Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR
NASA Astrophysics Data System (ADS)
Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos
2013-08-01
This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).
NASA Astrophysics Data System (ADS)
Galve, J. P.; Castañeda, C.; Gutiérrez, F.
2015-11-01
Subsidence was measured for the first time on railway tracks in the central sector of Ebro Valley (NE Spain) using Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques. This area is affected by evaporite karst and the analysed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements is the Madrid-Barcelona high-speed line, a form of transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicates that this line shows dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). Significant sinkhole-related subsidence was also measured by DInSAR techniques on the Castejón-Zaragoza conventional railway line. This study demonstrates that DInSAR velocity maps, coupled with detailed geomorphological surveys, may help in the identification of the railway track sections that are affected by active subsidence.
Investigation of Potential Landsubsidence using GNSS CORS UDIP and DinSAR, Sayung, Demak, Indonesia
NASA Astrophysics Data System (ADS)
Yuwono, B. D.; Prasetyo, Y.; Islama, L. J. F.
2018-02-01
The coastal flooding induced by land subsidence is one of major social problems in the coastal area of Central Java, especially North Demak. Recent advance technology Global Navigation Satellite System Continuously Operating System (GNSS) and Differential Synthetic Aperture Radar Interferometry ( DInSAR) is already increased our capability to identify of land subsidence processes. DInSAR required not only availability of good quality input data but also rigorous approaches. In this research we used DInSAR analysis with focusing on landsubsidence phenomena. Tests were done with geodetic GPS survey with GNSS CORS UDIP as base station. Performance assessment of development method was conducted on study area affected by land subsidence. The results of this study indicate land subsidence spreads in study area with varying degrees of subsidence.
The use of the DInSAR method in the monitoring of road damage caused by mining activities
NASA Astrophysics Data System (ADS)
Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej
2018-04-01
This paper reviews existing remote sensing methods of road damage detection and demonstrates the possibility of using DInSAR (Differential Interferometry SAR) method to identify endangered road sections. In this study two radar images collected by Sentinel-1 satellite have been used. Images were acquired with 24 days interval in 2015. The analysis allowed to estimate the scale of the post-mining deformation that occurred in Upper Silesia and to indicate areas where road infrastructure is particularly vulnerable to damage.
NASA Astrophysics Data System (ADS)
Ghulam, A.
2011-12-01
DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation
NASA Astrophysics Data System (ADS)
Zhang, P.; Zhao, Z.
2018-04-01
In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.
NASA Astrophysics Data System (ADS)
Bonforte, A.; Casu, F.; de Martino, P.; Guglielmino, F.; Lanari, R.; Manzo, M.; Obrizzo, F.; Puglisi, G.; Sansosti, E.; Tammaro, U.
2009-04-01
Differential Synthetic Aperture Radar Interferometry (DInSAR) is a methodology able to measure ground deformation rates and time series of relatively large areas. Several different approaches have been developed over the past few years: they all have in common the capability to measure deformations on a relatively wide area (say 100 km by 100 km) with a high density of the measuring points. For these reasons, DInSAR represents a very useful tool for investigating geophysical phenomena, with particular reference to volcanic areas. As for any measuring technique, the knowledge of the attainable accuracy is of fundamental importance. In the case of DInSAR technology, we have several error sources, such as orbital inaccuracies, phase unwrapping errors, atmospheric artifacts, effects related to the reference point selection, thus making very difficult to define a theoretical error model. A practical way to obtain assess the accuracy is to compare DInSAR results with independent measurements, such as GPS or levelling. Here we present an in-deep comparison between the deformation measurement obtained by exploiting the DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm and by continuous GPS stations. The selected volcanic test-sites are Etna, Vesuvio and Campi Flegrei, in Italy. From continuous GPS data, solutions are computed at the same days SAR data are acquired for direct comparison. Moreover, three dimensional GPS displacement vectors are projected along the radar line of sight of both ascending and descending acquisition orbits. GPS data are then compared with the coherent DInSAR pixels closest to the GPS station. Relevant statistics of the differences between the two measurements are computed and correlated to some scene parameter that may affect DInSAR accuracy (altitude, terrain slope, etc.).
Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data
Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio
2013-01-01
Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569
NASA Astrophysics Data System (ADS)
Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.
2016-12-01
Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory turbulences is analyzed and several possible solutions are proposed to improve the airborne SAR performance. In the long run, an improved airborne SAR system will open avenues for differential interferometry to be used in scientific studies and commercial applications previously prohibited by orbital constraints of spaceborne SAR.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.
2014-10-01
We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.
Analysing surface deformation in Surabaya from sentinel-1A data using DInSAR method
NASA Astrophysics Data System (ADS)
Anjasmara, Ira Mutiara; Yusfania, Meiriska; Kurniawan, Akbar; Resmi, Awalina L. C.; Kurniawan, Roni
2017-07-01
The rapid population growth and increasing industrial space in the urban area of Surabaya have caused an excessive ground water use and load of infrastructures. This condition triggers surface deformation, especially the vertical deformation (subsidence or uplift), in Surabaya and its surroundings. The presence of dynamic processes of the Earth and geological form of Surabaya area can also fasten the rate of the surface deformation. In this research, Differential Interferometry Synthetic Aperture Radar (DInSAR) method is chosen to infer the surface deformation over Surabaya area. The DInSAR processing utilized Sentinel 1A satellite images from May 2015 to September 2016 using two-pass interferometric. Two-pass interferometric method is a method that uses two SAR imageries and Digital Elevation Model (DEM). The results from four pairs of DInSAR processing indicate the occurrence of surface deformation in the form of land subsidence and uplift based on the displacement Line of Sight (LOS) in Surabaya. The average rate of surface deformation from May 2015 to September 2016 varies from -3.52 mm/4months to +2.35 mm/4months. The subsidence mostly occurs along the coastal area. However, the result still contains errors from the processing of displacement, due to the value of coherence between the image, noise, geometric distortion of a radar signal and large baseline on image pair.
NASA Astrophysics Data System (ADS)
Beyene, F.; Knospe, S.; Busch, W.
2015-04-01
Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Dille, A.; Nobile, A.; d'Oreye, N.; Kervyn, F.; Dewitte, O.
2017-12-01
Landslides can lead to high impacts in less developed countries, particularly in some urban tropical environments where a combination of intense rainfall, active tectonics, steep topography and high population density can be found. However, the processes controlling landslides initiation and their evolution through time remains poorly understood. Here we show the relevance of the use of multi-temporal differential SAR interferometry (DInSAR) to characterize ground deformations associated to landslides in the rapidly expanding city of Bukavu (DR Congo). A series of 70 COSMO-SkyMed SAR images acquired between March 2015 and April 2016 with a mean revisiting time of 8 days were used to produce displacement rate maps and ground deformation time series using the Small Baseline Subset approach. Results show that various landslide processes of different ages, mechanisms and state of activity can be identified across Bukavu city. InSAR ground deformation maps reveal for instance the complexity of a large (1.5 km²) active slide affecting a densely inhabited slum neighbourhood and characterized by the presence of sectors moving at different rates (ranging from 10 mm/yr up to 75 mm/yr in LOS direction). The evaluation of the ground deformations captured by DInSAR through a two-step validation procedure combining Differential GPS measurements and field observations attested the reliability of the measurements as well as the capability of the technique to grasp the deformation pattern affecting this complex tropical-urban environment. However, longer time series will be needed to infer landside response to climate, seismic and anthropogenic activities.
NASA Astrophysics Data System (ADS)
Notti, Davide; Calò, Fabiana; Cigna, Francesca; Manunta, Michele; Herrera, Gerardo; Berti, Matteo; Meisina, Claudia; Tapete, Deodato; Zucca, Francesco
2015-11-01
Recent advances in multi-temporal Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) have greatly improved our capability to monitor geological processes. Ground motion studies using DInSAR require both the availability of good quality input data and rigorous approaches to exploit the retrieved Time Series (TS) at their full potential. In this work we present a methodology for DInSAR TS analysis, with particular focus on landslides and subsidence phenomena. The proposed methodology consists of three main steps: (1) pre-processing, i.e., assessment of a SAR Dataset Quality Index (SDQI) (2) post-processing, i.e., application of empirical/stochastic methods to improve the TS quality, and (3) trend analysis, i.e., comparative implementation of methodologies for automatic TS analysis. Tests were carried out on TS datasets retrieved from processing of SAR imagery acquired by different radar sensors (i.e., ERS-1/2 SAR, RADARSAT-1, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, COSMO-SkyMed) using advanced DInSAR techniques (i.e., SqueeSAR™, PSInSAR™, SPN and SBAS). The obtained values of SDQI are discussed against the technical parameters of each data stack (e.g., radar band, number of SAR scenes, temporal coverage, revisiting time), the retrieved coverage of the DInSAR results, and the constraints related to the characterization of the investigated geological processes. Empirical and stochastic approaches were used to demonstrate how the quality of the TS can be improved after the SAR processing, and examples are discussed to mitigate phase unwrapping errors, and remove regional trends, noise and anomalies. Performance assessment of recently developed methods of trend analysis (i.e., PS-Time, Deviation Index and velocity TS) was conducted on two selected study areas in Northern Italy affected by land subsidence and landslides. Results show that the automatic detection of motion trends enhances the interpretation of DInSAR data, since it provides an objective picture of the deformation behaviour recorded through TS and therefore contributes to the understanding of the on-going geological processes.
Ground subsidence information as a valuable layer in GIS analysis
NASA Astrophysics Data System (ADS)
Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej
2018-04-01
Among the technologies used to improve functioning of local governments the geographic information systems (GIS) are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR) method.
Generation of Classical DInSAR and PSI Ground Motion Maps on a Cloud Thematic Platform
NASA Astrophysics Data System (ADS)
Mora, Oscar; Ordoqui, Patrick; Romero, Laia
2016-08-01
This paper presents the experience of ALTAMIRA INFORMATION uploading InSAR (Synthetic Aperture Radar Interferometry) services in the Geohazard Exploitation Platform (GEP), supported by ESA. Two different processing chains are presented jointly with ground motion maps obtained from the cloud computing, one being DIAPASON for classical DInSAR and SPN (Stable Point Network) for PSI (Persistent Scatterer Interferometry) processing. The product obtained from DIAPASON is the interferometric phase related to ground motion (phase fringes from a SAR pair). SPN provides motion data (mean velocity and time series) on high-quality pixels from a stack of SAR images. DIAPASON is already implemented, and SPN is under development to be exploited with historical data coming from ERS-1/2 and ENVISAT satellites, and current acquisitions of SENTINEL-1 in SLC and TOPSAR modes.
NASA Astrophysics Data System (ADS)
De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.
2012-04-01
In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the results of susceptibility analysis are compared with the location of landslides occurred in the study area during the November 2010 rainfall event. In the second step, results of DInSAR analysis (displacement maps over the time) are added on the prediction analysis to build up a map containing both spatial and temporal information on landslides and, as in the previous case, the prediction is tested by using November 2010 instabilities dataset. Comparison of the two tests allows to evaluate the contribution of interferometric techniques. Finally, morphometric factors and interferometric RADAR data are combined to design a preliminary analysis scheme that provide information on possible use of DInSAR techniques in landslide hazard evaluation of a given area.
NASA Astrophysics Data System (ADS)
Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio
2017-04-01
Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded by the Euregio Science Fund.
NASA Astrophysics Data System (ADS)
Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.
2018-04-01
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.
NASA Astrophysics Data System (ADS)
Tomas, R.; Herrera, G.; Cooksley, G.; Mulas, J.
2011-04-01
SummaryThe aim of this paper is to analyze the subsidence affecting the Vega Media of the Segura River Basin, using a Persistent Scatterers Interferometry technique (PSI) named Stable Point Network (SPN). This technique is capable of estimating mean deformation velocity maps of the ground surface and displacement time series from Synthetic Aperture Radar (SAR) images. A dataset acquired between January 2004 and December 2008 from ERS-2 and ENVISAT sensors has been processed measuring maximum subsidence and uplift rates of -25.6 and 7.54 mm/year respectively for the whole area. These data have been validated against ground subsidence measurements and compared with subsidence triggering and conditioning factors by means of a Geographical Information System (GIS). The spatial analysis shows a good relationship between subsidence and piezometric level evolution, pumping wells location, river distance, geology, the Arab wall, previously proposed subsidence predictive model and soil thickness. As a consequence, the paper shows the usefulness and the potential of combining Differential SAR Interferometry (DInSAR) and spatial analysis techniques in order to improve the knowledge of this kind of phenomenon.
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.
NASA Astrophysics Data System (ADS)
Mayorga Torres, Tannia
2014-05-01
Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador (South America) 1. INTRODUCTION Monitoring landslides is a mandatory task in charge on the National Institute of Geological Research (INIGEMM) in Ecuador. It is a small country, supposedly will be faster doing monitoring, but what about its geographic characteristics? Lamentably, due to human and financial resources is not possible to put monitoring systems in unstable terrain areas. However, getting ALOS data to accessible price and using open source software to produce interferograms, could be a first step to know steep areas covered by vegetation and where mass movements are not visible. Under this statement, this study is part of the final research in a master study developed at CONAE during 2009-2011, with oral defense in August 2013. As a new technique used in Ecuador, the study processed radar data from ERS-1/2 and ALOS sensor PALSAR for getting differential interferograms, using ROI_PAC software. Stacking DInSAR is applied to get an average of displacement that indicates uplift and subsidence in the whole radar scene that covers two provinces in the Andes region. 2. PROBLEM Mass movements are present in the whole territory, independently of their magnitude and dynamic (slow or fast), they are a latent threat in winter season specially. There are registers of monitoring, such as two GPS's campaigns and artisanal extensometers, which are used to contrast with DInSAR results. However, the campaigns are shorter and extensometers are no trust on all. 3. METHODOLOGY Methodology has four phases of development: (1) Pre-processing of RAW data; (2) Processing of RAW data in ROI_PAC; (3) Post-processing for getting interferograms in units of cm per year; (4) Analysis of the results and comparison with ground truth. Sandwell & Price (1998) proposed Stacking technique to increase the fringes and decrease errors due to the atmosphere, to average several interferograms. L band penetrates deeper into vegetation cover than C band (Raucoules et al., 2007). The study processed ERS with descending orbit and ALOS with ascending orbit, due to the availability of data. Ferretti et al. (2007) said that ERS looks to the right and a slope mainly oriented to the west could have foreshortening effect in ascending orbit. Wei & Sandwell (2010) mention that ALOS in ascending orbit identifies vertical mass movements along fault systems; however, descending data has better geometry to measure mass movements. The study has fewer scenes in descending orbit. For further work, ALOS 2 will let to have more data in descending orbit. 4. CENTRAL CONCLUSIONS For mass movement having high-resolution radar is the best option; however, this data is not useful on all due to cover vegetation. Characterizing mass movements in Ecuador in necessary to put monitoring systems to avoid economic and human lost. Processing ERS and ALOS data was very useful because penetration band results were clearly identified in coherence masks. The result of Stacking DInSAR did not show clearly fringes, indeed the amount of interferograms were no enough for this technique. Researching other DInSAR techniques is necessary due to the singular characteristics of Ecuador. 5. REFERENCES Ferretti Alessandro, Monti-Guarnieri Andrea, Prati Claudio, Rocca Fabio, Massonnet Didier (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, Febrero 2007). K. Fletcher, Agencia Espacial Europea Publicaciones. ESTEC. Postbus 2009. 2200 AG Noordwijk. The Netherlands. Raucoules Daniel, Colesanti Carlo, Carnec Claudie (2007). "Use of SAR interferometry for detecting and assessing ground subsidence." C. R. Geoscience 339(289-302): 14. Sandwell David T., Price Evelyn J. (1998). "Phase gradient approach to stacking interferograms." Journal of Geophysical Research 103(N. B12): 30, 183-30, 204. Wei Meng, Sandwell David T (2010). "Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California." Geoscience and Remote Sensing 48(7): 11
NASA Astrophysics Data System (ADS)
Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.
2016-12-01
A methodology for computing surface deformation time series and mean velocity maps of large areas is presented. Our approach relies on the availability of a multi-temporal set of Synthetic Aperture Radar (SAR) data collected from ascending and descending orbits over an area of interest, and also permits to estimate the vertical and horizontal (East-West) displacement components of the Earth's surface. The adopted methodology is based on an advanced Cloud Computing implementation of the Differential SAR Interferometry (DInSAR) Parallel Small Baseline Subset (P-SBAS) processing chain which allows the unsupervised processing of large SAR data volumes, from the raw data (level-0) imagery up to the generation of DInSAR time series and maps. The presented solution, which is highly scalable, has been tested on the ascending and descending ENVISAT SAR archives, which have been acquired over a large area of Southern California (US) that extends for about 90.000 km2. Such an input dataset has been processed in parallel by exploiting 280 computing nodes of the Amazon Web Services Cloud environment. Moreover, to produce the final mean deformation velocity maps of the vertical and East-West displacement components of the whole investigated area, we took also advantage of the information available from external GPS measurements that permit to account for possible regional trends not easily detectable by DInSAR and to refer the P-SBAS measurements to an external geodetic datum. The presented results clearly demonstrate the effectiveness of the proposed approach that paves the way to the extensive use of the available ERS and ENVISAT SAR data archives. Furthermore, the proposed methodology can be particularly suitable to deal with the very huge data flow provided by the Sentinel-1 constellation, thus permitting to extend the DInSAR analyses at a nearly global scale. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.
Phase Sensitiveness to Soil Moisture in Controlled Anechoic Chamber: Measurements and First Results
NASA Astrophysics Data System (ADS)
Ben Khadhra, K.; Nolan, M.; Hounam, D.; Boerner, T.
2005-12-01
To date many radar methods and models have been reported for the estimation of soil moisture, such as the Oh-model or the Dubois model. Those models, which use only the magnitude of the backscattered signal, show results with 5 to 10 % accuracy. In the last two decades SAR Interferometry (InSAR) and differential InSAR (DInSAR), which uses the phase of the backscattered signal, has been shown to be a useful tool for the creation of Digital Elevation Models (DEMs), and temporal changes due to earthquakes, subsidence, and other ground motions. Nolan (2003) also suggested the possibility to use DINSAR penetration depth as a proxy to estimate the soil moisture. The principal is based on the relationship between the penetration depth and the permittivity, which varies as a function of soil moisture. In this paper we will present new interferometric X-band laboratory measurements, which have been carried out in the Bistatic Measurement Facility at the DLR Oberpfaffenhofen, Microwaves and Radar Institute in Germany. The bistatic geometry enables us to have interferometric pairs with different baseline and different soil moistures controlled by a TDR (Time Domain Reflectivity) system. After calibration of the measuring system using a large metal plate, the sensitivity of phase and reflectivity with regard to moisture variation and therefore the penetration depth was evaluated. The effect of the surface roughness has been also reported. Current results demonstrate a non-linear relationship between the signal phase and the soil moisture, as expected, confirming the possibility of using DInSAR to measure variations in soil moisture.
NASA Astrophysics Data System (ADS)
Rao, Xiong; Tang, Yunwei
2014-11-01
Land surface deformation evidently exists in a newly-built high-speed railway in the southeast of China. In this study, we utilize the Small BAseline Subsets (SBAS)-Differential Synthetic Aperture Radar Interferometry (DInSAR) technique to detect land surface deformation along the railway. In this work, 40 Cosmo-SkyMed satellite images were selected to analyze the spatial distribution and velocity of the deformation in study area. 88 pairs of image with high coherence were firstly chosen with an appropriate threshold. These images were used to deduce the deformation velocity map and the variation in time series. This result can provide information for orbit correctness and ground control point (GCP) selection in the following steps. Then, more pairs of image were selected to tighten the constraint in time dimension, and to improve the final result by decreasing the phase unwrapping error. 171 combinations of SAR pairs were ultimately selected. Reliable GCPs were re-selected according to the previously derived deformation velocity map. Orbital residuals error was rectified using these GCPs, and nonlinear deformation components were estimated. Therefore, a more accurate surface deformation velocity map was produced. Precise geodetic leveling work was implemented in the meantime. We compared the leveling result with the geocoding SBAS product using the nearest neighbour method. The mean error and standard deviation of the error were respectively 0.82 mm and 4.17 mm. This result demonstrates the effectiveness of DInSAR technique for monitoring land surface deformation, which can serve as a reliable decision for supporting highspeed railway project design, construction, operation and maintenance.
Motion of David Glacier in East Antarctica Observed by COSMO-SkyMed Differential SAR Interferometry
NASA Astrophysics Data System (ADS)
Han, H.; Lee, H.
2011-12-01
David glacier, located in Victoria Land, East Antarctica (75°20'S, 161°15'E), is an outlet glacier of 13 km width near the grounding line and 50 km long from the source to the grounding line. David glacier flows into Ross Sea forming Drygalski Ice Tongue, 100 km long and 23 km wide. In this study, we extracted a surface displacement map of David by applying differential SAR interferometry (DInSAR) to one-day tandem pairs obtained from COSMO-SkyMed satellites on April 28-29 (descending orbit) and May 5-6 (ascending orbit), 2011, respectively. Terra ASTER global digital elevation model (GDEM) is used to remove the topographic effect from the COSMO-SkyMed interferograms. David glacier showed maximum displacement of 35 cm during April 28-29 and 20 cm during May 5-6 in the direction of radar line of sight. The glacier can be divided into several blocks by the disparities of displacement between the different sliding zone. Surface displacement map contains errors originated from orbit data, atmospheric conditions, DEM error. GDEM is generated from the ASTER optical images acquired from 2000 to 2008. It has the vertical accuracy of about 20 m at 95% confidence with the 30 m of horizontal posting. The accuracy of GDEM reduces when cloud cover is included in the ASTER image. Particularly in the snow and ice area, GDEM is inaccurate due to whiteout effect during stereo matching. The inaccuracy of GDEM could be a reason of the observed glacier motion in the opposite direction of gravity. This problem can be solved by using TanDEM-X DEM. Bistatic acquisition of SAR images from the constellation of TerraSAR-X and TanDEM-X will generate a global DEM with the vertical accuracy better than 2 m and the horizontal posting of 12 m. We plan to perform DInSAR of COSMO-SkyMed one-day tandem pairs again when the high-accuracy TanDEM-X DEM is available in the near future. As a conclusion, we could analyze the displacement of David glacier in East Antarctica. The glacier showed very fast motion forming a block of streamlines with different flow velocity. For more accurate analysis, we will use TanDEM-X DEM to perform the DInSAR. The flow characteristics, ice mass balance, ice discharge rate of David glacier remains as an ongoing research.
Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods
NASA Astrophysics Data System (ADS)
Barboux, Chloé; Strozzi, Tazio; Delaloye, Reynald; Wegmüller, Urs; Collet, Claude
2015-11-01
Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of "cm/day", "dm/month" and "cm/month", but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the "cm/yr" range.
Atmospheric Phase Delay in Sentinel SAR Interferometry
NASA Astrophysics Data System (ADS)
Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.
2018-04-01
The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.
NASA Astrophysics Data System (ADS)
Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.
2014-12-01
Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.
The Safety project: Sentinel-1 for Civil Protection geohazars management
NASA Astrophysics Data System (ADS)
Monserrat, Oriol; Herrera, Gerardo; Bianchini, Silvia; González-Alonso, Elena; Onori, Roberta; Reichenbach, Paola; Carralero, Innocente P.; Barra, Anna; María Mateos, Rosa; Solari, Lorenzo; Ligüérzana, Sergio; Pagliara, Paola; Ardizzone, Francesca; Sarro, Roberto; Crosetto, Michele; Béjar-Pizarro, Marta; Moretti, Sandro; Lopez, Carmen; Garcia-Cañada, Laura; Benito-Saz, María Á.
2017-04-01
This work is aimed at presenting the ongoing project SAFETY (Sentinel for Geohazards regional monitoring and forecasting). The use of Differential SAR Interferometry (DInSAR) in Natural Risks management is becoming more and more exploitable thanks to the experienced growth of the techniques. On one hand, since the DInSAR technique was proposed for the first time (1989) a wide number of data processing, analysis tools and methods have been developed, on the other hand the satellite data availability has increased and provides sensors with different characteristics of sensitivity and spatial and temporal resolutions. Nowadays, DInSAR allows to have a systematic overview about the spatio-temporal activity of a natural deformation phenomena, which is an important information for the risk management in terms of prevention, emergency response and post-emergency intervention. Specifically, Sentinel-1 (A and B) satellites data show two favourable characteristics: the wide covered area and the short revisit time (6 days). The last one, if compared with the other C band available sensors, results in a reduced temporal decorrelation, particularly in non-urbanized areas, in more robust processing results (due to the higher number of images) and in an higher temporal sampling i.e. a better monitoring and activity characterization. In this context, the European project SAFETY is focused on developing tools and implementing a methodology in order to better exploit Sentinel-1 data in the Civil Protection activities of natural risks prevention. The project is aimed at providing Civil Protection Authorities (CPA) with the capability of periodically evaluating and assessing the potential impact of geohazards (volcanic activity, earthquakes, landslides and subsidence) on urban areas. The first results over the two test-areas in Spain and Italy (respectively Canary Islands and Volterra Municipality) will be presented.
NASA Astrophysics Data System (ADS)
Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew
2016-08-01
Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.
From local to national scale DInSAR analysis for the comprehension of Earth's surface dynamics.
NASA Astrophysics Data System (ADS)
De Luca, Claudio; Casu, Francesco; Manunta, Michele; Zinno, Ivana; lanari, Riccardo
2017-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. While the application of SBAS to ERS and ENVISAT data at local scale is widely testified, very few examples involving those archives for analysis at huge spatial scale are available in literature. This is mainly due to the required processing power (in terms of CPUs, memory and storage) and the limited availability of automatic processing procedures (unsupervised tools), which are mandatory requirements for obtaining displacement results in a time effective way. Accordingly, in this work we present a methodology for generating the Vertical and Horizontal (East-West) components of Earth's surface deformation at very large (national/continental) spatial scale. In particular, it relies on the availability of a set of SAR data collected over an Area of Interest (AoI), which could be some hundreds of thousands of square kilometers wide, from ascending and descending orbits. The exploited SAR data are processed, on a local basis, through the Parallel SBAS (P-SBAS) approach thus generating the displacement time series and the corresponding mean deformation velocity maps. Subsequently, starting from the so generated DInSAR results, the proposed methodology lays on a proper mosaicking procedure to finally retrieve the mean velocity maps of the Vertical and Horizontal (East-West) deformation components relevant to the overall AoI. This technique permits to account for possible regional trends (tectonics trend) not easily detectable by the local scale DInSAR analyses. We tested the proposed methodology with the ENVISAT ASAR archives that have been acquired, from ascending and descending orbits, over California (US), covering an area of about 100.000 km2. The presented methodology can be easily applied also to other SAR satellite data. Above all, it is particularly suitable to deal with the very large data flow provided by the Sentinel-1 constellation, which collects data with a global coverage policy and an acquisition mode specifically designed for interferometric applications.
