Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang
2018-02-23
Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.
Janssens, Thomas; Caris, Eva; Van Diest, Ilse; Van den Bergh, Omer
2017-01-01
Background: In asthma and allergic rhinitis, beliefs about what triggers allergic reactions often do not match objective allergy tests. This may be due to insensitivity for expectancy violations as a result of holding trigger beliefs based on conceptual relationships among triggers. In this laboratory experiment, we aimed to investigate how pre-existing beliefs and conceptual relationships among triggers interact with actual experience when learning differential symptom expectations. Methods: Healthy participants (N = 48) received information that allergic reactions were a result of specific sensitivities versus general allergic vulnerability. Next, they performed a trigger learning task using a differential conditioning paradigm: brief inhalation of CO2 enriched air was used to induce symptoms, while participants were led to believe that the symptoms came about as a result of inhaled allergens (conditioned stimuli, CS’s; CS+ followed by symptoms, CS- not followed by symptoms). CS+ and CS- stimuli either shared (e.g., birds-mammals) or did not share (e.g. birds-fungi) category membership. During Acquisition, participants reported symptom expectancy and symptom intensity for all triggers. During a Test 1 day later, participants rated symptom expectancies for old CS+/CS- triggers, for novel triggers within categories, and for exemplars of novel trigger categories. Data were analyzed using multilevel models. Findings: Only a subgroup of participants (n = 22) showed differences between CO2 and room air symptoms. In this group of responders, analysis of symptom expectancies during acquisition did not result in significant differential symptom CS+/CS- acquisition. A retention test 1 day later showed differential CS+/CS- symptom expectancies: When CS categories did not share category membership, specific sensitivity beliefs improved retention of CS+/CS- differentiation. However, when CS categories shared category membership, general vulnerability beliefs improved retention of CS+/CS- differentiation. Furthermore, participants showed some selectivity in generalization of symptom expectancies to novel categories, as symptom expectancies did not generalize to novel categories that were unrelated to CS+ or CS- categories. Generalization to novel categories was not affected by information about general vulnerability or specific sensitivities. Discussion: Pre-existing vulnerability beliefs and conceptual relationships between trigger categories influence differential symptom expectancies to allergic triggers. PMID:28638358
Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation.
Vitaliano-Prunier, Adeline; Halftermeyer, Juliane; Ablain, Julien; de Reynies, Aurélien; Peres, Laurent; Le Bras, Morgane; Metzger, Daniel; de Thé, Hugues
2014-12-11
PML/RARA, a potent transcriptional inhibitor of nuclear receptor signaling, represses myeloid differentiation genes and drives acute promyelocytic leukemia (APL). Association of the retinoid X receptor-α (RXRA) coreceptor to PML/RARA is required for transformation, with RXRA promoting its efficient DNA binding. APL is exquisitely sensitive to retinoic acid (RA) and arsenic trioxide (arsenic), which both trigger cell differentiation in vivo. Whereas RA elicits transcriptional activation of PML/RARA targets, how arsenic triggers differentiation remains unclear. Here we demonstrate that extinction of PML/RARA triggers terminal differentiation in vivo. Similarly, ablation of retinoid X receptors loosens PML/RARA DNA binding, inducing terminal differentiation of APL cells ex vivo or in vivo. RXRA sumoylation directly contributes to PML/RARA-dependent transformation ex vivo, presumably by enhancing transcriptional repression. Thus, APL differentiation is a default program triggered by clearance of PML/RARA-bound promoters, rather than obligatory active transcriptional activation, explaining how arsenic elicits APL maturation through PML/RARA degradation. © 2014 by The American Society of Hematology.
Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon
2017-01-01
Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.
Hinard, Valérie; Belin, Dominique; Konig, Stéphane; Bader, Charles Roland; Bernheim, Laurent
2008-03-01
Myoblast differentiation is essential to skeletal muscle formation and repair. The earliest detectable event leading to human myoblast differentiation is an upregulation of Kir2.1 channel activity, which causes a negative shift (hyperpolarization) of the resting potential of myoblasts. After exploring various mechanisms, we found that this upregulation of Kir2.1 was due to dephosphorylation of the channel itself. Application of genistein, a tyrosine kinase inhibitor, increased Kir2.1 activity and triggered the differentiation process, whereas application of bpV(Phen), a tyrosine phosphatase inhibitor, had the opposite effects. We could show that increased Kir2.1 activity requires dephosphorylation of tyrosine 242; replacing this tyrosine in Kir2.1 by a phenylalanine abolished inhibition by bpV(Phen). Finally, we found that the level of tyrosine phosphorylation in endogenous Kir2.1 channels is considerably reduced during differentiation when compared with proliferation. We propose that Kir2.1 channels are already present at the membrane of proliferating, undifferentiated human myoblasts but in a silent state, and that Kir2.1 tyrosine 242 dephosphorylation triggers differentiation.
Basel, Matthew T; Shrestha, Tej B; Troyer, Deryl L; Bossmann, Stefan H
2011-03-22
Liposomes have become useful and well-known drug delivery vehicles because of their ability to entrap drugs without chemically modifying them and to deliver them somewhat selectively to tumorous tissue via the enhanced permeation and retention (EPR) effect. Although useful, liposome preparations are still less than ideal because of imperfect specificity, slow release kinetics in the tumor, and leakiness prior to reaching the tumor site. Cancer-associated proteases (CAPs), which are differentially expressed in tumors, have also gained traction recently as a method for tumor targeting and drug delivery. By combining the EPR effect with CAPs sensitivity, a much more specific liposome can be produced. The method described here creates an improved liposome system that can target more specifically, with faster release kinetics and lower general leaking, by deliberately producing a very unstable liposome (loaded with hyperosmotic vehicle) that is subsequently stabilized by a cross-linked polymer shell containing consensus sequences for cancer-associated proteases (protease-triggered, caged liposomes). A cholesterol-anchored, graft copolymer, composed of a short peptide sequence for urokinase plasminogen activator (uPA) and poly(acrylic acid), was synthesized and incorporated into liposomes prepared at high osmolarities. Upon cross-linking of the polymers, the protease-triggered, caged liposomes showed significant resistance to osmotic swelling and leaking of contents. Protease-triggered, caged liposomes also showed significant and substantial differential release of contents in the presence of uPA, while bare liposomes showed no differential effect in the presence of uPA. Thus a protease-sensitive liposome system with fast release kinetics was developed that could be used for more specific targeting to tumors.
De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia
2016-01-01
Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776
Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation.
Nasr, Rihab; Guillemin, Marie-Claude; Ferhi, Omar; Soilihi, Hassan; Peres, Laurent; Berthier, Caroline; Rousselot, Philippe; Robledo-Sarmiento, Macarena; Lallemand-Breitenbach, Valérie; Gourmel, Bernard; Vitoux, Dominique; Pandolfi, Pier Paolo; Rochette-Egly, Cécile; Zhu, Jun; de Thé, Hugues
2008-12-01
Retinoic acid and arsenic trioxide target the protein stability and transcriptional repression activity of the fusion oncoprotein PML-RARA, resulting in regression of acute promyelocytic leukemia (APL). Phenotypically, retinoic acid induces differentiation of APL cells. Here we show that retinoic acid also triggers growth arrest of leukemia-initiating cells (LICs) ex vivo and their clearance in PML-RARA mouse APL in vivo. Retinoic acid treatment of mouse APLs expressing the fusion protein PLZF-RARA triggers full differentiation, but not LIC loss or disease remission, establishing that differentiation and LIC loss can be uncoupled. Although retinoic acid and arsenic synergize to clear LICs through cooperative PML-RARA degradation, this combination does not enhance differentiation. A cyclic AMP (cAMP)-dependent phosphorylation site in PML-RARA is crucial for retinoic acid-induced PML-RARA degradation and LIC clearance. Moreover, activation of cAMP signaling enhances LIC loss by retinoic acid, identifying cAMP as another potential APL therapy. Thus, whereas transcriptional activation of PML-RARA is likely to control differentiation, its catabolism triggers LIC eradication and long-term remission of mouse APL. Therapy-triggered degradation of oncoproteins could be a general strategy to eradicate cancer stem cells.
Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua
2015-01-01
All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266
Dias, Isabelle; Salviano, Ísis; Mencalha, André; de Carvalho, Simone Nunes; Thole, Alessandra Alves; Carvalho, Laís; Cortez, Erika; Stumbo, Ana Carolina
2018-04-17
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.
Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A
2007-06-01
Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.
Xing, Fan; Luan, Yizhao; Cai, Jing; Wu, Sihan; Mai, Jialuo; Gu, Jiayu; Zhang, Haipeng; Li, Kai; Lin, Yuan; Xiao, Xiao; Liang, Jiankai; Li, Yuan; Chen, Wenli; Tan, Yaqian; Sheng, Longxiang; Lu, Bingzheng; Lu, Wanjun; Gao, Mingshi; Qiu, Pengxin; Su, Xingwen; Yin, Wei; Hu, Jun; Chen, Zhongping; Sai, Ke; Wang, Jing; Chen, Furong; Chen, Yinsheng; Zhu, Shida; Liu, Dongbing; Cheng, Shiyuan; Xie, Zhi; Zhu, Wenbo; Yan, Guangmei
2017-01-10
Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Guillemin, Marie-Claude; Raffoux, Emmanuel; Vitoux, Dominique; Kogan, Scott; Soilihi, Hassane; Lallemand-Breitenbach, Valérie; Zhu, Jun; Janin, Anne; Daniel, Marie-Thérèse; Gourmel, Bernard; Degos, Laurent; Dombret, Hervé; Lanotte, Michel; de Thé, Hugues
2002-01-01
Differentiation therapy for acute myeloid leukemia uses transcriptional modulators to reprogram cancer cells. The most relevant clinical example is acute promyelocytic leukemia (APL), which responds dramatically to either retinoic acid (RA) or arsenic trioxide (As2O3). In many myeloid leukemia cell lines, cyclic adenosine monophosphate (cAMP) triggers growth arrest, cell death, or differentiation, often in synergy with RA. Nevertheless, the toxicity of cAMP derivatives and lack of suitable models has hampered trials designed to assess the in vivo relevance of theses observations. We show that, in an APL cell line, cAMP analogs blocked cell growth and unraveled As2O3-triggered differentiation. Similarly, in RA-sensitive or RA-resistant mouse models of APL, continuous infusions of 8-chloro-cyclic adenosine monophosphate (8-Cl-cAMP) triggered major growth arrest, greatly enhanced both spontaneous and RA- or As2O3-induced differentiation and accelerated the restoration of normal hematopoiesis. Theophylline, a well-tolerated phosphodiesterase inhibitor which stabilizes endogenous cAMP, also impaired APL growth and enhanced spontaneous or As2O3-triggered cell differentiation in vivo. Accordingly, in an APL patient resistant to combined RA–As2O3 therapy, theophylline induced blast clearance and restored normal hematopoiesis. Taken together, these results demonstrate that in vivo activation of cAMP signaling contributes to APL clearance, independently of its RA-sensitivity, thus raising hopes that other myeloid leukemias may benefit from this therapeutic approach. PMID:12438428
Seppo Neuvonen; Pekka Niemela
1991-01-01
Damage inflicted by insects may trigger responses in their host plants resulting either in immediate effects on herbivores either rapidly or in effects upon subsequent herbivore generations. Differentiation between rapid and delayed inducible resistance is essential since the two responses affect the population dynamics of herbivores in fundamentally different ways (...
Simoniello, Palma; Wiedemann, Julia; Zink, Joana; Thoennes, Eva; Stange, Maike; Layer, Paul G.; Kovacs, Maximilian; Podda, Maurizio; Durante, Marco; Fournier, Claudia
2016-01-01
The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, dose-averaged LET 100 keV/μm) in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was observed. Carbon ions triggered inflammatory signaling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in the polarity of basal cells. PMID:26779439
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Yang, Shangming; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Cui, Hong-Liang
2010-04-01
In this paper we report a scheme of low-cost, small-size differential electrical converter to change analog trigger signals into digital trigger signals. This converter successfully resolves the incompatibility between the digital trigger mode of NI (National Instruments) data acquisition card PCI 5105 in Measurement Studio development environment for a demodulator and the requirement from instability of spectra of fiber Bragg grating (FBG) sensors. The instability is caused by intrinsic drifts of FFP-TF inside this high speed demodulator. The obtained results of frequency response about the converter have clearly demonstrated that this method is effective when the frequency of trigger signal is less than 3,000 Hz. This converter can satisfy the current requirements of demodulator based on FFP-TF, since mostly actual working scanning frequency of FFP-TF is less than 1,000 Hz. This method may be recommended to resolve similar problems for other NI customers who have developed their data acquisition system based on Measurement Studio.
A surgeons' guide to renal transplant immunopathology, immunology, and immunosuppression.
Gaber, Lillian W; Knight, Richard J; Patel, Samir J
2013-12-01
The response to allografting involves adaptive and innate immune mechanisms. In the adaptive system, activated T cells differentiate to cytotoxic effectors that attack the graft and trigger B cells to differentiation to plasma cells that produce anti-HLA antibodies. The innate immune system recognizes antigens in a non-specific manner and recruits immune cells to the graft through the productions of chemotactic factors, and activation of cytokines and the complement cascade. In the kidney the tubules and the endothelium are the targets of the rejection response. Immune suppression is effective in modulating the adaptive immune system effect on graft histology. Copyright © 2013 Elsevier Inc. All rights reserved.
Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels
Mittra, Bidyottam; Cortez, Mauro; Haydock, Andrew; Ramasamy, Gowthaman; Myler, Peter J.
2013-01-01
During its life cycle, Leishmania undergoes extreme environmental changes, alternating between insect vectors and vertebrate hosts. Elevated temperature and decreased pH, conditions encountered after macrophage invasion, can induce axenic differentiation of avirulent promastigotes into virulent amastigotes. Here we show that iron uptake is a major trigger for the differentiation of Leishmania amazonensis amastigotes, independently of temperature and pH changes. We found that iron depletion from the culture medium triggered expression of the ferrous iron transporter LIT1 (Leishmania iron transporter 1), an increase in iron content of the parasites, growth arrest, and differentiation of wild-type (WT) promastigotes into infective amastigotes. In contrast, LIT1-null promastigotes showed reduced intracellular iron content and sustained growth in iron-poor media, followed by cell death. LIT1 up-regulation also increased iron superoxide dismutase (FeSOD) activity in WT but not in LIT1-null parasites. Notably, the superoxide-generating drug menadione or H2O2 was sufficient to trigger differentiation of WT promastigotes into fully infective amastigotes. LIT1-null promastigotes accumulated superoxide radicals and initiated amastigote differentiation after exposure to H2O2 but not to menadione. Our results reveal a novel role for FeSOD activity and reactive oxygen species in orchestrating the differentiation of virulent Leishmania amastigotes in a process regulated by iron availability. PMID:23382545
Escher, Beate I; Neale, Peta A; Leusch, Frederic D L
2015-09-15
Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few. The approach is readily adaptable to any water type and guideline or regulatory framework and can be expanded from the protection goal of human health to environmental protection targets. While this work constitutes a proof of principle, the applicability remains limited at present due to insufficient experimental bioassay data on individual regulated chemicals and the derived effect-based trigger values are of course only provisional. Once the experimental database is expanded and made more robust, the proposed effect-based trigger values may provide guidance in a regulatory context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Felemban, Shatha G; Garner, A Christopher; Smida, Fathi A; Boocock, David J; Hargreaves, Alan J; Dickenson, John M
2015-11-16
At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.
Kanda, Takashi; Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Ohashi, Takuya; Uematsu, Masaaki
2018-01-01
Differentiation of atrial fibrillation (AF) trigger ectopy from other ectopy is often difficult. The purpose of this study was to compare the origin and coupling intervals (CI) between AF-trigger and non-AF-trigger ectopy. This study consisted of 120 patients with AF who underwent an initial ablation. Isoproterenol was infused up to 20μg/min to provoke ectopy and AF. We measured the CI of all ectopy provoked by an isoproterenol infusion. The %CI was calculated as the CI of the ectopy/P-P interval of the preceding 2 beats. A total of 117 patients had at least one ectopy, and AF was induced in 56 (47%) patients. Of the 276 ectopies observed in this study, 211 (76%) originated from pulmonary veins and 77 (28%) were AF-trigger ectopy. AF-trigger ectopy more frequently originated from pulmonary veins (PVs) (74 vs. 3, p<0.001) and had a significantly shorter CI (201±70ms vs. 365±147ms, p<0.001) and lower %CI (29±11% vs. 55±14%, p<0.001) than that of non-AF-trigger ectopy. A receiver operating characteristics analysis revealed that a %CI of 40% was the best cut-off value for differentiating whether it was an AF-trigger or not. The identified trigger group, including patients with provoked AF-trigger ectopy or ectopy with a low %CI (<40%), had a significantly better AF recurrence-free survival rate than the other group (88% vs. 65%, p=0.004). AF-trigger ectopy predominantly originated from PVs and had a short CI. These findings may be useful for estimating whether ectopies are an AF-trigger or not. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Sivori, Simona; Falco, Michela; Marcenaro, Emanuela; Parolini, Silvia; Biassoni, Roberto; Bottino, Cristina; Moretta, Lorenzo; Moretta, Alessandro
2002-01-01
In this study we analyzed the progression of cell surface receptor expression during the in vitro-induced human natural killer (NK) cell maturation from CD34+ Lin− cell precursors. NKp46 and NKp30, two major triggering receptors that play a central role in natural cytotoxicity, were expressed before the HLA class I-specific inhibitory receptors. Moreover, their appearance at the cell surface correlated with the acquisition of cytolytic activity by developing NK cells. Although the early expression of triggering receptors may provide activating signals required for inducing further cell differentiation, it may also affect the self-tolerance of developing NK cells. Our data show that a fail-safe mechanism preventing killing of normal autologous cells may be provided by the 2B4 surface molecule, which, at early stages of NK cell differentiation, functions as an inhibitory rather than as an activating receptor. PMID:11917118
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed.
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed. PMID:22844135
Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.
López, Daniel; Kolter, Roberto
2010-03-01
The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less
Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin
2018-06-01
Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.
De Ruvo, Micol; Pacifici, Elena; Salvi, Elena; Sozzani, Rosangela; Benfey, Philip N.; Di Paola, Luisa; Marée, Athanasius F. M.; Costantino, Paolo; Grieneisen, Verônica A.; Sabatini, Sabrina
2017-01-01
In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin’s control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size. PMID:28831001
Inagaki, Yuichiro; Hayakawa, Fumihiko; Hirano, Daiki; Kojima, Yuki; Morishita, Takanobu; Yasuda, Takahiko; Naoe, Tomoki; Kiyoi, Hitoshi
2016-06-24
Plasma cell differentiation is initiated by antigen stimulation of the B cell receptor (BCR) and is regulated by BLIMP1. Prior to the stimulation of BCR, BLIMP1 is suppressed by PAX5, which is a key transcriptional repressor that maintains B cell identity. The upregulation of BLIMP1 and subsequent suppression of PAX5 by BLIMP1 are observed after the BCR stimulation. These events are considered to trigger plasma cell differentiation; however, the mechanisms responsible currently remain unclear. We herein demonstrated that the BCR signaling component, SYK, caused PAX5 tyrosine phosphorylation in vitro and in cells. Transcriptional repression on the BLIMP1 promoter by PAX5 was attenuated by this phosphorylation. The BCR stimulation induced the phosphorylation of SYK, tyrosine phosphorylation of PAX5, and up-regulation of BLIMP1 mRNA expression in B cells. The tyrosine phosphorylation of PAX5 co-operatively functioned with PAX5 serine phosphorylation by ERK1/2, which was our previous findings, to cancel the PAX5-dependent repression of BLIMP1. This co-operation may be a trigger for plasma cell differentiation. These results imply that PAX5 phosphorylation by a BCR signal is the initial event in plasma cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues
2004-01-01
PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541
Casini, Nadia; Forte, Iris Maria; Mastrogiovanni, Gianmarco; Pentimalli, Francesca; Angelucci, Adriano; Festuccia, Claudio; Tomei, Valentina; Ceccherini, Elisa; Di Marzo, Domenico; Schenone, Silvia; Botta, Maurizio; Giordano, Antonio; Indovina, Paola
2015-01-01
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS. PMID:25762618
Trigger chemistries for better industrial formulations.
Wang, Hsuan-Chin; Zhang, Yanfeng; Possanza, Catherine M; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S
2015-04-01
In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.
CD4+ T helper 2 cells – microbial triggers, differentiation requirements and effector functions
Okoye, Isobel S; Wilson, Mark S
2011-01-01
Over the past 10 years we have made great strides in our understanding of T helper cell differentiation, expansion and effector functions. Within the context of T helper type 2 (Th2) cell development, novel innate-like cells with the capacity to secrete large amounts of interleukin-5 (IL-5), IL-13 and IL-9 as well as IL-4-producing and antigen-processing basophils have (re)-emerged onto the type 2 scene. To what extent these new players influence αβ+ CD4+ Th2 cell differentiation is discussed throughout this appraisal of the current literature. We highlight the unique features of Th2 cell development, highlighting the three necessary signals, T-cell receptor ligation, co-stimulation and cytokine receptor ligation. Finally, putting these into context, microbial and allergenic properties that trigger Th2 cell differentiation and how these influence Th2 effector function are discussed and questioned. PMID:22043920
Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.
Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus
2006-07-15
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.
Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto
2015-12-23
Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.
Co-occurrence of migraine and atopy in children and adolescents: myth or a casual relationship?
Özge, Aynur; Uluduz, Derya; Bolay, Hayrunnisa
2017-06-01
To clarify the causal relationship between migraine and atopic disorders in children and adolescents. Migraine headache and atopic disorders including asthma are both common functional syndromes of childhood in which nature of the relationship is still debated. Attacks may induce in both disorders upon exposure to potential triggers in genetically susceptible individuals. Clinical phenotype manifests by temporary dysfunction of target tissue mediated by inflammation triggered by specific agents. Clinical features also change after puberty because of the partial effect of female sex hormones on the process. Appropriate definition of the syndrome and differentiating from other disorders are necessary not only for correct diagnosis, but also for planning of management strategies in children. Allergic rhinosinusitis needs to be differentiated from migraine even in experienced clinics. Questioning the presence of cranial autonomic symptoms is important clue in the differential diagnosis. Atopic disorder screening is particularly required in the diagnosis of migraine in childhood and adolescents. The link between both disorders of childhood seems to be far from a coincidence and some common inflammatory mechanisms are shared. On the basis of clinical features, laboratory findings and some practical clues in children, accurate diagnosis of migraine and atopic disorders are very critical for physicians, pediatricians and algologists.
Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe
2015-06-01
Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lochter, A.; Galosy, S.; Muschler, J.
1997-08-11
Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, andmore » progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.« less
Auto-immune encephalitis as differential diagnosis of infectious encephalitis
Armangue, Thaís; Leypoldt, Frank; Dalmau, Josep
2014-01-01
Purpose of review To describe the main types of autoimmune encephalitis with special emphasis on those associated with antibodies against neuronal cell surface or synaptic proteins, and the differential diagnosis with infectious encephalitis. Recent findings There is a continuous expansion of the number of cell surface or synaptic proteins that are targets of autoimmunity. The most recently identified include the mGluR5, DPPX, and the GABAAR. In these and previously known autoimmune encephalitis (NMDAR, AMPAR, GABABR, LGI1, CASPR2), the prodromal symptoms or types of presentations often suggest a viral encephalitis. We review here clues that help in the differential diagnosis with infectious encephalitis. Moreover, recent investigations indicate that viral encephalitis (e.g., herpes simplex) can trigger synaptic autoimmunity. In all these disorders immunotherapy is usually effective. Summary Autoimmune encephalitis comprises an expanding group of potentially treatable disorders that should be included in the differential diagnosis of any type of encephalitis. PMID:24792345
Clonal analysis of stem cells in differentiation and disease.
Colom, Bartomeu; Jones, Philip H
2016-12-01
Tracking the fate of individual cells and their progeny by clonal analysis has redefined the concept of stem cells and their role in health and disease. The maintenance of cell turnover in adult tissues is achieved by the collective action of populations of stem cells with an equal likelihood of self-renewal or differentiation. Following injury stem cells exhibit striking plasticity, switching from homeostatic behavior in order to repair damaged tissues. The effects of disease states on stem cells are also being uncovered, with new insights into how somatic mutations trigger clonal expansion in early neoplasia. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Soeter, Marieke; Kindt, Merel
2015-01-01
Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.
What triggers differential DNA methylation of genes and TEs: contribution of body methylation?
Inagaki, S; Kakutani, T
2012-01-01
Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.
Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe
2013-10-01
The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.
Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir
2015-04-01
We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process. © 2014 International Society for Neurochemistry.
The Aryl Hydrocarbon Receptor Ligand ITE Inhibits TGFβ1-Induced Human Myofibroblast Differentiation
Lehmann, Geniece M.; Xi, Xia; Kulkarni, Ajit A.; Olsen, Keith C.; Pollock, Stephen J.; Baglole, Carolyn J.; Gupta, Shikha; Casey, Ann E.; Huxlin, Krystel R.; Sime, Patricia J.; Feldon, Steven E.; Phipps, Richard P.
2011-01-01
Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR−/− fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. PMID:21406171
Konig, Stéphane; Béguet, Anne; Bader, Charles R; Bernheim, Laurent
2006-08-01
In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2.
Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee
2011-03-01
Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.
The Relative Severity of Single Hazards within a Multi-Hazard Framework
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2013-04-01
Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.
Barriers to Differentiation: Applying Organizational Studies to Ontario Higher Education
ERIC Educational Resources Information Center
Milian, Roger Pizarro; Davies, Scott; Zarifa, David
2016-01-01
Ontario's Ministry of Training, Colleges and Universities is currently attempting to increase institutional differentiation within that province's postsecondary education system. We contend that such policies aimed to trigger organizational change are likely to generate unanticipated responses. Using insights from the field of organizational…
Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana
2002-02-01
Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.
D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Antonella Ianuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio
2017-01-01
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.
Liu, Wai-Nam; Leung, Kwok-Nam
2014-11-01
Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.
More pain, more gain: Blocking the opioid system boosts adaptive cognitive control.
van Steenbergen, Henk; Weissman, Daniel H; Stein, Dan J; Malcolm-Smith, Susan; van Honk, Jack
2017-06-01
The ability to adaptively increase cognitive control in response to cognitive challenges is crucial for goal-directed behavior. Recent findings suggest that aversive arousal triggers adaptive increases of control, but the neurochemical mechanisms underlying these effects remain unclear. Given the known contributions of the opioid system to hedonic states, we investigated whether blocking this system increases adaptive control modulations. To do so, we conducted a double-blind, placebo-controlled psychopharmacological study (n=52 females) involving a Stroop-like task. Specifically, we assessed the effect of naltrexone, an opioid blocker most selective to the mu-opioid system, on two measures of adaptive control that are thought to depend differentially on aversive arousal: post-error slowing and conflict adaptation. Consistent with our hypothesis, relative to placebo, naltrexone increased post-error slowing without influencing conflict adaptation. This finding not only supports the view that aversive arousal triggers adaptive control but also reveals a novel role for the opioid system in modulating such effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Revisiting the differentiation paradigm in acute promyelocytic leukemia.
Ablain, Julien; de The, Hugues
2011-06-02
As the result of intense clinical and basic research, acute promyelocytic leukemia (APL) has progressively evolved from a deadly to a curable disease. Historically, efforts aimed at understanding the molecular bases for therapy response have repeatedly illuminated APL pathogenesis. The classic model attributes this therapeutic success to the transcriptional reactivation elicited by retinoic acid and the resulting overcoming of the differentiation block characteristic of APL blasts. However, in clinical practice, retinoic acid by itself only rarely yields prolonged remissions, even though it induces massive differentiation. In contrast, as a single agent, arsenic trioxide neither directly activates transcription nor triggers terminal differentiation ex vivo, but cures many patients. Here we review the evidence from recent ex vivo and in vivo studies that allow a reassessment of the role of differentiation in APL cure. We discuss alternative models in which PML-RARA degradation and the subsequent loss of APL cell self-renewal play central roles. Rather than therapy aimed at inducing differentiation, targeting cancer cell self-renewal may represent a more effective goal, achievable by a broader range of therapeutic agents.
Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian
2002-01-01
The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853
Bartz, Holger; Avalos, Nicole M; Baetz, Andrea; Heeg, Klaus; Dalpke, Alexander H
2006-12-15
Dendritic cells (DCs) are important sentinels within innate immunity, monitoring the presence of infectious microorganisms. They operate in 2 different maturation stages, with transition from immature to mature DCs being induced by activation of toll-like receptors (TLRs). However, TLRs are also expressed on precursor cells of DCs. Here we analyzed the effects of TLR stimulation during the process of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-mediated in vitro generation of immature DCs from precursor cells. We show that TLR triggering deviated phenotypic and functional differentiation from CD14+ monocytes to CD1a+ DCs. Similar results were obtained when differentiation of murine myeloid DCs from bone marrow cells was analyzed. The inhibitory effects were independent of soluble factors. TLR stimulation in DC precursor cells induced proteins of the suppressor of cytokine signaling family (SOCS), which correlated with loss of sensitivity to GM-CSF. Overexpression of SOCS-1 abolished GM-CSF signal transduction. Moreover, forced SOCS-1 expression in DC precursors mimicked the inhibitory effects on DC generation observed for TLR stimulation. The results indicate that TLR stimulation during the period of DC generation interferes with and deviates DC differentiation and that these effects are mediated particularly by SOCS-1.
Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M
2013-11-01
Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Investigation of the Relationship between Cognitive Reactivity and Rumination
ERIC Educational Resources Information Center
Moulds, Michelle L.; Kandris, Eva; Williams, Alishia D.; Lang, Tamara; Yap, Carol; Hoffmeister, Karolin
2008-01-01
Teasdale's (Teasdale, J.D. (1988). Cognitive vulnerability to persistent depression. "Cognition and Emotion," 2, 247-274) differential activation hypothesis refers to the ease with which maladaptive cognitive processes are triggered by mild dysphoria as "cognitive reactivity." Supporting this model is evidence of a differential association between…
Biava, Pier Mario; Burigana, Fabio; Germano, Roberto; Kurian, Philip; Verzegnassi, Claudio; Vitiello, Giuseppe
2017-09-20
A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated re-differentiation often signifies the phenotypic reversion back to health and non-proliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Raicevic, Gordana; Najar, Mehdi; Pieters, Karlien; De Bruyn, Cecile; Meuleman, Nathalie; Bron, Dominique; Toungouz, Michel; Lagneaux, Laurence
2012-07-01
Mesenchymal stromal cells (MSCs) can be isolated not only from bone marrow (BM) but also from other tissues, including adipose tissue (AT) and umbilical cord Wharton's Jelly (WJ). Thanks to their ability to differentiate into various cell types, MSC are considered attractive candidates for cell-based regenerative therapy. In degenerative clinical settings, inflammation or infection is often involved. In the present work, we hypothesized that an inflammatory environment and/or Toll-like receptor (TLR) ligation could affect the MSC differentiation potential. MSC were isolated from BM, AT, and WJ. Inflammation was mimicked by a cytokine cocktail, and TLR activation was induced through TLR3 and TLR4 ligation. Osteogenesis was chosen as a model for differentiation. Osteogenic parameters were evaluated by measuring Ca2+ deposits and alkaline phosphatase (ALP) activity at day 7, 14, and 21 of the culture in an osteogenic medium. Our results show that WJ-MSC exhibit a much lower osteogenic potential than the other two MSC types. However, inflammation was able to strongly increase the osteogenic differentiation of WJ-MSC as calcification, and ALP activity appeared as early as day 7. However, this latter enzymatic activity remained much lower than that disclosed by BM-MSC. TLR3 or TLR4 triggering increased the osteogenesis in AT- and, to lesser extent, in BM-MSC. In conclusion, WJ-MSC constitutively disclose a lower osteogenic potential as compared with BM and AT-MSC, which is not affected by TLR triggering but is strongly increased by inflammation, then reaching the level of BM-MSC. These observations suggest that WJ-MSC could constitute an alternative of BM-MSC for bone regenerative applications, as WJ is an easy access source of large amounts of MSC that can effectively differentiate into osteoblasts in an inflammatory setting.
Luo, Peihua; Lin, Meili; Li, Lin; Yang, Bo; He, Qiaojun
2011-01-01
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib. PMID:22087283
Control of Aβ release from human neurons by differentiation status and RET signaling.
Scholz, Diana; Chernyshova, Yana; Leist, Marcel
2013-01-01
Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons. Copyright © 2013 Elsevier Inc. All rights reserved.
Differential induction of apoptosis in Swiss 3T3 cells by nitric oxide and the nitrosonium cation.
Khan, S; Kayahara, M; Joashi, U; Mazarakis, N D; Sarraf, C; Edwards, A D; Hughes, M N; Mehmet, H
1997-09-01
We have investigated the effect of nitric oxide (NO) on apoptosis in Swiss 3T3 fibroblasts and compared it to the effect of the nitrosonium cation (NO+). Both species induced apoptosis, confirmed by electron microscopy, propidium iodide staining, DNA laddering and activation of caspases. The kinetics of triggering apoptosis were different for the two redox species: NO+ required only a 2 hour exposure, whereas NO required 24 hours. Three sources of NO were used: aqueous solutions of NO and two NO donors, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine. The time course of apoptosis induced by these two S-nitrosothiols correlated with their rate of decomposition to NO. The apoptotic effect of NO was reduced in the presence of the NO scavenger oxyhaemoglobin, or the antioxidants N-acetylcysteine and ascorbic acid, whereas in the case of NO+ these antioxidants potentiated apoptosis. Glutathione also had a potentiating effect on the cytotoxicity of NO+. This suggests that cellular antioxidants may play a role in protecting the cell from NO-induced apoptosis while NO+ may trigger apoptosis independently of oxidative stress mechanisms.
