced matrix swelling/shrinkage was monitored. The competitive gas sorption characteristics and permeability evolution during the process of methane displacement by CO2 were also investigated. The measured volumetric strain results indicate that sorption-induced strain is the dominant factor in the coal deformation. The relationship between the volumetric strain and the adsorbed gas volume has been revealed to be a linear function. Experimental results obtained under different stress conditions suggest that higher confining stress suppresses the increase in both volumetric strain and the adsorbed gas volume. Furthermore, both methane displacement and CO2 injection are reduced when applying higher confining stresses. In addition, the permeability enhancement is heavily suppressed at higher confining stress. At a certain confining stress, a characteristic "U-shaped" trend of permeability is presented as a function of decreasing pore pressure. This study contributes to the understanding of coal deformation and its impact on permeability evolution under uniformly stressed condition, which has practical significance for CO2 sequestration and CO2-ECBM operation in the Qinshui basin.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz
2012-01-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094
Complete genome sequence of Anabaena variabilis ATCC 29413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun
2013-01-01
Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we providemore » some additional characteristics of the strain, and an analysis of the complete genome sequence.« less
Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains
Nadal, Dolors; Carro, David; Fernández-Larrea, Juan; Piña, Benjamin
1999-01-01
We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations. PMID:10103269
Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel
NASA Astrophysics Data System (ADS)
De, P. S.; Chakraborti, P. C.; Bhattacharya, B.; Shome, M.; Bhattacharjee, D.
2013-05-01
Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s-1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10-3 s-1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles ( N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio ( R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Guanhui; University of Chinese Academy of Sciences, Beijing; Dong, Hongjun
Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work,more » we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.« less
Garcia, Ana; Kirkpatrick, Kimberly
2012-01-01
Several studies have examined impulsive choice behavior in spontaneously hypertensive rats (SHRs) as a possible pre-clinical model for Attention-Deficit/Hyperactivity Disorder (ADHD). However, this strain was not specifically selected for the traits of ADHD and as a result their appropriateness as a model has been questioned. The present study investigated whether SHRs would exhibit impulsive behavior in comparison to their control strain, Wistar Kyoto (WKY) rats. In addition, we evaluated a strain that has previously shown high levels of impulsive choice, the Lewis (LEW) rats and compared them with their source strain, Wistar (WIS) rats. In the first phase, rats could choose between a Smaller-sooner (SS) reward of 1 pellet after 10 s and a Larger-later (LL) reward of 2 pellets after 30 s. Subsequently, the rats were exposed to increases in LL reward magnitude and SS delay. These manipulations were designed to assess sensitivity to magnitude and delay within the choice task to parse out possible differences in using the strains as models of specific deficits associated with ADHD. The SHR and WKY strains did not differ in their choice behavior under either delay or magnitude manipulations. In comparison to WIS, LEW showed deficits in choice behavior in the delay manipulation, and to a lesser extent in the magnitude manipulation. An examination of individual differences indicated that the SHR strain may not be sufficiently homogeneous in their impulsive choice behavior to be considered as a viable model for impulse control disorders such as ADHD. The LEW strain may be worthy of further consideration for their suitability as an animal model. PMID:23085479
Bell, P J; Higgins, V J; Attfield, P V
2001-04-01
To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.
Strain-dependent partial slip on rock fractures under seismic-frequency torsion
NASA Astrophysics Data System (ADS)
Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.
2017-05-01
Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.
Vigentini, Ileana; Romano, Andrea; Compagno, Concetta; Merico, Annamaria; Molinari, Francesco; Tirelli, Antonio; Foschino, Roberto; Volonterio, Gaspare
2008-11-01
Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl- and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L(-1), respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found.
Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A
2017-02-01
We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.
Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M
2018-02-01
Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.
Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S.
2014-01-01
Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692
Strain Phase Diagram of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
He, Feizhou; Shapiro, S. M.
2005-03-01
SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).
Ali, Sikander; Nawaz, Wajeeha
2016-08-01
The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.
NASA Astrophysics Data System (ADS)
Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.
2017-07-01
Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.