NASA Astrophysics Data System (ADS)
Chu, T.; Lindenschmidt, K. E.
2016-12-01
Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2
Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity
NASA Astrophysics Data System (ADS)
Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.
2014-09-01
As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.
Satellite SAR interferometric techniques applied to emergency mapping
NASA Astrophysics Data System (ADS)
Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene
2017-04-01
This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.
NASA Astrophysics Data System (ADS)
Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian
2018-02-01
Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.
A time series deformation estimation in the NW Himalayas using SBAS InSAR technique
NASA Astrophysics Data System (ADS)
Kumar, V.; Venkataraman, G.
2012-12-01
A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of deformation in the year after the Landers earthquake. Nature 1994, 369, 227-230. [2] Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2375-2383. [3] GEOLOGICAL SURVEY OF INDIA (GSI), (1999) Inventory of the Himalayan glaciers. Special publication, vol. 34, pp. 165-168. [4] Chen, C.W., and Zebker, H. A., (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America, A, 17, 401-414.
Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; ...
2015-08-11
A main issue in the storage of large volumes of fluids, mainly water and CO 2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 millionmore » m 3/yr -1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less
NASA Astrophysics Data System (ADS)
Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.
2016-12-01
During the last 25 years, the Differential Synthetic Aperture Radar Interferometry (DInSAR) has played an important role for understanding the Earth's surface deformation and its dynamics. In particular, the large collections of SAR data acquired by a number of space-borne missions (ERS, ENVISAT, ALOS, RADARSAT, TerraSAR-X, COSMO-SkyMed) have pushed toward the development of advanced DInSAR techniques for monitoring the temporal evolution of the ground displacements with an high spatial density. Moreover, the advent of the Copernicus Sentinel-1 (S1) constellation is providing a further increase in the SAR data flow available to the Earth science community, due to its characteristics of global coverage strategy and free and open access data policy. Therefore, managing and storing such a huge amount of data, processing it in an effcient way and maximizing the available archives exploitation are becoming high priority issues. In this work we present some recent advances in the DInSAR field for dealing with the effective exploitation of the present and future SAR data archives. In particular, an efficient parallel SBAS implementation (namely P-SBAS) that takes benefit from high performance computing is proposed. Then, the P-SBAS migration to the emerging Cloud Computing paradigm is shown, together with extensive tests carried out in the Amazon's Elastic Cloud Compute (EC2) infrastructure. Finally, the integration of the P-SBAS processing chain within the ESA Geohazards Exploitation Platform (GEP), for setting up operational on-demand and systematic web tools, open to every user, aimed at automatically processing stacks of SAR data for the generation of SBAS displacement time series, is also illustrated. A number of experimental results obtained by using the ERS, ENVISAT and S1 data in areas characterized by volcanic, seismic and anthropogenic phenomena will be shown. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.
NASA Astrophysics Data System (ADS)
Thapa, Shailaja; Chatterjee, R. S.; Kumar, Dheeraj; Singh, K. B.; Sengar, Vivek
2017-10-01
This paper presents a spatiotemporal study of surface subsidence over urban area due to coal mining using Persistent scatterer interferometry. In the past few years Differential Interferometric Synthetic Aperture Radar has emerged as a very useful remote sensing technique for measuring land subsidence. It plays a vital role in insitu subsidence prediction of coal mining area. However there are some limitation viz. atmospheric decorrelation, temporal decorrelation and spatial decorrelation with conventional D-InSAR techniques, which can be overcome up to certain extent by using multiinterferogram framework approach. The Persistent Scatterer interferometry technique comprises of more number of SAR datasets, it only concentrates over the pixel which remain coherent over long time period. Persistent Scatterer interferometry makes deformation measurement on permanent scattering location for the targeted ground surface. Mainly, these permanent scatterer are manmade features like metallic bridges, dams, antennae roof of buildings etc. apart that some permanent scatterer may comprise of prominent stable natural targets. The results obtained from PS-InSAR gives more precised measurement of surface deformation. Total eight ALOS PALSAR scenes covering the time period from 2007 to 2010 have been utilized to produce ground deformation map using PSInSAR techniques for Jharia Coal field, Dhanbad. This is proven technique, which helps to identify the persistent land surface movement .The results were analyzed Sijua area in Jharia coalfield. The subsidence fringes were demarcated over the entire study area. The PSInSAR results were validated using precision leveling data provided by mining authorities. The results demonstrates that PSInSAR can be used as potential tool to highlight the subsidence prone area depending upon the spatial and temporal coherency of SAR data.
Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico
2016-04-15
This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pezzo, Giuseppe; Merryman Boncori, John Peter; Atzori, Simone; Antonioli, Andrea; Salvi, Stefano
2014-07-01
In this study, we use Differential Synthetic Aperture Radar Interferometry (DInSAR) and multi-aperture interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hr apart and an Mw 5.7 event that occurred 40 d later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan Block of the Eurasian Plate. Surface displacements estimated from ascending and descending ENVISAT ASAR acquisitions were used to derive elastic dislocation models for the sources of the two main events. The estimated slip distributions have peak values of 120 and 130 cm on a pair of almost parallel and near-vertical faults striking NW-SE, and of 50 cm and 60 cm on two high-angle faults striking NE-SW. Values up to 50 cm were found for the largest aftershock on an NE-SW fault located between the sources of the main shocks. The MAI measurements, with their high sensitivity to the north-south motion component, are crucial in this area to accurately describe the coseismic displacement field. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at shallow depths on large NW fault planes is compatible with left-lateral activation on smaller NE-SW faults.
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.
2016-12-01
Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.
NASA Astrophysics Data System (ADS)
Jacquemart, M. F.; Barba, M.; Tiampo, K. F.; Willis, M. J.
2017-12-01
Hours before the landslide that came to be known as the Big Sur slide destroyed a stretch of Highway 1 in southern California, the European Space Agency's Sentinel-1B satellite passed over the area and acquired the last radar images of the still intact slope. Shortly thereafter, an estimated 1 million tons of soil and debris plunged into the Pacific Ocean, enlarging California's land area by roughly 13 acres. Results from differential interferometric synthetic aperture radar (DInSAR) produced from the most recent Sentinel images show a clear signal of the impending landslide, measured prior to the slope failure. In fact, an entire time-series of precursory slope displacements emerges from the radar data that extend back several months. Over southern California, the Sentinel-1A and 1B satellites acquire images every 6 or 12 days, providing a unique dataset that allows us to investigate the physical processes that drive the displacement leading up to the final failure. Here we explore the role of pore water pressure and rainfall as drivers of slope motion and we investigate whether precursory displacement can provide indication about the timing of the detachment. We also analyze the influence of DEM and interferogram resolution on the displacement results and evaluate the suitability of radar interferometry for landslide monitoring.
NASA Astrophysics Data System (ADS)
Seleem, Tarek A.; Foumelis, Michael; Parcharidis, Issaak
2009-09-01
Sharm El-Shiekh area is located in the most southern part of Sinai Peninsula boarded by the Gulf of Suez to the west and by the Gulf of Aqaba to the east. The present study concerns the application of Multibaseline/Stacking Differential SAR Interferometry (DInSAR) in order to monitor ground deformation rates in the southern part of Sharm El-Shiekh area. The specific technique was applied in order to reduce the influence of atmospheric effects on ground deformation estimates. For this purpose a total number of 24 ENVISAT ASAR scenes covering the period between 2002 and 2008 were processed and analysed. Interferometric results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N-S direction, corresponding to the build up zone of Sharm El-Shiekh, shows average annual subsidence rates between -5 and -7 mm/yr along the line of sight (LOS). On the contrary, Sharm El Maya, an inner zone parallel to the above subsided area, shows slant range uplift of around 5 mm/yr. The obtained results of SAR inteferometry probably indicate the presence of an active fault that affects the coastal zones of Sharm El-Shiekh area.
Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR
NASA Astrophysics Data System (ADS)
Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.
2005-12-01
Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
NASA Astrophysics Data System (ADS)
Durham, M. C.; Milewski, A.; El Kadiri, R.
2013-12-01
The combination of natural, anthropogenic, and climate change impacts on the water resources of the Middle East and North Africa (MENA) region has devastated its water resources well beyond its current and projected populations. The increased exploitation of groundwater resources in the past half-century coupled with successive droughts has resulted in the acceleration of subsidence rates in the Souss and Massa basins in Morocco. We have completed a preliminary investigation of these impacts on the Souss and Massa basins (~27,000 km2) in the southwestern part of Morocco. This area is characterized by a semi-arid climate (annual precipitation 70-250 mm/year) with agriculture, tourism, and commercial fishing as the primary economic activities, all of which require availability of adequate freshwater resources. Additionally the primary groundwater aquifer (Plio-Quaternary Plain Aquifer), an unconfined aquifer formed mostly of sand and gravel, is being harvested by >20,000 wells at a rate of 650 MCM/yr., exceeding the rate of recharge by 260 MCM/year. Intense development over the past 50 years has exposed the aquifer to a serious risk of groundwater table drawdown (0.5m-2.5m/yr.), land subsidence, loss of artesian pressure, salinization, salt water intrusions along the coast, and deterioration of water quality across the watershed. Differential Interferometry Synthetique Aperture Radar (DInSAR) was utilized to measure ground subsidence induced by groundwater withdrawal. Land subsidence caused by excessive groundwater extraction was determined using a threefold methodology: (1) extraction of subsidence and land deformation patterns using radar interferometry, (2) correlation of the high subsidence areas within the basins to possible natural and anthropogenic factors (e.g. sea level rise, unconsolidated lithological formations distribution, urbanization, excessive groundwater extraction), and (3) forecasting the future of the Souss and Massa basins over the next century if both subsidence and groundwater extraction continue at present rates. Interferometric processing (persistent scatter and small baseline subset) was conducted using ENVI's SARscape program with 168 archived ENVISAT SLC images and 350 ERS1/2 SLC images acquired through the European Space Agency. Radar interferometry results are spatially and temporally consistent with groundwater extraction rates. This analysis has provided insight into the impacts that land subsidence will have on the infrastructure, the population, and the economy of the Souss and Massa basins. Our results could be used to develop management plans for modulating these adverse effects and could be vital to the Moroccan economy and the livelihood of the citizens that inhabit the basins. More broadly, this approach could be applied to other areas within the MENA region facing similar impacts.
Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A
NASA Astrophysics Data System (ADS)
Li, X.; Huang, G.; Kong, Q.
2018-04-01
In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.
Unsupervised DInSAR processing chain for multi-scale displacement analysis
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele
2016-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images, thus leading to the generation of Interferometric products for both global and local scale displacement analysis. Among several examples, we will show a wide displacement SBAS processing, carried out over the southern California, during which the whole ascending ENVISAT data set of more than 740 images has been fully processed on a Cloud Computing environment in less than 9 hours, leading to the generation of a displacement map of about 150,000 square kilometres. The P-SBAS characteristics allowed also us to integrate the algorithm within the ESA Geohazard Exploitation Platform (GEP), which is based on the use of GRID and Cloud Computing facilities, thus making freely available to the EO community a web tool for massive and systematic interferometric displacement time series generation. This work has been partially supported by: the Italian MIUR under the RITMARE project; the CNR-DPC agreement and the ESA GEP project.
DInSAR time series generation within a cloud computing environment: from ERS to Sentinel-1 scenario
NASA Astrophysics Data System (ADS)
Casu, Francesco; Elefante, Stefano; Imperatore, Pasquale; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana; Mathot, Emmanuel; Brito, Fabrice; Farres, Jordi; Lengert, Wolfgang
2013-04-01
One of the techniques that will strongly benefit from the advent of the Sentinel-1 system is Differential SAR Interferometry (DInSAR), which has successfully demonstrated to be an effective tool to detect and monitor ground displacements with centimetre accuracy. The geoscience communities (volcanology, seismicity, …), as well as those related to hazard monitoring and risk mitigation, make extensively use of the DInSAR technique and they will take advantage from the huge amount of SAR data acquired by Sentinel-1. Indeed, such an information will successfully permit the generation of Earth's surface displacement maps and time series both over large areas and long time span. However, the issue of managing, processing and analysing the large Sentinel data stream is envisaged by the scientific community to be a major bottleneck, particularly during crisis phases. The emerging need of creating a common ecosystem in which data, results and processing tools are shared, is envisaged to be a successful way to address such a problem and to contribute to the information and knowledge spreading. The Supersites initiative as well as the ESA SuperSites Exploitation Platform (SSEP) and the ESA Cloud Computing Operational Pilot (CIOP) projects provide effective answers to this need and they are pushing towards the development of such an ecosystem. It is clear that all the current and existent tools for querying, processing and analysing SAR data are required to be not only updated for managing the large data stream of Sentinel-1 satellite, but also reorganized for quickly replying to the simultaneous and highly demanding user requests, mainly during emergency situations. This translates into the automatic and unsupervised processing of large amount of data as well as the availability of scalable, widely accessible and high performance computing capabilities. The cloud computing environment permits to achieve all of these objectives, particularly in case of spike and peak requests of processing resources linked to disaster events. This work aims at presenting a parallel computational model for the widely used DInSAR algorithm named as Small BAseline Subset (SBAS), which has been implemented within the cloud computing environment provided by the ESA-CIOP platform. This activity has resulted in developing a scalable, unsupervised, portable, and widely accessible (through a web portal) parallel DInSAR computational tool. The activity has rewritten and developed the SBAS application algorithm within a parallel system environment, i.e., in a form that allows us to benefit from multiple processing units. This requires the devising a parallel version of the SBAS algorithm and its subsequent implementation, implying additional complexity in algorithm designing and an efficient multi processor programming, with the final aim of a parallel performance optimization. Although the presented algorithm has been designed to work with Sentinel-1 data, it can also process other satellite SAR data (ERS, ENVISAT, CSK, TSX, ALOS). Indeed, the performance analysis of the implemented SBAS parallel version has been tested on the full ASAR archive (64 acquisitions) acquired over the Napoli Bay, a volcanic and densely urbanized area in Southern Italy. The full processing - from the raw data download to the generation of DInSAR time series - has been carried out by engaging 4 nodes, each one with 2 cores and 16 GB of RAM, and has taken about 36 hours, with respect to about 135 hours of the sequential version. Extensive analysis on other test areas significant from DInSAR and geophysical viewpoint will be presented. Finally, preliminary performance evaluation of the presented approach within the Sentinel-1 scenario will be provided.
Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data
NASA Astrophysics Data System (ADS)
Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.
NASA Astrophysics Data System (ADS)
Pezzo, Giuseppe; Merryman Boncori, John Peter; Atzori, Simone; Antonioli, Andrea; Salvi, Stefano
2014-05-01
We use Synthetic Aperture Radar Differential Interferometry (DInSAR) and Multi-Aperture Interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hours apart and an Mw 5.7event occurred 40 days later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan block of the Eurasian Plate. Elastic dislocation modelling of the surface displacements, derived from ascending and descending ENVISAT ASAR acquisitions, yields slip distributions with peak values of 80 cm and 70 cm for the two main events on a pair of strike-slip near-vertical faults, and values up to 50 cm for the largest aftershock on a NE-SW strike-slip fault. The MAI measurements, with their high sensitivity to the north-south motion component, are crucial in this area to resolve the fault plane ambiguity of moment tensors. We also studied the relationships between the largest earthquakes of the sequence by means of the Coulomb Failure Function to verify the agreement of our source modelling with the stress variations induced by the October 28 earthquake on the October 29 fault plane, and the stress variations induced by the two mainshocks on the December 09 fault plane. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at intermediate depths on large NW fault planes is compatible with contemporaneous left-lateral activation on NE-SW minor faults at shallower depths, in agreement with a bookshelf deformation mechanism.
Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards
NASA Astrophysics Data System (ADS)
Wasowski, J.; Ferretti, A.
The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of
NASA Astrophysics Data System (ADS)
Buonanno, Sabatino; Fusco, Adele; Zeni, Giovanni; Manunta, Michele; Lanari, Riccardo
2017-04-01
This work describes the implementation of an efficient system for managing, viewing, analyzing and updating remotely sensed data, with special reference to Differential Interferometric Synthetic Aperture Radar (DInSAR) data. The DInSAR products measure Earth surface deformation both in space and time, producing deformation maps and time series[1,2]. The use of these data in research or operational contexts requires tools that have to handle temporal and spatial variability with high efficiency. For this aim we present an implementation based on Spatial Data Infrastructure (SDI) for data integration, management and interchange, by using standard protocols[3]. SDI tools provide access to static datasets that operate only with spatial variability . In this paper we use the open source project GeoNode as framework to extend SDI infrastructure functionalities to ingest very efficiently DInSAR deformation maps and deformation time series. GeoNode allows to realize comprehensive and distributed infrastructure, following the standards of the Open Geospatial Consortium, Inc. - OGC, for remote sensing data management, analysis and integration [4,5]. In the current paper we explain the methodology used for manage the data complexity and data integration using the opens source project GeoNode. The solution presented in this work for the ingestion of DinSAR products is a very promising starting point for future developments of the OGC compliant implementation of a semi-automatic remote sensing data processing chain . [1] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 11, pp. 2375-2383. [2] Lanari R., F. Casu, M. Manzo, G. Zeni,, P. Berardino, M. Manunta and A. Pepe (2007), An overview of the Small Baseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, P. Appl. Geophys., 164, doi: 10.1007/s00024-007-0192-9. [3] Nebert, D.D. (ed). 2000. Developing Spatial data Infrastructures: The SDI Cookbook. [4] Geonode (www.geonode.org) [5] Kolodziej, k. (ed). 2004. OGC OpenGIS Web Map Server Cookbook. Open Geospatial Consortium, 1.0.2 edition.
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; Del Gaudio, Carlo; De Martino, Prospero; Ricco, Ciro; Tammaro, Umberto; Castaldo, Raffaele; Tizzani, Pietro; Lanari, Riccardo
2014-05-01
Ischia Island, located at the North-Western corner of the Gulf of Napoli (South Italy), is a volcanic area, whose state of activity is testified from eruptions (the last one occurred in 1302), earthquakes (the most disastrous in 1881 and 1883), hydrothermal manifestations and ground deformation. In this work we present the state of the art of the Ischia Island ground deformation phenomena through the joint analysis of data collected via different monitoring methodologies (leveling, GPS, and Differential SAR Interferometry) during the last twenty years. In particular, our analysis benefits from the large amount of periodic and continuous geodetic measurements collected by the 257 leveling benchmarks and the 20 (17 campaign and 3 permanent) GPS stations deployed on the island. Moreover, it takes advantage from the large archives of C-band SAR data (about 300 ascending and descending ERS-1/2 and ENVISAT images) acquired over the island since 1992 and the development of the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS). The latter, allows providing space-time information on the ground displacements measured along the radar line of sight (LOS), and thanks to the availability of multi-orbit SAR data, permits to discriminate the vertical and east-west components of the detected displacements. Our integrated analysis reveals a complex deformative scenario; in particular, it identifies a spatially extended subsidence pattern, which increases as we move to higher heights, with no evidence of any uplift phenomena. This broad effect involve the Northern, Eastern, Southern and South-Western sectors of the island where we measure velocity values not exceeding -6 mm/year; moreover, we identify a more localized phenomenon affecting the North-Western area in correspondence to the Fango zone, where velocity values up to -10 mm/year are retrieved. In addition, our study shows a migration of the Eastern sector of the island towards West with velocity values of -1/-2 mm/year. Conversely, a not clear behaviour of the central and South-Western areas is found; indeed, while the GPS velocity vectors are primarily Northward directed, the DInSAR measurements reveal a migration of these sectors towards East; in both cases we measure deformation velocity values of a very few mm/year. This discrepancy is very likely related to the fact that the North deformation component does not contribute to the measured LOS displacement component due to the nearly polar characteristics of the radar sensor orbits. The performed integrated time-series analysis can significantly contribute to the comprehension of the volcanic island dynamics, especially in the case of long-term observations that promote the investigation, modelling and interpretation of the physical processes behind the deformation phenomena at different temporal and spatial scales.
NASA Astrophysics Data System (ADS)
Mayorga Torres, T. M.; Mohseni Aref, M.
2015-12-01
Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, Vol. 174, pp. 103-138.
NASA Astrophysics Data System (ADS)
Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A.
2009-04-01
We propose a new technique, based on the elastic theory, to efficiently produce an estimate of three-dimensional surface displacement maps by integrating sparse Global Position System (GPS) measurements of deformations and Differential Interferometric Synthetic Aperture Radar (DInSAR) maps of movements of the Earth's surface. The previous methodologies known in literature, for combining data from GPS and DInSAR surveys, require two steps: the first, in which sparse GPS measurements are interpolated in order to fill in GPS displacements at the DInSAR grid, and the second, to estimate the three-dimensional surface displacement maps by using a suitable optimization technique. One of the advantages of the proposed approach is that both these steps are unified. We propose a linear matrix equation which accounts for both GPS and DInSAR data whose solution provide simultaneously the strain tensor, the displacement field and the rigid body rotation tensor throughout the entire investigated area. The mentioned linear matrix equation is solved by using the Weighted Least Square (WLS) thus assuring both numerical robustness and high computation efficiency. The proposed methodology was tested on both synthetic and experimental data, these last from GPS and DInSAR measurements carried out on Mt. Etna. The goodness of the results has been evaluated by using standard errors. These tests also allow optimising the choice of specific parameters of this algorithm. This "open" structure of the method will allow in the near future to take account of other available data sets, such as additional interferograms, or other geodetic data (e.g. levelling, tilt, etc.), in order to achieve even higher accuracy.
NASA Astrophysics Data System (ADS)
Darvishi, Mehdi; Schlögel, Romy; Cuozzo, Giovanni; Callegari, Mattia; Thiebes, Benni; Bruzzone, Lorenzo; Mulas, Marco; Corsini, Alessandro; Mair, Volkmar
2016-04-01
Despite the advantages of Differential Synthetic Aperture Radar Interferometry (DInSAR) methods for quantifying landslide deformation over large areas, some limitations remain. These include for example geometric distortions, atmospheric artefacts, geometric and temporal decorrelations, data and scale constraints, and the restriction that only 1-dimentional line-of-sight (LOS) deformations can be measured. At local scale, the major limitations are dense vegetation, as well as large displacement rates which can lead to decorrelation between SAR acquisitions also for high resolution images and temporal baselines. Sub-pixel offset tracking was proposed to overcome some of these limitations. Two of the most important advantages of this technique are the mapping of 2-D displacements (azimuth and range directions), and the fact that there is no need for complex phase unwrapping algorithms which could give wrong results or fail in case of decorrelation or fast ground deformations. As sub-pixel offset tracking is highly sensitive to the spatial resolution of the data, latest generations of SAR sensors such as TerraSAR-X and COSMO-SkyMed providing high resolution data (up to 1m) have great potential to become established methods in the field of ground deformation monitoring. In this study, sub-pixel offset tracking was applied to COSMO SkyMed X-band imagery in order to quantify ground displacements and to evaluate the feasibility of offset tracking for landslide movement mapping and monitoring. The study area is the active Corvara landslide located in the Italian Alps, described as a slow-moving and deep-seated landslide with annual displacement rates of up to 20 m. Corner reflectors specifically designed for X-band were installed on the landslide and used as reference points for sub-pixel offset tracking. Satellite images covering the period from 2013 to 2015 were analyzed with an amplitude tracking tool for calculating the offsets and extracting 2-D displacements. Sub-pixel offset tracking outputs were integrated with DInSAR results and correlated to differential GPS measurements recorded at the same time as the SAR data acquisitions.
Localized landslide risk assessment with multi pass L band DInSAR analysis
NASA Astrophysics Data System (ADS)
Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo
2014-05-01
In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error even in the advanced time series techniques such as StaMPS/MTI. We tried to compensate with the algorithmic base together with the usage of high resolution LIDAR DEM. The target area of this study is the eastern part of Korean peninsula centered. In there, the landslide originated by the geomorphic factors such as high sloped topography and localized torrential down pour is critical issue. The surface deformations from error corrected two pass DInSAR and StaMPS/MTI are crossly compared and validated with the landslide triggering factors such as vegetation, slope and geological properties. The study will be further extended for the application of future SAR sensors by incorporating the dynamic analysis of topography to implement practical landslide forecasting scheme.
Mapping the Antarctic grounding line with CryoSat-2 radar altimetry
NASA Astrophysics Data System (ADS)
Bamber, J. L.; Dawson, G. J.
2017-12-01
The grounding line, where grounded ice begins to float, is the boundary at which the ocean has the greatest influence on the ice-sheet. Its position and dynamics are critical in assessing the stability of the ice-sheet, for mass budget calculations and as an input into numerical models. The most reliable approaches to map the grounding line remotely are to measure the limit of tidal flexure of the ice shelf using differential synthetic aperture radar interferometry (DInSAR) or ICESat repeat-track measurements. However, these methods are yet to provide satisfactory spatial and temporal coverage of the whole of the Antarctic grounding zone. It has not been possible to use conventional radar altimetry to map the limit of tidal flexure of the ice shelf because it performs poorly near breaks in slope, commonly associated with the grounding zone. The synthetic aperture radar interferometric (SARin) mode of CryoSat-2, performs better over steeper margins of the ice sheet and allows us to achieve this. The SARin mode combines "delay Doppler" processing with a cross-track interferometer, and enables us to use elevations based on the first return (point of closest approach or POCA) and "swath processed" elevations derived from the time-delayed waveform beyond the first return, to significantly improve coverage. Here, we present a new method to map the limit of tidal motion from a combination of POCA and swath data. We test this new method on the Siple Coast region of the Ross Ice Shelf, and the mapped grounding line is in good agreement with previous observations from DinSAR and ICESat measurements. There is, however, an approximately constant seaward offset between these methods and ours, which we believe is due to the poorer precision of CryoSat-2. This new method has improved the coverage of the grounding zone across the Siple Coast, and can be applied to the rest of Antarctica.
The impact of high-resolution topography on landslide characterization using DInSAR
NASA Astrophysics Data System (ADS)
Tiampo, K. F.; Barba, M.; Jacquemart, M. F.; Willis, M. J.; González, P. J.; McKee, C.; Samsonov, S. V.; Feng, W.
2017-12-01
Differential interferometric synthetic aperture radar (DInSAR) can measure surface deformation at the centimeter level and, as a result, has been used to investigate a wide variety of natural hazards since the 1990s. In general, short spatial and temporal baselines are selected to reduce decorrelation and the effect of incorrect removal of the topographic component in differential interferograms. The nearly global coverage of the Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) significantly simplified and improved the modelling and removal of topography for differential interferometric applications. However, DEMs are produced today at much finer resolutions, although with varying availability and cost. SRTM DEMs are freely available at 30 m resolution world-wide and 10 m resolution in the US. The TanDEM-X mission has produced a worldwide DEM at 12 m, although it is not generally free of cost. Light Detection and Ranging (LiDAR) DEMs can provide better than 1m resolution, but are expensive to produce over limited extents. Finally, DEMs from optical data can be produced from Digital Globe satellite images over larger regions at resolutions of less than 1 m, subject to various restrictions. It can be shown that the coherence quality of a DInSAR image is directly related to the DEM resolution, improving recovery of the differential phase by significantly reducing the geometric decorrelation, and that the number of recovered pixels significantly increases with higher resolutions, particularly in steep topography. In this work we quantify that improvement for varying resolutions, from 1 to 30 m, and slopes and investigate its effect on the characterization of landslides in different regions and with a variety of surface conditions, including Greenland, Alaska, California, and the Canary Islands.