Genetics of Paget's disease of bone
Albagha, Omar ME
2015-01-01
Paget's disease of bone (PDB) is a common metabolic bone disease characterised by focal areas of increased bone turnover, which primarily affects people over the age of 55 years. Genetic factors have a fundamental role in the pathogenesis of PDB and are probably the main predisposing factor for the disease. The genetic contribution to PDB susceptibility ranges from rare pathogenic mutations in the single gene SQSTM1 to more common, small effect variants in at least seven genetic loci that predispose to the disease. These loci have additive effects on disease susceptibility and interact with SQSTM1 mutations to affect disease severity, making them a potentially useful tool in predicting disease risk and complication and in managing treatments. Many of these loci harbour genes that have important function in osteoclast differentiation such as CSF1, DCSTAMP and TNFRSF11A. Other susceptibility loci have highlighted new molecular pathways that have not been previously implicated in regulation of bone metabolism such as OPTN, which was recently found to negatively regulate osteoclast differentiation. PDB-susceptibility variants exert their effect either by affecting the protein coding sequence such as variants found in SQSTM1 and RIN3 or by influencing gene expression such as those found in OPTN and DCSTAMP. Epidemiological studies indicate that environmental triggers also have a key role in PDB and interact with genetic factors to influence manifestation and severity of the disease; however, further studies are needed to identify these triggers. PMID:26587225
Lemon, Douglas D.; Harrison, Brooke C.; Horn, Todd R.; Stratton, Matthew S.; Ferguson, Bradley S.; Wempe, Michael F.; McKinsey, Timothy A.
2015-01-01
PKD-mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö-6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö-6976 triggered calcium signaling and activated stress-inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö-6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD. PMID:25816750
Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L
2002-01-01
A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.
The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.
Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P
2011-04-01
Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wang, Ya-Ning; Yang, Wu-Cai; Li, Pei-Wei; Wang, Hong-Bao; Zhang, Ying-Ying
2018-01-01
Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2. PMID:29698438
Gupta, Kshama; Kuznetsova, Inna; Klimenkova, Olga; Klimiankou, Maksim; Meyer, Johann; Moore, Malcolm A. S.; Zeidler, Cornelia; Welte, Karl
2014-01-01
The transcription factor lymphoid enhancer–binding factor 1 (LEF-1), which plays a definitive role in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high doses of G-CSF and are at increased risk of developing acute myeloid leukemia. The normal expression of LEF-1 in monocytes and lymphocytes, whose differentiation is unaffected in CN, suggests the presence of a granulopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulation. Signal transducer and activator of transcription 5 (STAT5) is activated by G-CSF and is hyperactivated in acute myeloid leukemia. Here, we investigated the effects of activated STAT5 on LEF-1 expression and functions in hematopoietic progenitor cells. We demonstrated that constitutively active STAT5a (caSTAT5a) inhibited LEF-1–dependent autoregulation of the LEF-1 gene promoter by binding to the LEF-1 protein, recruiting Nemo-like kinase and the E3 ubiquitin-ligase NARF to LEF-1, leading to LEF-1 ubiquitination and a reduction in LEF-1 protein levels. The proteasome inhibitor bortezomib reversed the defective G-CSF–triggered granulocytic differentiation of CD34+ cells from CN patients in vitro, an effect that was accompanied by restoration of LEF-1 protein levels and LEF-1 messenger RNA autoregulation. Taken together, our data define a novel mechanism of LEF-1 downregulation in CN patients via enhanced ubiquitination and degradation of LEF-1 protein by hyperactivated STAT5. PMID:24394665
Gravitational Effects on Signal Transduction
NASA Technical Reports Server (NTRS)
Sytkowski, Arthur J.
1999-01-01
The purpose of this study was to investigate in ground-based experiments, the effect of microgravity on in vitro erythroid differentiation triggered by the hematopoietic growth factor erythropoietin (Epo) and to begin to determine whether this is associated with the anemia of space flight. We chose to use a model cell culture system with which we have had a long and successful experience. These cells, designated Rauscher murine erythroleukemia, grow independently in suspension culture. We first compared the growth rate of Rauscher cells under conditions of simulated microgravity with that of cells grown at 1XG in standard tissue culture flasks. Therefore, since there were fewer cells in the RWV at each specified time, glucose consumption per cell was increased in simulated microgravity. We next began to study the effect of simulated microgravity on erythropoietin induced differentiation of these cells. In another experiment, we allow the cells to grown in flasks or in the RWV for 24 hours prior to the addition of Epo. We initiated studies of c-myb, a proto-oncogene the down-regulation of which is necessary for erythroid differentiation. These preliminary results suggest that simulated microgravity interferes with the signal to c-myb. This may be part of the mechanism that blocks differentiation. A flight experiment is planned within the next 18- 24 months.
Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate
NASA Astrophysics Data System (ADS)
von Erlach, Thomas C.; Bertazzo, Sergio; Wozniak, Michele A.; Horejs, Christine-Maria; Maynard, Stephanie A.; Attwood, Simon; Robinson, Benjamin K.; Autefage, Hélène; Kallepitis, Charalambos; del Río Hernández, Armando; Chen, Christopher S.; Goldoni, Silvia; Stevens, Molly M.
2018-03-01
Cell size and shape affect cellular processes such as cell survival, growth and differentiation1-4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.
Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.
Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin
2014-03-01
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.
Cell differentiation modeled via a coupled two-switch regulatory network
NASA Astrophysics Data System (ADS)
Schittler, D.; Hasenauer, J.; Allgöwer, F.; Waldherr, S.
2010-12-01
Mesenchymal stem cells can give rise to bone and other tissue cells, but their differentiation still escapes full control. In this paper we address this issue by mathematical modeling. We present a model for a genetic switch determining the cell fate of progenitor cells which can differentiate into osteoblasts (bone cells) or chondrocytes (cartilage cells). The model consists of two switch mechanisms and reproduces the experimentally observed three stable equilibrium states: a progenitor, an osteogenic, and a chondrogenic state. Conventionally, the loss of an intermediate (progenitor) state and the entailed attraction to one of two opposite (differentiated) states is modeled as a result of changing parameters. In our model in contrast, we achieve this by distributing the differentiation process to two functional switch parts acting in concert: one triggering differentiation and the other determining cell fate. Via stability and bifurcation analysis, we investigate the effects of biochemical stimuli associated with different system inputs. We employ our model to generate differentiation scenarios on the single cell as well as on the cell population level. The single cell scenarios allow to reconstruct the switching upon extrinsic signals, whereas the cell population scenarios provide a framework to identify the impact of intrinsic properties and the limiting factors for successful differentiation.
Russell, L; Naora, H; Naora, H
2000-04-01
The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.
Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.
Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E
2017-09-01
We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Aiming; Yang, Julin; Gonzalez, Frank J; Cheng, Gary Q; Dai, Renke
2011-02-18
Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.
Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann
2008-11-01
In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.
100 midlife women with eating disorders: a phenomenological analysis of etiology.
Kally, Zina; Cumella, Edward J
2008-10-01
This study analyzed eating disorder (ED) etiological factors for 100 midlife women ED inpatients, grouped by ED onset age: < 40 and > or = 40 years. Interpretative Phenomenological Analysis classified ED etiological influences into background contributors, immediate triggers, or sustainers. Family-of-origin issues, predominantly parental maltreatment, emerged as important background contributors, but not immediate ED triggers, regardless of onset age. Body image issues were also major background contributors regardless of onset age and further served as immediate ED triggers for many of the younger-onset patients, but not the older-onset patients. Family-of-choice and health issues were unimportant for younger-onset patients but were important ED contributors and triggers for older-onset patients. Emergent etiological differences suggest differential assessment and treatment needs for midlife ED patients based on ED onset age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huai, Lei; Wang, Cuicui; Zhang, Cuiping
2012-06-08
Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acutemore » promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.« less
Developmentally-inspired shrink-wrap polymers for mechanical induction of tissue differentiation.
Hashmi, Basma; Zarzar, Lauren D; Mammoto, Tadanori; Mammoto, Akiko; Jiang, Amanda; Aizenberg, Joanna; Ingber, Donald E
2014-05-28
A biologically inspired thermoresponsive polymer has been developed that mechanically induces tooth differentiation in vitro and in vivo by promoting mesenchymal cell compaction as seen in each pore of the scaffold. This normally occurs during the physiological mesenchymal condensation response that triggers tooth formation in the embryo. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof
2018-01-17
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.
Yuan, Cheng; Gou, Xiaoli; Deng, Jiang; Dong, Zhijun; Ye, Peng; Hu, Zhenming
2018-06-14
Adipose derived stem cells (ADSCs) could undergo osteogenesis via focal adhesion kinase (FAK) and bone morphogenetic protein (BMP) 9 signals, both of which could affect Wnt-β-catenin signal, a signal pathway closely related to ADSCs osteogenesis. It's still enigma whether FAK and BMP-9 contribute to osteogenesis. Here, we examined the effect of FAK on BMP9-inducedosteogenic differentiation, unveiled the possible molecular mechanism underling this process. In the present study, ADSCs were isolated and purified, and cells of passage 3 underwent virus mediated transfection to prepare ADSCs with stable FAK shRNA expression. Cell viability and migration were detected by MTT and transwell assay, respectively. Expression of osteogenic gene, phosphorylation of FAK and GSK were detected by western blot. Osteogenic potential was evaluated by activity of alkaline phosphatase (ALP) and calcium deposition by ALP staining and Alizarin Red S staining. BMP-9 administration promoted ADSCs osteogenesis. Knocking down FAK attenuated this process, inhibited osteogenic proteins expression through Wnt-β-catenin signal. BMP-9 also triggered ADSCs proliferation and migration, and shFAK antagonized such effects too. Although Wnt signal is affected by FAK shRNA, Smad signal remains intact in ADSCs with shFAK. FAK and BMP-9 could cross talk on Wnt signal pathway and promote ADSCs osteogenesis. FAK could participate in BMP-9 induced ADSCs osteogenesis via Wnt signal pathway other than Smads signals (see in graph). Copyright © 2018. Published by Elsevier Masson SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko
We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less
Boulakirba, Sonia; Pfeifer, Anja; Mhaidly, Rana; Obba, Sandrine; Goulard, Michael; Schmitt, Thomas; Chaintreuil, Paul; Calleja, Anne; Furstoss, Nathan; Orange, François; Lacas-Gervais, Sandra; Boyer, Laurent; Marchetti, Sandrine; Verhoeyen, Els; Luciano, Frederic; Robert, Guillaume; Auberger, Patrick; Jacquel, Arnaud
2018-01-10
CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.
Cheung, Yuen-Ting; Lau, Way Kwok-Wai; Yu, Man-Shan; Lai, Cora Sau-Wan; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung
2009-01-01
Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied. Therefore, we aim to re-evaluate the differentiation property of RA on this cell line. We hypothesize that modulation of signaling pathways and neuronal properties during RA-mediated differentiation in SH-SY5Y cells can affect their susceptibility to neurotoxins. The differentiation property of RA was confirmed by showing an extensive outgrowth of neurites, increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin and synaptic associated protein-97, and decreased expression of inhibitor of differentiation-1. While undifferentiated SH-SY5Y cells were susceptible to 6-OHDA and MPP+, RA-differentiation conferred SH-SY5Y cells higher tolerance, potentially by up-regulating survival signaling, including Akt pathway as inhibition of Akt removed RA-induced neuroprotection against 6-OHDA. As a result, the real toxicity cannot be revealed in RA-differentiated cells. Therefore, undifferentiated SH-SY5Y is more appropriate for studying neurotoxicity or neuroprotection in experimental Parkinson's disease research.
Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun
2013-12-01
Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.
The assessment of nanofluid in a Von Karman flow with temperature relied viscosity
NASA Astrophysics Data System (ADS)
Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.
2018-06-01
This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.
NASA Technical Reports Server (NTRS)
Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.
2014-01-01
SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial
Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui
2017-01-01
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Olivares, Ela I; Lage-Castellanos, Agustín; Bobes, María A; Iglesias, Jaime
2018-01-01
We investigated the neural correlates of the access to and retrieval of face structure information in contrast to those concerning the access to and retrieval of person-related verbal information, triggered by faces. We experimentally induced stimulus familiarity via a systematic learning procedure including faces with and without associated verbal information. Then, we recorded event-related potentials (ERPs) in both intra-domain (face-feature) and cross-domain (face-occupation) matching tasks while N400-like responses were elicited by incorrect eyes-eyebrows completions and occupations, respectively. A novel Bayesian source reconstruction approach plus conjunction analysis of group effects revealed that in both cases the generated N170s were of similar amplitude but had different neural origin. Thus, whereas the N170 of faces was associated predominantly to right fusiform and occipital regions (the so-called "Fusiform Face Area", "FFA" and "Occipital Face Area", "OFA", respectively), the N170 of occupations was associated to a bilateral very posterior activity, suggestive of basic perceptual processes. Importantly, the right-sided perceptual P200 and the face-related N250 were evoked exclusively in the intra-domain task, with sources in OFA and extensively in the fusiform region, respectively. Regarding later latencies, the intra-domain N400 seemed to be generated in right posterior brain regions encompassing mainly OFA and, to some extent, the FFA, likely reflecting neural operations triggered by structural incongruities. In turn, the cross-domain N400 was related to more anterior left-sided fusiform and temporal inferior sources, paralleling those described previously for the classic verbal N400. These results support the existence of differentiated neural streams for face structure and person-related verbal processing triggered by faces, which can be activated differentially according to specific task demands.
Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés
2016-06-01
Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of Immunologists, Inc.
Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto
2016-01-01
Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578
Correspondence between discrete and continuous models of excitable media: trigger waves
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.
1997-01-01
We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco; Guarino, Alessio
2017-09-01
We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.
Differential levels of Neurod establish zebrafish endocrine pancreas cell fates
Dalgin, Gökhan; Prince, Victoria E.
2015-01-01
During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153
[Myofascial pain syndrome--frequent occurrence and often misdiagnosed].
Pongratz, D E; Späth, M
1998-09-30
Myofascial pain syndrome (MPS) is a very common localized--sometimes also polytopic--painful musculoskeletal condition associated with trigger points, for which, however, diagnostic criteria established in well-designed studies are still lacking. These two facts form the basis for differentiating between MPS and the fibromyalgia syndrome. The difference between trigger points (MPS) and tender points (fibromyalgia) is of central importance--not merely in a linguistic sense. A knowledge of the signs and symptoms typically associated with a trigger point often obviates the need for time-consuming and expensive technical diagnostic measures. The assumption that many cases of unspecific complaints affecting the musculoskeletal system may be ascribed to MPS makes clear the scope for the saving of costs.
Differentiation therapy revisited.
de Thé, Hugues
2018-02-01
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Vittori, Daniela; Vota, Daiana; Callero, Mariana; Chamorro, María E; Nesse, Alcira
2010-05-04
The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.
Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini
2017-04-01
Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct.
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-12-08
In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-01-01
Background In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Results Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. Conclusion We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ. PMID:19063748
Galbraith, L.K.
1979-12-07
A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.
Galbraith, Lee K.
1981-01-01
A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.
Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.
Bettiol, Esther; Sartiani, Laura; Chicha, Laurie; Krause, Karl Heinz; Cerbai, Elisabetta; Jaconi, Marisa E
2007-10-01
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.
Foods are differentially associated with subjective effect report questions of abuse liability.
Schulte, Erica M; Smeal, Julia K; Gearhardt, Ashley N
2017-01-01
The current study investigates which foods may be most implicated in addictive-like eating by examining how nutritionally diverse foods relate to loss of control consumption and various subjective effect reports. Subjective effect reports assess the abuse liabilities of substances and may similarly provide insight into which foods may be reinforcing in a manner that triggers an addictive-like response for some individuals. Cross-sectional. Online community. 507 participants (n = 501 used in analyses) recruited through Amazon MTurk. Participants (n = 501) self-reported how likely they were to experience a loss of control over their consumption of 30 nutritionally diverse foods and rated each food on five subjective effect report questions that assess the abuse liability of substances (liking, pleasure, craving, averseness, intensity). Hierarchical cluster analytic techniques were used to examine how foods grouped together based on each question. Highly processed foods, with added fats and/or refined carbohydrates, clustered together and were associated with greater loss of control, liking, pleasure, and craving. The clusters yielded from the subjective effect reports assessing liking, pleasure, and craving were most similar to clusters formed based on loss of control over consumption, whereas the clusters yielded from averseness and intensity did not meaningfully differentiate food items. The present work applies methodology used to assess the abuse liability of substances to understand whether foods may vary in their potential to be associated with addictive-like consumption. Highly processed foods (e.g., pizza, chocolate) appear to be most related to an indicator of addictive-like eating (loss of control) and several subjective effect reports (liking, pleasure, craving). Thus, these foods may be particularly reinforcing and capable of triggering an addictive-like response in some individuals. Future research is warranted to understand whether highly processed foods are related to these indicators of abuse liability at a similar magnitude as addictive substances.
60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH.
Gallo-Payet, Nicole
2016-05-01
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH. © 2016 Society for Endocrinology.
Mališová, Lucia; Kováčová, Zuzana; Koc, Michal; Kračmerová, Jana; Štich, Vladimír; Rossmeislová, Lenka
2013-01-01
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells. PMID:24312631
Nasi, Aikaterini; Rethi, Bence
2013-01-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs. PMID:24575378
Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana.
Luzuriaga-Loaiza, W Patricio; Schellenberger, Romain; De Gaetano, Yannick; Obounou Akong, Firmin; Villaume, Sandra; Crouzet, Jérôme; Haudrechy, Arnaud; Baillieul, Fabienne; Clément, Christophe; Lins, Laurence; Allais, Florent; Ongena, Marc; Bouquillon, Sandrine; Deleu, Magali; Dorey, Stephan
2018-06-04
Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... 1000[supreg] Index (``Russell 1000''), and specified Exchange Traded Products (``ETP'') that experience... notes that the rationale for the differentiation in Trading Pause Trigger Prices between securities at...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
...] Index (``Russell 1000''), and specified Exchange Traded Products (``ETP'') that experience rapid price... notes that the rationale for the differentiation in Trading Pause Trigger Prices between securities at...
Lindström, Nils Olof; Carragher, Neil Oliver; Hohenstein, Peter
2015-01-01
Summary Nephron progenitor cells differentiate to form nephrons during embryonic kidney development. In contrast, self-renewal maintains progenitor numbers and premature depletion leads to impaired kidney function. Here we analyze the PI3K pathway as a point of convergence for the multiple pathways that are known to control self-renewal in the kidney. We demonstrate that a reduction in PI3K signaling triggers premature differentiation of the progenitors and activates a differentiation program that precedes the mesenchymal-to-epithelial transition through ectopic activation of the β-catenin pathway. Therefore, the combined output of PI3K and other pathways fine-tunes the balance between self-renewal and differentiation in nephron progenitors. PMID:25754203
Furman, Benjamin L. S.; Evans, Ben J.
2016-01-01
Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles. PMID:27605520
Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich
2014-01-01
Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197
Warren-Gash, Charlotte; Blackburn, Ruth; Whitaker, Heather; McMenamin, Jim; Hayward, Andrew C
2018-03-01
While acute respiratory tract infections can trigger cardiovascular events, the differential effect of specific organisms is unknown. This is important to guide vaccine policy.Using national infection surveillance data linked to the Scottish Morbidity Record, we identified adults with a first myocardial infarction or stroke from January 1, 2004 to December 31, 2014 and a record of laboratory-confirmed respiratory infection during this period. Using self-controlled case series analysis, we generated age- and season-adjusted incidence ratios (IRs) for myocardial infarction (n=1227) or stroke (n=762) after infections compared with baseline time.We found substantially increased myocardial infarction rates in the week after Streptococcus pneumoniae and influenza virus infection: adjusted IRs for days 1-3 were 5.98 (95% CI 2.47-14.4) and 9.80 (95% CI 2.37-40.5), respectively. Rates of stroke after infection were similarly high and remained elevated to 28 days: day 1-3 adjusted IRs 12.3 (95% CI 5.48-27.7) and 7.82 (95% CI 1.07-56.9) for S. pneumoniae and influenza virus, respectively. Although other respiratory viruses were associated with raised point estimates for both outcomes, only the day 4-7 estimate for stroke reached statistical significance.We showed a marked cardiovascular triggering effect of S. pneumoniae and influenza virus, which highlights the need for adequate pneumococcal and influenza vaccine uptake. Further research is needed into vascular effects of noninfluenza respiratory viruses. Copyright ©ERS 2018.
Abós, Beatriz; Wang, Tiehui; Castro, Rosario; Granja, Aitor G; Leal, Esther; Havixbeck, Jeffrey; Luque, Alfonso; Barreda, Daniel R; Secombes, Chris J; Tafalla, Carolina
2016-08-02
Although originally identified as a B cell differentiation factor, it is now known that mammalian interleukin-6 (IL-6) only regulates B cells committed to plasma cells in response to T-dependent (TD) antigens within germinal centers (GCs). Even though adaptive immunity is present in teleost fish, these species lack lymph nodes and GCs. Thus, the aim of the present study was to establish the role of trout IL-6 on B cells, comparing its effects to those induced by bacterial lipopolysaccharide (LPS). We demonstrate that the effects of teleost IL-6 on naïve spleen B cells include proliferation, activation of NF-κB, increased IgM secretion, up-regulation of Blimp1 transcription and decreased MHC-II surface expression that point to trout IL-6 as a differentiation factor for IgM antibody-secreting cells (ASCs). However, LPS induced the secretion of IgM without up-regulating Blimp1, driving the cells towards an intermediate activation state in which antigen presenting mechanisms are elicited together with antibody secretion and expression of pro-inflammatory genes. Our results reveal that, in trout, IL-6 is a differentiation factor for B cells, stimulating IgM responses in the absence of follicular structures, and suggest that it was after follicular structures appeared that this cytokine evolved to modulate TD responses within the GC.
Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month.
Ilves, Marit; Vilske, Sara; Aimonen, Kukka; Lindberg, Hanna K; Pesonen, Saila; Wedin, Irene; Nuopponen, Markus; Vanhala, Esa; Højgaard, Casper; Winther, Jakob R; Willemoës, Martin; Vogel, Ulla; Wolff, Henrik; Norppa, Hannu; Savolainen, Kai; Alenius, Harri
2018-05-30
Nanofibrillated cellulose (NFC) is a renewable nanomaterial that has beneficial uses in various applications such as packaging materials and paper. Like carbon nanotubes (CNT), NFCs have high aspect ratio and favorable mechanical properties. The aspect ratio also rises a concern whether NFC could pose a health risk and induce pathologies, similar to those triggered by multi-walled CNT. In this study, we explored the immunomodulatory properties of four NFCs in vitro and in vivo, and compared the results with data on bulk-sized cellulose fibrils and rigid multi-walled CNT (rCNT). Two of the NFCs were non-functionalized and two were carboxymethylated or carboxylated. We investigated the production of pro-inflammatory cytokines in differentiated THP-1 cells, and studied the pulmonary effects and biopersistence of the materials in mice. Our results demonstrate that one of the non-functionalized NFCs tested reduced cell viability and triggered pro-inflammatory reactions in vitro. In contrast, all cellulose materials induced innate immunity response in vivo 24 h after oropharyngeal aspiration, and the non-functionalized NFCs additionally caused features of Th2-type inflammation. Modest immune reactions were also seen after 28 days, however, the effects were markedly attenuated as compared with the ones after 24 h. Cellulose materials were not cleared within 1 month, as demonstrated by their presence in the exposed lungs. All effects of NFC were modest as compared with those induced by rCNT. NFC-induced responses were similar or exceeded those triggered by bulk-sized cellulose. These data provide new information about the biodurability and pulmonary effects of different NFCs; this knowledge can be useful in the risk assessment of cellulose materials.
Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells
Rodrigues, Ana Sofia; Pereira, Sandro L.; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João
2015-01-01
Background Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Methodology/Principal Findings Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Conclusions/Findings Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates. PMID:26266544
Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells.
Rodrigues, Ana Sofia; Pereira, Sandro L; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João
2015-01-01
Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates.
Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine
Chung, Yeonseok
2015-01-01
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366
The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.
Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A
2013-12-01
The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Differential Connectivity in Colorectal Cancer Gene Expression Network
Izadi, Fereshteh
2018-05-30
Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease. In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with differential global connectivity related to cancer state were determined for which the potential transcriptional regulators including transcription factors were identified. The majority of differentially connected genes (DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2, SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that the potent candidate biomarkers could provide a link to disease.
Existence of solutions for a host-parasite model
NASA Astrophysics Data System (ADS)
Milner, Fabio Augusto; Patton, Curtis Allan
2001-12-01
The sea bass Dicentrarchus labrax has several gill ectoparasites. Diplectanum aequans (Plathelminth, Monogenea) is one of these species. Under certain demographic conditions, this flat worm can trigger pathological problems, in particular in fish farms. The life cycle of the parasite is described and a model for the dynamics of its interaction with the fish is described and analyzed. The model consists of a coupled system of ordinary differential equations and one integro-differential equation.
Disarmed by density: A glycolytic break for immunostimulatory dendritic cells?
Nasi, Aikaterini; Rethi, Bence
2013-12-01
We observed a cell concentration-dependent differentiation switch among cultured dendritic cells (DCs) triggered by lactic acid, a product of glycolytic metabolism. In particular, while interleukin (IL)-12, IL-23, and tumor necrosis factor α (TNFα)-producing, migratory DCs developed in sparse cultures, IL-10-producing, non-migratory DCs differentiated in dense cultures. This points to a novel opportunity for tailoring DC-based anticancer therapies through metabolism modulation in developing DCs.
Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji
2012-12-01
Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.
Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A
2017-03-01
Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators
Zhang, Shukui; Wilson, Guy
2014-09-23
An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.
2009-01-01
Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378
Rahim, Fakher; Allahmoradi, Hossein; Salari, Fatemeh; Shahjahani, Mohammad; Fard, Ali Dehghani; Hosseini, Seyed Ahmad; Mousakhani, Hadi
2013-01-01
Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.
Proteins on exocytic vesicles mediate calcium-triggered fusion.
Vogel, S S; Zimmerberg, J
1992-01-01
In many exocytic systems, micromolar concentrations of intracellular Ca2+ trigger fusion. We find that aggregates of secretory granules isolated from sea urchin eggs fuse together when perfused with greater than or equal to 10 microM free Ca2+. Mixing of membrane components was demonstrated by transfer of fluorescent lipophilic dye, and melding of granule contents was seen with differential interference microscopy. A technique based upon light scattering was developed to conveniently detect fusion. Two protein modifiers, trypsin and N-ethylmaleimide, inhibit granule-granule fusion at concentrations similar to those that inhibit granule-plasma membrane fusion. We suggest that molecular machinery sufficient for Ca(2+)-triggered fusion resides on secretory granules as purified and that at least some of these essential components are proteinaceous. Images PMID:1584814
Exercise-induced anaphylaxis and antileukotriene montelukast.
Gajbhiye, Sapna; Agrawal, Rajendra Prasad; Atal, Shubham; Tiwari, Vikalp; Phadnis, Pradeep
2015-01-01
We report a rare case of exercise-induced anaphylaxis (EIA), occurring exclusively with exercise, without any other associated trigger, detected in the prodromal phase, and prevented from additional anaphylaxis episodes by treatment with cetirizine and 10 mg daily of antileukotriene montelukast to date. EIA is a syndrome in which patients experience a spectrum of the symptoms of anaphylaxis ranging from mild cutaneous signs to severe systemic manifestations such as hypotension, syncope, and even death after increased physical activity. Many people have triggers, such as, a variety of foods, various medications, alcohol, cold weather, humidity, and seasonal and hormonal changes along with exercise that cause the symptoms. Typically, either exercise or the specific trigger alone will rarely cause symptoms. It is differentiated from cholinergic urticaria by the absence of response to passive body warming and emotional stress.
Kuster, S; Riolfo, L A; Zalts, A; El Hasi, C; Almarcha, C; Trevelyan, P M J; De Wit, A; D'Onofrio, A
2011-10-14
Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.
Effects of Hypogravity on Osteoblast Differentiation
NASA Technical Reports Server (NTRS)
Globus, Ruth; Doty, Steven
1997-01-01
Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells.
Paracrine signaling in a bacterium.
López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2009-07-15
Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.
Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud
2010-07-01
We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.
Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio
2015-10-15
Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.
Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.
2013-01-01
Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407
Escher, Beate I; Aїt-Aїssa, Selim; Behnisch, Peter A; Brack, Werner; Brion, François; Brouwer, Abraham; Buchinger, Sebastian; Crawford, Sarah E; Du Pasquier, David; Hamers, Timo; Hettwer, Karina; Hilscherová, Klára; Hollert, Henner; Kase, Robert; Kienle, Cornelia; Tindall, Andrew J; Tuerk, Jochen; van der Oost, Ron; Vermeirssen, Etienne; Neale, Peta A
2018-07-01
Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination. Copyright © 2018 Elsevier B.V. All rights reserved.
Akkaya-Kalayci, Türkan; Kapusta, Nestor D; Winkler, Dietmar; Kothgassner, Oswald D; Popow, Christian; Özlü-Erkilic, Zeliha
2018-06-01
Suicidal behavior of young people is a topic of utmost importance because suicide is irreversible, and should be prevented. Knowing about the psychosocial background and the triggering events could help in preventing suicidal behavior. We therefore aimed at identifying psychosocial factors that may trigger suicidal behavior in youth. We analyzed retrospectively the standardized records of 2232 youths aged ≤25 years, who were treated after a suicide attempt at emergency units of public hospitals in Istanbul, Turkey during a period of 1 year. We describe this population according to sex and socio-economic conditions, like educational, occupational, relationship status and link them with their reported reasons for suicide attempts. The majority of patients were female (81.6%, N = 1822 females, 18.4%, N = 410 males). Independent of their educational and occupational background, patients indicated most frequently intra-familial problems (females 45.8%, males 30.5%), intrapersonal problems (females 19.9%, males 18.5%), and relationship problems (females 11.3%, males 23.9%) as triggering reasons. Because intra-familial problems were the most frequently reported triggers of suicide attempts, preventive measures should focus on handling intra-familial conflicts. As sex differences were observed for the second-most common trigger-reasons, prevention should also focus on differentially handling intrapersonal and relationship conflicts better.
A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis.
Yao, Chi-Kuang; Liu, Yu-Tzu; Lee, I-Chi; Wang, You-Tung; Wu, Ping-Yen
2017-04-01
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis.
A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis
Liu, Yu-Tzu; Lee, I-Chi; Wang, You-Tung; Wu, Ping-Yen
2017-01-01
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis. PMID:28414717
Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou
2018-03-08
This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.
Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.
Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo
2012-07-01
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Chang, Joonho; Freivalds, Andris; Sharkey, Neil A; Kong, Yong-Ku; Mike Kim, H; Sung, Kiseok; Kim, Dae-Min; Jung, Kihyo
2017-11-01
A cadaver study was conducted to investigate the effects of triggering conditions (trigger grip span, contact location, and internal tendon force) on index finger triggering force and the force efficiency of involved tendons. Eight right human cadaveric hands were employed, and a motion simulator was built to secure and control the specimens. Index finger triggering forces were investigated as a function of different internal tendon forces (flexor digitorum profundus + flexor digitorum superficialis = 40, 70, and 100 N), trigger grip spans (40, 50, and 60 mm), and contact locations between the index finger and a trigger. Triggering forces significantly increased when internal tendon forces increased from 40 to 100 N. Also, trigger grip spans and contact locations had significant effects on triggering forces; maximum triggering forces were found at a 50 mm span and the most proximal contact location. The results revealed that only 10-30% of internal tendon forces were converted to their external triggering forces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ryu, Tae Kwon; Lee, Gunsup; Rhee, Yong; Park, Heung-Sik; Chang, Man; Lee, Sukchan; Lee, Jaean; Lee, Taek-Kyun
2012-10-01
Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos. Copyright © 2012 Elsevier Inc. All rights reserved.
Children residing in urbanized areas suffer disproportionately higher asthma-related morbidity and mortality. One explanation is that inner city children are exposured to higher levels of environmental asthma triggers such as airborne particulate matter. To elucidate gene-environ...
Perrigault, Mickael; Allam, Bassem
2012-06-01
The immune response of the hard clam (quahog) Mercenaria mercenaria following challenge with live bacteria (Vibrio alginolyticus) and the protist QPX (Quahog Parasite Unknown) was investigated. The study also compared immune responses following QPX challenge in two different hard clam broodstocks exhibiting different degrees of susceptibility toward this parasite. Different immune and stress-related cellular and humoral factors were assessed including general hemocyte parameters (total and differential hemocyte counts, percentage of dead cells, reactive oxygen production, phagocytosis), parameters geared toward QPX (anti-QPX activity in plasma and hemocyte resistance to the cytotoxicity of QPX extracellular products). Two genes (ferritin and metallothionein) previously shown to be modulated following QPX exposure were molecularly characterized by rapid amplification of cDNA ends (RACE) and their transcription levels were determined in resistant and susceptible clams in response to QPX and bacterial challenge. Results indicated that both V. alginolyticus and QPX challenge triggered significant immune responses in clams with similar trends for most measured parameters. However, specific responses were observed for anti-QPX activity in plasma and hemocyte resistance to QPX products as well as ferritin and metallothionein expression according to each inoculum. Similarly, different response patterns were detected following QPX challenge in susceptible and resistant clam stocks. Resistant clams were able to elicit effective response against the parasite leading to the elimination of QPX and the restoration of constitutive immune status whereas QPX-susceptible clams triggered a strong immune modulation characterized by an acute phase response and associated acute phase protein but appeared to be less active in eliminating the parasite. These results suggest that different signaling pathways are triggered during V. alginolyticus and QPX challenge. Moreover, differences in the immune response toward QPX might be linked to the susceptibility or resistance of different clam stocks to the infection by this parasite. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Zhimin; Li, Dapeng
2018-05-31
Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.