Kulichevskaya, Irina S; Guzev, Vladimir S; Gorlenko, Vladimir M; Liesack, Werner; Dedysh, Svetlana N
2006-06-01
An isolate of purple non-sulfur bacteria was obtained from an acidic Sphagnum peat bog and designated strain RS(T). The colour of cell suspensions of this bacterium growing in the light under anaerobic conditions is purplish red. Cells of strain RS(T) are rod-shaped, 0.8-1.0 microm wide and 2.0-6.0 microm long, motile by means of polar flagella, reproduce by budding and have a tendency to form rosette-like clusters in older cultures. The cells contain lamellar intracytoplasmic membranes underlying, and parallel to, the cytoplasmic membrane. The photosynthetic pigments are bacteriochlorophyll a and carotenoids; the absorption spectrum of living cells shows maxima at 377, 463, 492, 527, 592, 806 and 867 nm. The cells grow photoheterotrophically under anaerobic or microaerobic conditions with various organic carbon sources or grow photolithoautotrophically with H(2) and CO(2). Strain RS(T) is a moderately acidophilic organism exhibiting growth at pH values between 4.8 and 7.0 (with an optimum at pH 5.2-5.5). The major fatty acids are 16 : 1omega7c and 18 : 1omega7c; the major quinones are Q-10 and Q-9. The DNA G + C content of strain RS(T) is 62.6 mol%. Analysis of the 16S rRNA gene sequence revealed that the novel isolate is most closely related (97.3 % sequence similarity) to the type strain ATCC 25092(T) of the moderately acidophilic purple non-sulfur bacterium Rhodoblastus acidophilus, formerly named Rhodopseudomonas acidophila. However, in contrast to Rbl. acidophilus, strain RS(T) is not capable of aerobic growth in the dark, has no spirilloxanthin among the carotenoids and differs in the pattern of substrate utilization. The value for DNA-DNA hybridization between strain RS(T) and Rbl. acidophilus ATCC 25092(T) is only 22 %. Thus, strain RS(T) represents a novel species of the genus Rhodoblastus, for which the name Rhodoblastus sphagnicola sp. nov. is proposed. Strain RS(T) (=DSM 16996(T) = VKM B-2361(T)) is the type strain.
Static versus dynamic fracturing in shallow carbonate fault zones
NASA Astrophysics Data System (ADS)
Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.
2015-12-01
Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X-ray microtomography showing that low- and high-strain rate damage patterns are different with the latter being similar to that of natural in-situ shattered dolostones. In-situ shattered dolostones are thus interpreted as the product of off-fault dynamic stress wave loading and can potentially be used to constrain coseismic energy release in fault zones.
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
Pankratov, Timofey A; Kirsanova, Lilia A; Kaparullina, Elena N; Kevbrin, Vadim V; Dedysh, Svetlana N
2012-02-01
A gram-negative, facultatively anaerobic, chemo-organotrophic, non-pigmented, slow-growing bacterium was isolated from acidic Sphagnum peat and designated strain TPB6017(T). Cells of this strain were long rods that multiplied by normal cell division and were motile by means of a single flagellum. Cells grew under reduced oxygen tension and under anoxic conditions and were able to ferment sugars and several polysaccharides, including amorphous and crystalline cellulose. Strain TPB6017(T) was a psychrotolerant acidophile capable of growth between pH 3.0 and 7.5 (optimum 4.5-5.0) and at 4-35 °C (optimum 20-28 °C). It was extremely sensitive to salt stress; growth was inhibited at NaCl concentrations above 0.1 % (w/v). The major fatty acids were iso-C(15 : 0) and iso-C(17 : 1)ω9c; the polar lipids were phosphatidylethanolamine and a number of phospholipids and aminophospholipids with an unknown structure. The quinone was MK-8. The DNA G+C content was 57.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain TPB6017(T) was a member of subdivision 1 of the phylum Acidobacteria and belonged to a phylogenetic lineage defined by the acidophilic aerobic chemo-organotroph Acidobacterium capsulatum (92.3 % sequence similarity). However, cell morphology, type of flagellation, the absence of pigment, differences in fatty acid and polar lipid composition, possession of a cellulolytic capability, inability to grow under fully oxic conditions and good growth in anoxic conditions distinguished strain TPB6017(T) from A. capsulatum. Therefore, it is proposed that strain TPB6017(T) represents a novel acidobacterium species in a new genus, Telmatobacter bradus gen. nov., sp. nov.; strain TPB6017(T) ( = DSM 23630(T) = VKM B-2570(T)) is the type strain.
Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H.
2017-01-01
ABSTRACT We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. PMID:28550056
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori
2018-05-01
We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.
Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg
2017-08-01
We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.