NASA Astrophysics Data System (ADS)
Czarnogorska, M.; Samsonov, S.; White, D.
2014-11-01
The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.
Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran
NASA Astrophysics Data System (ADS)
Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter
2016-08-01
This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.
NASA Astrophysics Data System (ADS)
De Guidi, Giorgio; Vecchio, Alessia; Brighenti, Fabio; Caputo, Riccardo; Carnemolla, Francesco; Di Pietro, Adriano; Lupo, Marco; Maggini, Massimiliano; Marchese, Salvatore; Messina, Danilo; Monaco, Carmelo; Naso, Salvatore
2017-11-01
On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer-autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11-13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.
NASA Astrophysics Data System (ADS)
Wang, C.; Chang, W.; Chang, C.
2013-12-01
The Taipei basin, triangular in shape and located in the northern Taiwan, is now developed into the most densely populated area and also the capital of politics and economics in Taiwan. North of the Taipei basin, the Tatun volcano group was proposed to be the cause of extensional collapse during the Pleistocene following the collision between the Luzon volcanic arc and the Eurasian continental margin at about 5 Ma. We investigated the contemporary surface deformation of the northern Taiwan using ALOS images that cover the Taipei basin and its surrounding mountainous area. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique has been widely used in the past ten years. However, the mountainous areas surrounding the basin are mostly covered with densely various vegetations that reduce signal-to-noise ratio in the interferograms. Therefore, the DInSAR technique is not effective for measuring the surface deformation in and around the Taipei basin, including the Tatun volcano area, and consequently the Persistent Scatterer (PS) and small baseline (SB) InSAR techniques have been employed to extract phase signals of the chosen PS points. In this study, we aim to measure the ground deformation of northern Taiwan by processing the spaceborne radar interferometry data of ALOS acquired from 2007 to 2011 using PSInSAR and SBInSAR techniques. Compared with the Envisat and ERS images used by previous studies, L-band PALSAR images can produce more PS points in the region covered by dense vegetation so that our results reveal a higher resolution of ground deformation. The mean Line of Sight (LOS) velocity field of up to 8 mm/yr in the central Tatun volcanic area, and up to 5 mm/yr in the Taipei basin with higher rate at the hanging wall of the Sanchiao fault than the footwall. (See the Figure.) While previous studies indicated that the Taipei basin had experienced ground uplift from 1993 to 2001 and subsidence from 2003 to 2008, our results show a return to ground uplift from 2007 to 2011. Re-examining earlier InSAR and integrating other geodetic data is under progress for further examination on this transient deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling
NASA Astrophysics Data System (ADS)
Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang
2018-04-01
Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (< 1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behaviour that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.
Statistical inference in comparing DInSAR and GPS data in fault areas
NASA Astrophysics Data System (ADS)
Barzaghi, R.; Borghi, A.; Kunzle, A.
2012-04-01
DInSAR and GPS data are nowadays currently used in geophysical investigation, e.g. for estimating slip rate over the fault plane in seismogenic areas. This analysis is usually done by mapping the surface deformation rates as estimated by GPS and DInSAR over the fault plane using suitable geophysical models (e.g. the Okada model). Usually, DInSAR vertical velocities and GPS horizontal velocities are used for getting an integrated slip estimate. However, it is sometimes critical to merge the two kinds of information since they may reflect a common undergoing geophysical signal plus different disturbing signals that are not related to the fault dynamic. In GPS and DInSAR data analysis, these artifacts are mainly connected to signal propagation in the atmosphere and to hydrological phenomena (e.g. variation in the water table). Thus, some coherence test between the two information must be carried out in order to properly merge the GPS and DInSAR velocities in the inversion procedure. To this aim, statistical tests have been studied to check for the compatibility of the two deformation rate estimates coming from GPS and DInSAR data analysis. This has been done according both to standard and Bayesian testing methodology. The effectiveness of the proposed inference methods has been checked with numerical simulations in the case of a normal fault. The fault structure is defined following the Pollino fault model and both GPS and DInSAR data are simulated according to real data acquired in this area.
Land subsidence detection using synthetic aperture radar (SAR) in Sidoarjo Mudflow area
NASA Astrophysics Data System (ADS)
Yulyta, Sendy Ayu; Taufik, Muhammad; Hayati, Noorlaila
2016-05-01
According to BPLS (Badan Penanggulangan Lumpur Sidoarjo) which is the Sidoarjo Mudflow Management Agency, land subsidence occurred in Porong, Sidoarjo was caused by the rocks bearing capacity decreasing which led by the mud outpouring since 2006. The subsidence varies in many ways depends on the radius of location from the mud flow center point and the geological structure. One of the most efficient technologies to monitor this multi temporal phenomenon is using the Synthetic Aperture Radar (SAR) as an applicative Spatial Geodesy. This study used 4 (four) times series L-Band ALOS PALSAR from 2008 to 2011 Fine Beam Single data (February 2008, January 2009 and February 2010 and January 2011) which then processed by the Differential SAR Interferometry (DInSAR) method to obtain the deformation vector at a radius of 1.5 km from the center of mudflow. The result showed that there was a significant subsidence which annually occurred on southern and western area of Sidoarjo mud flow. The deformation vector that occurred in the year 2008-2011 was up to 20 cm/year or 0.05 cm/day. For verification purpose, we also compared the result obtained from the SAR detection with the data measured by Global Position System (GPS) and some deformation monitoring results obtained from another researchs. The comparison showed a correlation that the subsidence occurred on the same location.
Stability Analysis of Railway Subgrade in Mining Area Based on Dinsar
NASA Astrophysics Data System (ADS)
Xu, J.; Hu, J.; Ding, J.
2018-04-01
DInSAR technology have been applied to monitor the mining subsidence and the stability of the railway subgrade. A total of 10 Sentinel-1A images acquired from 2015/9/26 to 2016/2/23 were used in DInSAR analysis. The study mining area is about 13.4 km2. Mining have induced serious land subsidence involve a large area that causing different levels of damages to infrastructures on the land. There is an important railway near the mining area, the DInSAR technology is applied to analyse the subsidence near the railway, which can warn early the possible deformation that may occur during underground mining. The DInSAR results was verified by the field measurement. The results show that the mining did not cause subsidence of railway subgrade and did not affect the stability of railway subgrade.
NASA Astrophysics Data System (ADS)
Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.
2014-12-01
In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.
NASA Astrophysics Data System (ADS)
Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii
2013-10-01
Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.
Mining Land Subsidence Monitoring Using SENTINEL-1 SAR Data
NASA Astrophysics Data System (ADS)
Yuan, W.; Wang, Q.; Fan, J.; Li, H.
2017-09-01
In this paper, DInSAR technique was used to monitor land subsidence in mining area. The study area was selected in the coal mine area located in Yuanbaoshan District, Chifeng City, and Sentinel-1 data were used to carry out DInSAR techniqu. We analyzed the interferometric results by Sentinel-1 data from December 2015 to May 2016. Through the comparison of the results of DInSAR technique and the location of the mine on the optical images, it is shown that DInSAR technique can be used to effectively monitor the land subsidence caused by underground mining, and it is an effective tool for law enforcement of over-mining.
Finite Element Simulations of Kaikoura, NZ Earthquake using DInSAR and High-Resolution DSMs
NASA Astrophysics Data System (ADS)
Barba, M.; Willis, M. J.; Tiampo, K. F.; Glasscoe, M. T.; Clark, M. K.; Zekkos, D.; Stahl, T. A.; Massey, C. I.
2017-12-01
Three-dimensional displacements from the Kaikoura, NZ, earthquake in November 2016 are imaged here using Differential Interferometric Synthetic Aperture Radar (DInSAR) and high-resolution Digital Surface Model (DSM) differencing and optical pixel tracking. Full-resolution co- and post-seismic interferograms of Sentinel-1A/B images are constructed using the JPL ISCE software. The OSU SETSM software is used to produce repeat 0.5 m posting DSMs from commercial satellite imagery, which are supplemented with UAV derived DSMs over the Kaikoura fault rupture on the eastern South Island, NZ. DInSAR provides long-wavelength motions while DSM differencing and optical pixel tracking provides both horizontal and vertical near fault motions, improving the modeling of shallow rupture dynamics. JPL GeoFEST software is used to perform finite element modeling of the fault segments and slip distributions and, in turn, the associated asperity distribution. The asperity profile is then used to simulate event rupture, the spatial distribution of stress drop, and the associated stress changes. Finite element modeling of slope stability is accomplished using the ultra high-resolution UAV derived DSMs to examine the evolution of post-earthquake topography, landslide dynamics and volumes. Results include new insights into shallow dynamics of fault slip and partitioning, estimates of stress change, and improved understanding of its relationship with the associated seismicity, deformation, and triggered cascading hazards.
NASA Astrophysics Data System (ADS)
Galve, J. P.; Castañeda, C.; Gutiérrez, F.
2015-06-01
Previously not measured subsidence on railway tracks was detected using DInSAR displacement maps produced for the central sector of Ebro Valley (NE Spain). This area is affected by evaporite karst and the analyzed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements corresponds to the Madrid-Barcelona high-speed line, a transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicate that this line show dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). By using DInSAR techniques, it was also measured the significant subsidence related to the activity of sinkholes in the Castejón-Zaragoza conventional railway line. Thus, this study demonstrate that DInSAR velocity maps coupled with detailed geomorphological surveys may help in the identification of the sectors of railway tracks that may compromise the safety of travellers.
Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia
NASA Astrophysics Data System (ADS)
Bottenberg, Helen Carrie
This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.
NASA Astrophysics Data System (ADS)
Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.
2013-12-01
Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River Delta, Geophysical Research Letters, in press.
NASA Astrophysics Data System (ADS)
Montuori, Antonio; Anderlini, Letizia; Palano, Mimmo; Albano, Matteo; Pezzo, Giuseppe; Antoncecchi, Ilaria; Chiarabba, Claudio; Serpelloni, Enrico; Stramondo, Salvatore
2018-07-01
In this study, we tested the "land-subsidence monitoring guidelines" proposed by the Italian Ministry of Economic Development (MISE), to study ground deformations along on-shore hydrocarbon reservoirs. We propose protocols that include the joint use of Global Positioning System (GPS) and multi-temporal Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, for a twofold purpose: a) monitoring land subsidence phenomena along selected areas after defining the background of ground deformations; b) analyzing possible relationships between hydrocarbon exploitation and anomalous deformation patterns. Experimental results, gathered along the Ravenna coastline (northern Italy) and in the southeastern Sicily (southern Italy), show wide areas of subsidence mainly related to natural and anthropogenic processes. Moreover, ground deformations retrieved through multi-temporal DInSAR time series exhibit low sensitivity as well as poor spatial and temporal correlation with hydrocarbon exploitation activities. Results allow evaluating the advantages and limitations of proposed protocols, to improve the techniques and security standards established by MISE guidelines for monitoring on-shore hydrocarbon reservoirs.
Utilization of Envisat/ers SAR Data Over the Jharia Coalfield, India for Subsidence Monitoring
NASA Astrophysics Data System (ADS)
Srivastava, Vinay Kumar
2012-07-01
Extended abstract Jharia coalfield the prime coking coal-producing belt in India, started commercial production in 1894. Mining in Jharia coalfield (JCF) is in form of both opencast and underground mining. The area is affected by various environmental hazards such as, coal fire, subsidence, land degradation and toxic gas emissions. Currently, coal fire and subsidence are the major problems in the coalfield and causes continuous changes in topography. Monitoring of such dynamic topographic changes in a hazard-prone mining belt is a critical input for land environmental management. Such temporal topographic changes over span of the time and even short term mining activity within a year could be done from Digital Elevation Model (DEM) generated using various space-borne techniques.. Among all techniques available for generating DEM, SAR Interferometry technique has been successful and effective which offers high resolution spatial detail to a level of few cm. DEM obtained from processing of SAR Interferometry (InSAR) technique using ERS SAR data of April 12 and 13, 1995 provides high spatial resolution images which is useful for monitoring and measuring dynamic changes in land topography. Several workers have successfully InSAR this technique for mapping and monitoring of changes in land surface due to various causes. Using ERS tandem data sets of 16 and 17 May 1996 passes, DInSAR map over the Jharia coal field has been obtained from the interferogram generated by integrating information from ground control points and precise high coherence orbital parameters. Further, using ENVISAT/ ASAR data of June 5 and 6, 2007 and integrating GPS measurements at 4 ground points where corner reflectors were preinstalled for getting bright spots on images and using orbital parameters, a slant range corrected image over the study area has been obtained. shows the plot of differential phases along a particular profile l over a subsidence region in Jharia coal field and the corresponding correlation coefficients. . Further an attempt has been made to delineate subsidence area in Jharia coal field using SAR Interoferometry technique..
NASA Astrophysics Data System (ADS)
Xue, Tengfei; Chang, Zhanqiang; Zhang, Jingfa
2016-08-01
Interferometry Synthetic Aperture Radar (InSAR)can only measure one component of the surface deformation in the satellite's line of sight (LOS) instead of that in vertical and horizontal directions, i.e. LOS Amphibious. In view of this problem, we analyzed and summarized some methods that can measure the three-dimensional deformation of ground surface by using D-InSAR, developed the calculation model of measuring the three-dimensional co-seismic deformation filed by using the ascending and descending orbit SAR data. The Formula of left-looking (both ascending and descending orbit data), right-looking (both ascending and descending orbit data) and general expression were proposed. The model was applied on L'Aquila earthquake, and the results reveal that the earthquake has caused displacement in both vertical and horizontal directions, and the earthquake made the area down lift 16.8cm along the vertical direction. The characters of the surface reflected by the results are very consistent with the geological exploration.
Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method
NASA Astrophysics Data System (ADS)
Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi
2015-04-01
DInSAR (Differential Interferometric Synthetic Aperture Radar) is an effective tool to measure the flow rate of slow flowing ice streams on Antarctic ice sheet with high resolution. In the flow rate measurement by DInSAR method, we use Digital Elevation Model (DEM) at two times in the estimating process. At first, we use it to remove topographic fringes from InSAR images. And then, it is used to project obtained displacements along Line-Of-Sight (LOS) direction to the actual flow direction. ASTER-GDEM widely-used for InSAR prosessing of the data of polar region has a lot of errors especially in the inland ice sheet area. Thus the errors yield irregular flow rates and directions. Therefore, quality of DEM has a substantial influence on the ice flow rate measurement. In this study, we created a new DEM (resolution 10m; hereinafter referred to as PRISM-DEM) based on ALOS/PRISM images, and compared PRISM-DEM and ASTER-GDEM. The study area is around Skallen, 90km south from Syowa Station, in the southern part of Sôya Coast, East Antarctica. For making DInSAR images, we used ALOS/PALSAR data of 13 pairs (Path633, Row 571-572), observed during the period from November 23, 2007 through January 16, 2011. PRISM-DEM covering the PALSAR scene was created from nadir and backward view images of ALOS/PRISM (Observation date: 2009/1/18) by applying stereo processing with a digital mapping equipment, and then the automatically created a primary DEM was corrected manually to make a final DEM. The number of irregular values of actual ice flow rate was reduced by applying PRISM-DEM compared with that by applying ASTER-GDEM. Additionally, an averaged displacement of approximately 0.5cm was obtained by applying PRISM-DEM over outcrop area, where no crustal displacement considered to occur during the recurrence period of ALOS/PALSAR (46days), while an averaged displacement of approximately 1.65 cm was observed by applying ASTER-GDEM. Since displacements over outcrop area are considered to be apparent ones, the average could be a measure of flow rate estimation accuracy by DInSAR. Therefore, it is concluded that the accuracy of the ice flow rate measurement can be improved by using PRISM-DEM. In this presentation, we will show the results of the estimated flow rate of ice streams in the region of interest, and discuss the additional accuracy improvement of this method.
Study of the 3D displacement field in Lorca (Murcia, Spain) subsidence area
NASA Astrophysics Data System (ADS)
Fernandez, Jose; Prieto, Juan F.; Palano, Mimmo; Abajo, Tamara; Perez, Enrique; Escayo, Joaquin; Velasco, Jesus; Herrero, Tomas; Camacho, Antonio G.; Bru, Guadalupe; Molina, Inigo; Lopez, Juan C.; Rodriguez-Velasco, Gema; Gomez, Israel
2017-04-01
González and Fernández (2011) revealed that the Alto Guadalentín Basin, located in southern Spain, is affected by the highest subsidence rates measured in Europe (about 10 cm/yr) as a direct consequence of long-term aquifer exploitation. They used ERS and ENVISAT radar data spanning the 1992 - 2007 period. They identify a delayed transient nonlinear compaction of the Alto Guadalentín aquifer due to the 1990-1995 drought period. González et al. (2012) evaluated the relationship between crust unloading due to groundwater overexploitation and stress change on regional active tectonic faults in the same in relation with the May 2008 Lorca earthquake. Bonì et al. (2014) extended these previous studies using advanced DInSAR techniques and ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) radar images for the time period 1992-2012. Additionally, the satellite measurements provide locally comparable results with measurements acquired by two permanent GNSS stations located in the study area. Furthermore, new geological and hydrogeological data were collected and analyzed in order to assess aquifer system compressibility and groundwater level changes in the past 50 years. The comparison of these data with advanced DInSAR displacement measurements allowed for a better spatial and temporal understanding of the governing mechanisms of subsidence due to overexploitation of the Alto Guadalentín aquifer system. But even though the aforementioned achievements have been reached, all regional studies of the area to date are based on satellite radar interferometry using just ascending or descending acquisitions, without any combination among them to obtain vertical and horizontal (E-W) components. Therefore, only the regional LOS displacement field is known and it is assumed to correspond to vertical displacement. However, it is important to obtain the 3D motion field in order to perform a correct interpretation of the observations, as well as to carry out an advanced numerical model of the aquifer evolution, to be consider for sustainable management plans of groundwater resources and hazard assessments. With this objective, a GNSS network has been defined and various surveys have been carried out in November 2015, July 2016 and beginning of 2017. The results, showing the regional 3D displacement field associated to the exploitation of the aquifer are described and compared with the InSAR ones. First results (Prieto et al., 2016) confirm previous observations (e.g. Bonì et al., 2015) and suggest that the ad-hoc establishment of small-medium GNSS networks, represent a valuable technique for the spatio-temporal monitoring of the 3D displacement field of areas subjected to extensive groundwater extraction. REFERENCES Bonì, R. et al., 2015. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Engineering Geology, 198, 40-52 doi: 10.1016/j.enggeo.2015.08.014 González, P.J., Fernández, J., 2011. Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology, 39/6, 551-554; doi: 10.1130/G31900.1. González, P.J.; et al., 2012. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nature Geoscience, 5/11, 755-834. doi: 10.1038/NGEO1610. Prieto, J.F., et al., 2016. GNSS 3D displacement field determination in Lorca (Murcia, Spain) subsidence area. Fall AGU Meeting, San Francisco, December, 12-16, 2016, H43K-1636.
NASA Astrophysics Data System (ADS)
Prasetyo, Y.; Fakhrudin, Warasambi, S. M.
2016-05-01
Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault identification and deformation movement observation.
A sustainability model based on cloud infrastructures for core and downstream Copernicus services
NASA Astrophysics Data System (ADS)
Manunta, Michele; Calò, Fabiana; De Luca, Claudio; Elefante, Stefano; Farres, Jordi; Guzzetti, Fausto; Imperatore, Pasquale; Lanari, Riccardo; Lengert, Wolfgang; Zinno, Ivana; Casu, Francesco
2014-05-01
The incoming Sentinel missions have been designed to be the first remote sensing satellite system devoted to operational services. In particular, the Synthetic Aperture Radar (SAR) Sentinel-1 sensor, dedicated to globally acquire over land in the interferometric mode, guarantees an unprecedented capability to investigate and monitor the Earth surface deformations related to natural and man-made hazards. Thanks to the global coverage strategy and 12-day revisit time, jointly with the free and open access data policy, such a system will allow an extensive application of Differential Interferometric SAR (DInSAR) techniques. In such a framework, European Commission has been funding several projects through the GMES and Copernicus programs, aimed at preparing the user community to the operational and extensive use of Sentinel-1 products for risk mitigation and management purposes. Among them, the FP7-DORIS, an advanced GMES downstream service coordinated by Italian National Council of Research (CNR), is based on the fully exploitation of advanced DInSAR products in landslides and subsidence contexts. In particular, the DORIS project (www.doris-project.eu) has developed innovative scientific techniques and methodologies to support Civil Protection Authorities (CPA) during the pre-event, event, and post-event phases of the risk management cycle. Nonetheless, the huge data stream expected from the Sentinel-1 satellite may jeopardize the effective use of such data in emergency response and security scenarios. This potential bottleneck can be properly overcome through the development of modern infrastructures, able to efficiently provide computing resources as well as advanced services for big data management, processing and dissemination. In this framework, CNR and ESA have tightened up a cooperation to foster the use of GRID and cloud computing platforms for remote sensing data processing, and to make available to a large audience advanced and innovative tools for DInSAR products generation and exploitation. In particular, CNR is porting the multi-temporal DInSAR technique referred to as Small Baseline Subset (SBAS) into the ESA G-POD (Grid Processing On Demand) and CIOP (Cloud Computing Operational Pilot) platforms (Elefante et al., 2013) within the SuperSites Exploitation Platform (SSEP) project, which aim is contributing to the development of an ecosystem for big geo-data processing and dissemination. This work focuses on presenting the main results that have been achieved by the DORIS project concerning the use of advanced DInSAR products for supporting CPA during the risk management cycle. Furthermore, based on the DORIS experience, a sustainability model for Core and Downstream Copernicus services based on the effective exploitation of cloud platforms is proposed. In this framework, remote sensing community, both service providers and users, can significantly benefit from the Helix Nebula-The Science Cloud initiative, created by European scientific institutions, agencies, SMEs and enterprises to pave the way for the development and exploitation of a cloud computing infrastructure for science. REFERENCES Elefante, S., Imperatore, P. , Zinno, I., M. Manunta, E. Mathot, F. Brito, J. Farres, W. Lengert, R. Lanari, F. Casu, 2013, "SBAS-DINSAR Time series generation on cloud computing platforms". IEEE IGARSS Conference, Melbourne (AU), July 2013.
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea; Pepe, Antonio; Lanari, Riccardo
2010-05-01
Differential Synthetic Aperture Radar Interferometry (DInSAR) is a remote sensing technique that allows producing spatially dense deformation maps of the Earth surface, with centimeter accuracy. To this end, the phase difference of SAR image pairs acquired before and after a deformation episode is properly exploited. This technique, originally applied to investigate single deformation events, has been further extended to analyze the temporal evolution of the deformation field through the generation of displacement time-series. A well-established approach is represented by the Small BAseline Subset (SBAS) technique (Berardino et al., 2002), whose capability to analyze deformation events at low and full spatial resolution has largely been demonstrated. However, in areas where large and/or rapid deformation phenomena occur, the exploitation of the differential interferograms, thus also of the displacement time-series, can be strongly limited by the presence of significant misregistration errors and/or very high fringe rates, making unfeasible the phase unwrapping step. In this work, we propose advances on the generation of deformation time-series in areas affected by large deformation dynamics. We present an extension of the amplitude-based Pixel-Offset analyses by applying the SBAS strategy, in order to move from the investigation of single (large) deformation events to that of dynamic phenomena. The above-mentioned method has been tested on an ENVISAT SAR data archive (Track 61, Frames 7173-7191) related to the Galapagos Islands, focusing on Sierra Negra caldera (Galapagos Islands), an active volcanic area often characterized by large and rapid deformation events leading to severe image misregistration effects (Yun et al., 2007). Moreover, we present a cross-validation of the retrieved deformation estimates comparing our results to continuous GPS measurements and to synthetic deformation obtained by independently modeling the interferometric phase information when available. References: P. Berardino et al., (2002), A new algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, 11, pp. 2375-2383. S-H. Yun et al., (2007), Interferogram formation in the presence of complex and large deformation, Geophys. Res. Lett., vol. 34, L12305.
Galloway, D.L.; Hoffmann, J.
2007-01-01
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.
Zhao, C.Y.; Zhang, Q.; Ding, X.-L.; Lu, Z.; Yang, C.S.; Qi, X.M.
2009-01-01
The City of Xian, China, has been experiencing significant land subsidence and ground fissure activities since 1960s, which have brought various severe geohazards including damages to buildings, bridges and other facilities. Monitoring of land subsidence and ground fissure activities can provide useful information for assessing the extent of, and mitigating such geohazards. In order to achieve robust Synthetic Aperture Radar Interferometry (InSAR) results, six interferometric pairs of Envisat ASAR data covering 2005–2006 are collected to analyze the InSAR processing errors firstly, such as temporal and spatial decorrelation error, external DEM error, atmospheric error and unwrapping error. Then the annual subsidence rate during 2005–2006 is calculated by weighted averaging two pairs of D-InSAR results with similar time spanning. Lastly, GPS measurements are applied to calibrate the InSAR results and centimeter precision is achieved. As for the ground fissure monitoring, five InSAR cross-sections are designed to demonstrate the relative subsidence difference across ground fissures. In conclusion, the final InSAR subsidence map during 2005–2006 shows four large subsidence zones in Xian hi-tech zones in western, eastern and southern suburbs of Xian City, among which two subsidence cones are newly detected and two ground fissures are deduced to be extended westward in Yuhuazhai subsidence cone. This study shows that the land subsidence and ground fissures are highly correlated spatially and temporally and both are correlated with hi-tech zone construction in Xian during the year of 2005–2006.
Assessment of DInSAR Potential in Simulating Geological Subsurface Structure
NASA Astrophysics Data System (ADS)
Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.
2013-12-01
High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.
Environmental Impact Assessment of Rosia Jiu Opencast Area Using AN Integrated SAR Analysis
NASA Astrophysics Data System (ADS)
Poenaru, V. D.; Negula, I. F. Dana; Badea, A.; Cuculici, R.
2016-06-01
The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR). The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.