Olivares, Ela I.; Lage-Castellanos, Agustín; Bobes, María A.; Iglesias, Jaime
2018-01-01
We investigated the neural correlates of the access to and retrieval of face structure information in contrast to those concerning the access to and retrieval of person-related verbal information, triggered by faces. We experimentally induced stimulus familiarity via a systematic learning procedure including faces with and without associated verbal information. Then, we recorded event-related potentials (ERPs) in both intra-domain (face-feature) and cross-domain (face-occupation) matching tasks while N400-like responses were elicited by incorrect eyes-eyebrows completions and occupations, respectively. A novel Bayesian source reconstruction approach plus conjunction analysis of group effects revealed that in both cases the generated N170s were of similar amplitude but had different neural origin. Thus, whereas the N170 of faces was associated predominantly to right fusiform and occipital regions (the so-called “Fusiform Face Area”, “FFA” and “Occipital Face Area”, “OFA”, respectively), the N170 of occupations was associated to a bilateral very posterior activity, suggestive of basic perceptual processes. Importantly, the right-sided perceptual P200 and the face-related N250 were evoked exclusively in the intra-domain task, with sources in OFA and extensively in the fusiform region, respectively. Regarding later latencies, the intra-domain N400 seemed to be generated in right posterior brain regions encompassing mainly OFA and, to some extent, the FFA, likely reflecting neural operations triggered by structural incongruities. In turn, the cross-domain N400 was related to more anterior left-sided fusiform and temporal inferior sources, paralleling those described previously for the classic verbal N400. These results support the existence of differentiated neural streams for face structure and person-related verbal processing triggered by faces, which can be activated differentially according to specific task demands. PMID:29628877
The Absence of Remotely Triggered Seismicity in Japan from 1997 to 2002
NASA Astrophysics Data System (ADS)
Wakefield, R. H.; Brodsky, E. E.
2003-12-01
Observations of increased seismicity following the Landers, Hector Mine, Izmit, and the Denali, earthquakes suggests remote seismic triggering occurs in geothermal locations as far as 3150 km. This study attempts to determine if the same effects occur in Japan, a geothermal region of high seismicity. For the period of 1997 to 2002, we searched for significant increases in the seismicity levels following earthquakes with Mw >= 6.5 at distances larger than conventionally associated with aftershocks. Additionally, we examined available waveform data in order to detect uncataloged events hidden by the coda of the mainshock. Five events had associated waveform data: March 24, 2001 Geiyo, Mw = 6.8; March 28, 2000 Volcano Islands, Mw = 7.6; July 30, 2000 Honshu, Mw = 6.5; October 6, 2000 Tottori, Mw = 6.7; and the January 28, 1999 Kuril Islands, Mw = 6.8 earthquake. Located 260 km from the Geiyo epicenter, station TKO recorded one possible triggered event within 65 km during the hour following the mainshock. However, the TKO data contains many anomalous spikes, and we are not confident the record is clear enough to differentiate small local events from noise. An ambiguous, two-day, regional seismicity increase followed the Volcano Islands event. We interpret the swarm associated with the signal as coincidental because no similar swarms occurred at the same location following Tottori or Geiyo, both of which had an order of magnitude larger shaking. Both waveforms and cataloged events indicate no triggering occurred following the Honshu, Tottori and Kuril Islands mainshocks. We do not interpret the one indefinite local event recorded by TKO as evidence for mid range dynamic triggering, implying that the 2.5 cm/s shaking at TKO did not exceed the local triggering threshold. Additionally, the lack of triggering following Honshu, Tottori, and Kuril Islands suggests that the 1, 2.5 and 2.6 cm/s shaking at distances of 182, 238, and 267 km, respectively, creates lower bounds for the dynamic triggering thresholds at the respective locations. This assumes the bound is frequency independent. In none of the cases were thresholds exceeded over a large enough region or by large enough amplitude to produce a statistically significant increase in the cataloged rate of seismicity during the period from 1997 to 2002. All previously documented examples of triggering have occurred following shallow earthquakes with Mw > 7. With the exception of Volcano Islands, all of the events of this study have Mw < 7, and have no triggering associated with them. This suggests two possibilities: either events with Mw > 7 are required to produce sufficient shaking to trigger seismicity, or Japan is less susceptible to triggering than the western US or Greece. We assume that the depth of the Volcano Islands earthquake prohibits any substantial surface shaking. We conclude that more data is required associated with shallow, crustal events with Mw > 7 in order to determine whether or not Japan is susceptible to regional triggering.
Carén, Helena; Stricker, Stefan H.; Bulstrode, Harry; Gagrica, Sladjana; Johnstone, Ewan; Bartlett, Thomas E.; Feber, Andrew; Wilson, Gareth; Teschendorff, Andrew E.; Bertone, Paul; Beck, Stephan; Pollard, Steven M.
2015-01-01
Summary Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM. PMID:26607953
Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells
NASA Astrophysics Data System (ADS)
Nahire, Rahul Rajaram
Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image guided, targeted delivery of anticancer drugs.
Parsons, Laura B.; Miller, Gerald E.; Whitted, Crystal; Lynch, Kayla E.; Ramsauer, Robert E.; Patel, Jasmine U.; Wyatt, Jarrett E.; Street, Doris S.; Adams, Carolyn B.; McPherson, Brian; Tsui, Hei Man; Evans, Julie A.; Livesay, Christopher; Torrenegra, Ruben D.; Palau, Victoria E.
2015-01-01
Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT. PMID:26606169
Boly, Melanie; Sasai, Shuntaro; Gosseries, Olivia; Oizumi, Masafumi; Casali, Adenauer; Massimini, Marcello; Tononi, Giulio
2015-01-01
A meaningful set of stimuli, such as a sequence of frames from a movie, triggers a set of different experiences. By contrast, a meaningless set of stimuli, such as a sequence of ‘TV noise’ frames, triggers always the same experience—of seeing ‘TV noise’—even though the stimuli themselves are as different from each other as the movie frames. We reasoned that the differentiation of cortical responses underlying the subject’s experiences, as measured by Lempel-Ziv complexity (incompressibility) of functional MRI images, should reflect the overall meaningfulness of a set of stimuli for the subject, rather than differences among the stimuli. We tested this hypothesis by quantifying the differentiation of brain activity patterns in response to a movie sequence, to the same movie scrambled in time, and to ‘TV noise’, where the pixels from each movie frame were scrambled in space. While overall cortical activation was strong and widespread in all conditions, the differentiation (Lempel-Ziv complexity) of brain activation patterns was correlated with the meaningfulness of the stimulus set, being highest in the movie condition, intermediate in the scrambled movie condition, and minimal for ‘TV noise’. Stimulus set meaningfulness was also associated with higher information integration among cortical regions. These results suggest that the differentiation of neural responses can be used to assess the meaningfulness of a given set of stimuli for a given subject, without the need to identify the features and categories that are relevant to the subject, nor the precise location of selective neural responses. PMID:25970444
Kranenburg, O; Scharnhorst, V; Van der Eb, A J; Zantema, A
1995-10-01
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.
1995-01-01
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation. PMID:7559779
Lo, Kevin W-H; Kan, Ho Man; Laurencin, Cato T
2016-06-01
Sustained administration (21-day treatment) of the small molecule phenamil has been proposed as an alternative osteogenic factor when used in conjunction with a biodegradable scaffold for in vitro osteogenesis. While promising, the major issue associated with small molecules is non-specific cytotoxicity. The aim of this study was to minimize the side-effects from small-molecule drugs by reducing the frequency of administration. Toward this goal, we investigated whether a shorter phenamil treatment is sufficient to induce in vitro osteogenesis. We compared the effects of short-term (12 h) and continuous treatments of phenamil on osteoblastic differentiation and mineralization. Alkaline phosphatase (ALP) and osteopontin (OPN) activity were used as markers for osteoblastic differentiation. Measurement of the calcium content of the extracellular matrix was used as the hallmark for in vitro bone formation after 21 days of culture. Our findings revealed that both short and continuous phenamil treatment triggers osteoblastic differentiation and mineralization of MC3T3-E1 cells on a biodegradable polymeric scaffold composed of polylactic-co-glycolic acid (PLAGA) at the same time points. In addition, in order to fabricate a phenamil-loaded PLAGA scaffold, the small molecule phenamil was physically absorbed onto the surface of scaffolds and the bioactivity of the loaded scaffolds was evaluated. Furthermore, biochemical analysis indicated that short phenamil treatment of cells was accompanied by upregulation in protein expression of integrin α5, p125(FAK) and phosphorylation of CREB. These effects may contribute to the downstream signalling cascade necessary for osteogenesis, and such responses may account for our observed protracted osteogenic differentiation in vitro. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander
Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less
Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity
Gao, Xiquan; Cox, Kevin L.; He, Ping
2014-01-01
An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498
Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise
2015-02-01
The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. © 2014 INRA New Phytologist © 2014 New Phytologist Trust.
Impulsivity and Suicidality in Adolescent Inpatients.
Auerbach, Randy P; Stewart, Jeremy G; Johnson, Sheri L
2017-01-01
Suicide is the second leading cause of death among adolescents, and impulsivity has emerged as a promising marker of risk. The present study tested whether distinct domains of impulsivity are differentially associated with suicide ideation, plans, and attempts. Adolescents (n = 381; boys = 106, girls = 275) aged 13-19 years (M = 15.62, SD = 1.41) were recruited from an acute, residential treatment program. Within 48 h of admission to the hospital, participants were administered structured clinical interviews assessing mental health disorders and suicidality. Following these interviews, participants completed self-report questionnaires assessing symptom severity and impulsivity. Consistent with past research, an exploratory factor analysis of our 90-item impulsivity instrument resulted in a three-factor solution: Pervasive Influence of Feelings, Feelings Trigger Action, and Lack of Follow-Through. Concurrent analysis of these factors confirmed hypotheses of unique associations with suicide ideation and attempts in the past month. Specifically, whereas Pervasive Influence of Feelings (i.e., tendency for emotions to shape thoughts about the self and the future) is uniquely associated with greater suicidal ideation, Feelings Trigger Action (i.e., impulsive behavioral reactivity to emotions) is uniquely associated with the occurrence of suicide attempts, even after controlling for current psychiatric diagnoses and symptoms. Exploratory gender analyses revealed that these effects were significant in female but not male adolescents. These findings provide new insight about how specific domains of impulsivity differentially increase risk for suicide ideation and attempts. Implications for early identification and prevention of youth suicide are discussed.
Impulsivity and Suicidality in Adolescent Inpatients
Stewart, Jeremy G.; Johnson, Sheri L.
2016-01-01
Suicide is the second leading cause of death among adolescents, and impulsivity has emerged as a promising marker of risk. The present study tested whether distinct domains of impulsivity are differentially associated with suicide ideation, plans, and attempts. Adolescents (n = 381; boys = 106, girls = 275) aged 13–19 years (M = 15.62, SD = 1.41) were recruited from an acute, residential treatment program. Within 48 h of admission to the hospital, participants were administered structured clinical interviews assessing mental health disorders and suicidality. Following these interviews, participants completed self-report questionnaires assessing symptom severity and impulsivity. Consistent with past research, an exploratory factor analysis of our 90-item impulsivity instrument resulted in a three-factor solution: Pervasive Influence of Feelings, Feelings Trigger Action, and Lack of Follow-Through. Concurrent analysis of these factors confirmed hypotheses of unique associations with suicide ideation and attempts in the past month. Specifically, whereas Pervasive Influence of Feelings (i.e., tendency for emotions to shape thoughts about the self and the future) is uniquely associated with greater suicidal ideation, Feelings Trigger Action (i.e., impulsive behavioral reactivity to emotions) is uniquely associated with the occurrence of suicide attempts, even after controlling for current psychiatric diagnoses and symptoms. Exploratory gender analyses revealed that these effects were significant in female but not male adolescents. These findings provide new insight about how specific domains of impulsivity differentially increase risk for suicide ideation and attempts. Implications for early identification and prevention of youth suicide are discussed. PMID:27025937
NASA Astrophysics Data System (ADS)
Puac, Nevena
2014-10-01
The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.
Quality of service routing in the differentiated services framework
NASA Astrophysics Data System (ADS)
Oliveira, Marilia C.; Melo, Bruno; Quadros, Goncalo; Monteiro, Edmundo
2001-02-01
In this paper we present a quality of service routing strategy for network where traffic differentiation follows the class-based paradigm, as in the Differentiated Services framework. This routing strategy is based on a metric of quality of service. This metric represents the impact that delay and losses verified at each router in the network have in application performance. Based on this metric, it is selected a path for each class according to the class sensitivity to delay and losses. The distribution of the metric is triggered by a relative criterion with two thresholds, and the values advertised are the moving average of the last values measured.
Mihaila, Silvia M; Gaharwar, Akhilesh K; Reis, Rui L; Khademhosseini, Ali; Marques, Alexandra P; Gomes, Manuela E
2014-11-01
How to surpass in vitro stem cell differentiation, reducing cell manipulation, and lead the in situ regeneration process after transplantation, remains to be unraveled in bone tissue engineering (bTE). Recently, we showed that the combination of human bone marrow stromal cells with bioactive silicate nanoplatelets (sNPs) promotes the osteogenic differentiation without the use of standard osteogenic inductors. Even more, using SSEA-4(+) cell-subpopulations (SSEA-4(+)hASCs) residing within the adipose tissue, as a single-cellular source to obtain relevant cell types for bone regeneration, was also proposed. Herein, sNPs were used to promote the osteogenic differentiation of SSEA-4(+)hASCs. The interactions between SSEA-4(+)hASCs and sNPs, namely the internalization pathway and effect on cells osteogenic differentiation, were evaluated. SNPs below 100 μg/mL showed high cytocompatibility and fast internalization via clathrin-mediated pathway. SNPs triggered an overexpression of osteogenic-related markers (RUNX2, osteopontin, osteocalcin) accompanied by increased alkaline phosphatase activity and deposition of a predominantly collagen-type I matrix. Consequently, a robust matrix mineralization was achieved, covering >90% of the culturing surface area. Overall, we demonstrated the high osteogenic differentiation potential of SSEA-4(+)hASCs, further enhanced by the addition of sNPs in a dose dependent manner. This strategy endorses the combination of an adipose-derived cell-subpopulation with inorganic compounds to achieve bone matrix-analogs with clinical relevance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K.; Shao, Chunlin
2015-01-01
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. PMID:25896631
Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin
2015-07-10
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Exercise-induced anaphylaxis and antileukotriene montelukast
Gajbhiye, Sapna; Agrawal, Rajendra Prasad; Atal, Shubham; Tiwari, Vikalp; Phadnis, Pradeep
2015-01-01
We report a rare case of exercise-induced anaphylaxis (EIA), occurring exclusively with exercise, without any other associated trigger, detected in the prodromal phase, and prevented from additional anaphylaxis episodes by treatment with cetirizine and 10 mg daily of antileukotriene montelukast to date. EIA is a syndrome in which patients experience a spectrum of the symptoms of anaphylaxis ranging from mild cutaneous signs to severe systemic manifestations such as hypotension, syncope, and even death after increased physical activity. Many people have triggers, such as, a variety of foods, various medications, alcohol, cold weather, humidity, and seasonal and hormonal changes along with exercise that cause the symptoms. Typically, either exercise or the specific trigger alone will rarely cause symptoms. It is differentiated from cholinergic urticaria by the absence of response to passive body warming and emotional stress. PMID:26312002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena
Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emittedmore » filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.« less
Tanaka, Shoko; Ono, Yuko; Sakamoto, Kazuho
2017-04-01
Membrane hyperpolarization is suggested to be a trigger for skeletal muscle differentiation. We investigated whether DCEBIO, an opener of the small/intermediate conductance Ca 2+ activated K + (SK Ca /IK Ca ) channels, increase myogenic differentiation in C2C12 skeletal myoblasts. DCEBIO significantly increased myotube formation, protein expression level of myosin heavy chain II, and mRNA expression level of myogenin in C2C12 myoblasts cultured in differentiation medium. DCEBIO induced myotube formation and hyperpolarization were reduced by the IK Ca channel blocker TRAM-34, but not by the SK Ca channel blocker apamin. These findings show that DCEBIO increases myogenic differentiation by activating IK Ca channels. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation
Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine
2017-01-01
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136
Wu, Shu-En; Miller, William E.
2015-01-01
Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage. PMID:25965798
Lim, Sanghyun; Borza, Tudor; Peters, Rick D; Coffin, Robert H; Al-Mughrabi, Khalil I; Pinto, Devanand M; Wang-Pruski, Gefu
2013-11-20
Phosphite (salts of phosphorous acid; Phi)-based fungicides are increasingly used in controlling oomycete pathogens, such as the late blight agent Phytophthora infestans. In plants, low amounts of Phi induce pathogen resistance through an indirect mode of action. We used iTRAQ-based quantitative proteomics to investigate the effects of phosphite on potato plants before and after infection with P. infestans. Ninety-three (62 up-regulated and 31 down-regulated) differentially regulated proteins, from a total of 1172 reproducibly identified proteins, were identified in the leaf proteome of Phi-treated potato plants. Four days post-inoculation with P. infestans, 16 of the 31 down-regulated proteins remained down-regulated and 42 of the 62 up-regulated proteins remained up-regulated, including 90% of the defense proteins. This group includes pathogenesis-related, stress-responsive, and detoxification-related proteins. Callose deposition and ultrastructural analyses of leaf tissues after infection were used to complement the proteomics approach. This study represents the first comprehensive proteomics analysis of the indirect mode of action of Phi, demonstrating broad effects on plant defense and plant metabolism. The proteomics data and the microscopy study suggest that Phi triggers a hypersensitive response that is responsible for induced resistance of potato leaves against P. infestans. Phosphie triggers complex functional changes in potato leaves that are responsible for the induced resistance against Phytophthora infestans. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
Robinson, Meghan; Chapani, Parv; Styan, Tara; Vaidyanathan, Ranjani; Willerth, Stephanie Michelle
2016-08-01
Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.
Lung, H L; Ip, W K; Wong, C K; Mak, N K; Chen, Z Y; Leung, K N
2002-12-06
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.
Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero
2016-01-01
Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370
PACAP and VIP regulate hypoxia-inducible factors in neuroblastoma cells exposed to hypoxia.
Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia
2018-06-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two related peptides acting as neurotransmitters/neuromodulators in central and peripheral nervous system. They are also involved in cancer showing a controversial role. Particulary, they are implicated in neuroblastoma differentiation (NB). This pediatric tumor can evolve to a malignant metastatic disease or spontaneously regress towards a benign form, known as ganglioneuroblastoma/ganglioneuroma. A negative hallmark of neoplasia progression is represented by hypoxic microenvironment. Low oxygen tension induces activation of hypoxia-inducible factors (HIFs) promoting cells proliferation and metastasis formation. Moreover, HIFs trigger vascular endothelial growth factor (VEGF) release favouring high-risk NB phenotype development. In the present work, we have investigated for the first time, if PACAP and VIP interfere with NB differentiation through modulation of hypoxic/angiogenic process. To this end, we analyzed their effect in malignant undifferentiated and all-trans retinoic acid (RA) differentiated SH-SY5Y cells, representing the benign form of this tumor. Our results have suggested tha both peptides, but predominantly VIP, induce NB differentiation into benign form by regulating HIFs, VEGF and VEGFRs expression and distribution. All these data give new insight regarding PACAP/VIP regulatory role in NB progression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Di; Qiu, Qianqian; Zhang, Xu; Dai, Manman; Qin, Jianru; Hao, Jianjong; Liao, Ming; Cao, Weisheng
2016-10-01
Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus known to induce tumor formation and immunosuppression in infected chickens. One of the organs susceptible to ALV-J is the bone marrow, from which specialized antigen-presenting cells named dendritic cells (BM-DCs) are derived. Notably, these cells possess the unique ability to induce primary immune responses. In the present study, a method of cultivating and purifying DCs from chicken bone marrow in vitro was established to investigate the effects of ALV-J infection on BM-DC differentiation or generation. The results indicated that ALV-J not only infects the chicken bone marrow mononuclear cells but also appears to inhibit the differentiation and maturation of BM-DCs and to trigger apoptosis. Moreover, substantial reductions in the mRNA expression of TLR1, TLR2, TLR3, MHCI, and MHCII and in cytokine production were detected in the surviving BM-DCs following ALV-J infection. These findings indicate that ALV-J infection disrupts the process of bone marrow mononuclear cell differentiation into BM-DCs likely via altered antigen presentation, resulting in a downstream immune response in affected chickens. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of cytotoxicity of different tobacco product preparations.
Arimilli, Subhashini; Damratoski, Brad E; Bombick, Betsy; Borgerding, Michael F; Prasad, G L
2012-12-01
Acute exposure to cigarette smoke or its components triggers diverse cellular effects, including cytotoxicity. However, available data regarding the potential cytotoxic effects of smokeless tobacco (ST) extracts lack consensus. Here, we investigated the relative biological effects of 2S3 reference ST, and whether ST elicits differential cellular/molecular responses compared to combustible tobacco product preparations (TPPs) prepared from 3R4F cigarettes. Total particulate matter (TPM) and whole smoke conditioned medium (WS-CM) were employed as combustible TPPs, while the ST extract was used as non-combustible TPP. HL60, THP1 cells and human PBMCs were used to examine the effects of TPPs in short-term cell culture. Corresponding EC(50) values, normalized for nicotine content of the TPPs, suggest that combustible TPPs induced higher cytotoxicity as follows: WS-CM TPM ≥ ≫ST extract>nicotine. While all three TPPs induced detectable levels of DNA damage and IL8 secretion, the combustible TPPs were significantly more potent than the ST preparation. The major PBMC subsets showed differential cytotoxicity to combustible TPPs as follows: CD4>CD8>monocytes>NK cells. These findings suggest that, relative cytotoxic and other cell biological effects of TPPs are dose-dependent, and that ST extract is the least cytotoxic TPP tested in this study. Copyright © 2012 Elsevier Inc. All rights reserved.
Early events governing memory CD8+ T-cell differentiation.
Obar, Joshua J; Lefrançois, Leo
2010-08-01
Understanding the regulation of the CD8(+) T-cell response and how protective memory cells are generated has been intensely studied. It is now appreciated that a naive CD8(+) T cell requires at least three signals to mount an effective immune response: (i) TCR triggering, (ii) co-stimulation and (iii) inflammatory cytokines. Only recently have we begun to understand the molecular integration of those signals and how early events regulate the fate decisions of the responding CD8(+) T cells. This review will discuss the recent findings about both the extracellular and intracellular factors that regulate the destiny of responding CD8(+) T cells.
Motile bacteria in a critical fluid mixture
NASA Astrophysics Data System (ADS)
Koumakis, Nick; Devailly, Clémence; Poon, Wilson C. K.
2018-06-01
We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.
Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal
2018-05-01
BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.
USDA-ARS?s Scientific Manuscript database
We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia....
Nadeau, Mélissa; Rosas-Arellano, M Patricia; Gurr, Kevin R; Bailey, Stewart I; Taylor, David C; Grewal, Ruby; Lawlor, D Kirk; Bailey, Chris S
2013-12-01
Intermittent claudication can be neurogenic or vascular. Physicians use a profile based on symptom attributes to differentiate the 2 types of claudication, and this guides their investigations for diagnosis of the underlying pathology. We evaluated the validity of these symptom attributes in differentiating neurogenic from vascular claudication. Patients with a diagnosis of lumbar spinal stenosis (LSS) or peripheral vascular disease (PVD) who reported claudication answered 14 questions characterizing their symptoms. We determined the sensitivity, specificity and positive and negative likelihood ratios (PLR and NLR) for neurogenic and vascular claudication for each symptom attribute. We studied 53 patients. The most sensitive symptom attribute to rule out LSS was the absence of "triggering of pain with standing alone" (sensitivity 0.97, NLR 0.050). Pain alleviators and symptom location data showed a weak clinical significance for LSS and PVD. Constellation of symptoms yielded the strongest associations: patients with a positive shopping cart sign whose symptoms were located above the knees, triggered with standing alone and relieved with sitting had a strong likelihood of neurogenic claudication (PLR 13). Patients with symptoms in the calf that were relieved with standing alone had a strong likelihood of vascular claudication (PLR 20.0). The classic symptom attributes used to differentiate neurogenic from vascular claudication are at best weakly valid independently. However, certain constellation of symptoms are much more indicative of etiology. These results can guide general practitioners in their evaluation of and investigation for claudication.
What clues are available for differential diagnosis of headaches in emergency settings?
Mert, Ertan; Ozge, Aynur; Taşdelen, Bahar; Yilmaz, Arda; Bilgin, Nursel G
2008-04-01
The correct diagnosis of headache disorders in an emergency room is important for developing early management strategies and determining optimal emergency room activities. This prospective clinical based study was performed in order to determine demographic and clinical clues for differential diagnosis of primary and secondary headache disorders and also to obtain a classification plot for the emergency room practitioners. This study included 174 patients older than 15 years of age presenting in the emergency room with a chief complaint of headache. Definite headache diagnoses were made according to ICHD-II criteria. Classification and regression tree was used as new method for the statistical analysis of the differential diagnostic process. Our 174 patients with headache were diagnosed as basically primary (72.9%) and secondary (27.1%) headaches. Univariate analysis with cross tabs showed three important results. First, unilateral pain location caused 1.431-fold increase in the primary headache risk (p = 0.006). Second, having any triggers caused 1.440-fold increase in the primary headache risk (p = 0.001). Third, having associated co-morbid medical disorders caused 4.643-fold increase in the secondary headache risk (p < 0.001). It was concluded that the presence of comorbidity, the patient's age, the existence of trigger and relaxing factors, the pain in other body parts that accompanies headache and the quality of pain in terms of location and duration were all important clues for physicians in making an accurate differentiation between primary and secondary headaches.
Multiple chemical sensitivity caused by exposure to ignition coal fumes: a case report
2013-01-01
Background Although multiple chemical sensitivity (MCS) is a well-known disorder caused by environmental exposures, MCS caused by occupational exposure has been reported in Korea. Therefore, we report a MCS case caused by environmental exposure to ignition coal after a differential diagnosis to exclude other diseases. Case report Since 2011, a 55-year-old woman had experienced edema, myalgia, and other symptoms when she smelled ignition coal near her workplace. She had been diagnosed with fibromyalgia syndrome(FMS) and was treated, with no improvement of symptoms. Since then, she showed the same symptoms after exposure to city gas, the smell of burning, and exhaust gas. To avoid triggering substances, she moved to a new house and used an air purifier. She quit her job in November 2012. After visiting our hospital, she underwent a differential diagnosis for FMS, chronic fatigue syndrome, and somatization disorder. She was diagnosed with MCS by the Korean version of the Quick Environment Exposure Sensitivity Inventory (QEESI). She was educated about the disease and to avoid triggering substances. She received ongoing treatment for her symptoms. Conclusion This case showed that symptoms began after smelling ignition coal. After that, her triggers was increased such as the smell of city gas, burning, and exhaust gas. This case is the first reported in Korea of MCS due to environmental exposure after ruling out other diseases. PMID:24472417
Amaradasa, Bimal S; Amundsen, Keenan
2016-01-01
Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.
Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David
2016-10-18
C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.
Aránguiz-Urroz, Pablo; Soto, Dagoberto; Contreras, Ariel; Troncoso, Rodrigo; Chiong, Mario; Montenegro, José; Venegas, Daniel; Smolic, Christian; Ayala, Pedro; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo
2009-05-01
The Angiotensin II (Ang II) type 1 (AT(1)R) and type 2 (AT(2)R) receptors are increased in the heart following myocardial infarction and dilated cardiomyopathy, yet their contribution at a cellular level to compensation and/or failure remains controversial. We ectopically expressed AT(1)R and AT(2)R in cultured adult rat cardiomyocytes and cardiac fibroblasts to investigate Ang II-mediated cardiomyocyte hypertrophy and cardiac cell viability. In adult rat cardiomyocytes, Ang II did not induce hypertrophy via the AT(1)R, and no effect of Ang II on cell viability was observed following AT(1)R or AT(2)R expression. In adult rat cardiac fibroblasts, Ang II stimulated cell death by apoptosis via the AT(1)R (but not the AT(2)R), which required the presence of extracellular calcium, and induced a rapid dissipation of mitochondrial membrane potential, which was significant from 8 h. We conclude that Ang II/AT(1)R triggers apoptosis in adult rat cardiac fibroblasts, which is dependent on Ca2+ influx.
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
NASA Astrophysics Data System (ADS)
Stevanović Hedrih, K.
2008-02-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells.
Moulding, D A; Giles, R V; Spiller, D G; White, M R; Tidd, D M; Edwards, S W
2000-09-01
Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 beta-myristate 13 alpha-acetate), Mcl-1 is transiently induced. The purpose of this investigation was to determine the functional role played by Mcl-1 in this differentiation program. Mcl-1 expression was specifically disrupted by chimeric methylphosphonate/phosphodiester antisense oligodeoxynucleotides to just 5% of control levels. The depletion of Mcl-1 messenger RNA (mRNA) and protein was both rapid and specific, as indicated by the use of control oligodeoxynucleotides and analysis of the expression of other BCL2 family members and PMA-induced tumor necrosis factor-alpha (TNF-alpha). Specific depletion of Mcl-1 mRNA and protein, in the absence of changes in cellular levels of Bcl-2, results in a rapid entry into apoptosis. Levels of the proapoptotic protein Bax remained unchanged during differentiation, while Bak expression doubled within 24 hours. Apoptosis was detected within 4 hours of Mcl-1 antisense treatment by a variety of parameters including a novel live cell imaging technique allowing correlation of antisense treatment and apoptosis in individual cells. The induction of Mcl-1 is required to prevent apoptosis during differentiation of U937 cells, and the constitutive expression of Bcl-2 is unable to compensate for the loss of Mcl-1. (Blood. 2000;96:1756-1763)
Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles.
Santos, Tiago; Ferreira, Raquel; Quartin, Emanuel; Boto, Carlos; Saraiva, Cláudia; Bragança, José; Peça, João; Rodrigues, Cecília; Ferreira, Lino; Bernardino, Liliana
2017-09-01
Neurogenic niches constitute a powerful endogenous source of new neurons that can be used for brain repair strategies. Neuronal differentiation of these cells can be regulated by molecules such as retinoic acid (RA) or by mild levels of reactive oxygen species (ROS) that are also known to upregulate RA receptor alpha (RARα) levels. Data showed that neural stem cells from the subventricular zone (SVZ) exposed to blue light (405nm laser) transiently induced NADPH oxidase-dependent ROS, resulting in β-catenin activation and neuronal differentiation, and increased RARα levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis both in vitro and in vivo, while offering a temporal and spatial control of RA release. In conclusion, this combinatory treatment offers great advantages to potentiate neuronal differentiation, and provides an innovative and efficient application for brain regenerative therapies. Controlling the differentiation of stem cells would support the development of promising brain regenerative therapies. Blue light transiently increased reactive oxygen species, resulting in neuronal differentiation and increased retinoic acid receptor (RARα) levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis, while offering a temporal and spatial control of RA release. In this sense, our approach relying on the modulation of endogenous stem cells for the generation of new neurons may support the development of novel clinical therapies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermogenesis-triggered seed dispersal in dwarf mistletoe
deBruyn, Rolena A.J.; Paetkau, Mark; Ross, Kelly A.; Godfrey, David V.; Friedman, Cynthia Ross
2015-01-01
Lodgepole pine dwarf mistletoe (DM), Arceuthobium americanum, is a parasitic flowering plant and forest pathogen in North America. Seed dispersal in DM occurs by explosive discharge. Notably, slight warming of ripe DM fruit in the laboratory can trigger explosions. Previously, we showed that alternative oxidase, a protein involved in endogenous heat production (thermogenesis) in plants, is present in DM fruit. These observations have led us to investigate if thermogenesis induces discharge. Here, infrared thermographs reveal that ripe DM fruits display an anomalous increase in surface temperature by an average of 2.1±0.8 °C over an average time of 103±29 s (n=9, 95% confidence interval) before dehiscence. Furthermore, both non-isothermal and isothermal modulated differential scanning calorimetry consistently show an exothermic event (~1 J g−1) in the non-reversible heat flow just prior to discharge. These results support thermogenesis-triggered seed discharge, never before observed in any plant. PMID:25662062
Edwards, Michael; Dai, Rujuan; Ahmed, S. Ansar
2018-01-01
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion. PMID:29662485
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serovar Enteritidis are facultative intracellular bacteria that cause disease in numerous species. Salmonella-related infections originating from poultry and/or poultry products are a major cause of human foodborne illness, and S. Enteritidis is the leading cause worldwide. Des...
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expr...
NASA Astrophysics Data System (ADS)
Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN
2018-02-01
At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.
Male sex determination: insights into molecular mechanisms
McClelland, Kathryn; Bowles, Josephine; Koopman, Peter
2012-01-01
Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516
Iannone, Maria; Ventre, Maurizio; Formisano, Lucia; Casalino, Laura; Patriarca, Eduardo J; Netti, Paolo A
2015-03-11
The initial conditions for morphogenesis trigger a cascade of events that ultimately dictate structure and functions of tissues and organs. Here we report that surface nanopatterning can control the initial assembly of focal adhesions, hence guiding human mesenchymal stem cells (hMSCs) through the process of self-organization and differentiation. This process self-sustains, leading to the development of macroscopic tissues with molecular profiles and microarchitecture reminiscent of embryonic tendons. Therefore, material surfaces can be in principle engineered to set off the hMSC program toward tissuegenesis in a deterministic manner by providing adequate sets of initial environmental conditions.