Normal and Differential SAR Interferometry
2005-02-01
incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential interferometry (Cap.5...and F. Adragna , 1994. Radar Interferometric Mapping of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet...D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer, K. Feigi, and T. Rabaute, 1993. The Displacement Field of the Landers Earthquake Mapped by Radar
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo
2017-04-01
Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed deformation phenomena. Acknowledgments This work is partially supported by the IREA-CNR/Italian Department of Civil Protection agreement and the I-AMICA project (Infrastructure of High Technology for Environmental and Climate Monitoring-PONa3_00363). References Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. Manzo, M., G. P. Ricciardi, F. Casu, G. Ventura, G. Zeni, S. Borgström, P. Berardino, C. Del Gaudio, and R. Lanari (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, Journal of Volcanology and Geothermal Research, 151, 399-416, doi:10.1016/j.jvolgeores.2005.09.010.
Levee Health Monitoring With Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.
2012-12-01
Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Normal and Differential SAR Interferometry
2007-02-01
incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential Interferometry (Chap..5...available at http://www.estec.esa.nl/confannoun/99b02/index.html Massonnet, D., K. Feigi, M. Rossi, and F. Adragna , 1994. Radar Interferometric Mapping...of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet, D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer
The 2009-2010 Guerrero Slow Slip Event Monitored by InSAR, Using Time Series Approach
NASA Astrophysics Data System (ADS)
Bacques, G.; Pathier, E.; Lasserre, C.; Cotton, F.; Radiguet, M.; Cycle Sismique et Déformations Transitoires
2011-12-01
The Guerrero seismic gap is located along the Pacific coast of Mexico in a subduction zone where Cocos plate subducts under the North American plate with a 5.5 cm per year convergence rate. Along this 100 km width band located between Acapulco (East side) and Zihuatanejo (West side), no major earthquake occurred since at least 1911. In contrast, the surrounding areas of the Guerrero gap has been the location of large seismic events during the last century like the 1985 one's (Mw 8), which affected Mexico City. Considering the plate convergence rate, a 5 meters slip deficit has been estimated at this gap location since the last major earthquake (Lowry et al. 1998), making a large earthquake possible at this spot. However, the Guerrero gap was the setting of four slow slip events (SSE) with an approximately four years periodicity (1998, 2002, 2006, 2009-2010) since it was instrumented by GPS permanent network in January 1997. Slow slip events and their associated ground displacements are commonly interpreted as aseismic slips on the deeper part of the subduction plane. One of the main issues concerning that phenomenon, deals with the way that strain accumulated on the deeper part is released on the upper part of the subduction plane, which corresponds to the seismogenic zone. As a consequence, the slip distribution upon the subduction plane associated to the Guerrero SSE represents relevant information concerning the local seismic hazard. To address this issue, geodetic measurements from GPS and/or space-borne SAR differential interferometry (DInSAR) can be used to retrieve the SSE slip distribution on the subduction plane from the ground deformation measurements as it has been done for the 2006 event previously studied. In this work, we focused on the 2009-2010 SSE on Guerrero by processing DInSAR data (C band Envisat data were processed using the small baseline approach method NSBAS based upon ROI-pac) as previously done for the 2006 event but improved by adding a Time Series approach. Time Series approach is useful for monitoring ground deformation evolution during the slow slip events and makes the slip propagation mapping upon the subduction plane a promising goal. Here we present our first results concerning the 2009-2010 slow slip events, particularly the distribution of the cumulative surface displacement in LOS (satellite Line Of Sight), the slip distribution associated on the fault plane and the ground deformation evolution obtained. Finally, we open the discussion with a first comparison between the 2009-2010 and the 2006 events that reveal some differences concerning the amplitude and the distribution of the ground deformation.
Circumstellar Matter Studied by Spectrally-Resolved Interferometry
NASA Astrophysics Data System (ADS)
Millour, F.
2012-12-01
This paper describes some generalities about spectro-interferometry and the role it has played in the last decade for the better understanding of circumstellar matter. I provide a small history of the technique and its origins, and recall the basics of differential phase and its central role for the recent discoveries. I finally provide a small set of simple interpretations of differential phases for specific astrophysical cases, and intend to provide a "cookbook" for the other cases.
Phase unwrapping methods of corner reflector DInSAR monitoring slow ground deformation
NASA Astrophysics Data System (ADS)
Fu, Wenxue; Guo, Xiaofang; Tian, Qingjiu
2007-06-01
Difference interferometric Synthetic aperture radar (DInSAR) has turned out to be a very powerful technique for the measurement of land deformations, but it requires the observed area to be correlated, and coherence degradation will seriously affect the quality of interferogram. Corner reflector DInSAR (CRDInSAR) is a new technique in recently years, which can compensate for the limitation of the classical DInSAR. Due to the stable amplitude and phase performance of the reflector, the interferometric phase difference of the reflector can be used to monitor or measure the small and slowly ground deformation for the cases of large geometrical baseline and large time interval between acquisitions. Phase unwrapping is the process where the absolute phase is reconstructed from its principal value as accurately as possible. It is a key step in the analysis of DInSAR. The classical phase unwrapping methods are either of path following type or of minimum-norm type. However, if the coherence of the two images is very low, the both methods will get error result. In application of CRDInSAR, due to the scattered points, the phase unwrapping of corner reflectors is only dealt with on a sparse grid, so all the reflectors are connected with Delaunay triangulation firstly, which can be used to define neighboring points and elementary cycles. When the monitoring ground deformation is slow, that is unwrapped neighboring-CR phase gradients are supposed to equal their wrapped-phase counterparts, then path-following method and Phase unwrapping using Coefficient of Elevation-Phase-Relation can be used to phase unwrapping. However, in the cases of unwrapped gradients exceeding one-half cycle, minimum cost flow (MCF) method can be used to unwrap the interferogram.
Geodetic Volcano Monitoring Research in Canary Islands: Recent Results
NASA Astrophysics Data System (ADS)
Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.
2009-05-01
The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under development nowadays.
Six years of land subsidence in shanghai revealed by JERS-1 SAR data
Damoah-Afari, P.; Ding, X.-L.; Li, Z.; Lu, Z.; Omura, M.
2008-01-01
Differential interferometric synthetic aperture radar (SAR) (DInSAR) has proven to be very useful in mapping and monitoring land subsidence in many regions of the world. Shanghai, China's largest city, is one of such areas suffering from land subsidence as a result of severe withdrawal of groundwater for different usages. DInSAR application in Shanghai with the C-band European Remote Sensing 1 & 2 (ERS-1/2) SAR data has been difficult mainly due to the problem of decorrelation of InSAR pairs with temporal baselines larger than 10 months. To overcome the coherence loss of C-band InSAR data, we used eight L-band Japanese Earth Resource Satellite (JERS-1) SAR data acquired during 2 October 1992 to 15 July 1998 to study land subsidence phenomenon in Shanghai. Three of the images were used to produce two separate digital elevation models (DEMs) of the study area to remove topographic fringes from the interferograms used for subsidence mapping. Six interferograms were used to generate 2 different time series of deformation maps over Shanghai. The cumulative subsidence map generated from each of the time series is in agreement with the land subsidence measurements of Shanghai city from 1990-1998, produced from other survey methods. ?? 2007 IEEE.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
The 2014 Napa Earthquake Imaged Through A Full Exploitation Of SAR Data
NASA Astrophysics Data System (ADS)
Castaldo, R.; Casu, F.; de Luca, C.; Solaro, G.
2014-12-01
We investigate the co-seismic surface deformation related to the earthquake occurred in Napa area (California) on August 24, 2014. To this aim, we exploit both the phase and the amplitude information of SAR data acquired in Stripmap mode by the Italian COSMO-SkyMed (CSK), the Canadian RADARSAT-2 (RS2), and the recently launched Europena Sentinel-1 satellites, to evaluate and analyze the induced surface displacements through the Differential SAR Interferometry (DInSAR) and Pixel-Offset (PO) techniques. In particular, the SAR images, acquired from descending orbits on 26 July and 27 August 2014 by CSK, and on 07 August and 31 August 2014 by Sentinel-1, as well as the ones acquired on 24 July and 10 September by RS2 from ascending passes were used to generate differential SAR interferograms encompassing the main seismic events. The related deformation map, obtained by performing a complex multi-look operation resulting in a pixel size of about 30 m by 30 m, reveals two main lobes of LOS displacement with a range change decrease of about 11 cm to the NE sector and about 7 cm of range change increase to the SE sector. Moreover, by benefiting from the sensor spatial resolutions (down to 3 meters for both CSK and Sentinel-1 satellites), the Pixel-Offset maps of the same data pairs have been also computed, thus permitting us to retrieve displacement information along the azimuth direction and better describing the deformation field. In order to retrieve the earthquake source location and its geometrical characteristics, the displacement maps were modeled by finite dislocation faults in an elastic and homogeneous half-space [Okada, 1985]. In particular, we searched for all the parameters free the fault by using a nonlinear inversion based on the Levenberg-Marquardt least-squares approach. The best fit solution, consists of a right -lateral NNW-SSE oriented fault. The comparison between the model results and the measured InSAR data show a good fit, with residue values smaller than 2 cm. However, small zones far from the epicenter area, with higher residues are individuated.
NASA Technical Reports Server (NTRS)
Edwards, C. D.
1990-01-01
Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.
Multiple Beam Interferometry in Elementary Teaching
ERIC Educational Resources Information Center
Tolansky, S.
1970-01-01
Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…
NASA Astrophysics Data System (ADS)
Pepe, Susi; Castaldo, Raffaele; Casu, Francesco; D'Auria, Luca; De Luca, Claudio; De Novellis, Vincenzo; Solaro, Giuseppe; Tizzani, Pietro
2017-04-01
We investigated the source of the ground deformation pattern affecting the Mauna Loa (Hawaii) and Fernandina (Galapagos) volcanoes by jointly exploiting different dataset collected by both GPS and multiplatform and multiorbit SAR sensors. We exploited the advanced Differential SAR Interferometry (DInSAR) techniques to analyze unrest episode in two different geodynamics context. Our main goal is the understanding of the relationship among the spatio-temporal evolution of the ground deformation field and the temporal volumetric variation of the detected geodetic source during the uplift phenomena. We highlight the huge opportunity in understanding volcano unrest phenomena offered by the joint use of remote sensing data and inversion procedures: this prospect is particularly relevant for the analysis of uplift events, when other geophysical measurements are not available. For Mauna Loa (Hawaii) and Fernandina (Galapagos) volcanoes, the performed statistic analysis support the source pipe-like as the more suitable geometry to explain the unrest phenomena in which magmatic masses intrude in volcanic conduits. In particular, the deformation time series achieved at MounaLoa volcano are achieved by 23 GPS permanent stations of the Hawaii surveillance network, processed by Nevada Geodetic Laboratory, 7 SAR dataset acquired from ascending and descending orbits, with different look angles and along different tracks, by the C-Band Envisat satellite along the 2003 - 2010 time period for a total of 189 SAR imagery. Moreover, we exploited 2 dataset collected from ascending and descending passes by the X-Band Cosmo Sky-Med constellation during the 2012 - 2015 time span . These SAR datasets have been processed through the advanced DInSAR technique referred to as P-SBAS (De Luca et al., 2016), which allows us to retrieve the Line of Sight (LOS) projection of the surface deformation and analyze its temporal evolution by generating displacement time series. Starting this data collection, we determined the source responsible of deformation observed and in particular the results of our inversions show that the pipe source contributes substantially to both the ground deformation pattern and the cost function. In the case of Fernandina Volcano (Galápagos) we exploited the advanced Differential SAR Interferometry (DInSAR) techniques to analyze the 2012-2013 uplift episode by using X-band data from the COSMO-SkyMed (CSK) satellite constellation. This volcano falls among those not well monitored, therefore, the availability of CSK data, acquired with a repeat time ranging from 4 to 12 days and with a ground resolution of 3 meters, represents a unique opportunity to perform a detailed study of the space and time ground deformation field changes (Sansosti et al., 2014). In addition, in this case study we computed the ground deformation time series by applying the Small BAseline Subset (SBAS)-DInSAR approach (Berardino et al., 2002) to CSK data, acquired from both ascending and descending orbits. The results of their combination (vertical and horizontal E-W components) are used in order to evaluate, through a cross correlation analysis (Tizzani et al., 2009; 2015), the volcanic areas that are characterized by similar uplift temporal behavior. Subsequently, we determine the geometry, location and the temporal evolution of the geodetic source responsible for the 2012 - 2013 uplift event by applying an inverse method to the DInSAR measurements. We search for its geometrical parameters and volume variation that minimize the difference between the observed data and the modelled ground deformation field. We tested various analytical models and finally, using the Akaike Information Criterion (Akaike, 1965) among the tested analytical sources, we selected the tilted pipe. The pipe model is similar to the prolate ellipsoid, but the size of the smaller axis is kept fixed to a very small value (i.e., 10 m). Despite having a similar fit with the prolate ellipsoid, the tilted pipe-like source has been selected because it has a lower number of degrees of freedom. Both vertical and E-W cross-correlated maps support the hypothesis of the existence of a single active source, characterized by a spatial stability over the entire considered time interval. Indeed, with the proposed source inversion procedure, we have shown that the inflation of a SE dipping tilted closed pipe-like pressurized source explains the observed ground deformation pattern very well. This result suggests that the observed uplift phenomenon could be produced by the progressive pressurization of a shallow elongated magma chamber, before the eruption onset phase. References Akaike, H. On the statistical estimation of the frequency response function of a system having multiple input. Ann. Inst. Stat. Math. 17, 185-210 (1965). Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. De Luca, C.; Cuccu, R.; Elefante, S.; Zinno, I.; Manunta, M.; Casola, V.; Rivolta, G.; Lanari, R.; Casu, F. An On-Demand Web Tool for the Unsupervised Retrieval of Earth's Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment. Remote Sens. 2015, 7, 15630-15650. Fialko, Y., Khazan, Y. and Simons, M. (2001), Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146(1), 181-190 Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute 36, 99-134. McTigue, D. F. (1987), Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. Journal of Geophysical Research: Solid Earth (1978-2012), 92(B12), 12931-12940. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75, 1135-1154 (1985). Sansosti, E., Berardino, P., Bonano, M., Calò, F., Castaldo, R., Casu, F., Manunta, M., Manzo, M., Pepe, A., Pepe, S., Solaro, G., Tizzani, P., Zeni, G., Lanari, R. (2014). How second generation SAR systems are impacting the analysis of ground deformation. International Journal of Applied Earth Observation and Geoinformation, 28, doi:10.1016/j.jag.2013.10.007. Tizzani, P., Battaglia, M., Zeni, G., Atzori, S., Berardino, P., Lanari, R. (2009). Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements, Geology, January 2009 37; no.1; p. 63-66; doi:10.1130/G25318A.1 Tizzani, P., Battaglia, M., Castaldo, R., Pepe, A., Zeni, G., Lanari, R. (2015). Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements. J. Geophys. Res. Solid Earth, 120, 2627-2647. doi: 10.1002/2014JB011502. Yang, X. M., Davis, P. M., and Dieterich, J. H. (1988), Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. Journal of Geophysical Research: Solid Earth (1978-2012), 93(B5), 4249-4257.
NASA Technical Reports Server (NTRS)
King, R. W., Jr.
1975-01-01
The technique of differential very-long baseline interferometry was used to measure the relative positions of the ALSEP transmitters at the Apollo 12, 14, 15, 16, and 17 lunar landing sites with uncertainties less than 0.005 of geocentric arc. These measurements yielded improved determinations of the selenodetic coordinates of the Apollo landing sites, and of the physical libration of the moon. By means of a new device, the differential Doppler receiver (DDR), instrumental errors were reduced to less than the equivalent of 0.001. DDRs were installed in six stations of the NASA spaceflight tracking and data network and used in an extensive program of observations beginning in March 1973.
GlobVolcano pre-operational services for global monitoring active volcanoes
NASA Astrophysics Data System (ADS)
Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.
2010-05-01
The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10.8 and IR 12.0. The GlobVolcano information system and its current experimentation represent a significant step ahead towards the implementation of an operational, global observatory of volcanoes by the synergetic use of data from available Earth Observation satellites.
NASA Astrophysics Data System (ADS)
Lanari, Riccardo; Bonano, Manuela; Buonanno, Sabatino; Casu, Francesco; De Luca, Claudio; Fusco, Adele; Manunta, Michele; Manzo, Mariarosaria; Pepe, Antonio; Zinno, Ivana
2017-04-01
The SENTINEL-1 (S1) mission is designed to provide operational capability for continuous mapping of the Earth thanks to its two polar-orbiting satellites (SENTINEL-1A and B) performing C-band synthetic aperture radar (SAR) imaging. It is, indeed, characterized by enhanced revisit frequency, coverage and reliability for operational services and applications requiring long SAR data time series. Moreover, SENTINEL-1 is specifically oriented to interferometry applications with stringent requirements based on attitude and orbit accuracy and it is intrinsically characterized by small spatial and temporal baselines. Consequently, SENTINEL-1 data are particularly suitable to be exploited through advanced interferometric techniques such as the well-known DInSAR algorithm referred to as Small BAseline Subset (SBAS), which allows the generation of deformation time series and displacement velocity maps. In this work we present an advanced interferometric processing chain, based on the Parallel SBAS (P-SBAS) approach, for the massive processing of S1 Interferometric Wide Swath (IWS) data aimed at generating deformation time series in efficient, automatic and systematic way. Such a DInSAR chain is designed to exploit distributed computing infrastructures, and more specifically Cloud Computing environments, to properly deal with the storage and the processing of huge S1 datasets. In particular, since S1 IWS data are acquired with the innovative Terrain Observation with Progressive Scans (TOPS) mode, we could benefit from the structure of S1 data, which are composed by bursts that can be considered as separate acquisitions. Indeed, the processing is intrinsically parallelizable with respect to such independent input data and therefore we basically exploited this coarse granularity parallelization strategy in the majority of the steps of the SBAS processing chain. Moreover, we also implemented more sophisticated parallelization approaches, exploiting both multi-node and multi-core programming techniques. Currently, Cloud Computing environments make available large collections of computing resources and storage that can be effectively exploited through the presented S1 P-SBAS processing chain to carry out interferometric analyses at a very large scale, in reduced time. This allows us to deal also with the problems connected to the use of S1 P-SBAS chain in operational contexts, related to hazard monitoring and risk prevention and mitigation, where handling large amounts of data represents a challenging task. As a significant experimental result we performed a large spatial scale SBAS analysis relevant to the Central and Southern Italy by exploiting the Amazon Web Services Cloud Computing platform. In particular, we processed in parallel 300 S1 acquisitions covering the Italian peninsula from Lazio to Sicily through the presented S1 P-SBAS processing chain, generating 710 interferograms, thus finally obtaining the displacement time series of the whole processed area. This work has been partially supported by the CNR-DPC agreement, the H2020 EPOS-IP project (GA 676564) and the ESA GEP project.
Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica
NASA Astrophysics Data System (ADS)
Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi
2017-12-01
A digital elevation model (DEM) is used to estimate ice-flow velocities for an ice sheet and glaciers via Differential Interferometric Synthetic Aperture Radar (DInSAR) processing. The accuracy of DInSAR-derived displacement estimates depends upon the accuracy of the DEM. Therefore, we used stereo optical images, obtained with a panchromatic remote-sensing instrument for stereo mapping (PRISM) sensor mounted onboard the Advanced Land Observing Satellite (ALOS), to produce a new DEM ("PRISM-DEM") of part of the coastal region of Lützow-Holm Bay in Dronning Maud Land, East Antarctica. We verified the accuracy of the PRISM-DEM by comparing ellipsoidal heights with those of existing DEMs and values obtained by satellite laser altimetry (ICESat/GLAS) and Global Navigation Satellite System surveying. The accuracy of the PRISM-DEM is estimated to be 2.80 m over ice sheet, 4.86 m over individual glaciers, and 6.63 m over rock outcrops. By comparison, the estimated accuracy of the ASTER-GDEM, widely used in polar regions, is 33.45 m over ice sheet, 14.61 m over glaciers, and 19.95 m over rock outcrops. For displacement measurements made along the radar line-of-sight by DInSAR, in conjunction with ALOS/PALSAR data, the accuracy of the PRISM-DEM and ASTER-GDEM correspond to estimation errors of <6.3 mm and <31.8 mm, respectively.
Sentinel-1 data exploitation for geohazard activity map generation
NASA Astrophysics Data System (ADS)
Barra, Anna; Solari, Lorenzo; Béjar-Pizarro, Marta; Monserrat, Oriol; Herrera, Gerardo; Bianchini, Silvia; Crosetto, Michele; María Mateos, Rosa; Sarro, Roberto; Moretti, Sandro
2017-04-01
This work is focused on geohazard mapping and monitoring by exploiting Sentinel-1 (A and B) data and the DInSAR (Differential interferometric SAR (Synthetic Aperture Radar)) techniques. Sometimes the interpretation of the DInSAR derived product (like the velocity map) can be complex, mostly for a final user who do not usually works with radar. The aim of this work is to generate, in a rapid way, a clear product to be easily exploited by the authorities in the geohazard management: intervention planning and prevention activities. Specifically, the presented methodology has been developed in the framework of the European project SAFETY, which is aimed at providing Civil Protection Authorities (CPA) with the capability of periodically evaluating and assessing the potential impact of geohazards (volcanic activity, earthquakes, landslides and subsidence) on urban areas. The methodology has three phases, the interferograms generation, the activity map generation, in terms of velocity and accumulated deformation (with time-series), and the Active Deformation Area (ADA) map generation. The last one is the final product, derived from the original activity map by analyzing the data in a Geographic Information System (GIS) environment, which isolate only the true deformation areas over the noise. This product can be more easily read by the authorities than the original activity map, i.e. can be better exploited to integrate other information and analysis. This product also permit an easy monitoring of the active areas.
Dual exposure interferometry. [gas dynamics and flow visualization
NASA Technical Reports Server (NTRS)
Smeets, G.; George, A.
1982-01-01
The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.
Analogue Models Of Volcanic Spreading At Mt. Vesuvius
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Castaldo, Raffaele; D'Auria, Luca; James, Michael; Lane, Steve; Massa, Bruno; Pepe, Susi; Tizzani, Pietro
2015-04-01
Somma-Vesuvius is a quiescent strato-volcano of the Neapolitan district, southern Italy, for which various geophysical and geological evidences (e.g. geodetic measurements, geological and structural data, seismic profiles interpretations and surface deformation analysis with Differential Interferometric Synthetic Aperture Radar (DInSAR)) indicate ongoing spreading deformation. In this research we investigate the spreading deformation and associated surface deformation pattern by performing analogue experiments and comparing the results with actual ground deformation as measured using DInSAR data recorded between 1992 and 2010. Somma-Vesuvius consists of a volcanic cone (Gran Cono) lying within an asymmetric caldera (Somma). The Somma caldera is the result of at least 7 Plinian eruptions, the last of which was the 79 CE. Pompeii eruption. The current cone of Mt. Vesuvius grew within the caldera in the following centuries as the effect of continued explosive and effusive activity of the volcano. The volcano lies on a substratum consisting of a Mesozoic carbonatic basement, overlapped by Holocene clastic sediments and volcanic rocks. Our analogue models were built to simulate the shape of the Somma-Vesuvius top a scale of about 1:100000, emplaced on a sand layer (brittle behaviour) laid on a silicone layer (ductile behaviour). Models are based on the Fluid-dynamics Dimensionless Analysis (FDA), according to the Buckingham-Π theorem. In this context, we considered few dimensionless parameters that allowed the setting of a reliable scaled model. To represent the complex Somma-Vesuvius geometry, an asymmetric model was built by setting a truncated cone (mimicking the topography of Somma edifice) topped by another small cone (mimicking the Gran Cono) shifted off the axis of the main cone. Different experiments were carried out in which the thickness of the basal sand layer and of the silicone one were varied. To quantify the vertical and horizontal displacements the models were monitored with three synchronised digital cameras, enabling sequential 3-D models to be derived using a photogrammetric technique. Finally, our models were compared with the 1992 - 2010 SBAS DInSAR measurements of ground deformations obtained using ERS-ENVISAT satellite images. The results show that analogue models are able to reproduce different styles of volcanic spreading and to reproduce the observed surface and deformation pattern. At the end our models show a deformation rather similar to the actual deformation pattern of the Somma-Vesuvius, both in the direction and in the intensity. Further studies will be devoted at find the best combination of parameters (silicone layer thickness and viscosity) to fit observations and to introduce a tridimensional rigid based topography. These studies will be implemented also with new structural and surface deformation (DinSAR) data and will be integrated with a numerical modelling.
Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.
Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971
NASA Astrophysics Data System (ADS)
Prasetyo, Y.; Yuwono, B. D.; Ramadhanis, Z.
2018-02-01
The reclamation program carried out in most cities in North Jakarta is directly adjacent to the Jakarta Bay. Beside this program, the density of population and development center in North Jakarta office has increased the need for underground water excessively. As a result of these things, land subsidence in North Jakarta area is relatively high and so intense. The research methodology was developed based on the method of remote sensing and geographic information systems, expected to describe the spatial correlation between the land subsidence and flood phenomenon in North Jakarta. The DInSAR (Differential Interferometric Synthetic Aperture Radar) method with satellite image data Radar (SAR Sentinel 1A) for the years 2015 to 2016 acquisitions was used in this research. It is intended to obtain a pattern of land subsidence in North Jakarta and then combined with flood patterns. For the preparation of flood threat zoning pattern, this research has been modeling in spatial technique based on a weighted parameter of rainfall, elevation, flood zones and land use. In the final result, we have obtained a flood hazard zonation models then do the overlap against DInSAR processing results. As a result of the research, Geo-hazard modelling has a variety results as: 81% of flood threat zones consist of rural area, 12% consists of un-built areas and 7% consists of water areas. Furthermore, the correlation of land subsidence to flood risk zone is divided into three levels of suitability with 74% in high class, 22% in medium class and 4% in low class. For the result of spatial correlation area between land subsidence and flood risk zone are 77% detected in rural area, 17% detected in un-built area and 6% detected in a water area. Whereas the research product is the geo-hazard maps in North Jakarta as the basis of the spatial correlation analysis between the land subsidence and flooding phenomena.double point.
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600
NASA Astrophysics Data System (ADS)
Lekkas, Efthymios L.; Mavroulis, Spyridon D.
2016-01-01
The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.
Geodetic Observations Using GNSS, Tiltmeter, and DInSAR, at Tokachi-dake Volcano, Japan
NASA Astrophysics Data System (ADS)
Miyagi, Y.
2017-12-01
Tokachi-dake volcano is located in central Hokkaido, Japan. Middle sized eruptions occurred in 1926, 1962, and 1988-1989, and several small phreatic eruptions also occurred in the meanwhile. After the latest eruption in 1988-1989, many volcanic tremor and active seismicity were revealed. Active fumarolic activities from Taisho crater and 62-2 crater have been observed. In recent years, Tokachi-dake volcano has been observed by using several geodetic techniques, including DInSAR, GNSS, tiltmeter, and gravimeter, to detect regional and local signals associated with volcanic activities. Continuous GNSS stations in summit area operated by Geological Survey of Hokkaido and Hokkaido University [Okazaki et al., 2015] and DInSAR observations using ALOS-2 and TerraSAR-X data have revealed long-term small deformation after 2006 and transient large deformation in May, 2015. We found that these are quite local deformation, because regional GNSS and tiltmeter network did not detect any obvious signals in same period. The remarkable deformation detected by GNSS and DInSAR in the summit area between May and July, 2015, indicates that horizontal displacements are larger than vertical displacements, and westward displacement are much larger than eastward displacement. First, we try to model the deformation pattern using a simple spherical source model [Mogi, 1958] and a dike source model [Okada, 1985]. However, they cannot explain observed deformation because they do not take into consideration a topographic effect in the deformation area. Kawguchi & Miyagi [2016] tried to model the deformation using a boundary element method considering the topographic effect. Consequently, a deformation source which is vertically prolate spheroid beneath the summit shows a better fit between observed and simulated deformation. Annual campaign gravity observations have carried out by several Japanese university and institutes since 2010 [Takahashi et al., 2016]. These reveal that gravity value detected in summit area has decreased more than 0.15mgal up to 2017, which is larger than the gravity value expected from vertical displacements [Okazaki et al., 2017]. In this study, we introduce recent deformation observed by DInSAR, and try to understand the relationship between the deformation and gravity change.
Differential GPS for air transport: Status
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
1993-01-01
The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.
Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong
2011-01-01
We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906
Balanced detection for self-mixing interferometry.
Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele
2017-01-15
We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.
Differential tracking data types for accurate and efficient Mars planetary navigation
NASA Technical Reports Server (NTRS)
Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Border, J. S.
1991-01-01
Ways in which high-accuracy differential observations of two or more deep space vehicles can dramatically extend the power of earth-based tracking over conventional range and Doppler tracking are discussed. Two techniques - spacecraft-spacecraft differential very long baseline interferometry (S/C-S/C Delta(VLBI)) and same-beam interferometry (SBI) - are discussed. The tracking and navigation capabilities of conventional range, Doppler, and quasar-relative Delta(VLBI) are reviewed, and the S/C-S/C Delta (VLBI) and SBI types are introduced. For each data type, the formation of the observable is discussed, an error budget describing how physical error sources manifest themselves in the observable is presented, and potential applications of the technique for Space Exploration Initiative scenarios are examined. Requirements for spacecraft and ground systems needed to enable and optimize these types of observations are discussed.
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
Polarimetric Interferometry and Differential Interferometry
2005-02-01
example of the entropy or phase stability of a mixed scene, being the Oberpfaffenhofen area as collected by the DLR L-Band ESAR system. We note that...robust ratios of scattering elements as shown for example in table I. [10,11,12,13,14,15] The urban areas (upper right corner) in figure 2 show...height and biomass estimation, but there are many other application areas where this technology is being considered. Table I provides a selective
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin
2007-10-20
We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.
Optimized parameter estimation in the presence of collective phase noise
NASA Astrophysics Data System (ADS)
Altenburg, Sanah; Wölk, Sabine; Tóth, Géza; Gühne, Otfried
2016-11-01
We investigate phase and frequency estimation with different measurement strategies under the effect of collective phase noise. First, we consider the standard linear estimation scheme and present an experimentally realizable optimization of the initial probe states by collective rotations. We identify the optimal rotation angle for different measurement times. Second, we show that subshot noise sensitivity—up to the Heisenberg limit—can be reached in presence of collective phase noise by using differential interferometry, where one part of the system is used to monitor the noise. For this, not only Greenberger-Horne-Zeilinger states but also symmetric Dicke states are suitable. We investigate the optimal splitting for a general symmetric Dicke state at both inputs and discuss possible experimental realizations of differential interferometry.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Using Persistent Scatterers Interferometry to create a subsidence map of the Nile Delta in Egypt
NASA Astrophysics Data System (ADS)
Bouali, E. Y.; Sultan, M.; Becker, R.; Cherif, O.
2013-12-01
Inhabitants of the Nile Delta in Egypt, especially those who live around the coast, are threatened by two perpetual hazards: (1) sea level rise and encroachment from the Mediterranean Sea and (2) land subsidence that is inherent in deltaic environments. With cities like Alexandria and Port Said currently only one meter above sea level, it is important to understand the nature of the sea level rise and land subsidence, both spatially and temporally, and to be able to quantify these hazards. The magnitude of sea level rise has been actively monitored in stations across the Mediterranean Sea; the subsidence of the Nile Delta, as a whole system however, has not been adequately quantified. We have employed the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique known as Persistent Scatterers Interferometry (PSI) across the entire northern parts of the Nile Delta. A dataset of 106 ENVISAT single look complex (SLC) scenes (four descending tracks: 164, 207, 436, and 479) acquired throughout the time period 2003 to 2010 were obtained from the European Space Agency and utilized for radar interferometric purposes. Multiple combinations of these scenes - used for output optimization and validation - were processed. Due to the nature of the PSI technique, subsidence rates calculated using this technique are values measured from cities and urban areas - where PSI works well. The methodology of choice is to calculate the subsidence rates on a city-by-city basis by: (1) choosing an urban area and cutting the SLC scene stack down to a small area (25 - 200 km2); (2) processing this area multiple times using difference scene and parameter combinations in order to best optimize persistent scatterer (PS) abundance and ground displacement measurements; (3) calibrating the relative ground motion measured by PSI to known locations of minimal subsidence rates. The final result is a spatial representation of the subsidence rates across the Nile Delta in Egypt. Measured subsidence rates vary widely across the Nile Delta, with the highest rates occurring in cities near the mouth of the Damietta branch of the Nile River and around the Mansala Lagoon, such as Ras El Bar (up to 15 mm/year), Damietta (up to 10 mm/year), and Port Said (up to 7 mm/year). The complexity of these subsidence rates is spatially evident: many cities display a wide range of subsidence rates - for example Port Said, where a majority of the city is undergoing minimal to no subsidence (< 1 mm/year) there are two regions - near the Mediterranean coast and near the Mansala Lagoon - where subsidence rates are quite high (5-7 mm/year). There are also a few overall trends observed across the delta: (1) subsidence rates are greatest in the northeast region of the delta (average: > 5 mm/year) than anywhere else (e.g., average western subsidence: 1-4 mm/year) and (2) cities generally more proximal to the Mediterranean coast exhibit greater subsidence rates (average subsidence rates: Ras El Bar: 8 mm/year, Port Said: 5 mm/year, and Damietta: 6 mm/year)than cities in the middle (e.g., Mansoura and Al Mahallah: 4 mm/year) or south regions (e.g., Tanta: <4 mm/year) of the delta.
Wu, H.-A.; Zhang, Y.-H.; Chen, X.-Y.; Lu, T.; Du, J.; Sun, Z.-H.; Sun, G.-T.
2011-01-01
DInSAR technique based on time series of SAR images has been very popular to monitor ground stow deformation in recent years such as permanent scatterers (PS) method small baseline subsets (SBAS) method and coherent targets (CT) method. By taking advantage of PS method and CT method in this paper small baseline DTnSAR technique is used to investigate the ground deformation of Taiyuan City Shanxi Province from 2003 to 2009 by using 23 ENVISAT ASAR images. The experiment results demonstrate that: (1) during this period four significant subsidence centers have been developed in Taiyuan namely Xiayuan Wujiabu Xiaodian Sunjiazhai. The largest subsidence center is Sunjiazhai with an average subsidence rate of -77. 28 mm/a; (2) The subsidence of the old center Wanbolin has sHowed down. And the subsidence in the northern region has stopped and some areas even rebounded. (3) The change of subsidence centers indicates that the control measures of "closing wells and reducing exploitation" taken by the Taiyuan government has achieved initial effects. (4) The experiment results have been validated with leveling data and the acouracy is 2. 90 mm which shows that the small baseline DInSAR technique can be used to monitor urban ground deformation.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)
NASA Astrophysics Data System (ADS)
Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.
2014-12-01
(Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Rowe, David; Smith, Thomas C.; Teiche, Alex; Harshaw, Richard; Wallace, Daniel; Weise, Eric; Wiley, Edward; Boyce, Grady; Boyce, Patrick; Branston, Detrick; Chaney, Kayla; Clark, R. Kent; Estrada, Chris; Frey, Thomas; Estrada, Reed; Green, Wayne; Haurberg, Nathalie; Kenney, John; Jones, Greg; Loftin, Sheri; McGieson, Izak; Patel, Rikita; Plummer, Josh; Ridgely, John; Trueblood, Mark; Westergren, Donald; Wren, Paul
2015-09-01
Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electronmultiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The data base of well over one million images was reduced with the Speckle Interferometry Tool of PlateSolve 3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Advancing differential atom interferometry for space applications
NASA Astrophysics Data System (ADS)
Chiow, Sheng-Wey; Williams, Jason; Yu, Nan
2016-05-01
Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.
NASA Astrophysics Data System (ADS)
Tessari, G.; Riccardi, P.; Pasquali, P.
2017-12-01
Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.
Monitoring of infrastructural sites by means of advanced multi-temporal DInSAR methods
NASA Astrophysics Data System (ADS)
Vollrath, Andreas; Zucca, Francesco; Stramondo, Salvatore
2013-10-01
With the launch of Sentinel-1, advanced interferometric measurements will become more applicable then ever. The foreseen standard Wide Area Product (WAP), with its higher spatial and temporal resolution than comparable SAR missions, will provide the basement for the use of new wide scale and multitemporal analysis. By now the use of SAR interferometry methods with respect to risk assessment are mainly conducted for active tectonic zones, plate boundaries, volcanoes as well as urban areas, where local surface movement rates exceed the expected error and enough pixels per area contain a relatively stable phase. This study, in contrast, aims to focus on infrastructural sites that are located outside cities and are therefore surrounded by rural landscapes. The stumbling bock was given by the communication letter by the European Commission with regard to the stress tests of nuclear power plants in Europe in 2012. It is mentioned that continuously re-evaluated risk and safety assessments are necessary to guarantee highest possible security to the European citizens and environment. This is also true for other infrastructural sites, that are prone to diverse geophysical hazards. In combination with GPS and broadband seismology, multitemporal Differential Interferometric SAR approaches demonstrated great potential in contributing valuable information to surface movement phenomenas. At this stage of the project, first results of the Stamps-MTI approach (combined PSInSAR and SBAS) will be presented for the industrial area around Priolo Gargallo in South East Sicily by using ENVISAT ASAR IM mode data from 2003-2010. This area is located between the Malta Escarpment fault system and the Hyblean plateau and is prone to earthquake and tsunami risk. It features a high density of oil refineries that are directly located at the coast. The general potential of these techniques with respect to the SENTINEL-1 mission will be shown for this area and a road-map for further improvements is given in order to overcome limitations that refer to the influence of the atmosphere, orbit or DEM errors. Further steps will also include validation and tectonic modeling for risk assessment.
Glacier Elevation Change in Western Nyainqentanglha Range, Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, Q.; Kang, S.; Zhang, G.
2016-12-01
Glacier retreat is a focus in the world with the global warming, local water resources and sea level rise was influenced greatly. Glacier area in western Nyainqentanglha range have a change of -6.8 to -18.2 percent from 1970 to 2010, the area in the northern slope decreased by larger rate. Changes in glacier area can not be used to estimate glacier mass variation. In this study, we use Landsat OLI images to extract glacier outlines, then glacier elevation change was calculated by Differential interferometry of TerraSAR-X/TanDEM-X and SRTM-C DEM. The decreasing rate of glacier elevation in the western Nyainqentanglha range was -0.28 ±0.11 m yr-1 during 2000 to 2014, the northern slope of -0.44 ±0.11 m yr-1 show a faster annual thinning rate than the southern slope of -0.22 ±0.11 m yr-1, which is conform to the area change trend. Detailed study of the typical glaciers elevation change suggests that , zhadang glacier represent the annual thinning rate of -0.61±0.11 m yr-1, 41 points elevation was measured by RTK-GPS in the field expedition in 2013, this values was used to validate the DInSAR results. The correlation coefficient between them was 0.77. Gurenhekou glacier in the south slope shows glacier elevation change of -0.25 m w.e. yr-1, the value is similar to -0.31 m w.e. yr-1 investigated by stakes and snow pits. Glacier have an elevation change of -0.70 m yr-1 head-ward 500 m from the terminus position along centre line, it approximate to -0.85 m yr-1 measured by RTK-GPS. Otherwise the height difference of zero lies at 5764 m which is close to the average ELA of 5777 m measured by stakes and snow pits. Glacier and climate change interacted with each other. Temperature in western Nyainqentanglha range showed prominent increasing trend from 1964 to 2014, precipitation have increased slowly meanwhile and can not make up the mass loss affected by warming temperature, Glaciers elevation have lowered in recent decades.
NASA Astrophysics Data System (ADS)
Drakatos, G.; Paradissis, D.; Anastasiou, D.; Elias, P.; Marinou, A.; Chousianitis, K.; Papanikolaou, X.; Zacharis, V.; Argyrakis, P.; Papazisi, K.; Makropoulos, K.
2012-04-01
Land sliding, as a consequence of slope instability, constitutes a natural catastrophe resulting mainly from geological cause often followed by disastrous impact on both the natural and man-made environment. The reasons causing land slides can vary from purely geological factors, to other relevant or not natural catastrophes, urban or residential expansion, tourist growth in areas under inappropriate geological background, or even a combination of the aforementioned causes The respective consequences, also span a wide range of negative impacts, both for the man-made (e.g. destruction of transportation infrastructure, constructions and urban or sub-urban areas) and the natural environment. Unfortunately, prevention of land slides is still largely ineffective adding to an inefficient and inadequate addressing of the problem, mainly due to the lack of systematic monitoring of such regions and due to the fact that "treatment" overwhelms "prevention". Recent developments in Global Navigation Satellite Systems (GNSS), Satellite Geodesy and satellite differential interferometry (DinSAR), have established these fields as fully equipped, from a scientific and engineering perspective, to act --either as autonomous techniques or in conjunction-- as prevention and/or early warning systems. Such state-of-the-art technology was implemented, in a project undertaken by the Institute of Geodynamics Dionysos Satellite Observatory/Higher Geodesy Laboratory and the Institute for Space Applications and Remote Sensing, in order to evaluate the potential of monitoring slide stability and the assessment of hazard evaluation. Therefore, for the first time in Greece, an attempt was made to develop a monitoring platform for slope instability and sliding prevention at two of the most hazardous, regarding soil instabilities, regions of Peloponnese, namely Sellas and Chalkio (in Messinia and Korinthia respectively). GPS campaigns were carried through, cGPS stations were installed and a network of artificial corner reflectors was established, providing a combination of satellite data, which were in turn analyzed and integrated. In the current study, all relevant activities regarding data collection/acquisition and respective processing are presented, followed by the induced (still preliminary at this point) results.
NASA Astrophysics Data System (ADS)
Aref, Seyed Hashem
2017-11-01
In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.
Advanced wave field sensing using computational shear interferometry
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.
2014-07-01
In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.
Tanaka, Junji; Nagashima, Masabumi; Kido, Kazuhiro; Hoshino, Yoshihide; Kiyohara, Junko; Makifuchi, Chiho; Nishino, Satoshi; Nagatsuka, Sumiya; Momose, Atsushi
2013-09-01
We developed an X-ray phase imaging system based on Talbot-Lau interferometry and studied its feasibility for clinical diagnoses of joint diseases. The system consists of three X-ray gratings, a conventional X-ray tube, an object holder, an X-ray image sensor, and a computer for image processing. The joints of human cadavers and healthy volunteers were imaged, and the results indicated sufficient sensitivity to cartilage, suggesting medical significance. Copyright © 2012. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason
We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.
NASA Astrophysics Data System (ADS)
Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.
2009-04-01
Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.
Mapping small elevation changes over large areas - Differential radar interferometry
NASA Technical Reports Server (NTRS)
Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.
1989-01-01
A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Minati, Federico
2010-03-01
Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.
NASA Astrophysics Data System (ADS)
Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.
2016-10-01
We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.
Zhao, Youbo; Monroy, Guillermo L; You, Sixian; Shelton, Ryan L; Nolan, Ryan M; Tu, Haohua; Chaney, Eric J; Boppart, Stephen A
2016-10-01
We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.
Potential Landslide Early Detection Near Wenchuan by a Qualitatively Multi-Baseline Dinsar Method
NASA Astrophysics Data System (ADS)
Dai, K.; Chen, G.; Xu, Q.; Li, Z.; Qu, T.; Hu, L.; Lu, H.
2018-04-01
Early detection of landslides is important for disaster prevention, which was still very hard work with traditional surveying methods. Interferometric Synthetic Aperture Radar (InSAR) technology provided us the ability to monitor displacements along the slope with wide coverage and high accuracy. In this paper, we proposed a qualitatively multi-baseline DInSAR method to early detect and map the potential landslides. Two sections of China National Highway 317 and 213 were selected as study area. With this method 10 potential landslide areas were early detected and mapped in a quick and effective way. One of them (i.e. Shidaguan landslide) collapsed on August 2017, which was coincident with our results, suggesting that this method could become an effective way to acquire the landslide early detection map to assist the future disaster prevention work.
NASA Astrophysics Data System (ADS)
De Novellis, V.; Carlino, S.; Castaldo, R.; Tramelli, A.; De Luca, C.; Pino, N. A.; Pepe, S.; Convertito, V.; Zinno, I.; De Martino, P.; Bonano, M.; Giudicepietro, F.; Casu, F.; Macedonio, G.; Manunta, M.; Cardaci, C.; Manzo, M.; Di Bucci, D.; Solaro, G.; Zeni, G.; Lanari, R.; Bianco, F.; Tizzani, P.
2018-03-01
The causative source of the first damaging earthquake instrumentally recorded in the Island of Ischia, occurred on 21 August 2017, has been studied through a multiparametric geophysical approach. In order to investigate the source geometry and kinematics we exploit seismological, Global Positioning System, and Sentinel-1 and COSMO-SkyMed differential interferometric synthetic aperture radar coseismic measurements. Our results indicate that the retrieved solutions from the geodetic data modeling and the seismological data are plausible; in particular, the best fit solution consists of an E-W striking, south dipping normal fault, with its center located at a depth of 800 m. Moreover, the retrieved causative fault is consistent with the rheological stratification of the crust in this zone. This study allows us to improve the knowledge of the volcano-tectonic processes occurring on the Island, which is crucial for a better assessment of the seismic risk in the area.
Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions
Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.
2009-01-01
We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.
NASA Astrophysics Data System (ADS)
Guglielmino, Francesco; Anzidei, Marco; Briole, Pierre; de Michele, Marcello; Elias, Panagiotis; Nunnari, Giuseppe; Puglisi, Giuseppe; Spata, Alessandro
2010-05-01
We present an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach [Guglielmino et al., 2009] to obtain a 3D estimation of the ground deformation pattern produced by the April 6, 2009, Mw 6.3 L'Aquila earthquake, the most destructive in the Abruzzo region since the huge 1703 earthquake [Boschi et al., 2000; Chiarabba et al., 2005]. The focal mechanism of the main shock is of normal faulting with NE-SW oriented T-axis [INGV, 2009]. Most of the aftershocks, located by the INGV seismic network, are in the depth range 5÷15 km, depicting a SW dipping fault plane [INGV, 2009]. Field observations [EMERGEO working group, 2009] have identified surface ground cracks with centimeter to decimeters throws over a wide belt running along the Paganica Fault. A closely spaced GPS (Global Positioning System) network was set up in this sector of the Apennines after 1999 [Anzidei et al., 2005] and more than 10 Continuous GPS (CGPS) stations have been operating in this region over the last years. On March 30 2008, INGV installed five GPS receivers on selected benchmarks of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin in order to detect the eventual ground movements during the seismic sequence. These stations were crucial to resolve the near-field co-seismic deformation pattern properly, allowing direct observation of the details of co-seismic displacement related to the main shock. Thanks to the ESA Earth Watching project, which made Envisat data quickly available after their acquisition, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending images sampling the date of the earthquake. In particular, we analyze the descending pair for the interval 27/04/2008 - 12/04/2009 (tbline = 350 days; Bperp = 44m) and the ascending pair for the interval 11/03/2009 - 15/04/2009 (tbline = 35 days; Bperp = 227m). We also analyzed ALOS PALSAR interferograms produced with images acquired along two different ascending tracks and relevant to the 3/7/2008 - 21/5/2009 time interval (track 638; tbline = 322 days; Bperp = 665 m ) and 2/3/2007 - 22/4/2009 time interval (track 639; tbline = 782 days; Bperp = 466 m ). In order to derive 3D surface motion maps, we apply the SISTEM method to the available geodetic dataset (both GPS and DInSAR). The SISTEM method performs an integration of GPS and DInSAR data for computing displacements on each point of the studied area. The SISTEM is based on elastic theory, and provides the complete 3D strain and the rigid body rotation tensors in the same solution. To achieve higher accuracy and get better the constraint of the 3D components of the displacements, we improved the standard formulation of SISTEM approach, based on a single DInSAR data, in order to take into account both ascending and descending interferograms and the DInSAR data acquired by different sensors(ALOS and ENVISAT). The SISTEM integration results show a complex kinematics, where the main movements (max westward movement of 165 mm associated with a max lowering of 260 mm) are recorded in the area between the surface evidence of the Paganica fault and Monticchio-fossa fault. These results, which provide both accurate and fine spatial characterization of ground deformation, are hence promising for future studies aimed at improving the knowledge of the kinematic of the Paganica fault and identification of additional faults responsible of the seismic sequence and that have contributed to the observed ground deformation. References. Anzidei, M., P. Baldi, A. Pesci, A. Esposito, A. Galvani, F. Loddo, P. Cristofoletti, A. Massucci, and S. Del Mese (2005), Geodetic deformation across the Central Apennines from GPS data in the time span 1999-2003, Ann. Geophys., 48(2), 259-271. Boschi, E., E. Guidoboni, G. Ferrrari, D. Mariotti, G. Valensise, and P. Gasperini (2000), Catalogue of strong Italian earthquakes from 461 B.C. to 1997, Ann. Geofis., 43, 609- 868. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251-268, doi:10.1016/j.tecto.2004.09.013. EMERGEO Working Group (2009), Field geological survey in the epicentral area of the Abruzzi (central Italy) seismic sequence of April 6th, 2009, in Quaderni di Geofisica, vol. 70, Ist. Naz. Di Geofis. e Vulcanol., Rome. Guglielmino F., Nunnari G., Puglisi G., Spata A. (2009), Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements (SISTEM) to obtain threedimensional displacements maps. Submitted to IEEE Transactions on Geoscience and Remote Sensing. Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2009), The L'Aquila seismic sequence— April 2009, Ist. Naz. di Geofis. e Vulcanol., Rome. (Available at http://portale.ingv.it/).
Balanced detection for self-mixing interferometry to improve signal-to-noise ratio
NASA Astrophysics Data System (ADS)
Zhao, Changming; Norgia, Michele; Li, Kun
2018-01-01
We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.
NASA Astrophysics Data System (ADS)
Demissie, Z. S.; Abdelsalam, M. G.; Byrnes, J. M.; Bridges, D.
2014-12-01
The Dobe graben is a northwestern trending, Quaternary continental rift found within the east-central block of the Afar Depression (AD), Ethiopia. The AD is one of only few places where three active tectonic rift arms meet on land. Extensional rifting is ongoing in the Dobe graben as evident by the 1989 swarm of intermediate magnitude (5.7 < Ms < 6.3) earthquakes. Dobe graben extension occurs on steeply dipping faults, where the maximum displacement, fault length, heave and spacing spans in three orders of magnitude. Crustal deformation within the graben was measured through ascending and descending interferograms using the Advanced Synthetic Aperture Radar (ASAR), C- Band (l = 5.6 cm) of the ENVISAT satellite. Results from the Differential Interferometric Synthetic Aperture Radar (D-INSAR) over a period of four years (05/20/2005 to 03/05/2010) suggests that the vertical component of deformation is distributed along a 50 km long NW trending zone in the Dobe graben. The vertical component of deformation is -0.5 to -0.3 cm along the graben axial rift floor likely representing subsidence due to riftingand +0.6 cm to 0.9 cm at the middle of the Dobe relay zone due to uplifting along the border escarpment faults. An estimate for the extension rate has been calculated from twelve traverses across the Dobe graben using Shuttle Rader Terrain Model (SRTM). Results show a deformation elongation (e) value ranging from 0.225 to 0.348. A fractal dimension of 0.03 from the graben floor was obtained for the measured population of fault throws (n= 162) in 12 traverses totaling 172 km. This value is interpreted to represent the dominant contribution to extension from faults with large throw. Moreover, frequency distribution of a natural fault population along the graben floor revealed a negative exponential law distribution indicating a strong strain partitioning within the active axial graben floor. A fractal dimension of 0.01 from the graben shoulder escarpment was obtained for the measured population of fault throws (n= 30) in 12 traverses totaling 48 km revealed a negative power fit distribution indicated a strong strain localization by the graben boarder faults.
Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia
2017-04-01
It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.
Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.
2016-01-01
Abstract. We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections. PMID:27802456
High-resolution probing of inner core structure with seismic interferometry
NASA Astrophysics Data System (ADS)
Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.
2015-12-01
Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.
NASA Astrophysics Data System (ADS)
Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang
2008-11-01
The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.
NASA Astrophysics Data System (ADS)
Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.
2017-12-01
Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.
New opportunities with spectro-interferometry and spectro-astrometry
NASA Astrophysics Data System (ADS)
Kraus, Stefan
2012-07-01
Latest-generation spectro-interferometric instruments combine a milliarcsecond angular resolution with spectral capabilities, resulting in an immensely increased information content. Here, I present methodological work and results that illustrate the fundamentally new scientific insights provided by spectro-interferometry with very high spectral dispersion or in multiple line transitions (Brackett and Pfund lines). In addition, I discuss some pitfalls in the interpretation of spectro-interferometric data. In the context of our recent studies on the classical Be stars β CMi and ζ Tau, I present the first position-velocity diagram obtained with optical interferometry and provide a physical interpretation for a phase inversion, which has in the meantime been observed for several classical Be-stars. In the course of our study on the Herbig B[e] star V921 Sco, we combined, for the first time, spectro-interferometry and spectro-astrometry, providing a powerful and resource-efficient way to constrain the spatial distribution as well as the kinematics of the circumstellar gas with an unprecedented velocity resolution up to R = λ/Δλ = 100,000. Finally, I discuss our phase sign calibration procedure, which has allowed us to calibrate AMBER differential phases and closure phases for all spectral modes, and derive from the gained experience science-driven requirements for future instrumentation projects.