Baier, C J; Franco, D L; Gallegos, C E; Mongiat, L A; Dionisio, L; Bouzat, C; Caviedes, P; Barrantes, F J
2014-08-22
Chronic exposure to stress hormones has an impact on brain structures relevant to cognition. Nicotinic acetylcholine receptors (AChRs) are involved in numerous cognitive processes including learning and memory formation. In order to better understand the molecular mechanisms of chronic stress-triggered mental disease, the effect of corticosterone (CORT) on the biology of AChRs was studied in the neuronal cell line CNh. We found that chronic treatment with CORT reduced the expression levels of the α7-type neuronal AChR and, to a lesser extent, of α4-AChR. CORT also delayed the acquisition of the mature cell phenotype in CNh cells. Chronic nicotine treatment affected the differentiation of CNh cells and exerted a synergistic effect with CORT, suggesting that AChR could participate in signaling pathways that control the cell cycle. Overexpression of α7-AChR-GFP abolished the CORT effects on the cell cycle and the specific α7-AChR inhibitor, methyllycaconitine, mimicked the proliferative action exerted by CORT. Whole-cell voltage-clamp recordings showed a significant decrease in nicotine-evoked currents in CORT-treated cells. Taken together, these observations indicate that AChRs, and the α7-AChR in particular, could act as modulators of the differentiation of CNh cells and that CORT could impair the acquisition of a mature phenotype by affecting the function of this AChR subtype. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Method and apparatus for determining viscosity
Chu, Benjamin; Dhadwal, Harbans S.
1990-01-01
A capillary viscometer is provided which includes a fiber-optic probe and a phototransistor which produces an output signal as a liquid meniscus falls through the field of view of a detecting fiber bundle. An analog circuit is employed for receiving the signal and starting or stopping a digital counter in response thereto. The circuit includes first and second differentiators and a zero detection portion for detecting zero value outputs from the second differentiator. The counter is started or stopped upon the generation of a triggering pulse at the time such zero value is detected.
Rodríguez, Valeria A; Rivoira, María A; Pérez, Adriana del V; Marchionatti, Ana M; Tolosa de Talamoni, Nori G
2016-02-01
The aim of this work was to study the effect of sodium deoxycholate (NaDOC) and ursodeoxycholic acid (UDCA) on Ca(2+) uptake by enterocytes and the underlying mechanisms. Rats were divided into four groups: a) controls, b) treated with NaDOC, c) treated with UDCA d) treated with NaDOC and UDCA. Ca(2+) uptake was studied in enterocytes with different degrees of maturation. Apoptosis, autophagy and NO content and iNOS protein expression were evaluated. NaDOC decreased and UDCA increased Ca(2+) uptake only in mature enterocytes. The enhancement of protein expression of Fas, FasL, caspase-8 and caspase-3 activity by NaDOC indicates triggering of the apoptotic extrinsic pathway, which was blocked by UDCA. NO content and iNOS protein expression were enhanced by NaDOC, and avoided by UDCA. The increment of acidic vesicular organelles and LC3 II produced by NaDOC was also prevented by UDCA. In conclusion, the inhibitory effects of NaDOC on intestinal Ca(2+) absorption occur by decreasing the Ca(2+) uptake by mature enterocytes. NaDOC triggers apoptosis and autophagy, in part as a result of nitrosative stress. In contrast, UDCA increases the Ca(2+) uptake by mature enterocytes, and in combination with NaDOC acts as an antiapoptotic and antiautophagic agent normalizing the transcellular Ca(2+) pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity
Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin
2015-01-01
Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058
Du, X; Iacovitti, L
1995-07-01
The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.
Carere, Jason; Fitzgerald, Timothy L.; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal
2017-01-01
Abstract Background and Aims Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum. The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen. PMID:27941094
Mauro, Annunziata; Ciccarelli, Carmela; De Cesaris, Paola; Scoglio, Arianna; Bouché, Marina; Molinaro, Mario; Aquino, Angelo; Zani, Bianca Maria
2002-09-15
We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating myogenic-related morphology in differentiated RD cells.
Powell, Jonathan J; Carere, Jason; Fitzgerald, Timothy L; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L; Gardiner, Donald M; Manners, John M; Henry, Robert J; Kazan, Kemal
2017-03-01
Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Dufour, Christelle; Cadusseau, Josette; Varlet, Pascale; Surena, Anne-Laure; De Faria, Giselle P; Dias-Morais, Amelie; Auger, Nathalie; Léonard, Nadine; Daudigeos, Estelle; Dantas-Barbosa, Carmela; Grill, Jacques; Lazar, Vladimir; Dessen, Philippe; Vassal, Gilles; Prevot, Vincent; Sharif, Ariane; Chneiweiss, Hervé; Junier, Marie-Pierre
2009-01-01
Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. TGFα, an EGF family member, is frequently over-expressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGFα is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGFα de-differentiating effects are associated with cancerous transforming effects, we grafted intra-cerebrally de-differentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo and did not give birth to tumors. When astrocytes de-differentiated with TGFα were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGFα after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress. PMID:19544474
The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint
Gandarillas, Alberto
2012-01-01
Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621
Thrash, Barry R; Menges, Craig W; Pierce, Robert H; McCance, Dennis J
2006-04-28
Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.
Surface-modified polymers for cardiac tissue engineering.
Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen
2017-09-26
Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.
Gauvry, Emilie; Mathot, Anne-Gabrielle; Leguérinel, Ivan; Couvert, Olivier; Postollec, Florence; Broussolle, Véronique; Coroller, Louis
2017-05-01
Spore-forming bacteria are able to grow under a wide range of environmental conditions, to form biofilms and to differentiate into resistant forms: spores. This resistant form allows their dissemination in the environment; consequently, they may contaminate raw materials. Sporulation can occur all along the food chain, in raw materials, but also in food processes, leading to an increase in food contamination. However, the problem of sporulation during food processing is poorly addressed and sporulation niches are difficult to identify from the farm to the fork. Sporulation is a survival strategy. Some environmental factors are required to trigger this differentiation process and others act by modulating it. The efficiency of sporulation is the result of the combined effects of these two types of factors on vegetative cell metabolism. This paper aims to explain and help identify sporulation niches in the food chain, based on features of spore-former physiology. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae
Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W.; Brennan, Patrick J.; Belisle, John T.
2016-01-01
The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. PMID:27297389
The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.
Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia
2017-11-01
Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.
Schulte, Ralf; Autenrieth, Ingo B.
1998-01-01
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416
Brammer, Ingo; Herskind, Carsten; Haase, Oliver; Rodemann, H Peter; Dikomey, Ekkehard
2004-02-03
It was studied for human skin fibroblasts, whether the induction or repair of DNA double-strand breaks (dsb) depend on the differentiation status. These studies were performed (a) with a fibroblast strain (HSF1) kept in progenitor state (mitotic fibroblasts, MF) or triggered to premature terminal differentiation (postmitotic fibrocytes, PMF) by exposure to mitomycin C or (b) with 20 fibroblast strains differing intrinsically in their differentiation status. The differentiation status was quantified by determining the fraction of postmitotic fibrocytes by light microscopy. DNA dsb were measured by constant-field gel electrophoresis, and the fraction of apoptotic cells by comet assay. MF and PMF cultures of HSF1 cells were irradiated with X-ray doses up to 160 Gy, and dsb were measured either immediately after irradiation or after a repair incubation of 4 or 24 h. There were a difference neither in the number of initial nor residual dsb. PMF cultures, however, showed a slightly higher number of dsb already present in non-irradiated cells, which was measured to result from a small fraction of 5% apoptotic cells. The 20 analysed fibroblast strains showed a substantial variation in the fraction of postmitotic fibrocytes (9-51%) as well as in the number of dsb remaining at 24 h after irradiation (1.9-4.9%), but there was no correlation between these two parameters. These data demonstrate that for fibroblasts the terminal differentiation has an effect neither on the induction nor the repair of radiation-induced dsb. This result indicates that the variation in dsb-repair capacity previously observed for fibroblast strains and which was considered to be the main cause for the variation in the cellular radiosensitivity, cannot be ascribed to differences in the differentiation status.
Insight into multiple-triggering effect in DTSCRs for ESD protection
NASA Astrophysics Data System (ADS)
Zhang, Lizhong; Wang, Yuan; Wang, Yize; He, Yandong
2017-07-01
The diode-triggered silicon-controlled rectifier (DTSCR) is widely used for electrostatic discharge (ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigger/holding voltage, low parasitic capacitance. However, the multiple-triggering effect in the typical DTSCR device may cause undesirable larger overall trigger voltage, which results in a reduced ESD safe margin. In previous research, the major cause is attributed to the higher current level required in the intrinsic SCR. The related discussions indicate that it seems to result from the current division rule between the intrinsic and parasitic SCR formed in the triggering process. In this letter, inserting a large space into the trigger diodes is proposed to get a deeper insight into this issue. The triggering current is observed to be regularly reduced along with the increased space, which confirms that the current division is determined by the parasitic resistance distributed between the intrinsic and parasitic SCR paths. The theoretical analysis is well confirmed by device simulation and transmission line pulse (TLP) test results. The reduced overall trigger voltage is achieved in the modified DTSCR structures due to the comprehensive result of the parasitic resistance vs triggering current, which indicates a minimized multiple-triggering effect. Project supported by the Beijing Natural Science Foundation, China (No. 4162030).
Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido
2015-01-01
HIV type 1 (HIV-1) infects CD4+ T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as “Trojan horses” carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317
Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido
2015-06-23
HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guozhu, E-mail: gzhang6@ncsu.edu
Zebrafish have become a key alternative model for studying health effects of environmental stressors, partly due to their genetic similarity to humans, fast generation time, and the efficiency of generating high-dimensional systematic data. Studies aiming to characterize adverse health effects in zebrafish typically include several phenotypic measurements (endpoints). While there is a solid biomedical basis for capturing a comprehensive set of endpoints, making summary judgments regarding health effects requires thoughtful integration across endpoints. Here, we introduce a Bayesian method to quantify the informativeness of 17 distinct zebrafish endpoints as a data-driven weighting scheme for a multi-endpoint summary measure, called weightedmore » Aggregate Entropy (wAggE). We implement wAggE using high-throughput screening (HTS) data from zebrafish exposed to five concentrations of all 1060 ToxCast chemicals. Our results show that our empirical weighting scheme provides better performance in terms of the Receiver Operating Characteristic (ROC) curve for identifying significant morphological effects and improves robustness over traditional curve-fitting approaches. From a biological perspective, our results suggest that developmental cascade effects triggered by chemical exposure can be recapitulated by analyzing the relationships among endpoints. Thus, wAggE offers a powerful approach for analysis of multivariate phenotypes that can reveal underlying etiological processes. - Highlights: • Introduced a data-driven weighting scheme for multiple phenotypic endpoints. • Weighted Aggregate Entropy (wAggE) implies differential importance of endpoints. • Endpoint relationships reveal developmental cascade effects triggered by exposure. • wAggE is generalizable to multi-endpoint data of different shapes and scales.« less
Martins, Vanessa; Valença, Samuel S; Farias-Filho, Francisco A; Molinaro, Raphael; Simões, Rafael L; Ferreira, Tatiana P T; e Silva, Patrícia M R; Hogaboam, Cory M; Kunkel, Steven L; Fierro, Iolanda M; Canetti, Claudio; Benjamim, Claudia F
2009-05-01
Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (alpha-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-beta level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.
Microscale acceleration history discriminators
Polosky, Marc A.; Plummer, David W.
2002-01-01
A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.
B cell–derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity
Arkatkar, Tanvi
2017-01-01
Recent studies have identified critical roles for B cells in triggering autoimmune germinal centers (GCs) in systemic lupus erythematosus (SLE) and other disorders. The mechanisms whereby B cells facilitate loss of T cell tolerance, however, remain incompletely defined. Activated B cells produce interleukin 6 (IL-6), a proinflammatory cytokine that promotes T follicular helper (TFH) cell differentiation. Although B cell IL-6 production correlates with disease severity in humoral autoimmunity, whether B cell–derived IL-6 is required to trigger autoimmune GCs has not, to our knowledge, been addressed. Here, we report the unexpected finding that a lack of B cell–derived IL-6 abrogates spontaneous GC formation in mouse SLE, resulting in loss of class-switched autoantibodies and protection from systemic autoimmunity. Mechanistically, B cell IL-6 production was enhanced by IFN-γ, consistent with the critical roles for B cell–intrinsic IFN-γ receptor signals in driving autoimmune GC formation. Together, these findings identify a key mechanism whereby B cells drive autoimmunity via local IL-6 production required for TFH differentiation and autoimmune GC formation. PMID:28899868
Specific TRPC6 Channel Activation, a Novel Approach to Stimulate Keratinocyte Differentiation*S⃞
Müller, Margarethe; Essin, Kirill; Hill, Kerstin; Beschmann, Heike; Rubant, Simone; Schempp, Christoph M.; Gollasch, Maik; Boehncke, W. Henning; Harteneck, Christian; Müller, Walter E.; Leuner, Kristina
2008-01-01
The protective epithelial barrier in our skin undergoes constant regulation, whereby the balance between differentiation and proliferation of keratinocytes plays a major role. Impaired keratinocyte differentiation and proliferation are key elements in the pathophysiology of several important dermatological diseases, including atopic dermatitis and psoriasis. Ca2+ influx plays an essential role in this process presumably mediated by different transient receptor potential (TRP) channels. However, investigating their individual role was hampered by the lack of specific stimulators or inhibitors. Because we have recently identified hyperforin as a specific TRPC6 activator, we investigated the contribution of TRPC6 to keratinocyte differentiation and proliferation. Like the endogenous differentiation stimulus high extracellular Ca2+ concentration ([Ca2+]o), hyperforin triggers differentiation in HaCaT cells and in primary cultures of human keratinocytes by inducing Ca2+ influx via TRPC6 channels and additional inhibition of proliferation. Knocking down TRPC6 channels prevents the induction of Ca2+- and hyperforin-induced differentiation. Importantly, TRPC6 activation is sufficient to induce keratinocyte differentiation similar to the physiological stimulus [Ca2+]o. Therefore, TRPC6 activation by hyperforin may represent a new innovative therapeutic strategy in skin disorders characterized by altered keratinocyte differentiation. PMID:18818211
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.
Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes
Espinoza, J. Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure. PMID:28286502
Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O
2016-01-01
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg-Gly-Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.
Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O
2016-01-01
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898
Division of Labor in Biofilms: the Ecology of Cell Differentiation.
van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto
2015-04-01
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.
Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae
2017-09-01
Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cell-mediated immunity to insulin: a new criterion for differentiation of diabetes mellitus?
Asfandiyarova, Nailya S
2012-03-01
Any classification is a step forward and it should help to determine the reason, the course, the prognosis, the treatment of a disease. The current classification of diabetes mellitus (DM) is really very convenient for work, but it has some drawbacks, and the absence of differentiation of type 2 diabetes is the main. The problem is the absence of an adequate criterion, based on pathogenesis for differentiation. We suppose that cell mediated immunity (CMI) to insulin plays the central role in the diabetes genesis. Autoimmune process may be triggered by viruses family Paramyxoviridae, in 10-20% of type 1 diabetes patients the disease is a consequence of direct cytotoxic effect of other viruses to the islet cells of pancreas. In acute phase of viral infection (measles, mumps, parainfluenza) CMI against viruses is developed, in some patients CMI to insulin appeared. We suppose that autoimmune reactions in these cases are the result of cross reaction between viral antigens and insulin. The majorities of patients suppress these reactions and recover from acute infection diseases with the antiviral immunity development and without any complications. Other patients are not able to suppress autoimmune reactions to insulin and pathological process is triggered. Type 1A diabetes is a result of direct CMI to insulin, and this process is responsible for beta-cells destruction; may be type 1B DM is due to the direct cytotoxic effect of other viruses or toxins to them. Some patients with acute viral infection cannot destroy the aggressive clone and they suppress autoimmune reaction to insulin by prostaglandin synthesizing cells (PGSC) or сells with histamine receptors (CHR). As a result of this process the insulin resistance is developed, because these cells or their cytokines form a block to the insulin receptors not only on immunocompetent cells, but in insulin sensitive tissues too. Patients with different reactions to insulin have different courses and outcomes of DM. We suppose that CMI to insulin is acceptable criterion for differentiation of DM, for identifying high risk group of patients in whom DM or its complications may develop. Moreover, prophylactic measures for decreasing of insulin resistance by nonsteroid anti-inflammatory drugs or histamine H(2) receptor antagonists in persons with high activity of PGSC or CHR respectively can give good results. Furthermore, our hypothesis explains the initial reason for insulin resistance development, accordingly, it explains the reason for metabolic syndrome and atherosclerosis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guarner, Jeannette; Atuan, Maria Ana; Nix, Barbara; Mishak, Christopher; Vejjajiva, Connie; Curtis, Cheri; Park, Sunita; Mullins, Richard
2010-01-01
Each institution sets specific parameters obtained by automated hematology analyzers to trigger manual counts. We designed a process to decrease the number of manual differential cell counts without impacting patient care. We selected new criteria that prompt manual counts and studied the impact these changes had in 2 days of work and in samples of patients with newly diagnosed leukemia, sickle cell disease, and presence of left shift. By using fewer parameters and expanding our ranges we decreased the number of manual counts by 20%. The parameters that prompted manual counts most frequently were the presence of blast flags and nucleated red blood cells, 2 parameters that were not changed. The parameters that accounted for a decrease in the number of manual counts were the white blood cell count and large unstained cells. Eight of 32 patients with newly diagnosed leukemia did not show blast flags; however, other parameters triggered manual counts. In 47 patients with sickle cell disease, nucleated red cells and red cell variability prompted manual review. Bands were observed in 18% of the specimens and 4% would not have been counted manually with the new criteria, for the latter the mean band count was 2.6%. The process we followed to evaluate hematological parameters that reflex to manual differential cell counts increased efficiency without compromising patient care in our hospital system.
Tanaka, Tatsurou; Oda, Masafumi; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Otsuka, Kozue; Yoshioka, Izumi; Habu, Manabu; Kokuryo, Shinya; Kodama, Masaaki; Nogami, Shinnosuke; Miyamoto, Ikuya; Yamamoto, Noriaki; Ishikawa, Ayataka; Matsuo, Kou; Shiiba, Shunji; Seta, Yuji; Yamashita, Yoshihiro; Takahashi, Tetsu; Tominaga, Kazuhiro; Morimoto, Yasuhiro
2011-10-01
The aim of this study was to evaluate the 3-dimensional images of thinner main peripheral vessels in oral and maxillofacial regions made without contrast medium by using a new technique, fresh blood imaging (FBI). A second objective was to discern arteries from veins by using the combination of FBI with the subtraction technique. Images from FBI were compared with those from 3-dimensional phase-contrast magnetic resonance angiography (MRA) of blood vessels in 20 healthy subjects. All images were scored for visualization and image quality of the main blood vessels. In addition, appropriate flow-spoiled gradient pulses were applied to differentiate arteries from veins in the peripheral vasculature using a combination of FBI sequences and subtraction between systole- and diastole-triggered images. The scores of MRA using FBI for the visualization of thin blood vessels were significantly better than those using phase contrast, whereas scores for the visualization of main blood vessels were equal. Additionally, we succeeded in our initial attempt to differentiate arteries from veins with a reasonable acquisition time. Our initial experience shows that FBI could be a useful method to identify 3-dimensional vasculature and to differentiate arteries from veins among thinner peripheral vessels in the oral and maxillofacial regions without using contrast medium. Copyright © 2011 Mosby, Inc. All rights reserved.
Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus
2012-01-01
Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997
The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.
Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel
2012-05-01
In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Guan, Qiang; Wang, Xijin; Jiang, Yanyan; Zhao, Lijuan; Nie, Zhiyu; Jin, Lingjing
2017-02-01
The enteric nervous system (ENS) is involved in the initiation and development of the pathological process of Parkinson's disease (PD). The effect of rotenone on the ENS may trigger the progression of PD through the central nervous system (CNS). In this study, we used RNA-sequencing (RNA-seq) analysis to examine differential expression genes (DEGs) and pathways induced by in vitro treatment of rotenone in the enteric nervous cells isolated from rats. We identified 45 up-regulated and 30 down-regulated genes. The functional categorization revealed that the DEGs were involved in the regulation of cell differentiation and development, response to various stimuli, and regulation of neurogenesis. In addition, the pathway and network analysis showed that the Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways were intensively involved in the effect of rotenone on the ENS. Additionally, the quantitative real-time polymerase chain reaction result for the selected seven DEGs matched those of the RNA-seq analysis. Our results present a significant step in the identification of DEGs and provide new insight into the progression of PD in the rotenone-induced model.
A Bayesian explanation of the "Uncanny Valley" effect and related psychological phenomena
NASA Astrophysics Data System (ADS)
Moore, Roger K.
2012-11-01
There are a number of psychological phenomena in which dramatic emotional responses are evoked by seemingly innocuous perceptual stimuli. A well known example is the `uncanny valley' effect whereby a near human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are reasonably well documented, there is no quantitative explanation for the findings and no mathematical model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give rise to a perceptual tension at category boundaries that could account for these phenomena. The model is not only the first quantitative explanation of the uncanny valley effect, but it may also provide a mathematical explanation for a range of social situations in which conflicting cues give rise to negative, fearful or even violent reactions.
A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena
Moore, Roger K.
2012-01-01
There are a number of psychological phenomena in which dramatic emotional responses are evoked by seemingly innocuous perceptual stimuli. A well known example is the ‘uncanny valley’ effect whereby a near human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are reasonably well documented, there is no quantitative explanation for the findings and no mathematical model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give rise to a perceptual tension at category boundaries that could account for these phenomena. The model is not only the first quantitative explanation of the uncanny valley effect, but it may also provide a mathematical explanation for a range of social situations in which conflicting cues give rise to negative, fearful or even violent reactions. PMID:23162690
Leddon, Jennifer L; Chen, Chun-Yu; Currier, Mark A; Wang, Pin-Yi; Jung, Francesca A; Denton, Nicholas L; Cripe, Kevin M; Haworth, Kellie B; Arnold, Michael A; Gross, Amy C; Eubank, Timothy D; Goins, William F; Glorioso, Joseph C; Cohen, Justus B; Grandi, Paola; Hildeman, David A; Cripe, Timothy P
2015-01-01
Multiple studies have indicated that in addition to direct oncolysis, virotherapy promotes an antitumor cytotoxic T cell response important for efficacy. To study this phenomenon further, we tested three syngeneic murine sarcoma models that displayed varied degrees of permissiveness to oncolytic herpes simplex virus replication and cytotoxicity in vitro, with the most permissive being comparable to some human sarcoma tumor lines. The in vivo antitumor effect ranged from no or modest response to complete tumor regression and protection from tumor rechallenge. The in vitro permissiveness to viral oncolysis was not predictive of the in vivo antitumor effect, as all three tumors showed intact interferon signaling and minimal permissiveness to virus in vivo. Tumor shrinkage was T-cell mediated with a tumor-specific antigen response required for maximal antitumor activity. Further analysis of the innate and adaptive immune microenvironment revealed potential correlates of susceptibility and resistance, including favorable and unfavorable cytokine profiles, differential composition of intratumoral myeloid cells, and baseline differences in tumor cell immunogenicity and tumor-infiltrating T-cell subsets. It is likely that a more complete understanding of the interplay between the immunologic immune microenvironment and virus infection will be necessary to fully leverage the antitumor effects of this therapeutic platform. PMID:27119100
Zhang, Rui; Thamm, Douglas H; Misra, Vikram
2015-02-07
We had previously shown that the bLZip domain-containing transcription factor, Zhangfei/CREBZF inhibits the growth and the unfolded protein response (UPR) in cells of the D-17 canine osteosarcoma (OS) line and that the effects of Zhangfei are mediated by it stabilizing the tumour suppressor protein p53. To determine if our observations with D-17 cells applied more universally to canine OS, we examined three other independently isolated canine OS cell lines--Abrams, McKinley and Gracie. Like D-17, the three cell lines expressed p53 proteins that were capable of activating promoters with p53 response elements on their own, and synergistically with Zhangfei. Furthermore, as with D-17 cells, Zhangfei suppressed the growth and UPR-related transcripts in the OS cell lines. Zhangfei also induced the activation of osteocalcin expression, a marker of osteoblast differentiation and triggered programmed cell death. Osteosarcomas are common malignancies in large breeds of dogs. Although there has been dramatic progress in their treatment, these therapies often fail, leading to recurrence of the tumour and metastatic spread. Our results indicate that induction of the expression of Zhangfei in OS, where p53 is functional, may be an effective modality for the treatment of OS.
The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria
Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.
2017-01-01
Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint to gain basic insights in mucosal HIV-1 pathogenesis. PMID:28241075
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Fenik, Victor B; Kubin, Leszek
2009-03-01
Carbachol, a cholinergic agonist, and GABA(A) receptor antagonists injected into the pontine dorsomedial reticular formation can trigger rapid eye movement (REM) sleep-like state. Data suggest that GABAergic and cholinergic effects interact to produce this effect but the sites where this occurs have not been delineated. In urethane-anesthetized rats, in which carbachol effectively elicits REM sleep-like episodes (REMSLE), we tested the ability of 10 nL microinjections of carbachol (10 mm) and bicuculline (0.5 or 2 mm) to elicit REMSLE at 47 sites located within the dorsal pontine reticular formation at the levels -8.00 to -10.80 from bregma (B) (Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, 1997). At rostral levels, most carbachol and some bicuculline injections elicited REMSLE with latencies that gradually decreased from 242 to 12 s for carbachol and from 908 to 38 s for bicuculline for more caudal injection sites. As the latencies decreased, the durations of bicuculline-elicited REMSLE increased from 104 s to over 38 min, and the effect was dose dependent, whereas the duration of carbachol-elicited REMSLE changed little (104-354 s). Plots of REMSLE latency versus the antero-posterior coordinates revealed that both drugs were maximally effective near B-8.80. At levels caudal to B-8.80, carbachol was effective at few sites, whereas bicuculline-elicited REMSLE to at least B-9.30 level. Thus, the bicuculline-sensitive sites extended further caudally than those for carbachol and antagonism of GABA(A) receptors both triggered REMSLE and controlled their duration, whereas carbachol effects on REMSLE duration were small or limited by its concurrent REMSLE-opposing actions.
FENIK, VICTOR B.; KUBIN, LESZEK
2017-01-01
SUMMARY Carbachol, a cholinergic agonist, and GABAA receptor antagonists injected into the pontine dorsomedial reticular formation can trigger rapid eye movement (REM) sleep-like state. Data suggest that GABAergic and cholinergic effects interact to produce this effect but the sites where this occurs have not been delineated. In urethane-anesthetized rats, in which carbachol effectively elicits REM sleep-like episodes (REMSLE), we tested the ability of 10 nL microinjections of carbachol (10 mM) and bicuculline (0.5 or 2 mM) to elicit REMSLE at 47 sites located within the dorsal pontine reticular formation at the levels −8.00 to −10.80 from bregma (B) (Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, 1997). At rostral levels, most carbachol and some bicuculline injections elicited REMSLE with latencies that gradually decreased from 242 to 12 s for carbachol and from 908 to 38 s for bicuculline for more caudal injection sites. As the latencies decreased, the durations of bicuculline-elicited REMSLE increased from 104 s to over 38 min, and the effect was dose dependent, whereas the duration of carbachol-elicited REMSLE changed little (104– 354 s). Plots of REMSLE latency versus the antero-posterior coordinates revealed that both drugs were maximally effective near B-8.80. At levels caudal to B-8.80, carbachol was effective at few sites, whereas bicuculline-elicited REMSLE to at least B-9.30 level. Thus, the bicuculline-sensitive sites extended further caudally than those for carbachol and antagonism of GABAA receptors both triggered REMSLE and controlled their duration, whereas carbachol effects on REMSLE duration were small or limited by its concurrent REMSLE-opposing actions. PMID:19021854
Differentiation of tumor from viable myocardium using cardiac tagging with MR imaging.
Bouton, S; Yang, A; McCrindle, B W; Kidd, L; McVeigh, E R; Zerhouni, E A
1991-01-01
We report the application of myocardial tagging by MR to define tissue planes and differentiate contractile from noncontractile tissue in a neonate with congenital cardiac rhabdomyoma. Using custom-written pulse programming software, six 2 mm thick radiofrequency (RF) slice-selective presaturation pulses (tags) were used to label the chest wall and myocardium in a star pattern in diastole, approximately 60 ms before the R-wave gating trigger. This method successfully delineated the myocardium from noncontractile tumor, providing information that influenced clinical management. This RF tagging technique allowed us to confirm the exact intramyocardial location of a congenital cardiac tumor.
Egr-5 is a post-mitotic regulator of planarian epidermal differentiation
Tu, Kimberly C; Cheng, Li-Chun; TK Vu, Hanh; Lange, Jeffrey J; McKinney, Sean A; Seidel, Chris W; Sánchez Alvarado, Alejandro
2015-01-01
Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo. DOI: http://dx.doi.org/10.7554/eLife.10501.001 PMID:26457503
Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224
Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.
[Molecular-genetic basis of regulation of the synthesis of individual types of hemoglobin].
Starodub, N F
1980-01-01
The data on the control of ontogenetic hemoglobin type synthesis were analyzed in normal and pathological human and animal organisms. The assumption is made that such control depends on the level of erythroid cell differentiation and erythropoetic factors activity. The latters act as a trigger in switching of qualitative hemoglobin production.
Constraints and triggers: situational mechanics of gender in negotiation.
Bowles, Hannah Riley; Babcock, Linda; McGinn, Kathleen L
2005-12-01
The authors propose 2 categories of situational moderators of gender in negotiation: situational ambiguity and gender triggers. Reducing the degree of situational ambiguity constrains the influence of gender on negotiation. Gender triggers prompt divergent behavioral responses as a function of gender. Field and lab studies (1 and 2) demonstrated that decreased ambiguity in the economic structure of a negotiation (structural ambiguity) reduces gender effects on negotiation performance. Study 3 showed that representation role (negotiating for self or other) functions as a gender trigger by producing a greater effect on female than male negotiation performance. Study 4 showed that decreased structural ambiguity constrains gender effects of representation role, suggesting that situational ambiguity and gender triggers work in interaction to moderate gender effects on negotiation performance. Copyright 2006 APA, all rights reserved.
Sex, genes, and heat: triggers of diversity.
Western, P S; Sinclair, A H
2001-11-01
In vertebrates, sex is determined by a surprising variety of mechanisms. In many reptiles, the primary testis or ovary-determining trigger is regulated by egg incubation temperature. This temperature dependent sex determining (TSD) mechanism occurs in all crocodilians and marine turtles examined to date and is common in terrestrial turtles and viviparous lizards (Ewert et al. 1994. J Exp Zool 270:3-15; Lang and Andrews. 1994. J Exp Biol 270:28-44; Mrosovsky. 1994. J Exp Zool 270:16-27; Pieau. 1996. Bioessays 18:19-26; Viets et al. 1994. J Exp Zool 270:45-56; Wibbels et al. 1998. J Exp Zool 281:409-416). In contrast, sex in mammals and birds is determined chromosomally (CSD). Despite these differences, morphological development of the gonads in all these vertebrate groups appears to have been conserved through evolution. Therefore, the genetic mechanisms triggering sex determination appear not to have been conserved through evolution, although the basic genetic pathway controlling the morphological differentiation of the gonads appears to have been conserved. Copyright 2001 Wiley-Liss, Inc.
Parsons, T.
2011-01-01
Concerns have been raised that stresses from reservoir impoundment may trigger damaging earthquakes because rate changes have been associated with reservoir impoundment or stage-level changes globally. Here, the idea is tested blindly using Anderson Reservoir, which lies atop the seismically active Calaveras fault. The only knowledge held by the author going into the study was the expectation that reservoir levels change cyclically because of seasonal rainfall. Examination of seismicity rates near the reservoir reveals variability, but no correlation with stage-level changes. Three-dimensional fi nite-element modeling shows stress changes suffi cient for earthquake triggering along the Calaveras fault zone. Since many of the reported cases of induced triggering come from low-strain settings, it is speculated that gradual stressing from stage-level changes in high-strain settings may not be signifi cant. From this study, it can be concluded that reservoirs are not necessarily risky in active tectonic settings. ?? 2011 Geological Society of America.
Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice.
Iwasaki, Naruhito; Matsushita, Kazufumi; Fukuoka, Ayumi; Nakahira, Masakiyo; Matsumoto, Makoto; Akasaki, Shoko; Yasuda, Koubun; Shimizu, Takeshi; Yoshimoto, Tomohiro
2017-01-01
Allergen-mediated cross-linking of IgE on mast cells/basophils is a well-recognized trigger for type 1 allergic diseases such as allergic rhinitis (AR). However, allergens may not be the sole trigger for AR, and several allergic-like reactions are induced by non-IgE-mediated mechanisms. We sought to describe a novel non-IgE-mediated, endotoxin-triggered nasal type-1-hypersensitivity-like reaction in mice. To investigate whether endotoxin affects sneezing responses, mice were intraperitoneally immunized with ovalbumin (OVA), then nasally challenged with endotoxin-free or endotoxin-containing OVA. To investigate the role of T cells and mechanisms of the endotoxin-induced response, mice were adoptively transferred with in vitro-differentiated OVA-specific T H 2 cells, then nasally challenged with endotoxin-free or endotoxin-containing OVA. Endotoxin-containing, but not endotoxin-free, OVA elicited sneezing responses in mice independent from IgE-mediated signaling. OVA-specific T H 2 cell adoptive transfer to mice demonstrated that local activation of antigen-specific T H 2 cells was required for the response. The Toll-like receptor 4-myeloid differentiation factor 88 signaling pathway was indispensable for endotoxin-containing OVA-elicited rhinitis. In addition, LPS directly triggered sneezing responses in OVA-specific T H 2-transferred and nasally endotoxin-free OVA-primed mice. Although antihistamines suppressed sneezing responses, mast-cell/basophil-depleted mice had normal sneezing responses to endotoxin-containing OVA. Clodronate treatment abrogated endotoxin-containing OVA-elicited rhinitis, suggesting the involvement of monocytes/macrophages in this response. Antigen-specific nasal activation of CD4 + T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might explain currently unknown mechanisms in allergic(-like) disorders. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?
Sarig, Rachel; Tzahor, Eldad
2017-04-01
Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe
2016-06-01
We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Changes in grassland plant composition explain 2011 drought-triggered legacy effects
NASA Astrophysics Data System (ADS)
Xu, X.; Polley, W.; Hofmockel, K. S.; Wilsey, B. J.
2016-12-01
There is widespread recognition that extreme droughts can have profound direct consequences for terrestrial ecosystems, but it is poorly known how common drought legacies are and what ecological factors are associated with them. Legacies are found when ecosystem functioning is below what is expected based on precipitation levels in the time period after a perturbation has ended. Here, we tested for legacies after an extreme drought in pure native and exotic experimental communities in central Texas in a long-term experiment. An extreme drought in 2011 decreased aboveground biomass (AGB) by 92 % and triggered species reorganization that led to a drought legacy in rain-use efficiency (RUE, biomass production per unit of rainfall) that lasted an average of 20 months and 48 months in exotic and native communities, respectively. Across plots within community types, reductions in RUE (DRUE) were smallest in native communities with a high proportion of C3 forb biomass and in exotic communities with a low proportion of short grass biomass. Our results indicate that the 2011 drought exerted differential impacts on plant functional groups and altered plant community composition to the extent that, RUE, an ecosystem function, shifted with possible long-term repercussions.
Moons, Wesley G; Shields, Grant S
2015-08-01
Psychological stressors reliably trigger systemic inflammatory activity as indexed by levels of proinflammatory cytokines. This experiment demonstrates that one's specific emotional reaction to a stressor may be a significant determinant of whether an inflammatory reaction occurs in response to that stressor. Based on extant correlational evidence and theory, a causal approach was used to determine whether an avoidant emotion (anxiety) triggers more inflammatory activity than an approach emotion (anger). In an experimental design (N = 40), a 3-way Emotion Condition × Time × Analyte interaction revealed that a writing-based anxiety induction, but not a writing-based anger induction, increased mean levels of interferon-γ (IFN- γ) and interleukin-1β (IL-1β), but not interleukin-6 (IL-6) in oral mucous, F(2, 54) = 4.64, p = .01, ηp(²) = .15. Further, self-reported state anxiety predicted elevated levels of proinflammatory cytokines, all ΔR(²) >.06, ps <.04, but self-reported state anger did not. These results constitute the first evidence to our knowledge that specific negative emotions can differentially cause inflammatory activity and support a theoretical model explaining these effects based on the avoidance or approach motivations associated with emotions. (c) 2015 APA, all rights reserved).
Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D
2014-01-01
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335
Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542
Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.
Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D
2014-11-25
Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.
Cytokines and the regulation of fungus-specific CD4 T cell differentiation
Espinosa, Vanessa; Rivera, Amariliz
2011-01-01
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation. PMID:22133343
Espinosa Angarica, Vladimir
2016-01-01
Pluripotency can be considered a functional characteristic of pluripotent stem cells (PSCs) populations and their niches, rather than a property of individual cells. In this view, individual cells within the population independently adopt a variety of different expression states, maintained by different signaling, transcriptional, and epigenetics regulatory networks. In this review, we propose that generation of integrative network models from single cell data will be essential for getting a better understanding of the regulation of self‐renewal and differentiation. In particular, we suggest that the identification of network stability determinants in these integrative models will provide important insights into the mechanisms mediating the transduction of signals from the niche, and how these signals can trigger differentiation. In this regard, the differential use of these stability determinants in subpopulation‐specific regulatory networks would mediate differentiation into different cell fates. We suggest that this approach could offer a promising avenue for the development of novel strategies for increasing the efficiency and fidelity of differentiation, which could have a strong impact on regenerative medicine. PMID:27321053
Behavioral processes underlying the decline of narcissists' popularity over time.
Leckelt, Marius; Küfner, Albrecht C P; Nestler, Steffen; Back, Mitja D
2015-11-01
Following a dual-pathway approach to the social consequences of grandiose narcissism, we investigated the behavioral processes underlying (a) the decline of narcissists' popularity in social groups over time and (b) how this is differentially influenced by the 2 narcissism facets admiration and rivalry. In a longitudinal laboratory study, participants (N = 311) first provided narcissism self-reports using the Narcissistic Personality Inventory and the Narcissistic Admiration and Rivalry Questionnaire, and subsequently interacted with each other in small groups in weekly sessions over the course of 3 weeks. All sessions were videotaped and trained raters coded participants' behavior during the interactions. Within the sessions participants provided mutual ratings on assertiveness, untrustworthiness, and likability. Results showed that (a) over time narcissists become less popular and (b) this is reflected in an initially positive but decreasing effect of narcissistic admiration as well as an increasing negative effect of narcissistic rivalry. As hypothesized, these patterns of results could be explained by means of 2 diverging behavioral pathways: The negative narcissistic pathway (i.e., arrogant-aggressive behavior and being seen as untrustworthy) plays an increasing role and is triggered by narcissistic rivalry, whereas the relevance of the positive narcissistic pathway (i.e., dominant-expressive behavior and being seen as assertive) triggered by narcissistic admiration decreases over time. These findings underline the utility of a behavioral pathway approach for disentangling the complex effects of personality on social outcomes. (c) 2015 APA, all rights reserved).
Zhang, Qiaojuan; Hsia, Shao-Chung
2017-01-01
Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability. PMID:28639215
Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho
2016-08-01
Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. © FASEB.
Baptista, Sofia; Lasgi, Charlène; Benstaali, Caroline; Milhazes, Nuno; Borges, Fernanda; Fontes-Ribeiro, Carlos; Agasse, Fabienne; Silva, Ana Paula
2014-09-01
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10nM) decreased DG stem cell self-renewal, while 1nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase), which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10nM) did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10nM) decreased Sox2(+)/Sox2(+) while increased Sox2(-)/Sox2(-) pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA) signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10μM). Moreover, METH (10nM) increased doublecortin (DCX) protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers. Copyright © 2014. Published by Elsevier B.V.
Moosavi, Mohammad Amin; Sharifi, Maryam; Ghafary, Soroush Moasses; Mohammadalipour, Zahra; Khataee, Alireza; Rahmati, Marveh; Hajjaran, Sadaf; Łos, Marek J.; Klonisch, Thomas; Ghavami, Saeid
2016-01-01
In this study, we used nitrogen-doped titanium dioxide (N-TiO2) NPs in conjugation with visible light, and show that both reactive oxygen species (ROS) and autophagy are induced by this novel NP-based photodynamic therapy (PDT) system. While well-dispersed N-TiO2 NPs (≤100 μg/ml) were inert, their photo-activation with visible light led to ROS-mediated autophagy in leukemia K562 cells and normal peripheral lymphocytes, and this increased in parallel with increasing NP concentrations and light doses. At a constant light energy (12 J/cm2), increasing N-TiO2 NP concentrations increased ROS levels to trigger autophagy-dependent megakaryocytic terminal differentiation in K562 cells. By contrast, an ROS challenge induced by high N-TiO2 NP concentrations led to autophagy-associated apoptotic cell death. Using chemical autophagy inhibitors (3-methyladenine and Bafilomycin A1), we confirmed that autophagy is required for both terminal differentiation and apoptosis induced by photo-activated N-TiO2. Pre-incubation of leukemic cells with ROS scavengers muted the effect of N-TiO2 NP-based PDT on cell fate, highlighting the upstream role of ROS in our system. In summary, PDT using N-TiO2 NPs provides an effective method of priming autophagy by ROS induction. The capability of photo-activated N-TiO2 NPs in obtaining desirable cellular outcomes represents a novel therapeutic strategy of cancer cells. PMID:27698385
Dipietrantonio, A; Hsieh, T C; Wu, J M
1996-07-25
Incubation of the HL-60 cells with 3 microM of RA and 4-HPR resulted in suppression of cell growth and decrease in cell viability. A significant percentage of the RA-treated cells also displayed differentiation towards neutrophils, as assayed by changes in nitroblue tetrazolium reduction (NBT) and alpha-naphthyl-acetate esterase (ANAE) activities, whereas the 4-HPR treated cells remained essentially undifferentiated. Flow cytometric analysis showed 4-HPR to cause partial cell arrest in the G2/M phase after a 3-day treatment and an additional G1 phase arrest after a 7-day treatment. With RA-treated cells, a reduction in the percentage of cells in the G1 phase was observed after 7 days of treatment. In 4-HPR-treated cells an extra peak, characteristic of cells undergoing apoptosis, was found in the cell cycle phase distribution analysis. Determination of specific protein expression changes by Western blot analysis showed that the p34cdc2 was down-regulated by both chemicals. Furthermore, RA induced bcl-2 but prevented the processing of actin, whereas 4-HPR had little effect on bcl-2 but increased the specific processing of actin. These results suggest that RA promotes neutrophil differentiation and the establishment of a semi apoptosis-resistant state, possibly through the overexpression of the bcl-2 gene. By contrast, 4-HPR may trigger apoptosis by inducing overall cyto-architectural changes and specific DNA fragmentation subsequent to increased turnover of the protein actin.
Rodrigues, J M; Luís, A L; Lobato, J V; Pinto, M V; Faustino, A; Hussain, N Sooraj; Lopes, M A; Veloso, A P; Freitas, M; Geuna, S; Santos, J D; Maurício, A C
2005-01-01
Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which is capable of growing, differentiating and producing locally nerve growth factors, that are otherwise extremely expensive, inside 90 PLA/10 PLG nerve guides. For this purpose the authors have chosen the N1E-115 cell line, a clone of cells derived from mouse neuroblastoma C-1300 with the perspective of using this differentiated cellular system to cover the inside of 90 PLA/10 PLG nerve guides placed to bridge a nerve gap of 10 mm in the rat sciatic nerve experimental model. The N1E-115 cells proliferate in normal culture medium but undergo neuronal differentiation in response to DMSO. Upon induction of differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is observed and the membranes become highly excitable. While it is known that Ca2+ serves as an important intracellular signal for cellular various processes, such as growth and differentiation, be toxic to cells and be involved in the triggering of events leading to excitotoxic cell death in neurons. The [Ca2+]i in non-differentiated N1E-115 cells and after distinct periods of differentiation, have been determined by the epifluorescence technique using the Fura-2-AM probe. The results of this quantitative assessment, revealed that N1E-115 cells which undergo neuronal differentiation for 48 hours in the presence of 1.5% DMSO are best qualified to be used to cover the interior of the nerve guides since the [Ca2+]i was not found to be elevated indicating thus that the onset the cell death processes was not occurred.
Hsu, C Y; Sulake, R S; Huang, P-K; Shih, H-Y; Sie, H-W; Lai, Y-K; Chen, C; Weng, C F
2015-01-01
The fungal product (+)-antroquinonol activates AMP kinase (AMPK) activity in cancer cell lines. The present study was conducted to examine whether chemically synthesized (+)-antroquinonol exhibited beneficial metabolic effects in insulin-resistant states by activating AMPK and inhibiting dipeptidyl peptidase IV (DPP IV) activity. Effects of (+)-antroquinonol on DPP IV activity were measured with a DPPIV Assay Kit and effects on GLP-1-induced PKA were measured in AR42J cells. Translocation of the glucose transporter 4, GLUT4, induced either by insulin-dependent PI3K/AKT signalling or by insulin-independent AMPK activation, was assayed in differentiated myotubes. Glucose uptake and GLUT4 translocation were assayed in L6 myocytes. Mice with diet-induced obesity were used to assess effects of acute and chronic treatment with (+)-antroquinonol on glycaemic control in vivo. The results showed that of (+)-antroquinonol (100 μM ) inhibited the DPP IV activity as effectively as the clinically used inhibitor, sitagliptin. The phosphorylation of AMPK Thr(172) in differentiated myotubes was significantly increased by (+)-antroquinonol. In cells simultaneously treated with S961 (insulin receptor antagonist), insulin and (+)-antroquinonol, the combination of (+)-antroquinonol plus insulin still increased both GLUT4 translocation and glucose uptake. Further, (+)-antroquinonol and sitagliptin reduced blood glucose, when given acutely or chronically to DIO mice. Chemically synthesized (+)-antroquinonol exhibits dual effects to ameliorate insulin resistance, by increasing AMPK activity and GLUT4 translocation, along with inhibiting DPP IV activity. © 2014 The British Pharmacological Society.
Complementary Paired G4FETs as Voltage-Controlled NDR Device
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.
2009-01-01
It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.
2014-01-01
Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072
Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis.
Rossi, Sergio; Morin, Hubert; Deslauriers, Annie
2012-03-01
Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher's C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.
Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis
Rossi, Sergio; Morin, Hubert; Deslauriers, Annie
2012-01-01
Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher’s C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation. PMID:22174441
Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides.
Lukasova, Vera; Buzgo, Matej; Sovkova, Vera; Dankova, Jana; Rampichova, Michala; Amler, Evzen
2017-08-01
Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs. © 2017 John Wiley & Sons Ltd.
Sun, Chien-Ru
2017-01-01
Because culture has a deep and far-reaching influence, individuals who grew up within different cultures tend to develop different basic self-constructions. With respect to the Chinese under the influence of Chinese culture, Yang proposed the concepts of individual-oriented self and social-oriented self. He argued that, besides the individual-oriented self, the social-oriented self of the Chinese contains three types of self: the relationship-oriented self, the familistic (group)-oriented self, and the other-oriented self. The theory proposed that the Chinese self is appropriately covered only through this four-part theory of the Chinese self. However, this remains to be tested; whether these three types of sub-level “selves” can be effectively triggered, along with their relative importance. This study examines the four-part theory of the Chinese self. Through photo priming, Experiment 1 shows that the three types of social-oriented self are differentiated from each other and can be individually triggered. In Experiment 2, the importance of the three types of self was investigated, adopting the concept of limited self-regulation resources to design scenarios. The participants were asked to make counterarguments about the notion of each of the three types of self, with performance in the subsequent task serving as the main dependent variable. In Experiment 3, the relative importance of the three types of self was examined by investigating the choices made by individuals within the context of conflict under the three orientations of the social-oriented self. Overall, results of the experiments showed that the Chinese have a four-part self with the importance of the other-oriented self as the most remarkable. PMID:28713310
Rauniyar, Navin; Subramanian, Kanagaraj; Lavallée-Adam, Mathieu; Martínez-Bartolomé, Salvador; Balch, William E.; Yates, John R.
2015-01-01
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼15–20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1I1061T primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1I1061T cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1I1061T fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions. PMID:25873482
Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.
2010-01-01
Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in developmentally impaired pregnancies. PMID:20422011
The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome.
Redfern, Andrew D; Spalding, Lisa J; Thompson, Erik W
2018-06-08
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira
Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved inmore » tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.« less
Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway.
Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Béliveau, Richard
2012-08-01
Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6Rα) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention. Copyright © 2012 Elsevier Inc. All rights reserved.
Metabolic phenotyping of a model of adipocyte differentiation
Roberts, Lee D.; Virtue, Sam; Vidal-Puig, Antonio; Nicholls, Andrew W.
2009-01-01
The 3T3-L1 murine cell line is a robust and widely used model for the study of adipogenesis and processes occurring in mature adipocytes. The fibroblastic like cells can be induced by hormones to differentiate into mature adipocytes. In this study, the metabolic phenotype associated with differentiation of the 3T3-L1 cell line has been studied using gas chromatography-mass spectrometry, 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry, direct infusion-mass spectrometry, and 13C substrate labeling in conjunction with multivariate statistics. The changes in metabolite concentrations at distinct periods during differentiation have been defined including alterations in the TCA cycle, glycolysis, the production of odd chain fatty acids by α-oxidation, fatty acid synthesis, fatty acid desaturation, polyamine biosynthesis, and trans-esterification to produce complex lipids. The metabolic changes induced during differentiation of the 3T3-L1 cell line were then compared with the metabolic differences between pre- and postdifferentiation primary adipocytes. These metabolic alterations reflect the changing role of the 3T3-L1 cells during differentiation, as well as possibly providing metabolic triggers to stimulate the processes which occur during differentiation. PMID:19602617
Ageing differentially affects neural processing of different conflict types-an fMRI study.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2014-01-01
Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.
Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan
2015-07-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.
Trdá, Lucie; Fernandez, Olivier; Boutrot, Freddy; Héloir, Marie-Claire; Kelloniemi, Jani; Daire, Xavier; Adrian, Marielle; Clément, Christophe; Zipfel, Cyril; Dorey, Stéphan; Poinssot, Benoit
2014-03-01
• The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. • The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H₂O₂ production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2 and AtFLS2. • In grapevine, flg22-triggered immune responses are conserved and led to partial resistance against Botrytis cinerea. Unlike flg22 peptides derived from Pseudomonas aeruginosa or Xanthomonas campestris, flg22 peptide derived from B. phytofirmans triggered only a small oxidative burst, weak and transient defense gene induction and no growth inhibition in grapevine. Although, in Arabidopsis, all the flg22 epitopes exhibited similar biological activities, the expression of VvFLS2 into the fls2 background conferred differential flg22 responses characteristic for grapevine. • These results demonstrate that VvFLS2 differentially recognizes flg22 from different bacteria, and suggest that flagellin from the beneficial PGPR B. phytofirmans has evolved to evade this grapevine immune recognition system. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.
ERIC Educational Resources Information Center
Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie
2017-01-01
The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats,…
CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells
Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina
2016-01-01
Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754
Complex physiological and molecular processes underlying root gravitropism
NASA Technical Reports Server (NTRS)
Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.
2002-01-01
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.
Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.
Lallemand-Breitenbach, Valérie; Jeanne, Marion; Benhenda, Shirine; Nasr, Rihab; Lei, Ming; Peres, Laurent; Zhou, Jun; Zhu, Jun; Raught, Brian; de Thé, Hugues
2008-05-01
In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae.
Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W; Brennan, Patrick J; Belisle, John T; Modlin, Robert L
2016-09-01
The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. Copyright © 2016 Schenk et al.
Arousal and gambling mode preference: a review of the literature.
Baudinet, Julian; Blaszczynski, Alexander
2013-06-01
The purpose of this paper is to review the literature examining subjective and physiological arousal associated with an individual's preferred modes of gambling. Arousal is hypothesised to play a central role in the onset and maintenance of problem gambling. Most studies have failed to differentiate relevant patterns of arousal elicited by stimuli associated with preferred versus non-preferred modes of gambling on the assumption that similar processes motivate all gamblers. At the conceptual level, sub-typing theories of problem gambling propose differences in the motivation to gamble, and the associated role arousal plays in maintaining behaviours. A review of the existing literature reveals preliminary findings that indicate that gamblers respond differentially to preferred compared to non-preferred gambling stimuli, and that gamblers may display greater reactivity in arousal to gambling cues compared to non-gamblers. Understanding differences in such patterns of arousal can be used to inform clinical interventions by effectively targeting the nature and role of arousal associated with preferred modes of gambling, and determining the extent to which non-preferred modes act as secondary reinforces triggering by gambling urges.
NASA Astrophysics Data System (ADS)
Mittag, Anja; Lenz, Dominik; Smith, Paul J.; Pach, Susanne; Tarnok, Attila
2005-04-01
Aim: In patients, e.g. with congenital heart diseases, a differential blood count is needed for diagnosis. To this end by standard automatic analyzers 500 μl of blood is required from the patients. In case of newborns and infants this is a substantial volume, especially after operations associated with blood loss. Therefore, aim of this study was to develop a method to determine a differential blood picture with a substantially reduced specimen volume. Methods: To generate a differential blood picture 10 μl EDTA blood were mixed with 10 μl of a DRAQ5 solution (500μM, Biostatus) and 10 μl of an antibody mixture (CD45-FITC, CD14-PE, diluted with PBS). 20 μl of this cell suspension was filled into a Neubauer counting chamber. Due to the defined volume of the chamber it is possible to determine the cell count per volume. The trigger for leukocyte counting was set on DRAQ5 signal in order to be able to distinguish nucleated white blood cells from erythrocytes. Different leukocyte subsets could be distinguished due to the used fluorescence labeled antibodies. For erythrocyte counting cell suspension was diluted another 150 times. 20 μl of this dilution was analyzed in a microchamber by LSC with trigger set on forward scatter signal. Results: This method allows a substantial decrease of blood sample volume for generation of a differential blood picture (10 μl instead of 500μl). There was a high correlation between our method and the results of routine laboratory (r2=0.96, p<0.0001 n=40). For all parameters intra-assay variance was less than 7 %. Conclusions: In patients with low blood volume such as neonates and in critically ill infants every effort has to be taken to reduce the blood volume needed for diagnostics. With this method only 2% of standard sample volume is needed to generate a differential blood picture. Costs are below that of routine laboratory. We suggest this method to be established in paediatric cardiology for routine diagnostics and for resource poor settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daisy W.; Amarasinghe, Gaya K.
Cytosolic recognition of viral RNA is important for host innate immune responses. Differential recognition of self vs non-self RNA is a considerable challenge as the inability to differentiate may trigger aberrant immune responses. Recent work identified the composition of the RNA 5', including the 5' cap and its methylation state, as an important determinant of recognition by the host. Recent studies have advanced our understanding of the modified 5' RNA recognition and viral antagonism of RNA receptors. Here, we will discuss RIG-I and IFIT proteins as examples of host proteins that detect dsRNA and ssRNA, respectively.
[Psychosomatic treatment of otorhinolaryngological diseases].
Marek, A
2009-11-01
The spectrum of psychosomatic diseases in the field of otorhinolaryngology covers reactive disorders brought on by excessive psychosocial demands, post-traumatic disorders following mental traumatization, purely psychological disorders brought on by personality development deficits or learnt false behavior, and multifactorial diseases with somatic correlatives and mental triggers. Psychosomatic medicine describes the interaction of physical and psychological processes. The central treatment method is psychotherapy. In Germany, the costs of psychodynamic psychotherapies and behavioral therapy are covered by the health insurance companies. The tasks of psychosomatic treatment in the field of otorhinolaryngology comprise differential diagnostics, basic psychosomatic treatment and the determination of differential indications for the respective forms of psychotherapy.
Causality and headache triggers
Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.
2013-01-01
Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872
Bernstein, Jonathan A; Hastings, Lloyd; Boespflug, Erin L; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C
2011-06-01
Although nonallergic rhinitis (NAR) patients tend to be more sensitive to chemical/olfactory stimuli, a suprathreshold olfactory response or the presence of specific olfactory receptor genes do not explain why their symptoms are triggered by such exposures. To investigate differential neurogenic responses to azelastine in NAR patients, using functional magnetic resonance imaging (fMRI) in response to specific olfactory triggers. A longitudinal study design on 12 subjects with a physician diagnosis of NAR previously demonstrated to be clinically responsive to intranasal azelastine (Astelin) was performed. Subjects underwent fMRI during exposure to unpleasant (hickory smoke) and pleasant (vanilla) odorants while off and then on azelastine for 2 weeks. The olfactory fMRI paradigm consisted of a visually triggered sniff every 21 seconds with synchronized delivery of a 4 second pulse of odorant. Each odorant was presented 18 times over 4-6-minute fMRI runs. Continuous fresh air was presented to wash out each odorant after presentation. Nonallergic rhinitis patients exhibited increased blood flow to several regions of the brain in response to both pleasant and unpleasant odorants, specifically in odor-sensitive regions, while off intranasal azelastine. Treatment with intranasal azelastine significantly attenuated blood flow to regions of the brain relevant to either olfactory sensation or sensory processing in response to these odorants compared with fresh air. The general reduction compared with increase in brain activation in NAR patients on versus off azelastine suggests that a possible effect of this medication may be reduction of brain responses to odorants. Copyright © 2011. Published by Elsevier Inc.
Liu, Jie; Cheng, Xiliu; Liu, Da; Xu, Weihui; Wise, Roger; Shen, Qian-Hua
2014-01-01
Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. PMID:25502438
Flash floods in the Tatra Mountain streams: frequency and triggers.
Ballesteros-Cánovas, J A; Czajka, B; Janecka, K; Lempa, M; Kaczka, R J; Stoffel, M
2015-04-01
Flash floods represent a frequently recurring natural phenomenon in the Tatra Mountains. On the northern slopes of the mountain chain, located in Poland, ongoing and expected future changes in climate are thought to further increase the adverse impacts of flash floods. Despite the repeat occurrence of major floods in the densely populated foothills of the Polish Tatras, the headwaters have been characterized by a surprising lack of data, such that any analysis of process variability or hydrometeorological triggers has been largely hampered so far. In this study, dendrogeomorphic techniques have been employed in four poorly-gauged torrential streams of the northern slope of the Tatra Mountains to reconstruct temporal and spatial patterns of past events. Using more than 1100 increment cores of trees injured by past flash floods, we reconstruct 47 events covering the last 148 years and discuss synoptic situations leading to the triggering of flash floods with the existing meteorological and flow gauge data. Tree-ring analyses have allowed highlighting the seasonality of events, providing new insights about potential hydrometeorological triggers as well as a differentiating flash flood activity between catchments. Results of this study could be useful to design future strategies to deal with flash flood risks at the foothills of the Polish Tatras and in the Vistula River catchment. Copyright © 2014. Published by Elsevier B.V.
A 16 channel discriminator VME board with enhanced triggering capabilities
NASA Astrophysics Data System (ADS)
Borsato, E.; Garfagnini, A.; Menon, G.
2012-08-01
Electronics and data acquisition systems used in small and large scale laboratories often have to handle analog signals with varying polarity, amplitude and duration which have to be digitized to be used as trigger signals to validate the acquired data. In the specific case of experiments dealing with ionizing radiation, ancillary particle detectors (for instance plastic scintillators or Resistive Plate Chambers) are used to trigger and select the impinging particles for the experiment. A novel approach using commercial LVDS line receivers as discriminator devices is presented. Such devices, with a proper calibration, can handle positive and negative analog signals in a wide dynamic range (from 20 mV to 800 mV signal amplitude). The clear advantages, with respect to conventional discriminator devices, are reduced costs, high reliability of a mature technology and the possibility of high integration scale. Moreover, commercial discriminator boards with positive input signal and a wide threshold swing are not available on the market. The present paper describes the design and characterization of a VME board capable to handle 16 differential or single-ended input channels. The output digital signals, available independently for each input, can be combined in the board into three independent trigger logic units which provide additional outputs for the end user.
VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression
Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.
2018-01-01
Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846
VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.
Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea
2018-01-19
The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.
Proximate determinants of fertility in peninsular Malaysia.
Tey, Nai Peng; Ng, Sor Tho; Yew, Siew Yong
2012-05-01
The continuing decline in fertility despite a contraction in contraceptive use in Peninsular Malaysia since the mid-1980s has triggered considerable interest in the reasons behind this phenomenon, such as increase in abortion, sterility, and out-of-wedlock pregnancy. Fertility decline has been attributed to rapid socioeconomic development, which can only influence fertility through the intermediate variables. Application of vital statistics, population census, and survey data of Peninsular Malaysia on Bongaarts's model vindicates that marriage postponement and contraceptive use are the 2 most important proximate determinants of fertility, but the effects are not uniform across the ethnic groups. For instance, the predicted total fertility rate for Chinese and Malays are 2.9 and 1.6, respectively, compared with the observed level of 3.0 and 1.9. Postpartum infecundability and abortion also play a part in explaining ethnic fertility differentials. The fertility inhibiting effects of these proximate determinants have significant implications on reproductive health and future population growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako
Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament tripletmore » H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.« less
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
Production of Λ 0, Λ̄ 0, Ξ ±, and Ω ± hyperons in pp̄ collisions at √s=1.96 TeV
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2012-07-13
We report a set of measurements of inclusive invariant p T differential cross sections of Λ 0, Λ̄ 0, Ξ ±, and Ω ± hyperons reconstructed in the central region with pseudorapidity |η|<1 and p T up to 10 GeV/c. Events are collected with a minimum-bias trigger in pp̄ collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As p T increases, the slopes of the differential cross sections of the three particles are similar, which could indicate a universality of the particle production in p T. The invariant differential cross sectionsmore » are also presented for different charged-particle multiplicity intervals.« less
Liegel, Nathalie; Zovko, Monika; Wentura, Dirk
2017-01-01
Abstract Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. PMID:27998994
Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C
2014-01-01
Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120
Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong
2012-11-02
The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek
Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potentialmore » and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant potential or both.« less
Locker, Morgane; Kellermann, Odile; Boucquey, Marie; Khun, Huot; Huerre, Michel; Poliard, Anne
2004-01-01
The pluripotent mesoblastic C1 cell line was used under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to drive chondrogenesis. Sequential addition of two systemic hormones, dexamethasone and triiodothyronine, permits full chondrogenic differentiation. The cell intrinsic activation of the BMP signaling pathway and Sox9 expression occurring on mesoblastic condensation is insufficient for recruitment of the progenitors. Dexamethasone-dependent Sox9 upregulation is essential for chondrogenesis. Differentiation of lineage stem cells relies on cell autonomous regulations modulated by external signals. We used the pluripotent mesoblastic C1 cell line under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to induce differentiation of a precursor clone along the chondrogenic lineage. C1 cells, cultured as aggregates, were induced toward chondrogenesis by addition of 10(-7) M dexamethasone in serum-free medium. After 30 days, dexamethasone was replaced by 10 nM triiodothyronine to promote final hypertrophic conversion. Mature and hypertrophic phenotypes were characterized by immunocytochemistry using specific antibodies against types II and X collagens, respectively. Type II collagen, bone morphogenetic proteins (BMPs), BMP receptors, Smads, and Sox9 expression were monitored by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and/or Western blot analysis. Once C1 cells have formed nodules, sequential addition of two systemic hormones is sufficient to promote full chondrogenic differentiation. In response to dexamethasone, nearly 100% of the C1 precursors engage in chondrogenesis and convert within 30 days into mature chondrocytes, which triggers a typical cartilage matrix. On day 25, a switch in type II procollagen mRNA splicing acted as a limiting step in the acquisition of the mature chondrocyte phenotype. On day 30, substitution of dexamethasone with triiodothyronine triggers the final differentiation into hypertrophic chondrocytes within a further 15 days. The chondrogenic process is supported by intrinsic expression of Sox9 and BMP family genes. Similarly to the in vivo situation, activation of Sox9 expression and the BMP signaling pathway occurred on mesoblastic condensation. After induction, BMP-activated Smad nuclear translocation persisted throughout the process until the onset of hypertrophy. After dexamethasone addition, Sox9 expression was upregulated. Dexamethasone withdrawal reversed the increase in Sox9 expression and stopped differentiation. Thus, Sox9 seems to be a downstream mediator of dexamethasone action.
Russ, Brendan E; Olshansky, Moshe; Li, Jasmine; Nguyen, Michelle L T; Gearing, Linden J; Nguyen, Thi H O; Olson, Matthew R; McQuilton, Hayley A; Nüssing, Simone; Khoury, Georges; Purcell, Damian F J; Hertzog, Paul J; Rao, Sudha; Turner, Stephen J
2017-12-19
Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8 + T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3 + ) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8 + T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8 + T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Shao, Han; Li, Tingting; Zhu, Rong; Xu, Xiaoting; Yu, Jiandong; Chen, Shengfeng; Song, Li; Ramakrishna, Seeram; Lei, Zhigang; Ruan, Yiwen; He, Liumin
2018-08-01
Carbon nanotubes (CNTs) have shown potential applications in neuroscience as growth substrates owing to their numerous unique properties. However, a key concern in the fabrication of homogeneous composites is the serious aggregation of CNTs during incorporation into the biomaterial matrix. Moreover, the regulation mechanism of CNT-based substrates on neural differentiation remains unclear. Here, a novel strategy was introduced for the construction of CNT nanocomposites via layer-by-layer assembly of negatively charged multi-walled CNTs and positively charged poly(dimethyldiallylammonium chloride). Results demonstrated that the CNT-multilayered nanocomposites provided a potent regulatory signal over neural stem cells (NSCs), including cell adhesion, viability, differentiation, neurite outgrowth, and electrophysiological maturation of NSC-derived neurons. Importantly, the dynamic molecular mechanisms in the NSC differentiation involved the integrin-mediated interactions between NSCs and CNT multilayers, thereby activating focal adhesion kinase, subsequently triggering downstream signaling events to regulate neuronal differentiation and synapse formation. This study provided insights for future applications of CNT-multilayered nanomaterials in neural fields as potent modulators of stem cell behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
A surface transporter family conveys the trypanosome differentiation signal.
Dean, Samuel; Marchetti, Rosa; Kirk, Kiaran; Matthews, Keith R
2009-05-14
Microbial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease vectors. The parasites causing African sleeping sickness respond to citrate or cis-aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse fly vector. This requires hypersensitization of the parasites to CCA by exposure to low temperature, conditions encountered after tsetse fly feeding at dusk or dawn. Here we identify a carboxylate-transporter family, PAD (proteins associated with differentiation), required for perception of this differentiation signal. Consistent with predictions for the response of trypanosomes to CCA, PAD proteins are expressed on the surface of the transmission-competent 'stumpy-form' parasites in the bloodstream, and at least one member is thermoregulated, showing elevated expression and surface access at low temperature. Moreover, RNA-interference-mediated ablation of PAD expression diminishes CCA-induced differentiation and eliminates CCA hypersensitivity under cold-shock conditions. As well as being molecular transducers of the differentiation signal in these parasites, PAD proteins provide the first example of a surface marker able to discriminate the transmission stage of trypanosomes in their mammalian host.
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Way, David W.
2017-01-01
Mars 2020, the next planned U.S. rover mission to land on Mars, is based on the design of the successful 2012 Mars Science Laboratory (MSL) mission. Mars 2020 retains most of the entry, descent, and landing (EDL) sequences of MSL, including the closed-loop entry guidance scheme based on the Apollo guidance algorithm. However, unlike MSL, Mars 2020 will trigger the parachute deployment and descent sequence on range trigger rather than the previously used velocity trigger. This difference will greatly reduce the landing ellipse sizes. Additionally, the relative contribution of each models to the total ellipse sizes have changed greatly due to the switch to range trigger. This paper considers the effect on trajectory dispersions due to changing the trigger schemes and the contributions of these various models to trajectory and EDL performance.