VLBI Phase-Referenced Observations on Southern Hemisphere HIPPARCOS Radio Start
NASA Technical Reports Server (NTRS)
Guirado, J. C.; Preston, R. A.; Jones, D. L.; Lestrade, J. F.; Reynolds, J. E.; Jauncey, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.; Lovell, J. E. J.;
1995-01-01
Presented are multiepoch Very Long Baseline Interferometry (VLBI) observations on Southern Hemisphere radio stars phase-referenced to background radio sources. The differential astrometry analysis results in high-precision determinations of proper motions and parallaxes. The astrophysical implications and astrometric consequences of these results are discussed.
Water induced geohazards measured with spaceborne interferometry techniques
NASA Astrophysics Data System (ADS)
Poncos, V.; Serban, F.; Teleaga, D.; Ciocan, V.; Sorin, M.; Caranda, D.; Zamfirescu, F.; Andrei, M.; Copaescu, S.; Radu, M.; Raduca, V.
2012-04-01
Natural and anthropogenic occurrence of groundwater is inducing surficial crustal deformation processes that can be accurately measured with high spatial density from space, regardless of the ground access conditions. The detection of the surface deformation allows uncovering spatial and temporal patterns of subsurface processes such as land subsidence, cave-ins and differential ground settlement related to water content. InSAR measurements combined with ground truth data permit estimation of the mechanical properties of the rocks and the development of models and scenarios to predict disaster events such as cave-ins, landslides and soil liquefaction in the case of an Earthquake. A number of three sites in Romania that suffer of ground instability because of the water component will be presented. The DInSAR, Interferograms Stacking and Persistent Scatterers Interferometry techniques were applied to retrieve as accurate as possible the displacement information. The first studied site is the city of Bucharest; using 7 years of ERS data ground instability was detected on a large area that represents the historical watershed of the Dambovita river. A network of water wells shows that the ground instability is directly proportional to the groundwater depth. The second site is the Ocnele Mari brine extraction area. The exploitation of the Ocnele Mari salt deposit started from the Roman Empire time using the mining technology and from 1954 the salt dissolution technology which involves injecting water into the ground using a well and extracting the brine (water and salt) through another well. The extraction of salt through dissolution led to slow ground subsidence but the flooding and dissolution of the Roman caves led to catastrophic cave-ins and the relocation of an entire village. The water injection technique is still applied and the Roman cave system is an unknown, therefore further catastrophic events are expected. The existing theoretical simulations of the subsidence process are performed using a Finite Element Method (FEM), which calculates the distribution of the state of strains and stresses in the rock masses, in an elasto-plastic behavior. The ground deformation is presently measured with leveling instrumentation and an effort is being made to adopt the InSAR results for a better spatial and temporal coverage that should refine the existing model. The third site is a number of 4 tailing retention ponds at different stages of their life. The tailing ponds are hydrotechnical structures of permeable type designed for the safe storage of mining detritus byproducts and disposal of the water contained in these byproducts. Starting in 1998 approximately 550 mines have been closed and introduced in a conservation process. In order to prevent ecological and human damage, all these mines and storage ponds for mining tailings are required to be under continuous monitoring. Using 15 high-resolution Spotlight TerraSAR-X images, the stability of the storage pond was monitored over a period of 5 months during 2011. Interferometric stacking techniques and PSI analysis were applied in order to generate deformation maps and deformation profiles. In the same time, GPS measurements and Electrical Tomography for water content were used as independent measurements.
NASA Astrophysics Data System (ADS)
Kyriakopoulos, Christodoulos; Trasatti, Elisa; Atzori, Simone; Bignami, Christian; Chini, Marco; Stramondo, Salvatore; Tolomei, Christiano
2010-05-01
A destructive (Mw 7.9) earthquake struck the Sichuan province (China) on May 12, 2008. The seismic event, the largest in China in more than three decades and referred as the Wenchuan earthquake, ruptured approximately 280 km of the Yingxiu-Beichuan fault and about 70 km of the Guanxian-Anxian fault. Surface effects were suffered over a wide epicentral area (about 300 km E-W and 250 km N-S). The huge earthquake took place within the context of long term uplift of the Longmen Shan range in eastern Tibet. The Longmen Shan fault zone is the main tectonic boundary between the Sichuan basin and eastern Tibet and is characterized by a large topographic relief (from 500m a.s.l. to more than 4000m) and large variations in rheological properties. The coseismic deformation is imaged by a set of ALOS-PALSAR L-band SAR interferograms. We use an unprecedented high number of data (25 frames from 6 adjacent tracks) to encompass the entire coseismic area. The resulting mosaic of differential interferograms covers an overall area of about 340 km E-W and 240 km N-S. The complex geophysical context of Longmen Shan and the variations of the fault geometry along its length can be better handled by means of numerical methods. The fault geometry is constrained by inversions of geodetic data and by taking into account the geological features of eastern Tibet and Sichuan basin. As a result, we build a Finite Element (FE) model consisting of two non planar faults embedded in a non-homogeneous medium with real topography of the area. We develop a procedure to perform inversions of DInSAR data based on FE computed Green functions of the surface displacement field. We retrieve a complex slip distribution on the fault segments in a heterogeneous medium with realistic surface topography.
Limits of Pattern Discrimination in Human Vision.
1988-01-01
viewed with Nomarski differential interference microscopy at a level just vitreal to the ellipsoid-myoid junction. Positions of the cone centers were...using laser interferometry" 3. Chander Samy "Rod and cone areas as a function of retinal eccentricity" 4. Zachary Klett "Lens opacity and interferometric
Water vapor - The wet blanket of microwave interferometry
NASA Technical Reports Server (NTRS)
Resch, G. M.
1980-01-01
The various techniques that utilize microwave interferometry could be employed to determine distances of several thousand kilometers with an accuracy of 1 cm or 2 cm. Such measurements would be useful to obtain new knowledge of earth dynamics, greater insight into fundamental astronomical constants, and the ability to accurately navigate a spacecraft in interplanetary flight. There is, however, a basic problem, related to the presence of tropospheric water vapor, which has to be overcome before such measurements can be realized. Differing amounts of water vapor over the interferometer stations cause errors in the differential time of arrival which is the principal observable quantity. Approaches for overcoming this problem are considered, taking into account requirements for water vapor calibration to support interferometric techniques.
NASA Astrophysics Data System (ADS)
Fatland, Dennis Robert
1998-12-01
This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.
NASA Astrophysics Data System (ADS)
De Luca, Claudio; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Casu, Francesco
2016-04-01
The microwave remote sensing scenario is rapidly evolving through development of new sensor technology for Earth Observation (EO). In particular, Sentinel-1A (S1A) is the first of a sensors' constellation designed to provide a satellite data stream for the Copernicus European program. Sentinel-1A has been specifically designed to provide, over land, Differential Interferometric Synthetic Aperture Radar (DInSAR) products to analyze and investigate Earth's surface displacements. S1A peculiarities include wide ground coverage (250 km of swath), C-band operational frequency and short revisit time (that will reduce from 12 to 6 days when the twin system Sentinel-1B will be placed in orbit during 2016). Such characteristics, together with the global coverage acquisition policy, make the Sentinel-1 constellation to be extremely suitable for volcanic and seismic areas studying and monitoring worldwide, thus allowing the generation of both ground displacement information with increasing rapidity and new geological understanding. The main acquisition mode over land is the so called Interferometric Wide Swath (IWS) that is based on the Terrain Observation by Progressive Scans (TOPS) technique and that guarantees the mentioned S1A large coverage characteristics at expense of a not trivial interferometric processing. Moreover, the satellite spatial coverage and the reduced revisit time will lead to an exponential increase of the data archives that, after the launch of Sentine-1B, will reach about 3TB per day. Therefore, the EO scientific community needs from the one hand automated and effective DInSAR tools able to address the S1A processing complexity, and from the other hand the computing and storage capacities to face out the expected large amount of data. Then, it is becoming more crucial to move processors and tools close to the satellite archives, being not efficient anymore the approach of downloading and processing data with in-house computing facilities. To address these issues, ESA recently funded the development of the Geohazards Exploitation Platform (GEP), a project aimed at putting together data, processing tools and results to make them accessible to the EO scientific community, with particular emphasis to the Geohazard Supersites & Natural Laboratories and the CEOS Seismic Hazards and Volcanoes Pilots. In this work we present the integration of the parallel version of a well-known DInSAR algorithm referred to as Small BAseline Subset (P-SBAS) within the GEP platform for processing Sentinel-1 data. The integration allowed us to set up an operational on-demand web tool, open to every user, aimed at automatically processing S1A data for the generation of SBAS displacement time-series. Main characteristics as well as a number of experimental results obtained by using the implemented web tool will be also shown. This work is partially supported by: the RITMARE project of Italian MIUR, the DPC-CNR agreement and the ESA GEP project.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Silva, Guilherme G.
2016-10-01
PSI (Persistent Scatterer Interferometry) analysis of large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground deformation measurements based on a combination of DInSAR Time-Series (DTS) and PSI techniques, applied in a large area of open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detect high rates of linear and nonlinear ground deformation. These mines have presented a historical of instability and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground based radar and total station (prisms). By using a priori information regarding the topographic phase error and phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X-1 images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multi-look unwrapped interferogram using an extension of SVD to obtain the Least-Square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferogram to perform the PSI analysis. This procedure improved the capability of the PSI analysis to detect high rates of deformation as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risks control.
CHARRON: Code for High Angular Resolution of Rotating Objects in Nature
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Zorec, J.; Vakili, F.
2012-12-01
Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).
NASA Astrophysics Data System (ADS)
Merryman Boncori, John Peter; Papoutsis, Ioannis; Pezzo, Giuseppe; Tolomei, Cristiano; Atzori, Simone; Ganas, Athanassios; Karastathis, Vassilios; Salvi, Stefano; Kontoes, Charalampos; Antonioli, Andrea
2015-04-01
On Jan. 26, 2014 at 13:55 UTC an Mw 6.0 earthquake struck the island of Cephalonia, Greece, followed five hours later by an Mw 5.3 aftershock, and by an Mw 5.9 event on Feb. 3, 2014 (National Observatory of Athens, Institute of Geodynamics), causing extensive structural damages and inducing widespread environmental effects. We measured the 3D coseismic deformation field of the Feb. 3, 2014 event, by applying Differential Synthetic Aperture Radar Interferometry (DInSAR), Intensity cross-correlation and Spectral Diversity (also known as Multi Aperture Interferometry) to descending passes of the Italian Space Agency (ASI) COSMO-SkyMed satellites and ascending passes of the German Space Agency (DLR) TanDEM-X satellite. These techniques allowed the observation of four independent displacement components (descending and ascending radar line-of-sight and azimuth), each of which was measured with two different techniques, resulting in an increased spatial coverage, robustness and sensitivity to all Cartesian displacement components. Our SAR measurements were found to be in very good agreement with those from available continuous Global Positioning System (cGPS) stations. We modeled the seismic source of the Feb. 3, 2014 earthquake with a joint inversion of the eight SAR displacement maps, using the analytical solutions for dislocation in an elastic half-space. Firstly, we considered a model based on a single-fault plane and carried out a non-linear inversion to estimate its geometric and kinematic source parameters, assuming a uniform slip. Subsequently, we performed a linear inversion to retrieve the slip distribution, adopting a damped and Non-Negative Least Squares approach. Slip values were computed on a variable-size mesh, which maximizes the model resolution matrix. We find the majority of the observed surface deformation to be explained by a 20 km long ~N-S oriented and west-dipping fault running parallel to the east coast of the Paliki peninsula, with a main right-lateral strike-slip mechanism and a lesser reverse component (rake=147°). The slip on this structure is mostly confined to depths shallower than 5 km. However a comparison of observed and modelled displacements, suggests a non-negligible slip to occur also along a second structure, ~10 km in length, located in the south of Paliki and striking NE-SW. We therefore performed a second inversion of the SAR displacement maps, finding a dominant right-lateral strike-slip mechanism (rake=164°) and a high dip angle (76°) for the NE-SW striking fault. Most of the slip on this latter structure is found to occur at depths between 2 km and 5 km, although our model is poorly constrained at greater depths. Inclusion of the NE-SW fault in the source model is found to significantly improve the fit to all observed displacements in the south-east of the Paliki peninsula. Finally, we compare the full moment-tensor derived from our models to those obtained by several global and regional seismic networks. We also compare the slip distributions resulting from our inversions to hypocenter relocations based on a 2D velocity model, which accounts for a non-horizontal Moho structure. A remarkable agreement is found, which also allows several considerations to be made on the rupture mechanism.
Speckle interferometry of asteroids
NASA Technical Reports Server (NTRS)
Drummond, Jack
1988-01-01
By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated.
Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben
2012-08-01
X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.
NASA Astrophysics Data System (ADS)
Norris, Barnaby; Schworer, Guillaume; Tuthill, Peter; Jovanovic, Nemanja; Guyon, Olivier; Stewart, Paul; Martinache, Frantz
2015-03-01
Direct imaging of protoplanetary discs promises to provide key insight into the complex sequence of processes by which planets are formed. However, imaging the innermost region of such discs (a zone critical to planet formation) is challenging for traditional observational techniques (such as near-IR imaging and coronagraphy) due to the relatively long wavelengths involved and the area occulted by the coronagraphic mask. Here, we introduce a new instrument - Visible Aperture-Masking Polarimetric Interferometer for Resolving Exoplanetary Signatures (VAMPIRES) - which combines non-redundant aperture-masking interferometry with differential polarimetry to directly image this previously inaccessible innermost region. By using the polarization of light scattered by dust in the disc to provide precise differential calibration of interferometric visibilities and closure phases, VAMPIRES allows direct imaging at and beyond the telescope diffraction limit. Integrated into the SCExAO (Subaru Coronagraphic Extreme Adaptive Optics) system at the Subaru telescope, VAMPIRES operates at visible wavelengths (where polarization is high) while allowing simultaneous infrared observations conducted by HICIAO. Here, we describe the instrumental design and unique observing technique and present the results of the first on-sky commissioning observations, validating the excellent visibility and closure-phase precision which are then used to project expected science performance metrics.
Methodology for heritage conservation in Belgium based on multi-temporal interferometry
NASA Astrophysics Data System (ADS)
Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.
2017-09-01
Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For this building, damage is assessed by means of PSInSAR.
Novel Payload Architectures for LISA
NASA Astrophysics Data System (ADS)
Johann, Ulrich A.; Gath, Peter F.; Holota, Wolfgang; Schulte, Hans Reiner; Weise, Dennis
2006-11-01
As part of the current LISA Mission Formulation Study, and based on prior internal investigations, Astrium Germany has defined and preliminary assessed novel payload architectures, potentially reducing overall complexity and improving budgets and costs. A promising concept is characterized by a single active inertial sensor attached to a single optical bench and serving both adjacent interferometer arms via two rigidly connected off-axis telescopes. The in-plane triangular constellation ``breathing angle'' compensation is accomplished by common telescope in-field of view pointing actuation of the transmit/received beams line of sight. A dedicated actuation mechanism located on the optical bench is required in addition to the on bench actuators for differential pointing of the transmit and receive direction perpendicular to the constellation plane. Both actuators operate in a sinusoidal yearly period. A technical challenge is the actuation mechanism pointing jitter and the monitoring and calibration of the laser phase walk which occurs while changing the optical path inside the optical assembly during re-pointing. Calibration or monitoring of instrument internal phase effects e.g. by a laser metrology truss derived from the existing interferometry is required. The architecture exploits in full the two-step interferometry (strap down) concept, separating functionally inter spacecraft and intra-spacecraft interferometry (reference mass laser metrology degrees of freedom sensing). The single test mass is maintained as cubic, but in free-fall in the lateral degrees of freedom within the constellation plane. Also the option of a completely free spherical test mass with full laser interferometer readout has been conceptually investigated. The spherical test mass would rotate slowly, and would be allowed to tumble. Imperfections in roundness and density would be calibrated from differential wave front sensing in a tetrahedral arrangement, supported by added attitude information via a grid of tick marks etched onto the surface and monitored by the laser readout.
NASA Technical Reports Server (NTRS)
Rosen, P. A.; Hensley, S.; Zebker, H. A.; Webb, F. H.; Fielding, E. J.
1996-01-01
The shuttle imaging radar C/X synthetic aperture radar (SIR-C/X-SAR) radar on board the space shuttle Endeavor imaged Kilauea Volcano, Hawaii, in April and October 1994 for the purpose of measuring active surface deformation by the methods of repeat-pass differential radar interferometry. Observations at 24 cm (L band) and 5.6 cm (C band) wavelengths were reduced to interferograms showing apparent surface deformation over the 6-month interval and over a succession of 1-day intervals in October. A statistically significant local phase signature in the 6-month interferogram is coincident with the Pu'u O'o lava vent. Interpreted as deformation, the signal implies centimeter-scale deflation in an area several kilometers wide surrounding the vent. Peak deflation is roughly 14 cm if the deformation is purely vertical, centered southward of the Pu'u O'o caldera. Delays in the radar signal phase induced by atmospheric refractivity anomalies introduce spurious apparent deformation signatures, at the level of 12 cm peak-to-peak in the radar line-of-sight direction. Though the phase observations are suggestive of the wide-area deformation measured by Global Positioning System (GPS) methods, the atmospheric effects are large enough to limit the interpretation of the result. It is difficult to characterize centimeter-scale deformations spatially distributed over tens of kilometers using differential interferometry without supporting simultaneous, spatially distributed measurements of reactivity along the radar line of sight. Studies of the interferometric correlation of images acquired at different times show that L band is far superior to C band in the vegetated areas, even when the observations are separated by only 1 day. These results imply longer wavelength instruments are more appropriate for studying surfaces by repeat-pass observations.
A strategy for Local Surface Stability Monitoring Using SAR Imagery
NASA Astrophysics Data System (ADS)
Kim, J.; Lan, C. W.; Lin, S. Y.; vanGasselt, S.; Yun, H.
2017-12-01
In order to provide sufficient facilities to satisfy a growing number of residents, nowadays there are many constructions and maintenance of infrastructures or buildings undergoing above and below the surface of urban area. In some cases we have learned that disasters might happen if the developments were conducted on unknown or geologically unstable ground or in over-developed areas. To avoid damages caused by such settings, it is essential to perform a regular monitoring scheme to understand the ground stability over the whole urban area. Through long-term monitoring, we firstly aim to observe surface stability over the construction sites. Secondly, we propose to implement an automatic extraction and tracking of suspicious unstable area. To achieve this, we used 12-days-interval C-band Sentinel-1A Synthetic Aperture Radar (SAR) images as the main source to perform regular monitoring. Differential Interferometric SAR (D-InSAR) technique was applied to generate interferograms. Together with the accumulation of updated Sentinel-1A SAR images, time series interferograms were formed accordingly. For the purpose of observing surface stability over known construction sites, the interferograms and the unwrapped products could be used to identify the surface displacement occurring before and after specific events. In addition, Small Baseline Subset (SBAS) and Permanent Scatterers (PS) approaches combining a set of unwrapped D-InSAR interferograms were also applied to derive displacement velocities over long-term periods. For some cases, we conducted the ascending and descending mode time series analysis to decompose three surface migration vectors and to precisely identify the risk pattern. Regarding the extraction of suspicious unstable areas, we propose to develop an automatic pattern recognition algorithm for the identification of specific fringe patterns involving various potential risks. The detected fringes were tracked in the time series interferograms and overlapped with various GIS layers to find correlations with the environmental elements causing the risks. Taipei City and Taichung City located in northern Taiwan and Ulsan City in Korea were selected to demonstrate the feasibility of the proposed method.
Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring
NASA Astrophysics Data System (ADS)
Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.
The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing acquisitions. The strategies used in order to isolate the phase contribution relative to time non-uniform displace- ment phenomena from other phase terms (mainly atmospheric artefacts and residual topography) are going to be illustrated. Moreover, the main aspects to be considered envisaging a synergistic use of PS results and both GPS and optical levelling data are going to be outlined. Finally, attention will be paid to key issues to be taken into account for designing future SAR missions dedicated to detection and monitoring of ground deformation phenomena.
Baek, S.; Kwoun, Oh-Ig; Bassler, M.; Lu, Z.; Shum, C.K.; Dietrich, R.
2004-01-01
In this study we generated a relative Digital Elevation Model (DEM) over the Sulzberger Ice Shelf, West Antarctica using ERS1/2 synthetic aperture radar (SAR) interferometry data. Four repeat pass differential interferograms are used to find the grounding zone and to classify the study area. An interferometrically derived DEM is compared with laser altimetry profile from ICESat. Standard deviation of the relative height difference is 5.12 m and 1.34 m in total length of the profile and at the center of the profile respectively. The magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7 cm and it agrees well within 3 cm with predicted ones from tide models.
Very Long Baseline Interferometry: Dependencies on Frequency Stability
NASA Astrophysics Data System (ADS)
Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald
2018-04-01
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
Spherical grating based x-ray Talbot interferometry.
Cong, Wenxiang; Xi, Yan; Wang, Ge
2015-11-01
Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.
Spherical grating based x-ray Talbot interferometry
Cong, Wenxiang; Xi, Yan; Wang, Ge
2015-01-01
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741
Spherical grating based x-ray Talbot interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu
2015-11-15
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less
Monitoring of Surface Subsidence of the Mining Area Based on Sbas
NASA Astrophysics Data System (ADS)
Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.
2018-05-01
This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
Spatially resolved photodiode response for simulating precise interferometers.
Fernández Barranco, Germán; Tröbs, Michael; Müller, Vitali; Gerberding, Oliver; Seifert, Frank; Heinzel, Gerhard
2016-08-20
Quadrant photodiodes (QPDs) are used in laser interferometry systems to simultaneously detect longitudinal displacement of test masses and angular misalignment between the two interfering beams. The latter is achieved by means of the differential wavefront sensing (DWS) technique, which provides ultra-high precision for measuring angular displacements. We have developed a setup to obtain the spatially resolved response of QPDs that, together with an extension of the simulation software IfoCAD, allows us to use the measured response in simulations and accurately predict the desired longitudinal and DWS phase observables. Three different commercial off-the-shelf QPD candidates for space-based interferometry were characterized. The measured response of one QPD was used in optical simulations. Nonuniformities in the response of the device and crosstalk between segments do not introduce significant variations in the longitudinal and DWS measurands with respect to the standard case when a uniform QPD without crosstalk is used.
NASA Astrophysics Data System (ADS)
Miyagi, Yousuke; Ozawa, Taku; Shimada, Masanobu
2009-10-01
On April 1, 2007 (UTC), a large Mw 8.1 interplate earthquake struck the Solomon Islands subduction zone where complicated tectonics result from the subduction of four plates. Extensive ground movements and a large tsunami occurred in the epicentral area causing severe damage over a wide area. Using ALOS/PALSAR data and the DInSAR technique, we detected crustal deformation exceeding 2 m in islands close to the epicenter. A slip distribution of the inferred seismic fault was estimated using geodetic information derived from DInSAR processing and field investigations. The result indicates large slip areas around the hypocenter and the centroid. It is possible that the largest slip area is related to subduction of the plate boundary between the Woodlark and Australian plates. A small slip area between those large slip areas may indicate weak coupling due to thermal activity related to volcanic activity on Simbo Island. The 2007 earthquake struck an area where large earthquake has not occurred since 1970. Most of this seismic gap was filled by the 2007 events, however a small seismic gap still remains in the southeastern region of the 2007 earthquake.
NASA Astrophysics Data System (ADS)
Fiaschi, Simone; Di Martire, Diego; Tessitore, Serena; Achilli, Vladimiro; Ahmed, Ahmed; Borgstrom, Sven; Calcaterra, Domenico; Fabris, Massimo; Ramondini, Massimo; Serpelloni, Enrico; Siniscalchi, Valeria; Floris, Mario
2015-04-01
Land subsidence affecting the Ravenna Municipality (Emilia Romagna Region, NE Italy) is one of the best example on how the exploitation of natural resources can affect the environment and the territory. In fact, the pumping of groundwater and the extraction of gas from both on and off-shore reservoirs, started in the 1950s, have caused a strong land subsidence affecting most of the Emilia Romagna territory but in particular the Adriatic Sea coastline near Ravenna. In such area the current subsidence rate, even if lower than in the past, can reach the -2cm/y. Local Authorities have monitored this phenomenon over the years with different techniques: spirit levelling, GPS surveys and, more recently, Interferometric Synthetic Aperture Radar (InSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with two different DInSAR techniques applied to the study of the land subsidence in the Ravenna territory: the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques. The SBAS works on SARscape software and is based on the Berardino et al., 2002 algorithm. This technique relies on the combination of differential interferograms created from stacks of SAR image pairs that have small temporal and perpendicular baselines. Thanks to the application of several interferograms for every single image, it is possible to obtain high spatial coherence, high data density and more effective error reduction. This allows us to obtain mean velocity maps with good data density even over non-urbanized territories. For the CPT we used the SUBsoft processor based on the algorithm implemented by Mora et al., 2003. CPT is able to extract from a stack of differential interferograms the deformation evolution over wide areas during large time spans. The processing scheme is composed of three main steps: a) the generation of the best interferogram set among all the available images of the zone under study; b) the selection of the pixels with reliable phase within the employed interferograms and, c) their phase analysis to calculate, as the main result, their deformation time series within the observation period. For this study, different SAR images have been used: 25 meters ground resolution ERS 1/2 (1992-2000) and ENVISAT (2003-2010), and 3 meters ground resolution TerraSAR-X (2012-2014). The results obtained for each stack of images with the two techniques are validated and compared with the C-GPS time series of more than three benchmarks stations. The aim is to test the two InSAR techniques in the monitoring of ground settlements in low urbanized territories. Furthermore, we have investigated the advantages (data accuracy and density) of using SAR images with higher ground resolution.
Cremers, David A.; Keller, Richard A.
1984-01-01
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.
Cremers, D.A.; Keller, R.A.
1982-06-08
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.
Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands
NASA Astrophysics Data System (ADS)
Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.
2017-06-01
Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.
NASA Astrophysics Data System (ADS)
Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele
2017-04-01
The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed memory. Moreover, in some processing steps very heavy from the computational point of view, the Graphical Processing Units (GPU) are exploited for the processing of blocks working on a pixel-by-pixel basis, requiring strong modifications on some key parts of the sequential full resolution SBAS-DInSAR processing chain. GPU processing is implemented by efficiently exploiting parallel processing architectures (as CUDA) for increasing the computing performances, in terms of optimization of the available GPU memory, as well as reduction of the Input/Output operations on the GPU and of the whole processing time for specific blocks w.r.t. the corresponding sequential implementation, particularly critical in presence of huge DInSAR datasets. Moreover, to efficiently handle the massive amount of DInSAR measurements provided by the new generation SAR constellations (CSK and Sentinel-1), we perform a proper re-design strategy aimed at the robust assimilation of the full resolution SBAS-DInSAR results into the web-based Geonode platform of the Spatial Data Infrastructure, thus allowing the efficient management, analysis and integration of the interferometric results with different data sources.