Differential growth of wrinkled biofilms
NASA Astrophysics Data System (ADS)
Espeso, D. R.; Carpio, A.; Einarsson, B.
2015-02-01
Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.
Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.
Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel
2015-11-17
Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.
Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events
Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel
2015-01-01
Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729
Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki
2016-01-01
Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343
Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Prabhu, Sunil; M, Rafiq; P, Rangesh
2017-10-15
Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100μM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long
2012-10-25
The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.
Energy Frontier Research With ATLAS: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, John; Black, Kevin; Ahlen, Steve
2016-06-14
The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less
Baker, W.R.
1958-05-01
A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.
Liu, Zongying; Wang, Qinglong; Cui, Jian; Wang, Lili; Xiong, Lili; Wang, Wei; Li, Diqiang; Liu, Na; Wu, Yiran; Mao, Canquan
2015-01-01
Hericium erinaceus possesses multiple medicinal values. To date, however, there have been few studies of the systemic screening of H. erinaceus strains, and the neuroprotective effects of H. erinaceus prepared from homogenized, fresh fruiting bodies are not fully understood. In this study, 4 random primers were selected and used in random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) to screen and evaluate the genetic diversity of 19 commercial strains of H. erinaceus from different localities in China. A total of 66 bands were obtained, and the percentage of polymorphic loci reached 80.30%. Five dendrograms were constructed based on RAPD by Jaccard cluster and within-group linkage analysis. Primer S20 as well as all 4 primers had great potential as specific primers for RAPD-PCR molecular identification and differentiation of H. erinaceus strains. Based on the results of submerged culture and fruiting body cultivation, strains HT-N, HT-J1, HT-C, and HT-M were identified as superior among the 19 H. erinaceus strains. Further study showed that the oral preparation of homogenized, fresh fruiting bodies of H. erinaceus could attenuate the Aβ25-35-triggered damage in PC12 cells by significantly increasing cell viability and by decreasing the release of lactate dehydrogenase. In conclusion, RAPD-PCR combined with liquid and solid cultures can be used well in the screening and identification of H. erinaceus strains, and products prepared from homogenized, fresh fruiting bodies of H. erinaceus had neuroprotective effects on PC12 cells.
Hsu, C Y; Sulake, R S; Huang, P-K; Shih, H-Y; Sie, H-W; Lai, Y-K; Chen, C; Weng, C F
2015-01-01
BACKGROUND AND PURPOSE The fungal product (+)-antroquinonol activates AMP kinase (AMPK) activity in cancer cell lines. The present study was conducted to examine whether chemically synthesized (+)-antroquinonol exhibited beneficial metabolic effects in insulin-resistant states by activating AMPK and inhibiting dipeptidyl peptidase IV (DPP IV) activity. EXPERIMENTAL APPROACH Effects of (+)-antroquinonol on DPP IV activity were measured with a DPPIV Assay Kit and effects on GLP-1-induced PKA were measured in AR42J cells. Translocation of the glucose transporter 4, GLUT4, induced either by insulin-dependent PI3K/AKT signalling or by insulin-independent AMPK activation, was assayed in differentiated myotubes. Glucose uptake and GLUT4 translocation were assayed in L6 myocytes. Mice with diet-induced obesity were used to assess effects of acute and chronic treatment with (+)-antroquinonol on glycaemic control in vivo. KEY RESULTS The results showed that of (+)-antroquinonol (100 μM ) inhibited the DPP IV activity as effectively as the clinically used inhibitor, sitagliptin. The phosphorylation of AMPK Thr172 in differentiated myotubes was significantly increased by (+)-antroquinonol. In cells simultaneously treated with S961 (insulin receptor antagonist), insulin and (+)-antroquinonol, the combination of (+)-antroquinonol plus insulin still increased both GLUT4 translocation and glucose uptake. Further, (+)-antroquinonol and sitagliptin reduced blood glucose, when given acutely or chronically to DIO mice. CONCLUSIONS AND IMPLICATIONS Chemically synthesized (+)-antroquinonol exhibits dual effects to ameliorate insulin resistance, by increasing AMPK activity and GLUT4 translocation, along with inhibiting DPP IV activity. PMID:24977411
Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei
2015-09-01
Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments. © 2015 Japanese Society of Developmental Biologists.
Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong
2010-07-01
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death
Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio
2014-01-01
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992
First passage times for multiple particles with reversible target-binding kinetics
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.
2017-10-01
We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.
Phagocyte-myocyte interactions and consequences during hypoxic wound healing.
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.
Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway.
Huang, Jian; Romero-Suarez, Sandra; Lara, Nuria; Mo, Chenglin; Kaja, Simon; Brotto, Leticia; Dallas, Sarah L; Johnson, Mark L; Jähn, Katharina; Bonewald, Lynda F; Brotto, Marco
2017-10-01
We examined the effects of osteocyte secreted factors on myogenesis and muscle function. MLO-Y4 osteocyte-like cell conditioned media (CM) (10%) increased ex vivo soleus muscle contractile force by ~25%. MLO-Y4 and primary osteocyte CM (1-10%) stimulated myogenic differentiation of C2C12 myoblasts, but 10% osteoblast CMs did not enhance C2C12 cell differentiation. Since WNT3a and WNT1 are secreted by osteocytes, and the expression level of Wnt3a is increased in MLO-Y4 cells by fluid flow shear stress, both were compared, showing WNT3a more potent than WNT1 in inducing myogenesis. Treatment of C2C12 myoblasts with WNT3a at concentrations as low as 0.5ng/mL mirrored the effects of both primary osteocyte and MLO-Y4 CM by inducing nuclear translocation of β-catenin with myogenic differentiation, suggesting that Wnts might be potential factors secreted by osteocytes that signal to muscle cells. Knocking down Wnt3a in MLO-Y4 osteocytes inhibited the effect of CM on C2C12 myogenic differentiation. Sclerostin (100ng/mL) inhibited both the effects of MLO-Y4 CM and WNT3a on C2C12 cell differentiation. RT-PCR array results supported the activation of the Wnt/β-catenin pathway by MLO-Y4 CM and WNT3a. These results were confirmed by qPCR showing up-regulation of myogenic markers and two Wnt/β-catenin downstream genes, Numb and Flh1 . We postulated that MLO-Y4 CM/WNT3a could modulate intracellular calcium homeostasis as the trigger mechanism for the enhanced myogenesis and contractile force. MLO-Y4 CM and WNT3a increased caffeine-induced Ca 2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and the expression of genes directly associated with intracellular Ca 2+ signaling and homeostasis. Together, these data show that in vitro and ex vivo , osteocytes can stimulate myogenesis and enhance muscle contractile function and suggest that Wnts could be mediators of bone to muscle signaling, likely via modulation of intracellular Ca 2+ signaling and the Wnt/β-Catenin pathway.
Reyes-Sebastian, Josefina; Montiel-Cervantes, Laura Arcelia; Reyes-Maldonado, Elba; Dominguez-Lopez, Maria Lilia; Ortiz-Butron, Rocio; Castillo-Alvarez, Aida; Lezama, Ruth Angélica
2018-03-01
Receptor tyrosine kinase (RTK) activity may contribute to carcinogenesis. The c-Kit receptor, a member of the RTK family, is expressed in immature haematopoietic system cells. Acute lymphoblastic leukaemia (ALL) presents incompletely differentiated lymphoblasts, and consequently, c-Kit expression can be detected in these cells. The BCR-ABL kinase, which is usually present in both ALL and chronic myeloid leukaemia, can trigger signalling pathways with neoplastic effects. However, a certain number of ALL patients and chronic myeloid leukaemia patients do not express this kinase, raising the question of which other proteins that intervene in signalling pathways may be involved in the development of these diseases. To test whether c-Kit has proliferative effects and affects the inhibition of apoptosis of leukaemic lymphoblasts that do not express BCR-ABL. We cultured RS4:11 lymphoblasts and analysed the expression and activation of c-Kit by immunofluorescence, and flow cytometry, evaluation of cell proliferation, apoptosis, cyclin D1 and Bak expression were carried out by flow cytometry; activation of AKT and survivin expression were tested by immunoblot. The c-Kit receptor was found to induce proliferation and to increase the expression of cyclin D1 via the PI3K/AKT/NF-kB signalling pathway. Additionally, the c-Kit/PI3K/AKT pathway increased the inhibition of apoptosis and survivin expression. Similarly, c-Kit was observed to reduce the expression of the pro-apoptotic Bak protein. These results suggest that, in leukaemic lymphoblasts, c-Kit triggers a signalling pathway with proliferative and anti-apoptotic effects; information to this effect has not yet been reported in the literature.
Hypodermal delivery of cosmetic actives for improved facial skin morphology and functionality.
Bojanowski, K
2013-12-01
Skin compartments traditionally targeted by cosmetic actives - epidermis and dermis - are anchored and nourished by the underlying hypodermis, which therefore should be a key target for skin-rejuvenating formulations. However, given the difficulty to reach even the superficial layers of the skin, and to its 'unglamorous' fatty composition, the regenerative potential of hypodermis remains largely untapped. Therefore, this study was to investigate the capacity of a cosmetic material to trigger a regenerative response in dermis and epidermis through a selective action on hypodermis. Furthermore, it aimed to establish the effect of such cosmetic material in transbuccal hypodermal delivery form, on the hypodermal precursor cells - the preadipocytes. A combination of grape seed extract and soy phospholipids was formulated and standardized for elastase activity and free radical inhibition. This formulation was then used to contact the hypodermal layer of human skin biopsies and - under a transbuccal delivery vehicle form - the 3T3-L1 preadipocytes, and its effects were quantified using PCR arrays and histochemistry. Application of the standardized grape/soy material to the hypodermal layer of skin triggered modulation of gene expression in the upper layers of the skin and resulted in the clear morphological improvement at the dermal and epidermal levels. Furthermore, when this material was formulated in a mucoadhesive, intraoral film and applied on 3T3-L1 preadipocytes, the resulting modulation of gene expression in these cells was consistent with differentiation and detoxification effects. These results suggest that transbuccal formulations of nutraceutical grade cosmetics have potential to induce signal transduction pathways in facial hypodermis, resulting in anti-aging effects throughout all skin compartments, including dermal and epidermal layers. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Zhang, Yan; Yin, Chong; Hu, Lifang; Chen, Zhihao; Zhao, Fan; Li, Dijie; Ma, Jianhua; Ma, Xiaoli; Su, Peihong; Qiu, Wuxia; Yang, Chaofei; Wang, Pai; Li, Siyu; Zhang, Ge; Wang, Liping; Qian, Airong; Xian, Cory J
2018-02-01
Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.
YANG, ZHIZHOU; SUN, ZHAORUI; LIU, HONGMEI; REN, YI; SHAO, DANBING; ZHANG, WEI; LIN, JINFENG; WOLFRAM, JOY; WANG, FENG; NIE, SHINAN
2015-01-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson’s trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693
Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L
2010-08-01
Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.
D'Arcy Thompson's 'on Growth and form': From soap bubbles to tissue self-organization.
Heisenberg, Carl-Philipp
2017-06-01
Tissues are thought to behave like fluids with a given surface tension. Differences in tissue surface tension (TST) have been proposed to trigger cell sorting and tissue envelopment. D'Arcy Thompson in his seminal book 'On Growth and Form' has introduced this concept of differential TST as a key physical mechanism dictating tissue formation and organization within the developing organism. Over the past century, many studies have picked up the concept of differential TST and analyzed the role and cell biological basis of TST in development, underlining the importance and influence of this concept in developmental biology. Copyright © 2017 Elsevier B.V. All rights reserved.
Sharma, Verinder; Sommerdyk, Christina
2015-07-01
Childbirth can trigger or exacerbate a variety of psychiatric disorders but the extant literature has focused primarily on mood disorders. Obsessive-compulsive disorder (OCD) after childbirth can occur alone or in combination with other psychiatric disorders such as major depressive disorder. Due to the general lack of awareness of the relationship between childbirth and OCD among clinicians as well as patients, the disorder may be underdiagnosed or misdiagnosed as major depressive disorder. This article describes the prevalence, clinical features, common psychiatric comorbidities, differential diagnosis and potential consequences of underdiagnosis or misdiagnosis. Using case vignettes strategies for its detection and clinical management are suggested. Finally, areas in need of further research are proposed.
Picazo, O; Rosenblatt, J S; Fernández-Guasti, A
2000-10-01
Injection of the serotonergic agonist, 8-hydroxy-2-(di-n-propylamino-tetralin (8-OH-DPAT) (0.5 mg/kg ip) produced a clear anxiolytic-like effect (as measured in the burying behavior test), after parturition, which remains until day 6 of lactation. Thereafter 8-OH-DPAT completely lacked action. In order to analyze whether lactation prevented the action of 8-OH-DPAT, dams were separated from their pups for five consecutive days. The blockade of the anxiolytic effect of 8-OH-DPAT does not disappear by isolation of the mothers from their offspring or from neighboring pups. Finally, to investigate the possible role of maternal behavior in the blockade of the anxiolytic effect of 8-OH-DPAT a third experiment was made in which ovariectomized females were rendered maternal by the sensitization procedure. These females respond normally to the antianxiety actions of 8-OH-DPAT. Results suggest that a long-term clue triggered by lactation, possibly related to prolactin secretion, interferes with the anxiolytic effect of 8-OH-DPAT.
The effect of trigger point management by positional release therapy on tension type headache.
Ghanbari, Ali; Rahimijaberi, Abbas; Mohamadi, Marzieh; Abbasi, Leila; Sarvestani, Fahimeh Kamali
2012-01-01
The aim of this study was to compare the effectiveness of trigger points' management by Positional Release Therapy (PRT) and routine medical therapy in treatment of Tension Type Headache. Tension Type Headache is the most frequent headache with the basis of myofascial and trigger point disorders. PRT is an indirect technique that treats trigger points. 30 Patients with active trigger points in cervical muscles entered to the study. They were randomly assigned to PRT or medical therapy group. Headache frequency, intensity and duration and tablet count were recorded by use of a daily headache diary. Sensitivity of trigger points was assessed by numeric pain intensity and by use of a digital force gauge (FG 5020). Both groups showed significant reduction in headache frequency and duration and tablet count after treatment phase. However, the reduction of study variables was persisted only in PRT group after follow up phase. There was no significant reduction in headache intensity, neither in PRT and nor in medication group. Sensitivity of trigger points was significantly reduced. In comparison of the two study groups, there was no significant difference in headache frequency, intensity, duration and tablet count (p> 0.05). Both procedures were equally effective according to the study. Thus, PRT can be a treatment choice for patients with T.T.H.
Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero
2016-06-15
Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. © 2016 Herrero et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Bozec, Aline; Hannemann, Nicole
2016-06-03
Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes.
Singh, Varsha; Khan, Azizuddin
2012-01-01
Surface-level differences in the reward and punishment variants, specifically greater long-term decision making in the punishment variant of the Iowa Gambling Task (IGT) observed in previous studies led to the present comparison of long-term decision making in the two IGT variants (n = 320, male = 160). It was contended that risk aversion triggered by a positive frame of the reward variant and risk seeking triggered by a negative frame of the punishment variant appears as long-term decision making in the two IGT variants. Apart from the frame of the variant as a within-subjects factor (variant type: reward and punishment), the order in which the frame was triggered (order type: reward–punishment or punishment–reward), and the four types of instructions that delineated motivation toward reward from that of punishment (reward, punishment, reward and punishment, and no-hint) were hypothesized to have an effect on foresighted decision making in the IGT. As expected, long-term decision making differed across the two IGT variants suggesting that the frame of the variant has an effect on long-term decision making in the IGT (p < 0.001). The order in which a variant was presented, and the type of the instructions that were used both had an effect on long-term decision making in the two IGT variants (p < 0.05). A post hoc test suggested that the instructions that differentiated between reward and punishment resulted in greater foresight than the commonly used IGT instructions that fail to distinguish between reward and punishment. As observed in previous studies, there were more number of participants (60%) who showed greater foresight in the punishment variant than in the reward variant (p < 0.001). The results suggest that foresight in IGT decision making is sensitive to reward and punishment frame in an asymmetric manner, an observation that is aligned with the behavioral decision making framework. Benefits of integrating findings from behavioral studies in decision neuroscience are discussed, and a need to investigate cultural differences in the IGT studies is pointed out. PMID:22833714
Singh, Varsha; Khan, Azizuddin
2012-01-01
Surface-level differences in the reward and punishment variants, specifically greater long-term decision making in the punishment variant of the Iowa Gambling Task (IGT) observed in previous studies led to the present comparison of long-term decision making in the two IGT variants (n = 320, male = 160). It was contended that risk aversion triggered by a positive frame of the reward variant and risk seeking triggered by a negative frame of the punishment variant appears as long-term decision making in the two IGT variants. Apart from the frame of the variant as a within-subjects factor (variant type: reward and punishment), the order in which the frame was triggered (order type: reward-punishment or punishment-reward), and the four types of instructions that delineated motivation toward reward from that of punishment (reward, punishment, reward and punishment, and no-hint) were hypothesized to have an effect on foresighted decision making in the IGT. As expected, long-term decision making differed across the two IGT variants suggesting that the frame of the variant has an effect on long-term decision making in the IGT (p < 0.001). The order in which a variant was presented, and the type of the instructions that were used both had an effect on long-term decision making in the two IGT variants (p < 0.05). A post hoc test suggested that the instructions that differentiated between reward and punishment resulted in greater foresight than the commonly used IGT instructions that fail to distinguish between reward and punishment. As observed in previous studies, there were more number of participants (60%) who showed greater foresight in the punishment variant than in the reward variant (p < 0.001). The results suggest that foresight in IGT decision making is sensitive to reward and punishment frame in an asymmetric manner, an observation that is aligned with the behavioral decision making framework. Benefits of integrating findings from behavioral studies in decision neuroscience are discussed, and a need to investigate cultural differences in the IGT studies is pointed out.
2012-01-01
Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016
Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio
2012-09-21
Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.
Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph
2018-05-25
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Benoit, G R; Flexor, M; Besançon, F; Altucci, L; Rossin, A; Hillion, J; Balajthy, Z; Legres, L; Ségal-Bendirdjian, E; Gronemeyer, H; Lanotte, M
2001-07-01
On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.
Hand dermatitis--differential diagnoses, diagnostics, and treatment options.
Mahler, Vera
2016-01-01
The pathogenesis of hand dermatitis is multifactorial, and includes factors such as genetic predisposition and exposure. A high incidence rate is associated with female gender, contact allergy, atopic dermatitis, and wet work. The most important risk factors for the persistence of hand dermatitis include its extent, contact allergic or atopic etiology, childhood dermatitis, and early onset (before the age of 20). The cost of illness of hand dermatitis corresponds to this seen in moderate to severe psoriasis. The diagnostic workup of hand dermatitis and its differential diagnoses requires a detailed assessment of occupational and recreational exposure. In case of possible work-related triggers, early notification of the accident insurer should be sought (via the dermatologist's report). Exposure to a contact allergen is a contributing factor in one-half of all cases of hand dermatitis. It is therefore imperative that all patients with hand dermatitis persisting for more than three months undergo patch testing. Successful and sustainable treatment of hand dermatitis starts with the proper identification and elimination of individual triggers, including the substitution of identified contact allergens and irritants, as well as optimizing preventive measures. Graded therapy taking the clinical severity into account is essential. Validated instruments may be used to monitor therapeutic efficacy. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease
Conlan, Thomas; Jardine, Laura; Tkacz, Claire; Ferrer, Ivana R.; Lomas, Cara; Ward, Sophie; West, Heather; Dertschnig, Simone; Means, Terry K.; Kaplan, Daniel H.; Bennett, Clare L.
2018-01-01
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ–specific approaches to block immunopathology while avoiding global immune suppression. PMID:29515032
Milograna, Sarah Ribeiro; Bell, Fernanda Tinti; McNamara, John Campbell
2010-11-01
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by ω-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation.
Gideons, Erinn S.; Kavalali, Ege T.; Monteggia, Lisa M.
2014-01-01
Ketamine is an NMDA receptor (NMDAR) antagonist that elicits rapid antidepressant responses in patients with treatment-resistant depression. However, ketamine can also produce psychotomimetic effects that limit its utility as an antidepressant, raising the question of whether the clinically tolerated NMDAR antagonist memantine possesses antidepressant properties. Despite its similar potency to ketamine as an NMDAR antagonist, clinical data suggest that memantine does not exert rapid antidepressant actions for reasons that are poorly understood. In this study, we recapitulate the ketamine and memantine clinical findings in mice, showing that ketamine, but not memantine, has antidepressant-like effects in behavioral models. Using electrophysiology in cultured hippocampal neurons, we show that ketamine and memantine effectively block NMDAR-mediated miniature excitatory postsynaptic currents in the absence of Mg2+. However, in physiological levels of extracellular Mg2+, we identified key functional differences between ketamine and memantine in their ability to block NMDAR function at rest. This differential effect of ketamine and memantine extends to intracellular signaling coupled to NMDAR at rest, in that memantine does not inhibit the phosphorylation of eukaryotic elongation factor 2 or augment subsequent expression of BDNF, which are critical determinants of ketamine-mediated antidepressant efficacy. These results demonstrate significant differences between the efficacies of ketamine and memantine on NMDAR-mediated neurotransmission that have impacts on downstream intracellular signaling, which we hypothesize is the trigger for rapid antidepressant responses. These data provide a novel framework on the necessary functional requirements of NMDAR-mediated neurotransmission as a critical determinant necessary to elicit rapid antidepressant responses. PMID:24912158
Rodrigues, J M; Luís, A L; Lobato, J V; Pinto, M V; Lopes, M A; Freitas, M; Geuna, S; Santos, J D; Maurício, A C
2005-01-01
Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which was capable of growing, differentiating and producing locally nerve growth factors that are otherwise extremely expensive, inside 90 PLA/10 PLG nerve guides. For this purpose the authors have chosen the N1E-115 cell line, a clone of cells derived from mouse neuroblastoma C-1300 with the perspective of using this differentiated cellular system to cover the inside of 90 PLA/10 PLG nerve guides placed to bridge a gap in the rat sciatic nerve experimental model. The N1E-115 cells proliferate in normal culture medium but undergo neuronal differentiation in response to DMSO. Upon induction of differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is observed and the membranes become highly excitable. While it is known that Ca2+ serves as an important intracellular signal for various cellular processes, such as growth and differentiation. It is also known that can be toxic to cells and is involved in the triggering of events leading to excitotoxic cell death in neurons. The [Ca2+]i in non-differentiated N1E-115 cells and after distinct periods of differentiation, have been determined by the epifluorescence technique using the Fura-2-AM probe. The results of this quantitative assessment revealed that N1E-115 cells which undergo neuronal differentiation for 48 hours in the presence of 1.5% DMSO are best qualified to be used to cover the interior of the nerve guides since the [Ca2+]i was not found to be elevated indicating thus that the onset the cell death processes was not occurred.
Influence of supraliminal reward information on unconsciously triggered response inhibition.
Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong
2014-01-01
Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition.
Influence of Supraliminal Reward Information on Unconsciously Triggered Response Inhibition
Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong
2014-01-01
Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition. PMID:25268227
Cancer (stem) cell differentiation: An inherent or acquired property?
Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas
2015-12-01
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ortiz, Catalina; Valenzuela, Romina; Lucero A, Yalda
2017-06-01
Gluten and other related proteins of the wheat, rye and barley, have antigenic properties that may trigger adverse reactions in susceptible individuals. Celiac disease was the first pathology with clear causal association related to the intake of these proteins. Recently, wheat allergy and non celiac gluten sensitivity have been described. Although, clinical presentation and its relation with protein ingestion may be similar and elicit confusion, their pathogenic mechanism, diagnosis and treatment are quite different. Since the prevalence of these diseases is relatively high as a whole, it is essential that these become familiar to primary care doctors and general pediatricians, thus they will know how to differentiate and face them. The aim of this review is to compare the main aspects of epidemiology, pathofisiology, diagnosis and treatment of these 3 conditions.
Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio
2007-10-30
Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.
Pattern formation in individual-based systems with time-varying parameters
NASA Astrophysics Data System (ADS)
Ashcroft, Peter; Galla, Tobias
2013-12-01
We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.
Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas
2018-02-01
Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine
2008-06-01
The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.
Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie
2010-10-05
Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses.
Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie
2010-01-01
Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses. PMID:20957153
Chen, Hannah X; Blasiak, Rachel; Kim, Edwin; Padilla, Ricardo; Culton, Donna A
2017-09-01
Many patients with oral lichen planus (OLP) report triggers of flares, some of which overlap with triggers of other oral diseases, including oral allergy syndrome and oral contact dermatitis. The purpose of this study was to evaluate the prevalence of commonly reported triggers of OLP flares, their overlap with triggers of other oral diseases, and the potential role of trigger avoidance as a management strategy. Questionnaire-based survey of 51 patients with biopsy-proven lichen planus with oral involvement seen in an academic dermatology specialty clinic and/or oral pathology clinic between June 2014 and June 2015. Of the participants, 94% identified at least one trigger of their OLP flares. Approximately half of the participants (51%) reported at least one trigger that overlapped with known triggers of oral allergy syndrome, and 63% identified at least one trigger that overlapped with known triggers of oral contact dermatitis. Emotional stress was the most commonly reported trigger (77%). Regarding avoidance, 79% of the study participants reported avoiding their known triggers in daily life. Of those who actively avoided triggers, 89% reported an improvement in symptoms and 70% reported a decrease in the frequency of flares. Trigger identification and avoidance can play a potentially effective role in the management of OLP. Copyright © 2017 Elsevier Inc. All rights reserved.
Hu, Wenfeng; Liu, Lu; Feng, Gang
2016-09-02
This paper addresses the output consensus problem of heterogeneous linear multi-agent systems. We first propose a novel distributed event-triggered control scheme. It is shown that, with the proposed control scheme, the output consensus problem can be solved if two matrix equations are satisfied. Then, we further propose a novel self-triggered control scheme, with which continuous monitoring is avoided. By introducing a fixed timer into both event- and self-triggered control schemes, Zeno behavior can be ruled out for each agent. The effectiveness of the event- and self-triggered control schemes is illustrated by an example.
Pektaş, Mehtap; Kurt, Akif Hakan; Ün, İsmail; Tiftik, Rukiye Nalan; Büyükafşar, Kansu
2015-04-01
Effect of female sex hormones on the production/release of adipocyte-derived cytokines has been debatable. Furthermore, whether the cellular signaling triggered by these hormones involve Rho-kinase has not been investigated yet. Therefore, in this study, effects of 17β-estradiol and progesterone as well as the Rho-kinase inhibitor, Y-27632 on the level of adipokines such as resistin, adiponectin, leptin, TNF-α and IL-6 were investigated in 3T3-L1-derived adipocytes. Differentiation was induced in the post-confluent preadipocytes by the standard differentiation medium (Dulbecco's modified Eagle's medium with 10% fetal bovine serum together with the mixture of isobutylmethylxanthine, dexamethasone and insulin) in the presence of 17β-estradiol (10(-8)-10(-7)M), progesterone (10(-6)-10(-5)M), the Rho-kinase inhibitor, Y-27632 (10(-5)M) and their combination for 8days. Measurements of the adipokines were performed in the culturing medium by ELISA kits using specific monoclonal antibodies. 17β-estradiol elevated resistin but decreased adiponectin and IL-6 levels; however, it did not alter the concentration of leptin and TNF-α. Y-27632 pretreatment inhibited the rise of resistin and the fall of adiponectin by 17β-estradiol without any effects by its own. Progesterone did not change resistin, leptin and TNF-α level; however, it elevated adiponectin and decreased IL-6 production. Neither 17β-estradiol nor Y-27632 was able to antagonize the increase of adiponectin and the reduction of IL-6 levels by progesterone. While Y-27632 alone lowered IL-6 level, it increased leptin and TNF-α concentration without altering resistin and adiponectin. In conclusion, 17β-estradiol could modify adipokine production in 3T3-L1 adipocytes with the actions some of which involve Rho-kinase mediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spagnuolo, Carmela; Durante, Miriana; Mita, Giovanni; Aquino, Rita Patrizia
2017-01-01
Carotenoids, including β-carotene, lycopene, and derivatives, such as retinoic acid, have been studied for their significant antiproliferative and differentiating activity on cancer cells in experimental models and in clinics. We are presenting here data on the mechanism of action of a carotenoid-enriched extract obtained from the pumpkin Cucurbita moschata, variety “long of Naples,” on two malignant human cell lines, Caco-2 and SAOs, derived from a colon adenocarcinoma and an osteosarcoma, respectively. The carotenoid extract has been obtained from pumpkin pulp and seeds by supercritical CO2 extraction and employed to prepare oil-in-water nanoemulsions. The nanoemulsions, applied at a final carotenoid concentration of 200–400 μg/ml, were not cytotoxic, but induced a delay in cell growth of about 40% in both SAOs and Caco-2 cell lines. This effect was associated with the activation of a “nonprotective” form of autophagy and, in SAOs cells, to the induction of cell differentiation via a mechanism that involved AMPK activation. Our data suggest the presence of a pool of bioactive compounds in the carotenoid-enriched extract, acting additively, or synergistically, to delay cell growth in cancer cells. PMID:29430284
Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening
Cunha, Camila P.; Roberto, Guilherme G.; Vicentini, Renato; Lembke, Carolina G.; Souza, Glaucia M.; Ribeiro, Rafael V.; Machado, Eduardo C.; Lagôa, Ana M. M. A.; Menossi, Marcelo
2017-01-01
The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed. PMID:28266527
An introduction to the molecular basics of aryl hydrocarbon receptor biology.
Abel, Josef; Haarmann-Stemmann, Thomas
2010-11-01
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Wheat differential gene expression induced by different races of Puccinia triticina.
Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P
2018-01-01
Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.
Chung, HaeWon; Lee, Bum-Kyu; Uprety, Nadima; Shen, Wenwen; Lee, Jiwoon; Kim, Jonghwan
2016-04-01
Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal. © 2016 The Authors.
Eradication of acute promyelocytic leukemia-initiating cells by PML/RARA-targeting.
Nasr, Rihab; de Thé, Hugues
2010-06-01
Acute promyelocytic leukemia (APL) is characterized by a t(15;17) translocation that yields a PML/RARA fusion protein. Expression of PML/RARA, a potent transcriptional repressor, induces APL in mice. Both retinoic acid (RA) and arsenic trioxide directly target PML/RARA-mediated transcriptional repression and protein stability, inducing rapid differentiation of the promyelocytes and clinical remission in most APL patients. RA also triggers growth arrest and progressive clearance of leukemia initiating cells (LIC), both ex vivo and in vivo. Suboptimal RA concentrations or expression of the PLZF/RARA variant allows complete RA-induced differentiation, but neither LIC clearance nor disease remission. Thus, RA-induced differentiation and LIC clearance may be uncoupled. The RA/arsenic trioxide association, which dramatically synergizes for PML/RARA degradation but not for differentiation, rapidly clears LIC in a proteasome-dependent manner, resulting in APL eradication in murine models and patients. Collectively, these results demonstrate that LIC clearance, which mirrors PML/RARA degradation, is the primary basis for APL cure by the RA/arsenic trioxide association, rather than differentiation. Oncogene degradation could be a generally applicable therapeutic strategy to clear LICs in several types of tumors.
Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium.
Miyoshi, Hiroyuki; VanDussen, Kelli L; Malvin, Nicole P; Ryu, Stacy H; Wang, Yi; Sonnek, Naomi M; Lai, Chin-Wen; Stappenbeck, Thaddeus S
2017-01-04
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE 2 ) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE 2 -Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE 2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury. © 2016 The Authors.
Yadav, Saveg; Pandey, Shrish Kumar; Goel, Yugal; Kujur, Praveen Kumar; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra
2018-03-01
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4 + & CD8 + ) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H
2018-05-30
Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.
Weschke, Sarah; Niedeggen, Michael
2013-01-01
The affective and cognitive mechanisms elicited by the experience of social exclusion—or ostracism—have recently been explored using behavioral and neurocognitive methods. Most of the studies took advantage of the Cyberball paradigm, a virtual ball tossing game with presumed co-players connected via the internet. Consistent behavioral findings indicate that exclusion obviously threatens fundamental social needs (belonging, self-esteem, meaningful existence, and control) and lowers mood. In this study, we followed the question whether the credibility of the setting affects the processing of social exclusion. In contrast to a control group (standard Cyberball setup), co-players were physically present in an experimental group. Although the credibility of the virtual ball tossing game was significantly enhanced in the experimental group, self-reported negative mood and need threat were not enhanced compared to the control group. Event-related brain potentials (ERPs), however, indicated a differential processing of social exclusion. The N2 amplitude triggered by occasional ball receptions was significantly reduced in the experimental group. This effect was restricted for an early time range (130–210 ms), and did not extend to the following P3 components. The ERP effect in the N2 time range can be related to a differential social reward processing in ostracism if co-players are physically present. The lack of a corresponding correlate in the behavioral data indicates that some facets of ostracism processing are not covered by questionnaire data. PMID:23951269
Damasceno, Flávia Silva; Barisón, María Julia; Pral, Elisabeth Mieko Furusho; Paes, Lisvane Silva; Silber, Ariel Mariano
2014-01-01
Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed) remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM). Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction) and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM). Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote) were more affected as were the processes of differentiation and cell invasion. PMID:24587468
Effects of Cosmic Ray Interactions with the Focal Surface of JEM-EUSO
NASA Astrophysics Data System (ADS)
Rowley, C.; Adams, J. H.; Bonemente, M.