NASA Astrophysics Data System (ADS)
Casu, Francesco; De Luca, Claudio; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana
2017-04-01
The Geohazards Exploitation Platform (GEP) is an ESA activity of the Earth Observation (EO) ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. GEP aims at providing both on-demand processing services for scientific users of the geohazards community and an integration platform for new EO data analysis processors dedicated to scientists and other expert users. In the Remote Sensing scenario, a crucial role is played by the recently launched Sentinel-1 (S1) constellation that, with its global acquisition policy, has literally flooded the scientific community with a huge amount of data acquired over large part of the Earth on a regular basis (down to 6-days with both Sentinel-1A and 1B passes). Moreover, the S1 data, as part of the European Copernicus program, are openly and freely accessible, thus fostering their use for the development of tools for Earth surface monitoring. In particular, due to their specific SAR Interferometry (InSAR) design, Sentinel-1 satellites can be exploited to build up operational services for the generation of advanced interferometric products that can be very useful within risk management and natural hazard monitoring scenarios. Accordingly, in this work we present the activities carried out for the development, integration, and deployment of the SBAS Sentinel-1 Surveillance service of CNR-IREA within the GEP platform. This service is based on a parallel implementation of the SBAS approach, referred to as P-SBAS, able to effectively run in large distributed computing infrastructures (grid and cloud) and to allow for an efficient computation of large SAR data sequences with advanced DInSAR approaches. In particular, the Surveillance service developed on GEP platform consists on the systematic and automatic processing of Sentinel-1 data on selected Areas of Interest (AoI) to generate updated surface displacement time series via the SBAS-InSAR algorithm. We built up a system that is automatically triggered by every new S1 acquisition over the AoI, once it is available on the S1 catalogue. Then, tacking benefit from the SBAS results generated by previous runs of the service, the system processes the new acquisitions only, thus saving storage space and computing time and finally generating an updated SBAS time series. The same P-SBAS processor underlying the Surveillance service is also available through the GEP as a standard on-demand DInSAR service, thus allowing the scientific community to generate S1 SBAS time series on areas not covered by the Surveillance service itself. It is worth noting that the SBAS Sentinel-1 Surveillance service on GEP represents the core of the EPOSAR service, which will deliver S1 displacement time series of Earth surface on a regular basis for the European Plate Observing System (EPOS) Research Infrastructure community. In particular, the main goal of EPOSAR is to contribute with advanced technique and methods, which have already well demonstrated their effectiveness and relevance, in investigating the physical processes controlling earthquakes, volcanic eruptions and unrest episodes as well as those driving tectonics and Earth surface dynamics.
Monitoring the UPS and Downs of Sumatra and Java with D-Insar Time-Series
NASA Astrophysics Data System (ADS)
Chaussard, E.; Amelung, F.
2010-12-01
We performed, for the first time, a global D-InSAR survey of the Indonesian islands of Sumatra and Java to define locations where deformation is occurring. The goals of this study are 1) to create an inventory of actively deforming volcanic centers and 2) monitor all types of ground motion. This work provides ground deformation data for previously unmonitored areas and can assist the Indonesian authorities to improve hazards assessment. The D-InSAR survey covers an area of about 500 000 km2 and 3000 km long on the islands of Sumatra, Java and Bali. We used ALOS data from 45 tracks and more than 1500 granules obtained from the Alaska Satellite Facility (ASF) through the US Government Research Consortium (USGRC). We completed more than 1000 interferograms spanning a period from the end of 2006 to the beginning of 2009. L-band SAR images enable deformation mapping at global scales even in highly vegetated areas where C-band signal experiences loss of coherence. To identify locations where ground deformations are occurring, we used multiple SAR acquisitions of the same area and performed time series analysis using the Small BAseline Subset (SBAS) method. Interferograms with a maximum spatial baseline of 3000 m were phase-unwrapped and subsequently inverted for the phase with respect to the first acquisition. Temporal coherence of each pixel is computed on the set of interferograms in order to select only pixels with high temporal coherence. The compiled InSAR velocity map reveals the background level of activity of the 84 volcanic centers constituting the Sumatra, Java and Bali volcanic arcs. We identified possible uplift at 6 volcanic centers: Agung (Bali), Lamongan (Java), Lawu (Java), Slamet (Java), Kerinci (Sumatra) and Sinabung (Sumatra). Moreover, we identified subsidence in 5 major cities and 1 coastal area. Subsidence rates range from 6 cm/yr in Medan, the largest city of Sumatra, to more than 15 cm/yr in Jakarta. These major subsidence areas are probably due to ground water extraction needed to support the increasing population and industrial activities.
NASA Astrophysics Data System (ADS)
Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.
2017-12-01
The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate the ground displacement field and to determine, by using elastic dislocation modelling, the geometries and slip distributions of the causative normal fault segments.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.
2015-07-01
On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu
2016-04-01
On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
NASA Astrophysics Data System (ADS)
Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.
2016-02-01
Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.
NASA Astrophysics Data System (ADS)
Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.
2007-12-01
The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.
VLBI Monitoring of the Bright Gamma-Ray Blazar PKS 0537-441
2010-06-01
active state by Fermi. It is one of the brightest ,),-ray blazars detected in the southern sky so far. The TANAMI (Tracking Active Galactic Nuclei...Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TAN AMI) program (Ojha et a1. (2010» has been monitoring south- ern sky blazars such...Telescope. Studying Active Galactic Nuclei (AGN) at different wavelengths is crucial in order to understand AGN-jets and differentiate between
NASA Astrophysics Data System (ADS)
Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.
2012-04-01
TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by sinkhole phenomena is located in urbanized area, microgravity method was preferred to other geophysical methodologies. In fact, seismic, magnetic and electromagnetic techniques are strongly influenced by urban noise and this produces a low value of signal to noise ratio. The gravity exploration, based on the identification of anomalies in the Earth's gravity field by measuring the gravity acceleration, allows to define any inhomogeneities generated by sources at different densities in the subsurface structure, such as underground voids. Based on geological informations, geophysical models of the known cavities are made. Establishing the physical and geometrical characteristics of the voids it was possible compute the amplitudes and wavelengths of the expected geophysical signal, in order to establish the procedures of the executive acquisition phase. If the magnitude of the evolution of the sinkhole phenomenon will be detected by gravity observations, the time-lapse gravity monitoring will be an excellent tool at the base of risk mitigation.
From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services
NASA Astrophysics Data System (ADS)
Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.
2016-12-01
There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even further to secure better societal information needs.
Physical and non-physical energy in scattered wave source-receiver interferometry.
Meles, Giovanni Angelo; Curtis, Andrew
2013-06-01
Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.
Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission
NASA Astrophysics Data System (ADS)
Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.
2017-05-01
As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.
NASA Technical Reports Server (NTRS)
Vandenberg, N. R.
1974-01-01
The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.
NASA Astrophysics Data System (ADS)
Millour, Florentin A.; Vannier, Martin; Meilland, Anthony
2012-07-01
We present here three recipes for getting better images with optical interferometers. Two of them, Low- Frequencies Filling and Brute-Force Monte Carlo were used in our participation to the Interferometry Beauty Contest this year and can be applied to classical imaging using V2 and closure phases. These two addition to image reconstruction provide a way of having more reliable images. The last recipe is similar in its principle as the self-calibration technique used in radio-interferometry. We call it also self-calibration, but it uses the wavelength-differential phase as a proxy of the object phase to build-up a full-featured complex visibility set of the observed object. This technique needs a first image-reconstruction run with an available software, using closure-phases and squared visibilities only. We used it for two scientific papers with great success. We discuss here the pros and cons of such imaging technique.
Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices
NASA Astrophysics Data System (ADS)
Uehara, Masato; Yashiro, Wataru; Momose, Atsushi
2013-10-01
It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.
Cremers, D.A.; Keller, R.A.
1984-05-08
An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.
Symmetric large momentum transfer for atom interferometry with BECs
NASA Astrophysics Data System (ADS)
Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration
2017-04-01
We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).
Thermal conduction study of warm dense aluminum by proton differential heating
NASA Astrophysics Data System (ADS)
Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.
2016-10-01
A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake
Tsuji, Takeshi; Ishibashi, Jun’ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi
2017-01-01
We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations. PMID:28218298
Population condition analysis of Jakarta land deformation area
NASA Astrophysics Data System (ADS)
Putri, R. F.; Wibirama, S.; Sukamdi; Giyarsih, S. R.
2018-04-01
Jakarta is located in the North West area of West Java Province which geographically positioned on 106°33’00”-107°00’00”BT and 5°48’30”-6°24’00”LS. Land subsidence has occured in several types of landuse such as trade, industrial and settlement area of the urban area of Jakarta. The land subsidence disaster is one of the consequences of building and road construction in Jakarta. This is caused by massive groundwater utilization and failure in landuse planning. This study aim to analyze the population density and settlement pattern in the urban area of Jakarta which the occurence of land subsidence has been detected. It is important to understand landuse and settlement planning processes in the area which land subsidence occured. Detection of land subsidence distribution become a necessary parameter in landuse planning. While the land subsidence area detected using Differential Synthetic Aperture Radar (DInSAR) method. The result shows the area which land subsidence occured has a very high population density and clustered and linear settlement pattern. This area is mainly used as industrial, trade, and settlement.
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
2007-12-11
and behind the normal 5 Figure 2.1: Diagram of noise radiated from boundary layer transition on the nozzle wall shock of several pitot probes and a...are lower than those measured with the 0.067 in.-dia. pitot probe because the pressure fluctuations in the subsonic region behind the normal shock are...in.-dia. pitot probe before repolishing nozzle . . . . . . . . . . . . . . . . . . 16 2.10 Freestream noise level in the PQFLT measured with 1 in
Optical fiber interferometer for the study of ultrasonic waves in composite materials
NASA Technical Reports Server (NTRS)
Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.
1981-01-01
The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.
Peggs, G N; Yacoot, A
2002-05-15
This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.
Bibliography of spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.
Speckle interferometry of asteroids
NASA Technical Reports Server (NTRS)
Drummond, Jack
1988-01-01
This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full.
NASA Astrophysics Data System (ADS)
Scott, R.
On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.
NASA Astrophysics Data System (ADS)
Tsai, M. C.
2017-12-01
High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.
Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films
NASA Astrophysics Data System (ADS)
Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.
2017-10-01
Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
NASA Technical Reports Server (NTRS)
Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.
1994-01-01
We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.
Status of a UAVSAR designed for repeat pass interferometry for deformation measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
NASA Technical Reports Server (NTRS)
Thorpe, James I.
2009-01-01
An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.
Space Interferometry Science Working Group
NASA Astrophysics Data System (ADS)
Ridgway, Stephen T.
1992-12-01
Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.
Robust interferometry against imperfections based on weak value amplification
NASA Astrophysics Data System (ADS)
Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua
2018-06-01
Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.
Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment
NASA Astrophysics Data System (ADS)
Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.
2017-12-01
Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.
P-REx: The Piston Reconstruction Experiment for infrared interferometry
NASA Astrophysics Data System (ADS)
Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio
2018-03-01
For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.
NASA Astrophysics Data System (ADS)
Tessari, Giulia; Pasquali, Paolo; Floris, Mario
2016-04-01
Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been applied to investigate sinkholes affecting the Jordanian coast of the Dead Sea. The Dead Sea is a hyper saline terminal lake located in a pull-apart basin. Most of the area is characterized by highly karstic and fractured rock formations that are connected with faults. Karstic conduits extend from the land into the sea. Since the 1960s, the Dead Sea level is dropping at an increasing rate: from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s. From about the mid-1980s, sinkholes appeared more and more frequently over and around the emerged mudflats and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Deformation analysis has been focused on the Ghor Al Haditha area, located in the South-Eastern part of the lake coast. SAR data acquired by three different sensors, ERS, ENVISAT and COSMO- SkyMed have been analysed. 70 ERS images from 1992 to 2009 and 30 ENVISAT images from 2003 to 2010 have been processed. SBAS technique has been applied to define surface velocity and displacement maps. Results obtained from the SBAS technique, applied to ERS and Envisat data, highlight a diffuse subsiding of the entire Eastern coast of the Dead Sea. It was not possible to detect single sinkholes because of the resolution of these sensors (25m2) and the small size of each punctual event that is generally varying from a few meters to a hundred meters diameter. Furthermore, SBAS has been applied to 23 COSMO-SkyMed SAR satellite images from December 2011 to May 2013. The high resolution of these data (3m x 3m) and the short revisiting time allowed precise information of the displacement of punctual sinkholes beyond the overall subsidence of the coast. A specific sinkhole has been identified in order to understand its temporal evolution. The considered phenomenon reached a total displacement of around 120 mm in 18 months in its central part. On the basis of the results from DInSAR processing, a simplified analytical model has been implemented. Vertical and horizontal components of the surface displacement field obtained from analysis of SAR images have been used as input data to derive geometric parameters of the source and in particular to estimate the volumetric strain of the phenomenon. Position, dimension and mechanism have been obtained.
TDRS orbit determination by radio interferometry
NASA Technical Reports Server (NTRS)
Pavloff, Michael S.
1994-01-01
In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.
2016-10-01
ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced
Optical Interferometry Motivation and History
NASA Technical Reports Server (NTRS)
Lawson, Peter
2006-01-01
A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.
NASA Astrophysics Data System (ADS)
Triggiani, M.; Refice, A.; Capolongo, D.; Bovenga, F.; Caldara, M.
2009-04-01
We present results of an experiment aimed at detecting possible displacements due to subsidence in the coastal area of the Tavoliere plain, Puglia Region, in Southern Italy, through analysis of remotely sensed data. The Tavoliere is the second largest Italian plain. Its coastal area, between the urban centers of Manfredonia and Barletta, is composed of a 50 km long sandy beach (Manfredonia gulf), linking the Gargano massif at north with the Murge plateau in the south-east. Both areas belong to the carbonate Mesozoic Apulian platform. The current configuration of the Gulf was reached recently, as a consequence of the Holocene sea level rise. During the Neolithic age the plain was occupied by an elongated lagoon (Salpi Lagoon) [1]. During the 2nd century B.C., alluvial deposition caused the lagoon to be separated into two basins: the so-called Salpi lake at south and the Salso lake at north. To cope with the increasing demand of arable lands and with the necessity to make unhealthy areas accessible to humans, some reclaims were accomplished by diverting and channelling the rivers crossing the Tavoliere plain, and by levelling dune belts. At present, the beach is separated by low artificial dunes from the areas already reclaimed and intensely cultivated or exploited as evaporation basin for salt production. In the last decades, the coastal area has been retreating due to a reduction in sediment input necessary for coastal equilibrium. The levelling of dunes and the decrease of fluvial turbid discharge due to dam constructions are probably the cause of this deficit in sediment supply. During highly intense hydrodynamic and meteorological events, sea waters often penetrate deeply inland, flooding intensively cultivated areas. These events are occurring with growing frequency and rates. They are an indication of the possibility that those areas are subject to subsidence at a faster rate in comparison to the surroundings. An example is the salt marsh located inland of the tourist sea village "Ippocampo". Here, unpublished studies based on ground data indicate average subsidence rates of the order of 0.20 mm/y in the last 125 ka for the inland area next to the village. More recently, height maps issued by the Italian Military Geographic Institute (IGM) in the 1950s report heights a.s.l. of the order of a few m. Observing that today the area is practically at sea level, an average subsidence of the order of tens of mm/y can be inferred for the last 50 years. To gain insight into the recent evolution of these phenomena, we investigate vertical movements on the coastal Tavoliere area through multitemporal differential Interferometric synthetic aperture radar (DInSAR) techniques. We use a persistent scatterers interferometry (PSI) processing methodology [2] to estimate subsidence displacement rates from long temporal series of SAR acquisitions. PSI techniques, first developed at POLIMI [3], allow to retrieve phase information from stacks of co-registered SAR interferograms spanning many years and taken from different directions with large baselines, by restricting the analysis to selected image pixels containing single objects with strong radar backscatter returns. Exploiting the high temporal stability of radar returns from these targets, it is possible to correct the images from spurious phase contributions such as atmospheric phase artefacts and errors in the digital elevation models used to account for topographic InSAR phase. Such stable objects typically coincide with man-made features, so successful applications of PSI techniques are mainly reported over urban centers. We processed a total of 105 SAR images acquired from the ERS-1/2 and ENVISAT satellites, organized in 3 stacks related to both descending (50 ERS-1/2 scenes) and ascending (25 ERS-1/2 and 30 ENVISAT scenes) acquisition geometries. The acquisitions refer to the temporal periods from 1995 to 2000 (ERS) and 2003 to 2008 (ENVISAT), respectively, with a temporal repetition frequency of roughly 1 acquisition every 35 days. The 3 stacks, covering approximately the same ground area centred on the Tavoliere coastal plain, were processed independently. Reliable phase measurements were obtained over small urban centers and anthropogenic features scattered along the coast. Results from all 3 stacks indicate the presence of displacements occurring through the entire temporal interval of observation. In particular, displacements appear spatially organized as a subsidence "bowl" centered approximately around the area of Zapponeta, with maximum subsidence rates exceeding 20 mm/y. The detected displacements appear consistent with the average rates deduced heuristically from analysis of the environmental settings as exposed above. Moreover, they also qualitatively agree with other investigations performed using analogous techniques and data over the region (e.g. [4]). Possible interpretation of these results can be attempted by considering that the area has been repeatedly subject to reclaiming through filling, and that the deposited sediments are most exposed to compaction. Moreover, the area is subject to intense water extraction, which further enhances the effects of sediment compaction. Validation of the obtained measurements is in progress through extended data analysis and in situ activities. However, these preliminary analyses and comparisons between InSAR and ground data hint to the possible presence of two co-existing subsidence phenomena in the area: a natural subsidence due to tectonics or isostatic rebound, with slow subsidence effects occurring over geologic time scales, with an additional, more pronounced subsidence phenomenon on the recent sediment deposits due to sediment compaction under lithostatic loading, and an anthropogenic local, accelerated subsidence on the lowest areas, due to intensive draining mostly for irrigation purposes, which adds to recent land remediation actions to cause a worrisome lowering of the water table in the area. References [1] F. Boenzi, M. Caldara, M. Moresi, L. Pennetta 2002, "History of the Salpi lagoon-sabhka (Manfredonia Gulf, Italy)". Il Quaternario, 14, 93-104. 2001 [2] F. Bovenga, A. Refice, R. Nutricato, L. Guerriero, M.T. Chiaradia, "SPINUA: a flexible processing chain for ERS / ENVISAT long term interferometry", Proceedings of ESA-ENVISAT Symposium, Salzburg, Austria, 6-10 September, 2004. [3] Ferretti, A., Prati, C., Rocca, F. "Permanent Scatterers in SAR Interferometry". IEEE Transactions on Geoscience and Remote Sensing 39, 8-20, 2001. [4] S. Salvi, S. Atzori, C.A. Brunori, F. Doumaz, G.P. Ricciardi, G. Solaro, S. Stramondo, C. Tolomei, R. Lanari, A. Pepe, A. Ferretti, S. Cespa, "The VELISAR initiative for the measurement of ground velocity in italian seismogenic areas", EGU General Assembly, Wien, Austria, 15-20 April, 2007.
Feasibility of satellite interferometry for surveillance, navigation, and traffic control
NASA Technical Reports Server (NTRS)
Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.
1976-01-01
The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.
NASA Astrophysics Data System (ADS)
Xu, Wenjun; Tang, Chen; Zheng, Tingyue; Qiu, Yue
2018-07-01
Oriented partial differential equations (OPDEs) have been demonstrated to be a powerful tool for preserving the integrity of fringes while filtering electronic speckle pattern interferometry (ESPI) fringe patterns. However, the main drawback of OPDEs-based methods is that many iterations are often needed, which causes the change in the shape of fringes. Change in the shape of fringes will affect the accuracy of subsequent fringe analysis. In this paper, we focus on preserving the shape of fringes while filtering, suggested here for the first time. We propose a shape-preserving OPDE for ESPI fringe patterns denoising by introducing a new fidelity term to the previous second-order single oriented PDE (SOOPDE). In our proposed fidelity term, the evolution image is subtracted from the shrinkage result of original noisy image by shearlet transform. Our proposed shape-preserving OPDE is capable of eliminating noise effectively, keeping the integrity of fringes, and more importantly, preserving the shape of fringes. We test the proposed shape-preserving OPDE on three computer-simulated and three experimentally obtained ESPI fringe patterns with poor quality. Furthermore, we compare our model with three representative filtering methods, including the widely used SOOPDE, shearlet transform and coherence-enhancing diffusion (CED). We also compare our proposed fidelity term with the traditional fidelity term. Experimental results show that the proposed shape-preserving OPDE not only yields filtered images with visual quality on par with those by CED which is the state-of-the-art method for ESPI fringe patterns denoising, but also keeps the shape of ESPI fringe patterns.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Yang, Yi; Tang, Xiangyang
2014-10-01
Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.
NASA Astrophysics Data System (ADS)
Su, Zhe; Hu, Jyr-Ching; Wang, Erchie; Li, Yongsheng; Yang, Yinghui; Wang, Pei-Ling
2018-01-01
The Ilan Plain, located in Northeast Taiwan, represents a transition zone between oblique collision (between the Luzon Arc and the Eurasian Plate) and backarc extension (the Okinawa Trough). The mechanism for this abrupt transition from arc-continent collision to backarc extension remains uncertain. We used Global Positioning System (GPS), leveling and multi-interferogram Small Baseline Persistent Scatterer Interferometry (SBAS-PSI) data to monitor the interseismic activity in the basin. A common reference site was selected for the data sets. The horizontal component of GPS and the vertical measurements of the leveling data were converted to line-of-sight (LOS) data and compared with the SBAS-PSI data. The comparison shows that the entire Ilan Plain is undergoing rapid subsidence at a maximum rate of -11 ± 2 mm yr-1 in the LOS direction. We speculate that vertical deformation and anthropogenic activity may play important roles in this deformation. We also performed a joint inversion modeling that combined both the DInSAR and strong motion data to constrain the source model of the 2005 Ilan earthquake. The best-fitting model predicts that the Sansing fault caused the 2005 Ilan earthquake. The observed transtensional deformation is dominated by the normal faulting with a minor left-lateral strike-slip motion. We compared our SBAS-PSI results with the short-term (2005-2009) groundwater level changes. The results indicate that although pumping-induced surface subsidence cannot be excluded, tectonic deformation, including rapid southward movement of the Ryukyu arc and backarc extension of the Okinawa Trough, characterizes the opening of the Ilan Plain. Furthermore, a series of normal and left-lateral strike-slip transtensional faults, including the Choshui and Sansing faults, form a bookshelf-like structure that accommodates the extension of the plain. Although situated in a region of complex structural interactions, the Ilan Plain is primarily controlled by extension rather than by shortening. As the massive, pre-existing Philippines-Ryukyu island arc was pierced by the Philippine Sea Plate, the Ilan Plain formed as a remnant backarc basin on the northeastern corner of Taiwan.
Holographic analysis as an inspection method for welded thin-wall tubing
NASA Technical Reports Server (NTRS)
Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl
1990-01-01
The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability
NASA Astrophysics Data System (ADS)
Riccardi, Paolo; Tessari, Giulia; Lecci, Daniele; Floris, Mario; Pasquali, Paolo
2017-04-01
The structural monitoring of dams is an important practice to guarantee their safety. Moreover, the water reservoir and the efficient operation and safety of surrounding areas need to be monitored. Considering the importance of large dams as multipurpose infrastructure for flood control, energy production, water supply and irrigation, ensuring their longevity is a key aspect on their management. Therefore, it is of great importance to detect dam deterioration potentially resulting in its shutdown or failure, preventing life and economic losses. Traditional dam monitoring requires the identification of soil movements, tilt, displacements, structural stress and strain behaviour. Since the '90, innovative remote sensing techniques based on satellite Synthetic Aperture Radar (SAR) data were developed to detect and monitor surface displacements. The main advantages of SAR data are the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the advancement. Moreover, the availability of SAR satellite acquisitions from the 1990s enables to reconstruct the historical evolution of dam behaviour. Furthermore, the use of SAR Interferometry (InSAR) techniques, Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR), produce accurate velocity maps and displacement time-series. The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. An iconic case demonstrating the relevance of remote sensing observations is the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, thus the risk for the population is very high. It is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security issues. It consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core. It was completed in 1984 and started generating power on 1986. Since then, frequent consolidation works have been carried out pumping cement mixtures into the soil foundation to keep it stable and prevent it from sinking and then breaking apart. To overcome the impossibility of directly monitoring the structure, analysis of recent deformation affecting the Mosul dam is achieved considering C-band Sentinel-1 SAR data, acquired from the end of 2014 to the present. These 20-m ground resolution data can provide a millimetric precision on displacements. Furthermore, ESA archive available SAR data (ERS and Envisat) are considered to reconstruct the temporal evolution of the deformations. In this work, different stacks of data are processed applying SBAS and PS A-DInSAR techniques; deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalised to assess possible damages affecting a dam through remote sensing and civil engineering surveys.
NASA Astrophysics Data System (ADS)
Mateos, Rosa Maria; Bianchini, Silvia; Herrera, Gerardo; Garcia, Inmaculada; Sanabria, Margarita
2016-04-01
The Serra de Tramuntana, which forms the backbone of the north-west of Mallorca (Spain), was declared in 2011 World Heritage Site by UNESCO under the cultural landscape category. The particular landscape of this range is the fruit of the exchange of knowledge between cultures, with small-scale works performed collectively for a productive aim, conditioned by the limitations imposed by the physical medium. The steep topography of the chain, highly related to its geological complexity, and the Mediterranean climate, influence intense slope dynamics with the consequent multiple types of slope failures: rock slides, earth landslides and rockfalls, which cause significant damage and specifically to the road network (Mateos, 2013a). The human landscape marked by agricultural terraces (dry stone constructions) has significantly contributed to the slope stability in the range for centuries. In the present work, a landslide inventory map with 918 events has been updated and the landslides state of activity was analyzed exploiting 14 ALOS PALSAR satellite SAR (Synthetic Aperture Radar) images acquired during the period 2007-2010. Landslide activity maps were elaborated through the use of PSI (Persistent Scatterers Interferometry) technique (Bianchini et al., 2013). Besides assessing the PS visibility of the study area according to the relief, land use and satellite acquisition parameters, these maps evaluate, for every monitored landslide, the average velocities along the satellite Line Of Sight (VLOS) and along the maximum local steepest slope (VSLOPE), providing an estimate of their state of activity and their potential to cause damages. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any mapped landslide phenomenon. A confidence degree evaluation is carried out to attest the reliability of measured displacements to represent landslide dynamics. Results show that 42 landslides were identified as active (VSLOPE < -5mm/yr) and seven of them with a potential to produce moderate damage (VSLOPE < -10mm/yr). One of the largest landslides in the range is the Bàlitx landslide (50 million m3 in volume), located on the steep coastal side (Mateos et al., 2013b). Within the landslide body, Roman cistern and old terrace walls have been identified. Numerous geomorphological features identified in its displaced mass (cracks, shallow slides and rockfalls) reveal that the landslide has not yet reached a state of equilibrium. Additionally, field observations determine that the northeastern sector of Bàlitx shows major activity signs. DInSAR results reveal that the rate of movement for the Bàlitx landslide is extremely low (- 5mm /yr on average) that could be interpreted as the residual displacement of the deep-seated rockslide. A major activity has also been detected in the northeastern sector of Bàlitx with the PSI technique, where velocities rates are slightly over -5 mm/yr. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities in cultural heritage sites. References: Bianchini S, Herrera G, Mateos RM, Notti D, García-Moreno I, Mora O, Moretti S (2013). Landslide Activity Maps Generation by means of Persistent Scattered Interferometry. Remote Sensing 5:6198-6222. Mateos R.M., García-Moreno I., Herrera G., Mulas J (2013) a. Damage caused by recent mass-movements in Majorca (Spain), a region with a high risk due to tourism. Landslide Science and Practice. Claudio Margottini, Paolo Canuti and Kyoji Sassa (Editors). Volume 7: Social and Economic Impact and Policies. 105-113. Mateos RM, Rodríguez-Peces M, Azañón JM, Rodríguez-Fernández FJ, Roldán FJ, García-Moreno I, Gelabert B, García-Mayordomo J (2013)b. El deslizamiento de Bàlitx (Mallorca) y su posible origen sísmico. Procesos activos desde el Pleistoceno superior. Boletín Geológico y Minero, 124 (1): 41-61
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan
NASA Astrophysics Data System (ADS)
Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.