2013-12-01
The JEM-EUSO mission promises an entirely new perspective on ultra high energy cosmic ray (UHECR) detection. Bound for the International Space Station, its field of view is far greater than that of ground based instruments. However, being space-based, it is itself subject to cosmic ray (CR) impacts (abet much lower energy ones). In this poster, we discuss the effects this may have on the triggering algorithms implemented on JEM-EUSO. We conclude that the mean photoelectron rate due to CRs is 6.73×10-3 s-1 and that the fractional number of triggers per Gate Timing Unit (GTU) is 4.34×10-10 GTU-1 at a trigger level of 1 photoelectron. This is small and will have little effect on the triggering of JEM-EUSO.
[Aerophagia - case history and differential diagnosis (author's transl)].
Strehblow, M; Stur, O; Weissenbacher, G; Wurst, E
1976-01-01
Meteorism is a nonspecific symptom and it is difficult to exclude organic causes. In one of our patients, a 6 years old girl, the accumulation of gas had caused changes of the normal abdominal situs. Finally psychogenic aerophagia could be detected by exact analysis of the case history and the daily rhythm of meteorism. The situation within the family could be revealed as trigger mechanism and there an successful therapy was started.
Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto
2017-01-01
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481
Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H
2014-05-01
We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
AB72. Mysteries of TGF-β paradox in benign and malignant cells
Lee, Chung; Grayhack, John T.
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β paradox. To date, the mechanism of this paradox still remains as a scientific mystery. In this review, we present our experience, alone with the literature, in an attempt to offer answers to this mystery. First, we observed that, upon TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to a suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events offer the explanation to the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and will help us to develop novel anti-cancer strategies.
Mysteries of TGF-β Paradox in Benign and Malignant Cells.
Zhang, Qiang; Yu, Nengwang; Lee, Chung
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.
Mysteries of TGF-β Paradox in Benign and Malignant Cells
Zhang, Qiang; Yu, Nengwang; Lee, Chung
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies. PMID:24860782
Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk
2017-04-01
Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
López, Jesús Adrián; Alvarez-Salas, Luis Marat
2011-06-10
MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology. Copyright © 2011 Elsevier Inc. All rights reserved.
Escobedo, R.; Muro, C.; Spector, L.; Coppinger, R. P.
2014-01-01
The emergence of cooperation in wolf-pack hunting is studied using a simple, homogeneous, particle-based computational model. Wolves and prey are modelled as particles that interact through attractive and repulsive forces. Realistic patterns of wolf aggregation readily emerge in numerical simulations, even though the model includes no explicit wolf–wolf attractive forces, showing that the form of cooperation needed for wolf-pack hunting can take place even among strangers. Simulations are used to obtain the stationary states and equilibria of the wolves and prey system and to characterize their stability. Different geometric configurations for different pack sizes arise. In small packs, the stable configuration is a regular polygon centred on the prey, while in large packs, individual behavioural differentiation occurs and induces the emergence of complex behavioural patterns between privileged positions. Stable configurations of large wolf-packs include travelling and rotating formations, periodic oscillatory behaviours and chaotic group behaviours. These findings suggest a possible mechanism by which larger pack sizes can trigger collective behaviours that lead to the reduction and loss of group hunting effectiveness, thus explaining the observed tendency of hunting success to peak at small pack sizes. They also explain how seemingly complex collective behaviours can emerge from simple rules, among agents that need not have significant cognitive skills or social organization. PMID:24694897
Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression.
Stephan, Klaas E; Manjaly, Zina M; Mathys, Christoph D; Weber, Lilian A E; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M; Haker, Helene; Seth, Anil K; Petzschner, Frederike H
2016-01-01
This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future.
Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression
Stephan, Klaas E.; Manjaly, Zina M.; Mathys, Christoph D.; Weber, Lilian A. E.; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M.; Haker, Helene; Seth, Anil K.; Petzschner, Frederike H.
2016-01-01
This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future. PMID:27895566
NASA Astrophysics Data System (ADS)
Vogel, Sarah; Arnoldini, Simon; Möller, Stephanie; Schnabelrauch, Matthias; Hempel, Ute
2016-11-01
Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.
Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN
Rebocho, Alexandra B.
2016-01-01
Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356
Yang, Yang; Huang, Jianying; Mis, Malgorzata A; Estacion, Mark; Macala, Lawrence; Shah, Palak; Schulman, Betsy R; Horton, Daniel B; Dib-Hajj, Sulayman D; Waxman, Stephen G
2016-07-13
Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients. Copyright © 2016 the authors 0270-6474/16/367512-12$15.00/0.
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario
2016-08-01
Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. © 2016 American Society for Nutrition.
Cromer, Gail; Breymeyer, Kara L; Roth, Christian L; Weigle, David S
2016-01-01
Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. Design: We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Results: Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Conclusion: Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. PMID:27357093
[Chronic urticaria in childhood : Rational diagnostics and treatment].
Ott, H
2017-07-01
Chronic urticaria (CU) is defined by episodes of urticaria with or without angioedema, which recur daily or nearly daily over more than 6 weeks. Sudden manifestations of CU with or without known causes are termed chronic spontaneous urticaria, which is differentiated from chronic inducible urticaria. The differential diagnoses of CU in childhood range from self-limiting dermatoses to severe systemic diseases. Further targeted steps are taken to detect potential trigger factors or underlying illnesses only if suspicion arises on anamnestic grounds and CU is best treated in accordance with international guidelines. First-line therapy consists of non-sedating H 1 -antihistamines at approved or even higher doses. If symptoms persist, additional treatment with omalizumab, cyclosporine or montelukast can be initiated after careful individual consideration.
Lee, Joo-Hyeon; Bhang, Dong Ha; Beede, Alexander; Huang, Tian Lian; Stripp, Barry R.; Bloch, Kenneth D.; Wagers, Amy J.; Tseng, Yu-Hua; Ryeom, Sandra; Kim, Carla F.
2014-01-01
SUMMARY Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal three-dimensional (3D) co-cultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell co-cultures. Gain and loss of function experiments showed BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of Thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1-null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide new tools to understand the mechanisms of respiratory diseases at the single cell level. PMID:24485453
Yang, Kai; Shrestha, Sharad; Zeng, Hu; Karmaus, Peer W.F.; Neale, Geoffrey; Vogel, Peter; Guertin, David A.; Lamb, Richard F.; Chi, Hongbo
2014-01-01
SUMMARY Naïve T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic programming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. PMID:24315998
Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A
2017-04-06
The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.
Sotthibundhu, Areechun; Promjuntuek, Wilasinee; Liu, Min; Shen, Sanbing; Noisa, Parinya
2018-04-25
Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates and for maintaining stem cell homeostasis, which includes self-renewal, cell differentiation and somatic reprogramming. Loss of self-renewal capacity and pluripotency is a major obstacle to stem cell-based therapies. It has been reported that autophagy regulates stem cells under biological stimuli, starvation, hypoxia, generation of reactive oxygen species (ROS) and cellular senescence. On the one hand, autophagy is shown to play roles in self-renewal by co-function with the ubiquitin-proteasome system (UPS) to promote pluripotency-associated proteins (NANOG, OCT4 and SOX2) in human embryonic stem cells (hESCs). On the other hand, autophagy activity acts as cell reprogramming processes that play an important role for clearance fate determination and upregulates neural and cardiac differentiation. Deregulation of autophagy triggers protein disorders such as neurodegenerative cardiac/muscle diseases and cancer. Therefore, understanding of the roles of the autophagy in stem cell renewal and differentiation may benefit therapeutic development for a range of human diseases.
Conacci-Sorrell, Maralice; Ngouenet, Celine; Eisenman, Robert N
2010-08-06
The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation. Copyright 2010 Elsevier Inc. All rights reserved.
Perceived trigger factors of seizures in persons with epilepsy.
Balamurugan, E; Aggarwal, Meena; Lamba, Anurag; Dang, Nitika; Tripathi, Manjari
2013-11-01
Little is known about the triggering factors (TFs) of seizures in persons with epilepsy (PWE). This study aimed to document the perception of PWE of factors that precipitated their seizures. Data was obtained from 405 patients attending the Epilepsy Clinic at the All India Institute of Medical Sciences (AIIMS). This was analyzed using appropriate descriptive and inferential biostatistical methods. A Trigger Assessment Tool (TAT) was designed for this study. 89% of the participants reported at least one TF. Between one and ten TFs were endorsed. The most common TFs reported by the patients (in descending order) were found to be: Missing medication (40.9%), emotional stress (31.3%), sleep deprivation (19.7%), fatigue (15.3%), missing meals (9.1%), fever (6.4%), and smoking (6.4%). A significant association was seen among some of the commonly reported TFs (missing medication, sleep deprivation, emotional stress, and fatigue). TFs should be evaluated during the management of PWE. However, self perceived TF should be interpreted with caution and differentiated from actual TF. Future studies may consider empowering patients with avoidance strategies and self-control techniques done. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes
Nicolás, Francisco E.; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M.
2003-01-01
Transformation of Mucor circinelloides with self-replicative plasmids containing a wild-type copy of the carotenogenic gene carB causes silencing of the carB function in 3% of transformants. Genomic analyses revealed a relationship between silenced phenotype and number of copies of plasmids. This phenotype results from a reduction of the steady-state levels of carB mRNA, a reduction that is not due to differences in the level of transcription, indicating that silencing is post-transcriptional. Small sense and antisense RNAs have been found to be associated with gene silencing in M.circinelloides. Two size classes of small antisense RNAs, differentially accumulated during the vegetative growth of silenced transformants, have been detected: a long 25-nucleotide RNA and a short 21-nucleotide RNA. Secondary sense and antisense RNAs corresponding to sequences of the endogenous gene downstream of the initial triggering molecule have also been detected, revealing the existence of spreading of RNA targeting in fungi. These findings, together with the self-replicative nature of the triggering molecules, make M.circinelloides a suitable organism for investigating some unresolved questions in RNA silencing. PMID:12881432
Wang, Xianmiao; Li, Ying; Mao, Aiping; Li, Chao; Li, Yongkui; Tien, Po
2010-09-01
Viral RNAs produced during viral infection are recognized by the cytoplasmic RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). A central adapter protein downstream of RIG-I and MDA5 is the mitochondrial membrane protein virus-induced signaling adaptor (VISA), which mediates the induction of type I interferons (IFNs) through the activation of transcription factors such as nuclear factor-kappaB (NF-kappaB) and IFN-regulatory factor-3 (IRF3). Here we found that hepatitis B virus (HBV)-encoded X protein (HBx) acts as an inhibitor of virus-triggered IRF3 activation and IFN-beta induction. Reporter and plaque assays indicate that HBx inhibits signaling by components upstream but not downstream of VISA. Immunoprecipitation experiments indicate that HBx interacts with VISA and disrupts the association of VISA with its upstream and downstream components. These findings suggest that HBx acts as a suppressor of virus-triggered induction of type I IFNs, which explains the observation that HBV causes transient and chronic infection in hepatocytes but fails to activate the pattern recognition receptor-mediated IFN induction pathways.
D'Hernoncourt, J; Merkin, J H; De Wit, A
2007-09-01
Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.
Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.
Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio
2013-08-01
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.
Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-07-01
Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Regulation of expression of collagenase-3 in normal, differentiating rat osteoblasts
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Bloch, S. R.; Fiacco, G. J.; Partridge, N. C.
1999-01-01
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast. Copyright 1999 Wiley-Liss, Inc.
Ren, Weibo; Hou, Xiangyang; Wang, Yuqing; Badgery, Warwick; Li, Xiliang; Ding, Yong; Guo, Huiqin; Wu, Zinian; Hu, Ningning; Kong, Lingqi; Chang, Chun; Jiang, Chao; Zhang, Jize
2016-01-01
The degradation of the steppe of Inner Mongolia, due to overgrazing, has resulted in ecosystem damage as well as extensive reductions in sheep production. The growth performance of sheep is greatly reduced because of overgrazing, which triggers massive economic losses every year. The liver is an essential organ that has very important roles in multiple functions, such as nutrient metabolism, immunity and others, which are closely related to animal growth. However, to our knowledge, no detailed studies have evaluated hepatic metabolism adaption in sheep due to overgrazing. The molecular mechanisms that underlie these effects remain unclear. In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profiles of sheep hepatic tissues when nutrition was reduced due to overgrazing (12.0 sheep/ha), with the goal of characterizing the molecular mechanisms of hepatic metabolism adaption in sheep in an overgrazing condition. The body weight daily gain of sheep was greatly decreased due to overgrazing. Overall, 41 proteins were found to be differentially abundant in the hepatic tissue between a light grazing group and an overgrazing group. Most of the differentially expressed proteins identified are involved in protein metabolism, transcriptional and translational regulation, and immune response. In particular, the altered abundance of kynureninase (KYNU) and HAL (histidine ammonia-lyase) involved in protein metabolic function, integrated with the changes of serum levels of blood urea nitrogen (BUN) and glucose (GLU), suggest that overgrazing triggers a shift in energy resources from carbohydrates to proteins, causing poorer nitrogen utilization efficiency. Altogether, these results suggest that the reductions in animal growth induced by overgrazing are associated with liver proteomic changes, especially the proteins involved in nitrogen compounds metabolism and immunity. This provides new information that can be used for nutritional supplementation to improve the growth performance of sheep in an overgrazing condition.
Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.
Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M
2018-04-30
Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei
2016-01-01
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929
Tanti, A; Kim, J J; Wakid, M; Davoli, M-A; Turecki, G; Mechawar, N
2017-11-21
Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.231.
Shen, Wenbiao
2012-01-01
This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740
Skn-1a/Oct-11 and {Delta}Np63{alpha} exert antagonizing effects on human keratin expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lena, Anna Maria; Cipollone, Rita; Amelio, Ivano
2010-10-29
Research highlights: {yields} Skn-1a markedly downregulates {Delta}Np63-driven K14 expression. {yields} {Delta}Np63 inhibits Skn-1a-mediated K10 expression. {yields} {Delta}Np63, mutated in SAM domain, is less effecting in K10 downregulation. {yields} Immunolocalization in human skin of the two transcription factors is partially overlapping. {yields} The antagonistic effects of Skn-1a and p63 is through competition for overlapping responsive elements or through an indirect interaction. -- Abstract: The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of {Delta}Np63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POUmore » transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated {Delta}Np63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of {Delta}Np63. {Delta}Np63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and {Delta}Np63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between {Delta}Np63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.« less
Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei
2016-10-01
Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hasegawa, Masashi; Ogihara, Tohru; Tamai, Hiroshi; Hiroi, Mayo
2009-08-04
Recent clinical trials have demonstrated the efficacy and safety of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy (HIE). We previously reported that the levels of non-protein-bound iron and ascorbic acid (AA) are increased in the CSF of infants with HIE. In this study, we investigated the effect of hypothermia on the combined cytotoxicity of Fe and AA for differentiated PC12 cells. The optimal settings for hypothermic treatment were a temperature of 30-32 degrees C, rescue time window of less than 6 h, and minimum duration of at least 24 h. Hypothermia effectively prevented the loss of the mitochondrial transmembrane potential from 6 h to 72 h (end of the study period) and attenuated the release of apoptotic proteins (cytochrome c and apoptosis-inducing factor) at 6 h of exposure to Fe-AA. Activation of caspase-3 was also delayed until 24 h. Akt was transiently activated, although no influence of temperature was observed. Elevation of oxidative stress markers, including ortho-, meta-, and di-tyrosine (markers of protein oxidation) and 4-hydroxynonenal (lipid peroxidation) was significantly attenuated when the temperature was reduced by 5 degrees C. The half-cell reduction potential (Ehc) of GSSG/2GSH redox couple ranged from -220 to -180 mV in unstressed differentiated PC12 cells, and apoptosis was triggered when Ehc exceeded -180 mV. Hypothermia prevented Ehc from rising above -180 mV within 24 h of exposure to Fe-AA. In conclusion, hypothermia prevented cell death due to Fe-AA toxicity by inhibiting apoptotic pathways through maintenance of a reduced cellular environment, as well as by alleviating oxidative stress.
Godoy, Juan A; Lindsay, Carolina B; Quintanilla, Rodrigo A; Carvajal, Francisco J; Cerpa, Waldo; Inestrosa, Nibaldo C
2017-11-01
Amyloid-β peptide (Aβ) is one of the major players in the pathogenesis of Alzheimer's disease (AD). Despite numerous studies, the mechanisms by which Aβ induces neurodegeneration are not completely understood. Oxidative stress is considered a major contributor to the pathogenesis of AD, and accumulating evidence indicates that high levels of reactive oxygen species (ROS) are involved in Aβ-induced neurodegeneration. Moreover, Aβ can induce the deregulation of calcium homeostasis, which also affects mitochondrial function and triggers neuronal cell death. In the present study, we analyzed the effects of quercetin, a plant flavonoid with antioxidant properties, on oxidative stress- and Aβ-induced degeneration. Our results indicate that quercetin efficiently protected against H 2 O 2 -induced neuronal toxicity; however, this protection was only partial in rat hippocampal neurons that were treated with Aβ. Treatment with quercetin decreased ROS levels, recovered the normal morphology of mitochondria, and prevented mitochondrial dysfunction in neurons that were treated with H 2 O 2 . By contrast, quercetin treatment partially rescued hippocampal neurons from Aβ-induced mitochondrial injury. Most importantly, quercetin treatment prevented the toxic effects that are induced by H 2 O 2 in hippocampal neurons and, to a lesser extent, the Aβ-induced toxicity that is associated with the superoxide anion, which is a precursor of ROS production in mitochondria. Collectively, these results indicate that quercetin exerts differential effects on the prevention of H 2 O 2 - and Aβ-induced neurotoxicity in hippocampal neurons and may be a powerful tool for dissecting the molecular mechanisms underlying Aβ neurotoxicity.
Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L
2017-02-01
Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.
Wagner, Nicholas; Mroczka, Andrew; Roberts, Peter D; Schreckengost, William; Voelker, Toni
2011-09-01
Suppression of the microsomal ω6 oleate desaturase during the seed development of soybean (Glycine max) with the 420-bp soybean FAD2-1A intron as RNAi trigger shifts the conventional fatty acid composition of soybean oil from 20% oleic and 60% polyunsaturates to one containing greater than 80% oleic acid and less than 10% polyunsaturates. To determine whether RNAi could be attenuated by reducing the trigger fragment length, transgenic plants were generated to express successively shorter 5' or 3' deletion derivatives of the FAD2-1A intron. We observed a gradual reduction in transcript suppression with shorter trigger fragments. Fatty acid composition was less affected with shorter triggers, and triggers less than 60 bp had no phenotypic effect. No trigger sequences conferring significantly higher or lower suppression efficiencies were found, and the primary determinant of suppression effect was sequence length. The observed relationship of transcript suppression with the induced fatty acid phenotype indicates that RNAi is a saturation process and not a step change between suppressed and nonsuppressed states and intermediate suppression states can be achieved. © 2010 Monsanto. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899
Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.
Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng
2016-12-08
This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.
Parent Trigger Policies, Representation, and the Public Good
ERIC Educational Resources Information Center
Allen, Ann; Saultz, Andrew
2015-01-01
Using theories of representation and democratic education, this article examines the impetus of parent trigger policies in the United States and their potential effects on public good goals for public education. The article also uses theories of representation and responsible democratic governance to assess the parent trigger policies, or what are…
NASA Astrophysics Data System (ADS)
Ibsen, Stuart Duncan
One of the major challenges of modern chemotherapy is to deliver a therapeutic dose of active drug to the tumor tissue without causing systemic exposure. The realization of this goal could considerably reduce the negative side effects experienced by patients. The work conducted in this thesis looks at two different approaches to trigger drug activation with the use of external energy sources. This avoids the challenges of relying solely on biochemical and environmental differences as triggers. The two triggers used were low intensity focused ultrasound and 365 nm light delivered with a custom designed needle UV LED fiber optic system. Both can be localized within the body to spatially highlight just the tumor tissue creating a stark differentiation between it and the healthy tissue. The 365nm light based delivery scheme developed here was the first demonstration of a photoactivatable doxorubicin (DOX) prodrug called DOX-PCB. DOX-PCB was shown to be 200 times less toxic than DOX and could be activated to a fully therapeutic form upon exposure to 365nm light. The pharmacokinetics showed a circulation half life comparable to that of DOX and stability against in vivo metabolic degradation. The 365 nm light was shown to adequately irradiate a centimeter of tumor tissue and cause localized activation. In vivo tumors exposed to the light had significantly higher doses of DOX than unexposed control tumors in the same individual. The second delivery scheme made use of focused ultrasound to activate echogenic drug delivery vehicles. These vehicles were the first demonstration of encapsulating microbubbles within liposomes. Specially designed optical equipment documented that the microbubble was ultrasound responsive. The microbubble was shown to violently cavitate and rupture the outer liposome membrane releasing the payload contents. The three dimensional localization of activation was demonstrated in tissue phantoms. The strengths of these two delivery schemes could complement each other when used together. The delivery vehicle could achieve high doses of DOX-PCB within the tumor while the low toxicity prevents harm to the liver and spleen. The 365 nm light could then activate just the DOX-PCB found within the tumor itself causing localized cell death.
Piccand, Julie; Meunier, Aline; Merle, Carole; Jia, Zhengping; Barnier, Jean-Vianney; Gradwohl, Gérard
2014-01-01
The transcription factor neurogenin3 (Ngn3) triggers islet cell differentiation in the developing pancreas. However, little is known about the molecular mechanisms coupling cell cycle exit and differentiation in Ngn3(+) islet progenitors. We identified a novel effector of Ngn3 endocrinogenic function, the p21 protein-activated kinase Pak3, known to control neuronal differentiation and implicated in X-linked intellectual disability in humans. We show that Pak3 expression is initiated in Ngn3(+) endocrine progenitor cells and next maintained in maturing hormone-expressing cells during pancreas development as well as in adult islet cells. In Pak3-deficient embryos, the proliferation of Ngn3(+) progenitors and β-cells is transiently increased concomitantly with an upregulation of Ccnd1. β-Cell differentiation is impaired at E15.5 but resumes at later stages. Pak3-deficient mice do not develop overt diabetes but are glucose intolerant under high-fat diet (HFD). In the intestine, Pak3 is expressed in enteroendocrine cells but is not necessary for their differentiation. Our results indicate that Pak3 is a novel regulator of β-cell differentiation and function. Pak3 acts downstream of Ngn3 to promote cell cycle exit and differentiation in the embryo by a mechanism that might involve repression of Ccnd1. In the adult, Pak3 is required for the proper control of glucose homeostasis under challenging HFD.
Rohr, Michaela; Wentura, Dirk
2014-10-01
High and low spatial frequency information has been shown to contribute differently to the processing of emotional information. In three priming studies using spatial frequency filtered emotional face primes, emotional face targets, and an emotion categorization task, we investigated this issue further. Differences in the pattern of results between short and masked, and short and long unmasked presentation conditions emerged. Given long and unmasked prime presentation, high and low frequency primes triggered emotion-specific priming effects. Given brief and masked prime presentation in Experiment 2, we found a dissociation: High frequency primes caused a valence priming effect, whereas low frequency primes yielded a differentiation between low and high arousing information within the negative domain. Brief and unmasked prime presentation in Experiment 3 revealed that subliminal processing of primes was responsible for the pattern observed in Experiment 2. The implications of these findings for theories of early emotional information processing are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Kapoor, Vikrant; Provost, Allison; Agarwal, Prateek; Murthy, Venkatesh N.
2015-01-01
The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation, similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels. PMID:26752161
An exploratory study into the effects of extraordinary nature on emotions, mood, and prosociality
Joye, Yannick; Bolderdijk, Jan Willem
2015-01-01
Environmental psychology research has demonstrated that exposure to mundane natural environments can be psychologically beneficial, and can, for instance, improve individuals' mood and concentration. However, little research has yet examined the psychological benefits of extraordinary, awe-evoking kinds of nature, such as spectacular mountain scenes or impressive waterfalls. In this study, we aimed to address the underrepresentation of such extraordinary nature in research on human—nature interactions. Specifically, we examined whether watching a picture slideshow of awesome as opposed to mundane nature differentially affected individuals' emotions, mood, social value orientation (SVO), and their willingness to donate something to others. Our analyses revealed that, compared to mundane nature and a neutral condition, watching awesome natural scenes and phenomena had some unique and pronounced emotional effects (e.g., feeling small and humble), triggered the most mood improvement, and led to a more prosocial SVO. We found that participants' willingness to donate did not differ significantly for any of the conditions. PMID:25674067
Effect of water content on stability of landslides triggered by earthquakes
NASA Astrophysics Data System (ADS)
Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.
2013-12-01
Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes during rainfall is investigated. In this study, after different durations of rainfall, an earthquake is applied to the model and the elapsed time in which the FS gets less than one obtains by trial and error. The results for different initial water contents and earthquake acceleration coefficients show that landslides can happen after shorter rainfall duration when water content is greater. If water content is high enough, the landslide occurs even without rainfall. References [1] Ray RL, Jacobs JM, de Alba P. Impact of unsaturated zone soil moisture and groundwater table on slope instability. J. Geotech. Geoenviron. Eng., 2010, 136(10):1448-1458. [2] Das B. Principles of Foundation Engineering. Stanford, Cengage Learning, 2011. Fig. 1. Effect of initial water content on FS for different EACs
The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill
Friedrich, O.; Reid, M. B.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M. M.; Larsson, L.
2015-01-01
Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca2+ dysregulation is present through altered Ca2+ homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models. PMID:26133937
Tyrosine Kinase Btk Is Required for NK Cell Activation
Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao
2012-01-01
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk−/− NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk−/− mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk−/− mice after the adoptive transfer of Btk+/+ NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response. PMID:22589540
Tyrosine kinase Btk is required for NK cell activation.
Bao, Yan; Zheng, Jian; Han, Chaofeng; Jin, Jing; Han, Huanxing; Liu, Yinping; Lau, Yu-Lung; Tu, Wenwei; Cao, Xuetao
2012-07-06
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk(-/-) NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk(-/-) mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk(-/-) mice after the adoptive transfer of Btk(+/+) NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response.
Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K
2015-01-01
Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.
Navigating Undiagnosed Dissociative Identity Disorder in the Inpatient Setting: A Case Report.
Urbina, Theresa M; May, Tania; Hastings, Michelle
2017-05-01
This case illustrates previously undiagnosed dissociative identity disorder (DID) in a middle-aged female with extensive childhood trauma, who was high functioning prior to a trigger that caused a reemergence of her symptoms. The trigger sparked a dissociative state, attempted suicide, and subsequent inpatient psychiatric hospitalization. Practitioners should include in their differential and screen for undiagnosed DID in patients with episodic psychiatric hospitalizations refractory to the standard treatments for previously diagnosed mental illnesses. Case study. During hospitalization, the diagnosis of DID became apparent and treatment included low-dose risperidone, mirtazapine, sertraline, unconditional positive regard, normalization of her dissociative states in an attempt to decrease her anxiety during treatment, and documentation for the patient via written notes following interviews. These methods helped her come to terms with the diagnosis and allowed the treatment team to teach her coping skills to lessen the impact of dissociative states following discharge.
NK cells link obesity-induced adipose stress to inflammation and insulin resistance.
Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan
2015-04-01
An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.
Mechanically triggered solute uptake in soft contact lenses.
Tavazzi, Silvia; Ferraro, Lorenzo; Fagnola, Matteo; Cozza, Federica; Farris, Stefano; Bonetti, Simone; Simonutti, Roberto; Borghesi, Alessandro
2015-06-01
Molecular arrangement plays a role in the diffusion of water and solutes across soft contact lenses. In particular, the uptake of solutes in hydrated contact lenses can occur as long as free water is available for diffusion. In this work, we investigated the effect of mechanical vibrations of low frequency (200 Hz) on the solute uptake. Hyaluronan, a polysaccharide of ophthalmic use, was taken as example of solute of interest. For a specific water-hydrated hydrogel material, differential scanning calorimetry experiments showed that a large fraction of the hydration water accounted for loosely-bound water, both before and after one week of daily-wear of the lenses. The size (of the order of magnitude of few hundreds of nanometers) of hyaluronan in aqueous solution was found to be less than the size of the pores of the lens observed by scanning electron microscopy. However, solute uptake in already-hydrated lenses was negligible by simple immersion, while a significant increase occurred under mechanical vibrations of 200 Hz, thus providing experimental evidence of mechanically triggered enhanced solute uptake, which is attributed to the release of interfacial loosely-bound water. Also other materials were taken into consideration. However, the effectiveness of mechanical vibrations for hyaluronan uptake is restricted to lenses containing interfacial loosely-bound water. Indeed, loosely-bound water is expected to be bound to the polymer with bonding energies of the order of magnitude of 10-100 J/g, which are compatible with the energy input supplied by the vibrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Auxins upregulate nif and fix genes.
Bianco, Carmen; Defez, Roberto
2010-10-01
In a recent publication we analyzed the global effects triggered by IAA overproduction in S. meliloti RD64 under free-living conditions by comparing the gene expression pattern of wild type 1021 with that of RD64 and 1021 treated with IAA and other four chemically or functionally related molecules. Among the genes differentially expressed in RD64 and IAA-treated 1021 cells we found two genes of pho operon, phoT and phoC. Based on this finding we examined the mechanisms for mineral P solubilization in RD64 and the potential ability of this strain to improve Medicago growth under P-starved conditions. Here, we further analyze the expression profiles obtained in microarray analysis and evaluate the specificity and the extent of overlap between all treatments. Venn diagrams indicated that IAA- and 2,4-D-regulated genes were closely related. Furthermore, most differentially expressed genes from pSymA were induced in 1021 cells treated with 2,4-D, ICA, IND and Trp as compared to the untreated 1021 cells. RT-PCR analysis was employed to analyze the differential expression patterns of nitrogen fixation genes under free-living and symbiotic conditions. Under symbiotic condition, the relative expression levels of nif and fix genes were significantly induced in Mt- RD64 plants and in Mt-1021 plants treated with IAA and 2,4-D whereas they were unchanged or repressed in Mt-1021 plants treated with the other selected compounds when compared to the untreated Mt-1021 plants. © 2010 Landes Bioscience
CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer
Gu-Trantien, Chunyan; Migliori, Edoardo; de Wind, Alexandre; Brohée, Sylvain; Garaud, Soizic; Noël, Grégory; Dang Chi, Vu Luan; Lodewyckx, Jean-Nicolas; Naveaux, Céline; Duvillier, Hugues; Larsimont, Denis
2017-01-01
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment. PMID:28570278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Sung; Park, Min-Gyeong; Lee, Seul Ah
Highlights: • miR-663 is significantly up-regulated during MDPC-23 odontoblastic cell differentiation. • miR-663 accelerates mineralization in MDPC-23 odontoblastic cells without cell proliferation. • miR-663 promotes odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling in MDPC-23 cells. - Abstract: MicroRNAs (miRNAs) regulate cell differentiation by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontogenic differentiation is largely unknown. In this present study, we observed that the expression of miR-663 increased significantly during differentiation of MDPC-23 cells to odontoblasts. Furthermore, up-regulation of miR-663 expression promoted odontogenic differentiation and accelerated mineralization without proliferation in MDPC-23more » cells. In addition, target gene prediction for miR-663 revealed that the mRNA of the adenomatous polyposis coli (APC) gene, which is associated with the Wnt/β-catenin signaling pathway, has a miR-663 binding site in its 3′-untranslated region (3′UTR). Furthermore, APC expressional was suppressed significantly by miR-663, and this down-regulation of APC expression triggered activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Taken together, these findings suggest that miR-663 promotes differentiation of MDPC-23 cells to odontoblasts by targeting APC-mediated activation of Wnt/β-catenin signaling. Therefore, miR-663 can be considered a critical regulator of odontoblast differentiation and can be utilized for developing miRNA-based therapeutic agents.« less
Conflict-Triggered Top-Down Control: Default Mode, Last Resort, or No Such Thing?
ERIC Educational Resources Information Center
Bugg, Julie M.
2014-01-01
The conflict monitoring account posits that globally high levels of conflict trigger engagement of top-down control; however, recent findings point to the mercurial nature of top-down control in high conflict contexts. The current study examined the potential moderating effect of associative learning on conflict-triggered top-down control…
Using Reflection Triggers while Learning in an Online Course
ERIC Educational Resources Information Center
Verpoorten, Dominique; Westera, Wim; Specht, Marcus
2012-01-01
This paper reports on a controlled experiment on the effects of three types of reflection triggers in an online course. Fifty-four volunteers, distributed in five groups, used these structured opportunities for reflection during learning. Results show that reflection triggers were extensively employed by the test persons and were perceived as…
Huang, Bing; Zhu, Huiwen; Zhou, Yiming; Liu, Xing; Ma, Lan
2017-01-01
Consolidated long-term fear memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS-retrieval or US-retrieval will trigger different memory reconsolidation processes is unknown. In this study, we introduced a sequential fear conditioning paradigm in which footshock (FS) was paired with two distinct sounds (CS-A and CS-B). The treatment with propranolol, a β-adrenergic receptor (β-AR) antagonist, after US (FS)-retrieval impaired freezing behavior evoked by either CS-A or CS-B. Betaxolol, a selective β1-AR antagonist, showed similar effects. However, propranolol treatment after retrieval by one CS (e.g., CS-A) only inhibited freezing behavior evoked by the same CS (i.e., CS-A), not the other CS (CS-B). These data suggest that β-AR is critically involved in reconsolidation of fear memory triggered by US- and CS-retrieval, whereas β-AR blockade after US-retrieval disrupts more CS-US associations than CS-retrieval does. Furthermore, significant CREB activation in almost the whole amygdala and hippocampus was observed after US-retrieval, but CS-retrieval only stimulated CREB activation in the lateral amygdala and the CA3 of hippocampus. In addition, propranolol treatment suppressed memory retrieval-induced CREB activation. These data indicate that US-retrieval activates more memory traces than CS-retrieval does, leading to memory reconsolidation of more CS-US associations. PMID:28848401
Neural response in obsessive-compulsive washers depends on individual fit of triggers
Baioui, Ali; Pilgramm, Juliane; Merz, Christian J.; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf
2013-01-01
Background: Patients with obsessive-compulsive disorder (OCD) have highly idiosyncratic triggers. To fully understand which role this idiosyncrasy plays in the neurobiological mechanisms behind OCD, it is necessary to elucidate the impact of individualization regarding the applied investigation methods. This functional magnetic resonance imaging (fMRI) study explores the neural correlates of contamination/washing-related OCD with a highly individualized symptom provocation paradigm. Additionally, it is the first study to directly compare individualized and standardized symptom provocation. Methods: Nineteen patients with washing compulsions created individual OCD hierarchies, which later served as instructions to photograph their own individualized stimulus sets. The patients and 19 case-by-case matched healthy controls participated in a symptom provocation fMRI experiment with individualized and standardized stimulus sets created for each patient. Results: OCD patients compared to healthy controls displayed stronger activation in the basal ganglia (nucleus accumbens, nucleus caudatus, pallidum) for individualized symptom provocation. Using standardized symptom provocation, this group comparison led to stronger activation in the nucleus caudatus. The direct comparison of between-group effects for both symptom provocation approaches revealed stronger activation of the orbitofronto-striatal network for individualized symptom provocation. Conclusions: The present study provides insight into the differential impact of individualized and standardized symptom provocation on the orbitofronto-striatal network of OCD washers. Behavioral and neural responses imply a higher symptom-specificity of individualized symptom provocation. PMID:23630478
Experimental and analytic studies of the triggered lightning environment of the F106B
NASA Technical Reports Server (NTRS)
Rudolph, Terence; Easterbrook, Calvin C.; Ng, Poh H.; Haupt, Robert W.; Perala, Rodney A.
1987-01-01
The triggered lightning environment of the F106B aircraft is investigated. Scale modeling of the F106B with a metallized model was done to measure electric field enhancement factors on the aircraft and on canonically shaped conducting objects. These are then compared to numerically determined quantities. Detailed numerical modeling is done of the development of the triggered lightning channel. This is done using nonlinear air chemistry models to model a variety of physical phenomena which occur in a triggered lightning event. The effect of a triggered lightning strike on internal wires in the F106B is investigated using finite difference models and transmission line models to calculate the electromagnetic coupling of lightning currents through seams and joints of the aircraft to internal cables. Time domain waveforms are computed and compared to measured waveforms. The effect of thunderstorm particles on the initial triggering of a lightning strike is investigated. The electric field levels needed to cause air breakdown in the presence and absence of thunderstorm particles are calculated. This is done as a function of the size, shape, and density of the particles.
Are triggering rates of labquakes universal? Inferring triggering rates from incomplete information
NASA Astrophysics Data System (ADS)
Baró, Jordi; Davidsen, Jörn
2017-12-01
The acoustic emission activity associated with recent rock fracture experiments under different conditions has indicated that some features of event-event triggering are independent of the details of the experiment and the materials used and are often even indistinguishable from tectonic earthquakes. While the event-event triggering rates or aftershock rates behave pretty much identical for all rock fracture experiments at short times, this is not the case for later times. Here, we discuss how these differences can be a consequence of the aftershock identification method used and show that the true aftershock rates might have two distinct regimes. Specifically, tests on a modified Epidemic-Type Aftershock Sequence model show that the model rates cannot be correctly inferred at late times based on temporal information only if the activity rates or the branching ratio are high. We also discuss both the effect of the two distinct regimes in the aftershock rates and the effect of the background rate on the inter-event time distribution. Our findings should be applicable for inferring event-event triggering rates for many other types of triggering and branching processes as well.
[Manual trigger point therapy of shoulder pain : Randomized controlled study of effectiveness].
Sohns, S; Schnieder, K; Licht, G; von Piekartz, H
2016-12-01
Although chronic shoulder pain is highly prevalent and myofascial trigger points (mTrP) are thought to be found in the majority of patients with shoulder complaints, the influence on the pain mechanism remains unclear. There are only very few controlled clinical studies on the effects of manual trigger point compression therapy. This randomized controlled trial (RCT) compared the short-term effects of manual trigger point compression therapy (n = 6) with manual sham therapy (n = 6) in patients with unilateral shoulder pain due to myofascial syndrome (MFS). The measurement data were collected before and after two sessions of therapy. Pressure pain thresholds (PPT) of mTrP and symmetrically located points on the asymptomatic side were measured together with neutral points in order to detect a potential unilateral or generalized hyperalgesia. Additionally, the pain was assessed on a visual analog scale (VAS) at rest and during movement and the neck disability index (NDI) and disabilities of the arm, shoulder and hand (DASH) questionnaires were also completed and evaluated. Both treatment modalities led to a significant improvement; however, the manual trigger point compression therapy was significantly more effective in comparison to sham therapy, as measured by different parameters. The significant improvement of PPT values in the interventional group even at sites that were not directly treated, indicates central mechanisms in pain threshold modulation induced by manual compression therapy. The weaker but still measurable effects of sham therapy might be explained by the sham modality being a hands on technique or by sufficient stimulation of the trigger point region during the diagnostics and PPT measurements.
A single chip 2 Gbit/s clock recovery subsystem for digital communications
NASA Astrophysics Data System (ADS)
Hickling, Ronald M.
A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.
[Therapy of chronic urticaria and recurrent Quincke edema].
Kündig, T M
2001-05-01
A rational and differential therapy of chronic urticaria and relapsing angioedema must be based on a precise classification of the disease. The general management as well as the specific therapy will have to consider the various trigger factors involved, the differences in the response rates to antiallergic drugs and the different prognoses of the urticaria subforms. Therefore this article will first briefly describe the most frequent subforms of urticaria and relapsing angioedema, and then discuss their management and treatment.
Heavy Flavour and Quarkonia production at LHCb
NASA Astrophysics Data System (ADS)
Müller, Katharina;
2017-07-01
The LHCb detector, with its excellent momentum resolution and flexible trigger strategy, is ideally suited for measuring heavy quark and quarkonia production properties. Recent LHCb measurements of inclusive and differential cross-sections of the production of J/ψ and ϒ resonances, as well as charm, bottom and top quarks, in pp collisions at different centre-of-mass energies are presented. Finally, results on the associated production of ϒ and open charm hadrons and the exclusive production of charmonium are discussed.
ERIC Educational Resources Information Center
Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald
2017-01-01
High-frequency stimulation of the medial perforant path triggers robust phosphorylation of ribosomal protein S6 (rpS6) in activated dendritic domains and granule cell bodies. Here we dissect the signaling pathways responsible for synaptically driven rpS6 phosphorylation in the dentate gyrus using pharmacological agents to inhibit PI3-kinase/mTOR…
The distinguishing motor features of cataplexy: a study from video-recorded attacks.
Pizza, Fabio; Antelmi, Elena; Vandi, Stefano; Meletti, Stefano; Erro, Roberto; Baumann, Christian R; Bhatia, Kailash P; Dauvilliers, Yves; Edwards, Mark J; Iranzo, Alex; Overeem, Sebastiaan; Tinazzi, Michele; Liguori, Rocco; Plazzi, Giuseppe
2018-05-01
To describe the motor pattern of cataplexy and to determine its phenomenological differences from pseudocataplexy in the differential diagnosis of episodic falls. We selected 30 video-recorded cataplexy and 21 pseudocataplexy attacks in 17 and 10 patients evaluated for suspected narcolepsy and with final diagnosis of narcolepsy type 1 and conversion disorder, respectively, together with self-reported attacks features, and asked expert neurologists to blindly evaluate the motor features of the attacks. Video documented and self-reported attack features of cataplexy and pseudocataplexy were contrasted. Video-recorded cataplexy can be positively differentiated from pseudocataplexy by the occurrence of facial hypotonia (ptosis, mouth opening, tongue protrusion) intermingled by jerks and grimaces abruptly interrupting laughter behavior (i.e. smile, facial expression) and postural control (head drops, trunk fall) under clear emotional trigger. Facial involvement is present in both partial and generalized cataplexy. Conversely, generalized pseudocataplexy is associated with persistence of deep tendon reflexes during the attack. Self-reported features confirmed the important role of positive emotions (laughter, telling a joke) in triggering the attacks, as well as the more frequent occurrence of partial body involvement in cataplexy compared with pseudocataplexy. Cataplexy is characterized by abrupt facial involvement during laughter behavior. Video recording of suspected cataplexy attacks allows the identification of positive clinical signs useful for diagnosis and, possibly in the future, for severity assessment.
Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells.
Escrivá, L; Jennen, D; Caiment, F; Manyes, L
2018-03-01
Beauvericin (BEA), an ionophoric cyclic hexadepsipeptide mycotoxin, is able to increase oxidative stress by altering membrane ion permeability and uncoupling oxidative phosphorylation. A toxicogenomic study was performed to investigate gene expression changes triggered by BEA exposure (1.5, 3 and 5 μM; 24 h) in Jurkat cells through RNA-sequencing and differential gene expression analysis. Perturbed gene expression was observed in a concentration dependent manner, with 43 differentially expressed genes (DEGs) overlapped in the three studied concentrations. Gene ontology (GO) analysis showed several biological processes related to electron transport chain, oxidative phosphorylation, and cellular respiration significantly altered. Molecular functions linked to mitochondrial respiratory chain and oxidoreductase activity were over-represented (q-value < 0.01). Pathway analysis revealed oxidative phosphorylation and electron transport chain as the most significantly altered pathways in all studied doses (z-score > 1.96; adj p-value < 0.05). 77 genes involved in the respiratory chain were significantly down-regulated at least at one dose. Moreover, 21 genes related to apoptosis and programmed cell death, and 12 genes related to caspase activity were significantly altered, mainly affecting initiator caspases 8, 9 and 10. The results demonstrated BEA-induced mitochondrial damage affecting the respiratory chain, and pointing to apoptosis through the caspase cascade in human lymphoblastic T cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Rauch, Cyril; Loughna, Paul T
2005-01-01
The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin. Copyright (c) 2005 John Wiley & Sons, Ltd.
Protti, D A; Uchitel, O D
1997-08-01
The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.
Nyamsuren, Enkhbold; Taatgen, Niels A
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.
The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes
Nyamsuren, Enkhbold; Taatgen, Niels A.
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415
Exercise versus Nonexercise Activity: E-diaries Unravel Distinct Effects on Mood.
Reichert, Markus; Tost, Heike; Reinhard, Iris; Schlotz, Wolff; Zipf, Alexander; Salize, Hans-Joachim; Meyer-Lindenberg, Andreas; Ebner-Priemer, Ulrich W
2017-04-01
The association between physical activity and mood is of major importance to increase physical activity as a prevention strategy for noncommunicable diseases and to improve mental health. Unfortunately, existing studies examining how physical activity and mood wax and wane within persons over time in everyday life do show ambiguous findings. Taking a closer look at these studies reveals that the aggregation levels differ tremendously. Whereas mood is conceptualized as a three-dimensional construct, physical activity is treated as a global construct not taking into account its distinct components like exercise (such as jogging) and nonexercise activity (NEA; such as climbing stairs). To overcome these limitations, we conducted an ambulatory assessment study on the everyday life of 106 adults over 7 d continuously measuring NEA via accelerometers and repeatedly querying for mood in real time via GPS-triggered e-diaries. We used multilevel modeling to derive differential within-subject effects of exercise versus NEA on mood and to conduct analyses on the temporal course of effects. Analyses revealed that exercise increased valence (beta = 0.023; P < 0.05) and calmness (beta = 0.022; P < 0.05). A tendency of decreasing energetic arousal (beta = -0.029) lacked significance. NEA, parameterized as 15-min episodes of physical activity intensity in everyday life, increased energetic arousal (beta = 0.135; P < 0.001) and decreased calmness (stand. beta = -0.080; P < 0.001). A tendency of increasing valence (beta = 0.014) lacked significance. Using longer time intervals for NEA revealed similar findings, thus confirming our findings. Exercise and NEA differed regarding their within-subject effects on mood, whereas exercise increased valence and calmness, NEA increased energetic arousal and decreased calmness. Therefore, it appears necessary to clearly differentiate between exercise and NEA regarding their within-subject effects on mood dimensions in both research and treatment.
Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro
2017-07-01
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhuang, J.; Vere-Jones, D.; Ogata, Y.; Christophersen, A.; Savage, M. K.; Jackson, D. D.
2008-12-01
In this study we investigate the foreshock probabilities calculated from earthquake catalogs from Japan, Southern California and New Zealand. Unlike conventional studies on foreshocks, we use a probability-based declustering method to separate each catalog into stochastic versions of family trees, such that each event is classified as either having been triggered by a preceding event, or being a spontaneous event. The probabilities are determined from parameters that provide the best fit of the real catalogue using a space- time epidemic-type aftershock sequence (ETAS) model. The model assumes that background and triggered earthquakes have the same magnitude dependent triggering capability. A foreshock here is defined as a spontaneous event that has one or more larger descendants, and a triggered foreshock is a triggered event that has one or more larger descendants. The proportion of foreshocks in spontaneous events of each catalog is found to be lower than the proportion of triggered foreshocks in triggered events. One possibility is that this is due to different triggering productivity in spontaneous versus triggered events, i.e., a triggered event triggers more children than a spontaneous events of the same magnitude. To understand what causes the above differences between spontaneous and triggered events, we apply the same procedures to several synthetic catalogs simulated by using different models. The first simulation is done by using the ETAS model with parameters and spontaneous rate fitted from the JMA catalog. The second synthetic catalog is simulated by using an adjusted ETAS model that takes into account the triggering effect from events lower than the magnitude. That is, we simulated the catalog with a low magnitude threshold with the original ETAS model, and then we remove the events smaller than a higher magnitude threshold. The third model for simulation assumes that different triggering behaviors exist between spontaneous event and triggered events. We repeat the fitting and reconstruction procedures to all those simulated catalogs. The reconstruction results for the first synthetic catalog do not show the difference between spontaneous events and triggered event or the differences in foreshock probabilities. On the other hand, results from the synthetic catalogs simulated with the second and the third models clearly reconstruct such differences. In summary our results implies that one of the causes of such differences may be neglecting the triggering effort from events smaller than the cut-off magnitude or magnitude errors. For the objective of forecasting seismicity, we can use a clustering model in which spontaneous events trigger child events in a different way from triggered events to avoid over-predicting earthquake risks with foreshocks. To understand the physical implication of this study, we need further careful studies to compare the real seismicity and the adjusted ETAS model, which takes the triggering effect from events below the cut-off magnitude into account.
Relative reward effects on operant behavior: Incentive contrast, induction and variety effects
Webber, E.S.; Chambers, N. E.; Kostek, J.A.; Mankin, D.E; Cromwell, H.C.
2015-01-01
Comparing different rewards automatically produces dynamic relative outcome effects on behavior. Each new outcome exposure is to an updated version evaluated relative to alternatives. Relative reward effects include incentive contrast, positive induction and variety effects. The present study utilized a novel behavioral design to examine relative reward effects on a chain of operant behavior using auditory cues. Incentive contrast is the most often examined effect and focuses on increases or decreases in behavioral performance after value upshifts (positive) or downshifts (negative) relative to another outcome. We examined the impact of comparing two reward outcomes in a repeated measures design with three sessions: a single outcome and a mixed outcome and a final single outcome session. Relative reward effects should be apparent when comparing trials for the identical outcome between the single and mixed session types. An auditory cue triggered a series of operant responses (nosepoke-leverpress-food retrieval), and we measured possible contrast effects for different reward magnitude combinations. We found positive contrast for trials with the greatest magnitude differential but positive induction or variety effects in other combinations. This behavioral task could be useful for analyzing environmental or neurobiological factors involved in reward comparisons, decision-making and choice during instrumental, goal-directed action. PMID:25979604
NASA Astrophysics Data System (ADS)
Clare, Michael; Peter, Talling; James, Hunt
2014-05-01
A geologically short-lived (~170kyr) episode of global warming occurred at ~55Ma, termed the Initial Eocene Thermal Maximum (IETM). Global temperatures rose by up to 8oC over only ~10kyr and a massive perturbation of the global carbon cycle occurred; creating a negative carbon isotopic (~-4% δ13C) excursion in sedimentary records. This interval has relevance to study of future climate change and its influence on geohazards including submarine landslides and turbidity currents. We analyse the recurrence frequency of turbidity currents, potentially initiated from large-volume slope failures. The study focuses on two sedimentary intervals that straddle the IETM and we discuss implications for turbidity current triggering. We present the results of statistical analyses (regression, generalised linear model, and proportional hazards model) for extensive turbidite records from an outcrop at Zumaia in NE Spain (N=285; 54.0 to 56.5 Ma) and based on ODP site 1068 on the Iberian Margin (N=1571; 48.2 to 67.6 Ma). The sedimentary sequences provide clear differentiation between hemipelagic and turbiditic mud with only negligible evidence of erosion. We infer dates for turbidites by converting hemipelagic bed thicknesses to time using interval-averaged accumulation rates. Multi-proxy dating techniques provide good age constraint. The background trend for the Zumaia record shows a near-exponential distribution of turbidite recurrence intervals, while the Iberian Margin shows a log-normal response. This is interpreted to be related to regional time-independence (exponential) and the effects of additive processes (log-normal). We discuss how a log-normal response may actually be generated over geological timescales from multiple shorter periods of random turbidite recurrence. The IETM interval shows a dramatic departure from both these background trends, however. This is marked by prolonged hiatuses (0.1 and 0.6 Myr duration) in turbidity current activity in contrast to the arithmetic mean recurrence, λ, for the full records (λ=0.007 and 0.0125 Myr). This period of inactivity is coincident with a dramatic carbon isotopic excursion (i.e. warmest part of the IETM) and heavily skews statistical analyses for both records. Dramatic global warming appears to exert a strong control on inhibiting turbidity current activity; whereas the effects of sea level change are not shown to be statistically significant. Rapid global warming is often implicated as a potential landslide trigger, due to dissociation of gas hydrates in response to elevated ocean temperatures. Other studies have suggested that intense global warming may actually be attributed to the atmospheric release of gas hydrates following catastrophic failure of large parts of a continental slope. Either way, a greater intensity of landslide and resultant turbidity current activity would be expected during the IETM; however, our findings are to the contrary. We offer some explanations in relation to potential triggers. Our work suggests that previous rapid global warming at the IETM did not trigger more frequent turbidity currents. This has direct relevance to future assessments relating to landslide-triggered tsunami hazard, and breakage of subsea cables by turbidity currents.
Developing a Taxonomy of Dark Triad Triggers at Work – A Grounded Theory Study Protocol
Nübold, Annika; Bader, Josef; Bozin, Nera; Depala, Romil; Eidast, Helena; Johannessen, Elisabeth A.; Prinz, Gerhard
2017-01-01
In past years, research and corporate scandals have evidenced the destructive effects of the dark triad at work, consisting of narcissism (extreme self-centeredness), psychopathy (lack of empathy and remorse) and Machiavellianism (a sense of duplicity and manipulativeness). The dark triad dimensions have typically been conceptualized as stable personality traits, ignoring the accumulating evidence that momentary personality expressions – personality states – may change due to the characteristics of the situation. The present research protocol describes a qualitative study that aims to identify triggers of dark triad states at work by following a grounded theory approach using semi-structured interviews. By building a comprehensive categorization of dark triad triggers at work scholars may study these triggers in a parsimonious and structured way and organizations may derive more effective interventions to buffer or prevent the detrimental effects of dark personality at work. PMID:28326048
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Hong; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012; Wu, Xinyi, E-mail: xywu8868@163.com
2012-04-13
Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cellsmore » has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-{kappa}B activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.« less
A stochastic hybrid systems based framework for modeling dependent failure processes
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313
A stochastic hybrid systems based framework for modeling dependent failure processes.
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.
QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon
2010-11-20
Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less
Bozec, Aline; Hannemann, Nicole
2016-01-01
Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes. PMID:27284940
de Medina, Philippe; Paillasse, Michael R; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D; Silvente-Poirot, Sandrine; Poirot, Marc
2013-01-01
We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.
PMA Induces SnoN Proteolysis and CD61 Expression through an Autocrine Mechanism
Li, Chonghua; Peart, Natoya; Xuan, Zhenyu; Lewis, Dorothy E; Xia, Yang; Jin, Jianping
2014-01-01
Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APCCdh1 ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation. PMID:24637302
Permanently enhanced dynamic triggering probabilities as evidenced by two M ≥ 7.5 earthquakes
Gomberg, Joan S.
2013-01-01
The 2012 M7.7 Haida Gwaii earthquake radiated waves that likely dynamically triggered the 2013M7.5 Craig earthquake, setting two precedents. First, the triggered earthquake is the largest dynamically triggered shear failure event documented to date. Second, the events highlight a connection between geologic structure, sedimentary troughs that act as waveguides, and triggering probability. The Haida Gwaii earthquake excited extraordinarily large waves within and beyond the Queen Charlotte Trough, which propagated well into mainland Alaska and likely triggering the Craig earthquake along the way. Previously, focusing and associated dynamic triggering have been attributed to unpredictable source effects. This case suggests that elevated dynamic triggering probabilities may exist along the many structures where sedimentary troughs overlie major faults, such as subduction zones’ accretionary prisms and transform faults’ axial valleys. Although data are sparse, I find no evidence of accelerating seismic activity in the vicinity of the Craig rupture between it and the Haida Gwaii earthquake.
Influence of central set on anticipatory and triggered grip-force adjustments
NASA Technical Reports Server (NTRS)
Winstein, C. J.; Horak, F. B.; Fisher, B. E.; Peterson, B. W. (Principal Investigator)
2000-01-01
The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Goo, Hyun Woo; Allmendinger, Thomas
2017-01-01
Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. In total, 15 children (median age 19 months, range 6 months-8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children.
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.
2000-01-01
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628
Steck, Eric; Fischer, Jennifer; Lorenz, Helga; Gotterbarm, Tobias; Jung, Martin; Richter, Wiltrud
2009-09-01
Mesenchymal stem cells (MSCs) are promising for the treatment of articular cartilage defects; however, common protocols for in vitro chondrogenesis induce typical features of hypertrophic chondrocytes reminiscent of endochondral bone formation. Aim of the study was to compare chondrogenic differentiation of MSCs in vitro and in vivo in experimental full-thickness cartilage defects, asking whether MSCs can differentiate into collagen type X-negative chondrocytes in an orthotopic environment. Cartilage defects in knees of minipigs were covered with a collagen type I/III membrane, and half of them received transplantation of expanded autologous MSCs. At 1, 3, and 8 weeks, morphological and molecular aspects of repair were assessed. The orthotopic environment triggered a spatially organized repair tissue with upper fibrous, intermediate chondrogenic, and low layer hypertrophic differentiation of cells and a trend to more safranin-O and collagen type II-positive samples after MSC transplantation at 8 weeks. Compared to in vitro chondrogenesis, significant lower COL10A1/COL2A1 and MMP13/COL2A1 ratios were obtained for in vivo differentiation. This indicates that, as opposed to in vitro chondrogenic induction of MSCs, the in vivo signaling molecules and biomechanical stimuli provide an appropriate environment for progenitor cells to differentiate into collagen type X-negative chondrocytes. Thus, until better in vitro induction protocols become available for chondrogenesis of MSCs, their predifferentiation before transplantation may be unfavorable.
[Malassezia yeasts and their significance in dermatology].
Hort, W; Nilles, M; Mayser, P
2006-07-01
Yeasts of the genus Malassezia belong to the normal microflora of the human skin. In addition they are known to cause a variety of skin diseases; the most frequent of which is pityriasis versicolor. Malassezia yeasts are also thought to be associated with seborrheic dermatitis, dandruff and Malassezia folliculitis. Recently the significance of Malassezia yeasts as a trigger factor for atopic dermatitis of the head and neck region has been pointed out. The role of the Malassezia yeasts in these different diseases has been controversial in the past and remains an issue because of difficulties in isolation, culture and differentiation of the organism. Thanks to molecular techniques, 10 species can actually be differentiated. The article presents the different Malassezia-associated diseases, their clinical picture, diagnosis and appropriate therapy. In addition the speciation of Malassezia is reviewed.
Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury
Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling
2015-01-01
Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840
The role of the transcription factor Ets1 in lupus and other autoimmune diseases
Garrett-Sinha, Lee Ann; Kearly, Alyssa; Satterthwaite, Anne B.
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B and T cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to development of SLE have been extensively studied in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here we review the genetic, biochemical and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE. PMID:28845756
Anosmia: Differential diagnosis, evaluation, and management.
Scangas, George A; Bleier, Benjamin S
2017-01-01
The ability to scrutinize our surroundings remains heavily dependent on the sense of smell. From the ability to detect dangerous situations such as fires to the recollection of a fond memory triggered by an odor, the advantages of an intact olfactory system cannot be overstated. Outcomes studies have highlighted the profound negative impact of anosmia and parosmia on the overall quality of life. The National Institute on Deafness and Other Communication Disorders estimates that ∼1.4% of the United States population experiences chronic olfactory dysfunction and smell loss. Efforts have focused on improving both the diagnosis of olfactory dysfunction through olfactory testing and improved reporting of treatment outcomes of olfactory training. The purpose of this article was to review the differential diagnosis, workup, and current treatment strategies of anosmia and smell disorders.
RXR is an essential component of the oncogenic PML/RARA complex in vivo.
Zhu, Jun; Nasr, Rihab; Pérès, Laurent; Riaucoux-Lormière, Florence; Honoré, Nicole; Berthier, Caroline; Kamashev, Dmitrii; Zhou, Jun; Vitoux, Dominique; Lavau, Catherine; de Thé, Hugues
2007-07-01
Although PML-enforced RARA homodimerization allows PML/RARA to bind DNA independently of its coreceptor RXR, the latter was identified within the PML/RARA complex. We demonstrate that a PML/RARA mutant defective for RXR binding fails to trigger APL development in transgenic mice, although it still transforms primary hematopoietic progenitors ex vivo. RXR enhances PML/RARA binding to DNA and is required for rexinoid-induced APL differentiation. In RA-treated PML/RARA-transformed cells, the absence of RXR binding results in monocytic, rather than granulocytic, differentiation. PML/RARA enhances posttranslational modifications of RXRA, including its sumoylation, suggesting that PML-bound sumoylation enzymes target RXRA and possibly other PML/RARA-bound chromatin proteins, further contributing to deregulated transcription. Thus, unexpectedly, RXR contributes to several critical aspects of in vivo transformation.
Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roura-Ferrer, Meritxell; Sole, Laura; Martinez-Marmol, Ramon
Voltage-dependent K{sup +} channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G{sub 1}-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletalmore » muscle cell proliferation.« less
Curcumin is a potent modulator of microglial gene expression and migration
2011-01-01
Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders. PMID:21958395
Yan, Jianyun; Stringer, Sally E; Hamilton, Andrew; Charlton-Menys, Valentine; Götting, Christian; Müller, Benjamin; Aeschlimann, Daniel; Alexander, M Yvonne
2011-03-01
Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-β pathway, because it was attenuated by blocking of TGF-β receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-β signaling and mineralization of VSMCs in vitro.
Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation
2017-01-01
Gelatin–hyaluronic acid (Gel–HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies. PMID:29214232
NASA Astrophysics Data System (ADS)
Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing
2017-01-01
Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi.
Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation
Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo
2015-01-01
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696
Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil
2013-01-01
Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827
Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California
NASA Astrophysics Data System (ADS)
Xue, L.; Burgmann, R.; Shelly, D. R.
2017-12-01
The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.
Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus
Bekeredjian-Ding, Isabelle; Greil, Johann; Ammann, Sandra; Parcina, Marijo
2014-01-01
Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination. PMID:24904586
Evolutionary inevitability of sexual antagonism.
Connallon, Tim; Clark, Andrew G
2014-02-07
Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.
Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.
Kapranov, N M; Davydova, Yu O; Gal'tseva, I V; Petinati, N A; Bakshinskaitė, M V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G
2018-03-01
We studied the effect of autologous and allogeneic lymphocytes on multipotent mesenchymal stromal cells in co-culture. It is shown that changes in multipotent mesenchymal stromal cells and in lymphocytes did not depend on the source of lymphocytes. Contact with lymphocytes triggers expression of HLA-DR molecules on multipotent mesenchymal stromal cells and these cells lose their immune privilege. In multipotent mesenchymal stromal cells, the relative level of expression of factors involved in immunomodulation (IDO1, PTGES, and IL-6) and expression of adhesion molecule ICAM1 increased, while expression of genes involved in the differentiation of multipotent mesenchymal stromal cells remained unchanged. Priming of multipotent mesenchymal stromal cells with IFN did not affect these changes. In turn, lymphocytes underwent activation, expression of HLA-DR increased, subpopulation composition of lymphocytes changed towards the increase in the content of naïve T cells. These findings are important for cell therapy.
Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina
Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.
2014-01-01
Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544
Somers, Keith M; Kilgour, Bruce W; Munkittrick, Kelly R; Arciszewski, Tim J
2018-05-16
Environmental effects monitoring (EEM) has been traditionally used to evaluate the effects of existing facilities discharging liquid effluents into natural receiving waters in Canada. EEM also has the potential to provide feedback to an ongoing project in an adaptive management context, and can inform the design of future projects. EEM, consequently, can and should also be used to test the predictions of effects related to new projects. Despite EEM's potential for widespread applicability, challenges related to the effective implementation of EEM include the use of appropriate study designs, as well as to the adoption of tiers for increasing or decreasing monitoring intensity. Herein we describe a template for designing and implementing a six-tiered EEM program that utilizes information from the project-planning and pre-development baseline data collection stages to build on forecasts from the initial environmental impact assessment project-design stage, and feeds into an adaptive management process. Movement between the six EEM tiers is based on the exceedance of Baseline Monitoring Triggers, Forecast Triggers and Management Triggers at various stages in the EEM process. To distinguish these types of triggers, we review the historical development of numeric and narrative triggers as applied to chemical (water and sediment) and biological (plankton, benthos, fish) endpoints. We also provide an overview of historical study design issues and discuss how the six EEM tiers and associated triggers influence the temporal-spatial experimental design options and how the information gained through EEM could be used in an adaptive management context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The quantal theory of how the immune system discriminates between "self and non-self"
Smith, Kendall A
2004-12-17
In the past 50 years, immunologists have accumulated an amazing amount of information as to how the immune system functions. However, one of the most fundamental aspects of immunity, how the immune system discriminates between self vs. non-self, still remains an enigma. Any attempt to explain this most intriguing and fundamental characteristic must account for this decision at the level of the whole immune system, but as well, at the level of the individual cells making up the immune system. Moreover, it must provide for a molecular explanation as to how and why the cells behave as they do. The "Quantal Theory", proposed herein, is based upon the "Clonal Selection Theory", first proposed by Sir McFarland Burnet in 1955, in which he explained the remarkable specificity as well as diversity of recognition of everything foreign in the environment. The "Quantal Theory" is built upon Burnet's premise that after antigen selection of cell clones, a proliferative expansion of the selected cells ensues. Furthermore, it is derived from experiments which indicate that the proliferation of antigen-selected cell clones is determined by a quantal, "all-or-none", decision promulgated by a critical number of cellular receptors triggered by the T Cell Growth Factor (TCGF), interleukin 2 (IL2). An extraordinary number of experiments reported especially in the past 20 years, and detailed herein, indicate that the T cell Antigen Receptor (TCR) behaves similarly, and also that there are several critical numbers of triggered TCRs that determine different fates of the T cells. Moreover, the fates of the cells appear ultimately to be determined by the TCR triggering of the IL2 and IL2 receptor (IL2R) genes, which are also expressed in a very quantal fashion. The "Quantal Theory" states that the fundamental decisions of the T cell immune system are dependent upon the cells receiving a critical number of triggered TCRs and IL2Rs and that the cells respond in an all-or-none fashion. The "Quantal Theory" accounts fully for the development of T cells in the thymus, and such fundamental cellular fates as both "positive" and "negative" selection, as well as the decision to differentiate into a "Regulatory T cell" (T-Reg). In the periphery, the "Quantal Theory" accounts for the decision to proliferate or not in response to the presence of an antigen, either non-self or self, or to differentiate into a T-Reg. Since the immune system discriminates between self and non-self antigens by the accumulated number of triggered TCRs and IL2Rs, therapeutic manipulation of the determinants of these quantal decisions should permit new approaches to either enhance or dampen antigen-specific immune responses.
Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices
NASA Astrophysics Data System (ADS)
Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori
2013-04-01
Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.
A Cook, A Cardinal, His Priests, and the Press: Deviance as a Trigger for Intermedia Agenda Setting.
ERIC Educational Resources Information Center
Breen, Michael J.
1997-01-01
Uses content analysis to examine the changes in trends in the aftermath of deviant acts by individual members of the clergy, given that such acts are "triggering events" for further negative stories. Finds strong media agenda-setting effects of the negative triggering events on subsequent coverage of the clergy in general. (SR)
Launching Payloads Into Orbit at Relatively Low Cost
NASA Technical Reports Server (NTRS)
Wilcox, Brian
2007-01-01
A report proposes the development of a system for launching payloads into orbit at about one-fifth the cost per unit payload weight of current systems. The PILOT system was a solid-fuel, aerodynamically spun and spin-stabilized, five-stage rocket with onboard controls including little more than an optoelectronic horizon sensor and a timer for triggering the second and fifth stages, respectively. The proposal calls for four improvements over the PILOT system to enable control of orbital parameters: (1) the aerodynamic tipover of the rocket at the top of the atmosphere could be modeled as a nonuniform gyroscopic precession and could be controlled by selection of the initial rocket configuration and launch conditions; (2) the attitude of the rocket at the top of the first-stage trajectory could be measured by use of radar tracking or differential Global Positioning System receivers to determine when to trigger the second stage; (3) the final-stage engines could be configured around the payload to enhance spin stabilization during a half-orbit coast up to apoapsis where the final stage would be triggered; and (4) the final payload stage could be equipped with a "beltline" of small thrusters for correcting small errors in the trajectory as measured by an off-board tracking subsystem.