2017-10-01
A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
New method for path-length equalization of long single-mode fibers for interferometry
NASA Astrophysics Data System (ADS)
Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.
2014-07-01
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
Gravity sensing using Very Long Baseline Atom Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.
2017-12-01
Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.
Gravity sensing using Very Long Baseline Atom Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, Dennis; Wodey, Étienne; Meiners, Christian; Tell, Dorothee; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.
2017-04-01
Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13 g and beyond in reach. We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1 .10-8 m/s2 / Hz1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <=10-13 , potentially surpassing the best experiments to date.
Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations
Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David
2000-01-01
ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.
VizieR Online Data Catalog: High spatial resolution observations of HM Sge (Sacuto+, 2009)
NASA Astrophysics Data System (ADS)
Sacuto, S.; Chesneau, O.
2008-11-01
All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observations including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/~jsy1001/exchange (2 data files).
VizieR Online Data Catalog: High spatial resolution observations of HM Sge (Sacuto+, 2007)
NASA Astrophysics Data System (ADS)
Sacuto, S.; Chesneau, O.; Vannier, M.; Cruzalebes, P.
2007-01-01
All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observations including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/~jsy1001/exchange (1 data file).
Innovations in Delta Differential One-Way Range: from Viking to Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Border, James S.
2009-01-01
The Deep Space Network has provided the capability for very-long-baseline interferometry measurements in support of spacecraft navigation since the late 1970s. Both system implementation and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to much better performance. This paper provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support Mars Science Laboratory.
Fusion of Cross-Track TerraSAR-X PS Point Clouds over Las Vegas
NASA Astrophysics Data System (ADS)
Wang, Ziyun; Balz, Timo; Wei, Lianhuan; Liao, Mingsheng
2014-11-01
Persistent scatterer interferometry (PS-InSAR) is widely used in radar remote sensing. However, because the surface motion is estimated in the line-of-sight (LOS) direction, it is not possible to differentiate between vertical and horizontal surface motions from a single stack. Cross-track data, i.e. the combination of data from ascending and descending orbits, allows us to better analyze the deformation and to obtain 3d motion information. We implemented a cross-track fusion of PS-InSAR point cloud data, making it possible to separate the vertical and horizontal components of the surface motion.
Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging
NASA Astrophysics Data System (ADS)
Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.
2018-05-01
We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.
Navigation of the Galileo mission
NASA Technical Reports Server (NTRS)
Miller, L. J.; Miller, J. K.; Kirhofer, W. E.
1983-01-01
An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.
Digital Holographic Interferometry for Airborne Particle Characterization
2015-03-19
Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c
Accessing High Spatial Resolution in Astronomy Using Interference Methods
ERIC Educational Resources Information Center
Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean
2018-01-01
In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…
Intellectual property in holographic interferometry
NASA Astrophysics Data System (ADS)
Reingand, Nadya; Hunt, David
2006-08-01
This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.
Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.
Guo, L; Wong, P L; Guo, F; Liu, H C
2014-09-10
This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems.
The Path to Interferometry in Space
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.
2016-01-01
For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.
2012-01-01
Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
Spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.
Astronomical Optical Interferometry. I. Methods and Instrumentation
NASA Astrophysics Data System (ADS)
Jankov, S.
2010-12-01
Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
Refractive Index Compensation in Over-Determined Interferometric Systems
Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2012-01-01
We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup. PMID:23202037
Refractive index compensation in over-determined interferometric systems.
Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2012-10-19
We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm
NASA Astrophysics Data System (ADS)
Velez, Maria Laura; Euillades, Pablo; Caselli, Alberto; Blanco, Mauro; Díaz, Jose Martínez
2011-04-01
The Copahue volcano is one of the most active volcanoes in Argentina with eruptions having been reported as recently as 1992, 1995 and 2000. A deformation analysis using the Differential Synthetic Aperture Radar technique (DInSAR) was performed on Copahue-Caviahue Volcanic Complex (CCVC) from Envisat radar images between 2002 and 2007. A deformation rate of approximately 2 cm/yr was calculated, located mostly on the north-eastern flank of Copahue volcano, and assumed to be constant during the period of the interferograms. The geometry of the source responsible for the deformation was evaluated from an inversion of the mean velocity deformation measurements using two different models based on pressure sources embedded in an elastic homogeneous half-space. A genetic algorithm was applied as an optimization tool to find the best fit source. Results from inverse modelling indicate that a source located beneath the volcano edifice at a mean depth of 4 km is producing a volume change of approximately 0.0015 km/yr. This source was analysed considering the available studies of the area, and a conceptual model of the volcanic-hydrothermal system was designed. The source of deformation is related to a depressurisation of the system that results from the release of magmatic fluids across the boundary between the brittle and plastic domains. These leakages are considered to be responsible for the weak phreatic eruptions recently registered at the Copahue volcano.
Atom Interferometry for Fundamental Physics and Gravity Measurements in Space
NASA Technical Reports Server (NTRS)
Kohel, James M.
2012-01-01
Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.
NASA Astrophysics Data System (ADS)
Tessari, Giulia; Riccardi, Paolo; Lecci, Daniele; Pasquali, Paolo; Floris, Mario
2017-04-01
Since the mid-1980s the coast of the Dead Sea is affected by sinkholes occurring over and around the emerged mud and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Furthermore, soil deformations are interesting the main streets running along both the Israeli and Jordanian sides of the Dead Sea. These hazards are due to the dramatic dropping of the Dead Sea level, characterized by an increasing rate from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s, which provokes a lowering of the fresh-saline groundwater interface, replacing the hypersaline groundwater with fresh water and causing a consequent erosion of the subsurface salt layers. Subsidence, sinkholes, river erosion and landslides damage bridges, roads, dikes, houses, factories worsening this ongoing disaster. One of the most emblematic effects is the catastrophic collapse of a 12-km newly constructed dyke, located on the Lisan Peninsula (Jordan), occurred in 2000. Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques and Advanced stacking DInSAR techniques (A-DInSAR) were applied to investigate sinkholes and subsidence affecting the Jordanian coast of the Dead Sea. The use of SAR data already proof to be efficient on the risk management of the area, allowing to identify a vulnerable portion of an Israeli highway, averting a possible collapse. Deformation analysis has been focused on the Ghor Al Haditha area and Lisan peninsula, located in the South-Eastern part of the lake coast. The availability of a huge database of SAR data, since the beginning of the 90s, allowed to observe the evolution of the displacements which are damaging this area. Furthermore, last generation Sentinel-1 data, acquired by the ESA mission, were processed to obtain information about the recent evolution of the subsidence and sinkholes affecting the study area, from the end of 2014 to the present. Important subsidence can be noticed mainly in correspondence of the emerging coast. Moreover, some solar evaporation pools used for salt production are injured by high deformations. Analysis of results obtained from SAR satellite data allows to identify different hazard processing affecting the study area and define the displacement time-series to clearly describe the evolution of the different phenomena, resulting as an effective tool to prevent damage and collapses. Furthermore, vulnerability maps can be created and possible precursor behaviour can be highlighted demonstrating the predictive capability of these data.
NASA Astrophysics Data System (ADS)
Xiao, Yao; Qing-hui, Liu
2018-01-01
Time delay and phase fluctuation are produced when the signals of a spacecraft are transmitted through the ionosphere of the earth, which give rise to a great influence on the measurement precision of VLBI (Very Long Baseline Interferometry). Using the 1-year same-beam VLBI data of 2 satellites (Rstar and Vstar) in the Japanese lunar exploration project SELENE, we obtained a model of the relation between the fluctuation of double differential total electron content in the ionosphere and the angular distance of the two satellites. For the 6 baselines, the root mean square r of fluctuation (in units of TECU) and the angular distance of the two satellites θ (in units of ∘) has a relation of r = 0.773θ + 0.562, and for the 4 VLBI stations, the relation is r = 0.554θ + 0.399 from the baselines inversion. The results can serve as a reference for the derivation of differential phase delay and for the occultation observation and study of planetary ionospheres.
A Data Exchange Standard for Optical (Visible/IR) Interferometry
NASA Astrophysics Data System (ADS)
Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.
2005-11-01
This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C
2015-12-01
Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu
Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less
NASA Astrophysics Data System (ADS)
Vieira, Gonçalo; Catalão, João; Prates, Gonçalo; Correia, António
2014-05-01
Rockglaciers have been described by various authors in the South Shetlands archipelago (Antarctic Peninsula region), with the main contribution being that of Serrano and Lopez-Martínez (2000), who have described 9 rockglaciers and 11 protalus lobes. However, little is known about the deformation rates of rockglaciers in the region nor about possible changes associated with climate warming. Since the Western Antarctic Peninsula region is one of the areas on Earth which has been warming at a faster rate, monitoring rockglacier deformation should provide insight into the influence of climate change on geomorphodynamics. Hurd rockglacier is located in the south part of Hurd Peninsula, in a glacial cirque with a ridge varying from 227 to 301 m asl that connects directly to False Bay through a series of raised-beach terraces. The bedrock is composed of sandstones, shales and greywackes with a flysch facies, of the Myers Bluff formation. The valley shows steep rockwalls with extensive scree slopes and a small retreating valley glacier with a prominent frontal moraine, from where the rockglacier develops. The rockglacier body is ci 630 m long and 290 m wide and the surface shows frequent pressure ridges and furrows, especially in the lower sector. The rockglacier front is 15-20 m high and shows a slope of 45º (Serrano and López-Martínez 2000). In this poster we present the first data from surface deformation monitoring using stakes and D-GPS measurements conducted annually since 2011. Preliminary results show deformation values of 8 to 15 cm/year. Since 2011 we are also conducting DInSAR analysis using TerraSAR-X imagery and despite problems related mostly to snow cover, we have obtained image pairs allowing to identify deformation in the same order of magnitude of field observations. We expect to be able to present new results from the summer of 2013-14 campaign, which include a more intensive image acquisition plan. Results from a Vertical Electrical Sounding fro 2013 confirming the presence of permafrost, as indicated by Serrano et al (2004) are presented. The preliminary results from the monitoring of Hurd rockglacier and especially the application of DInSAR monitoring techinques indicate that such an approach is valid for monitoring surface deformation in the Maritime Antarctic and that it can be used to identify areas of high deformation rates, without a priori field knowledge. The main limitation is the short snow free period and the irregularity of snow fall events that occur also during the summer. This work was done in the framework of the PTDC/AAG-GLO/3908/2012 program, financed by FCT which the author acknowledge gratefully.
VizieR Online Data Catalog: The close circumstellar environment of the semi-regular S-type star pi1
NASA Astrophysics Data System (ADS)
Sacuto, S.; Jorissen, A.; Cruzalebes, P.; Chesneau, O.; Ohnaka, K.; Quirrenbach, A.; Lopez, B.
2008-02-01
All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observables including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/research/OAS/oi_data/oifits.html (2 data files).
Next Generation Instrumentation for the Very Large Telescope Interferometer
NASA Astrophysics Data System (ADS)
Quirrenbach, A.
The scientific capabilities of the VLT Interferometer can be substantially enhanced through new focal-plane instruments. Many interferometric techniques - astrometry, phase-referenced imaging, nulling, and differential phase measurements - require control of the phase to <~ 1 rad; this capability will be provided at the VLTI by the PRIMA facility. Phase-coherent operation of the VLTI will also make it possible to perform interferometry with spectral resolution up to R ~ 100,000 by building fiber links to the high-resolution spectrographs UVES and CRIRES. These developments will open new approaches to fundamental problems in fields as diverse as extrasolar planets, stellar atmospheres, circumstellar matter, and active galactic nuclei.
NASA Astrophysics Data System (ADS)
Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew
2012-08-01
X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.
Galileo Jupiter approach orbit determination
NASA Technical Reports Server (NTRS)
Miller, J. K.; Nicholson, F. T.
1984-01-01
Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian
2014-03-21
This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.
General n-dimensional quadrature transform and its application to interferogram demodulation.
Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis
2003-05-01
Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.
NASA Astrophysics Data System (ADS)
Redavid, Antonio; Bovenga, Fabio
2010-03-01
In the present work we describe a new and alternative repeat-pass interferometry algorithm designed and developed with the aim to: i) increase the robustness wrt to noise by increasing the number of differential interferograms and consequently the information redundancy; ii) guarantee high performances in the detection of non linear deformation without the need of specifying in input a particular cinematic model.The starting point is a previous paper [4] dedicated to the optimization of the InSAR coregistration by finding an ad hoc path between the images which minimizes the expected total decorrelation as in the SABS-like approaches [3]. The main difference wrt the PS-like algorithms [1],[2] is the use of couples of images which potentially can show high spatial coherence and, which are neglected by the standard PSI processing.The present work presents a detailed description of the algorithm processing steps as well as the results obtained by processing simulated InSAR data with the aim to evaluate the algorithm performances. Moreover, the algorithm has been also applied on a real test case in Poland, to study the subsidence affecting the Wieliczka Salt Mine. A cross validation wrt SPINUA PSI-like algorithm [5] has been carried out by comparing the resultant displacement fields.
Disks and cones: resolving the dusty torus with mid-infrared interferometry.
NASA Astrophysics Data System (ADS)
Tristram, K.
2015-09-01
The thermal emission of dust is one of the main possibilities to study the (dusty) material of the so-called "torus" in AGN. Observations using interferometry in the mid-infrared have, in the last ten years, resolved and characterised this emission beyond simple fits of spectral energy distributions, leading to a great leap forward in our view of the dusty material surrounding AGN. I will present the most recent results of such observations, obtained with the instrument MIDI. More than 25 active nuclei could be observed with MIDI, showing that the dust distributions are parsec sized. The sizes roughly scale with the square root of the luminosity, albeit with a much large scatter than in the near-infrared. Detailed studies of a few well resolved sources, among them the illustrious nuclei of NGC1068 and the Circinus galaxy, show a two component structure: an inner disk-like emission region which is surrounded by a polar elongated emitter. The latter shows differential absorption in line with the one-sided ionisation cones observed in the optical. These results are in qualitative agreement with recent hydrodynamic simulations of AGN tori. In general, they confirm the concept of a dusty obscurer providing viewing-angle dependent obscuration of the central engine.
NASA Technical Reports Server (NTRS)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Status of holographic interferometry at Wright Patterson Air Force Base
NASA Technical Reports Server (NTRS)
Seibert, George
1987-01-01
At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.
Theoretical Properties of Acoustical Speckle Interferometry.
1980-09-01
an obvious one , since it was first performed in the acoustical holography. An acoustical speckle interferometry study has been demonstrated to be a...experiments in which pulses were used to study the propagation of the circumferential waves on aluminum cylinders immersed in water. In 1969, Bunney...destructive Testing SB. ABTRACT aCdo as revers. NW ass a" Id by block numb") Acoustical speckle interferometry is based locally on the elastodynamic response
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
2016-04-01
Interferometry 1.1 Chapter Overview In this Section, we introduce the physics -based principles of optical interferometry, thereby providing a foundation for...particular physical structure (i.e. the existence of a certain type of loop in the interferometric graph), and provide a simple algorithm for identifying...mathematical conditions for wrap invariance to a physical condition on aperture placement is more intuitive when considering the raw phase measurements as
Ocean Remote Sensing Using Ambient Noise
2015-09-30
and other adaptive array processing methods. OBJECTIVES Work on this project has focused on noise interferometry – the process by which an...measured at xA and xB. In that context, our objective is to investigate and identify the limitations of noise interferometry for remote sensing...and 6 is ongoing. 1. Demonstration of noise interferometry at 10 km range in a shallow water environment Recently conducted experiments in the
A Possible Future for Space-Based Interferometry
NASA Technical Reports Server (NTRS)
Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.
2013-01-01
We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
NASA Astrophysics Data System (ADS)
Imaizumi, Fumitoshi; Nishiguchi, Takaki; Matsuoka, Norikazu; Trappmann, Daniel; Stoffel, Markus
2018-06-01
Alpine landscapes are typically characterized by inherited features of past glaciations and, for the more recent past, by the interplay of a multitude of types of geomorphic processes, including permafrost creep, rockfalls, debris flows, and landslides. These different processes usually exhibit large spatial and temporal variations in activity and velocity. The understanding of these processes in a wide alpine area is often hindered by difficulties in their surveying. In this study, we attempt to disentangle recent changes in an alpine landscape system using geomorphic mapping and L-band DInSAR analyses (ALOS-PALSAR) in the Zermatt Valley, Swiss Alps. Geomorphic mapping points to a preferential distribution of rock glaciers on north-facing slopes, whereas talus slopes are concentrated on south-facing slopes. Field-based interpretation of ground deformation in rock glaciers and movements in talus slopes correlates well with the ratio of InSAR images showing potential ground deformation. Moraines formed during the Little Ice Age, rock glaciers, and talus slopes on north-facing slopes are more active than landforms on south-facing slopes, implying that the presence of permafrost facilitates the deformation of these geomorphic units. Such deformations of geomorphic units prevail also at the elevation of glacier termini. For rock cliffs, the ratio of images indicating retreat is affected by slope orientation and elevation. Linkages between sediment supply from rock cliffs and sediment transport in torrents are different among tributaries, affected by relative locations between sediment supply areas and the channel network. We conclude that the combined use of field surveys and L-band DInSAR analyses can substantially improve process understanding in steep, high-mountain terrain.
NASA Astrophysics Data System (ADS)
D'Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R.
2011-12-01
Campi Flegrei caldera, has been affected in recent decades by three episodes of significant ground uplift. After the last crisis (1982-84), which was accompanied by strong seismicity, the ground has shown a general descending trend, occasionally interrupted by minor uplift episodes, together with low-magnitude volcano-tectonic and long-period seismicity. We assume that the source of minor ground deformations consists in a diffuse volumetric source, related to both thermoelastic and poroelastic strain. This is a reasonable assumption considering that Campi Flegrei are known to host a geothermal reservoir. We have inverted a DInSAR dataset spanning the interval 1995-2008. Results show that the geometry of the source is much more complex than previously recognized and, most important, it shows significant temporal variations, within few months. The deformation source, of the analyzed uplift episodes, starts with a volumetric expansion centered at a depth of about 5 km. The position of this volume is close to the caldera rims. Later the expansion migrates upward, reaching the surface along preferred paths, leading to the Solfatara area, located almost at the center of the caldera. This area is well known for its powerful geothermal emissions. During the upward migration, seismic long-period sources are activated. Their location is consistent with the path identified by the inversion of the DInSAR dataset. We infer, that this dynamics is linked to the injection of hot fluid batches, along the caldera rims and their upward migration, following preferential high permeability paths. Furthermore we have identified an injection episode which has not been previously recognized. The deformation source remains at depth slowly waning in few years. We show how this conceptual framework fits well with the observed geodetic, seismic and geochemical data.
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
1979-11-23
Entered) ACKNOWLEDGMENTS The author hereby expresses his appreciation to Mr. J. A. Schaeffel Jr. for his guidance on interferometry and the computer...were collected by an automated laser speckle interferometry displacement contour analyzer developed by John A. Schaeffel , Jr. [3]. The new method of 10...Fringe Patterns, US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-18, 20 April 1976. 3. Schaeffel , J. A., Automated Laser
Beam-modulation methods in quantitative and flow visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, A.
1986-01-01
This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Beam-modulation methods in quantitative and flow-visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1986-01-01
Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Fringe formation in dual-hologram interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1990-01-01
Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Simultaneous immersion Mirau interferometry.
Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J
2013-05-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.
2015-10-05
photometry covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A...covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A... polarimetry , and near-infrared (IR) interferometry of ζ Tau, providing firm evi- dence that the V/R oscillations are an effect of one-armed den- sity
2014-07-17
frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction
Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell
2015-09-01
We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
NASA Technical Reports Server (NTRS)
Sargent, A. I.
2002-01-01
The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
Optoelectronic imaging of speckle using image processing method
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Wang, Pengfei
2018-01-01
A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.
NASA Technical Reports Server (NTRS)
Stuart, J. R.
1984-01-01
The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.
Modeling PSInSAR time series without phase unwrapping
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.
NASA Astrophysics Data System (ADS)
Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Zucca, Francesco; Bejar, Marta; González, Pablo; Palano, Mimmo; Tomás, Roberto; Fernandez, José; Fernández-Merodo, José; Mulas, Joaquín; Aragón, Ramón; Mora, Oscar
2014-05-01
Subsidence related to fluid withdrawal has occurred in numerous regions of the world. The phenomena is an important hazard closely related to the development of urban areas. The analysis of the deformations requires an extensive and continuous spatial and temporal monitoring to prevent the negative effects of such risks on structures and infrastructures. Deformation measurements are fundamental in order to identify the affected area extension, to evaluate the temporal evolution of deformation velocities and to identify the main control mechanisms. Differential SAR interferometry represents an advanced remote sensing tool, which can map displacements at very high spatial resolution. The Persistent Scatterer Interferometry (PSI) technique is a class of SAR interferometry that uses point-wise radar targets (PS) on the ground whose phase is not interested by temporal and geometrical decorrelation. This technique generates starting from a set of images two main products: the displacement rate along line of sight (LOS) of single PS; and the LOS displacement time series of individual PS. In this work SAR data with different spatio-temporal resolution were used to study the displacements that occur from 1992 to 2012 in the Alto Guadalentin Basin (southern Spain), where is located the city of Lorca The area is affected by the highest rate of subsidence measured in Europe (>10 cm/yr-1) related to long-term exploitation of the aquifer (González et al. 2011). The objectives of the work were 1) to analyse land subsidence evolution over a 20-year period with PSI technique; 2) to compare the spatial and temporal resolution of SAR data acquired by different sensors, 3) to investigate the causes that could explain this land motion. The SAR data have been obtained with ERS-1/2 & ENVISAT (1992-2007), ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) images, processed with the Stable Point Network (SPN) technique. The PSI data obtained from different satellite from 1992 to 2012 were compared with some predisposing and trigger factors as geological units, isobaths of Plio-Quaternary filling, soft soil thickness and piezometric level. The PSI data were compared with measurement obtained by two GPS station located near the Lorca city: the value of deformation detected by satellites and ground-based tools are well correlated. The results are the following: a) the subsidence processes are related to soft soil thickness distribution; b) land subsidence rates shows that the area interested by the higher value is the same over the monitored period, a deceleration rate of subsidence has been recorded during the period 2011- 2012; c) the deformation rates are not correlated with the piezometric level trend, a delay time between piezometric level variations and ground deformations is evident. References González, P. J. & Fernández, J.,(2011) Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology 39, pp. 551-554.
The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)
NASA Technical Reports Server (NTRS)
Danchi, William C.
2003-01-01
Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.
Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.
Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G
2013-10-01
The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Simultaneous immersion Mirau interferometry
Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.
2013-01-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552
Apparatus and method for performing two-frequency interferometry
Johnston, Roger G.
1990-01-01
The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.
Apparatus and method for performing two-frequency interferometry
Johnston, R.G.
1988-01-25
The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.
Correction of data truncation artifacts in differential phase contrast (DPC) tomosynthesis imaging
NASA Astrophysics Data System (ADS)
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-10-01
The use of grating based Talbot-Lau interferometry permits the acquisition of differential phase contrast (DPC) imaging with a conventional medical x-ray source and detector. However, due to the limited area of the gratings, limited area of the detector, or both, data truncation image artifacts are often observed in tomographic DPC acquisitions and reconstructions, such as tomosynthesis (limited-angle tomography). When data are truncated in the conventional x-ray absorption tomosynthesis imaging, a variety of methods have been developed to mitigate the truncation artifacts. However, the same strategies used to mitigate absorption truncation artifacts do not yield satisfactory reconstruction results in DPC tomosynthesis reconstruction. In this work, several new methods have been proposed to mitigate data truncation artifacts in a DPC tomosynthesis system. The proposed methods have been validated using experimental data of a mammography accreditation phantom, a bovine udder, as well as several human cadaver breast specimens using a bench-top DPC imaging system at our facility.
NASA Astrophysics Data System (ADS)
Zhang, L.; Wu, J.; Zhao, J.; Yuan, M.
2018-04-01
Multi-temporal coherent targets analysis is a high-precision and high-spatial-resolution monitoring method for urban surface deformation based on Differential Synthetic Aperture Radar (DInSAR), and has been successfully applied to measure land subsidence, landslide and strain accumulation caused by fault movement and so on. In this paper, the multi-temporal coherent targets analysis is used to study the settlement of subway area during the period of subway construction. The eastern extension of Shanghai Metro Line. 2 is taking as an example to study the subway settlement during the construction period. The eastern extension of Shanghai Metro Line. 2 starts from Longyang Road and ends at Pudong airport. Its length is 29.9 kilometers from east to west and it is a key transportation line to the Pudong Airport. 17 PalSAR images during 2007 and 2010 are applied to analyze and invert the settlement of the buildings nearby the subway based on the multi-temporal coherent targets analysis. But there are three significant deformation areas nearby the Line 2 between 2007 and 2010, with maximum subsidence rate up to 30 mm/y in LOS. The settlement near the Longyang Road station and Chuansha Town are both caused by newly construction and city expansion. The deformation of the coastal dikes suffer from heavy settlement and the rate is up to -30 mm/y. In general, the area close to the subway line is relatively stable during the construction period.
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Infrared Speckle Interferometry with 2-D Arrays
NASA Technical Reports Server (NTRS)
Harvey, P. M.; Balkum, S. L.; Monin, J. L.
1994-01-01
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
ERIC Educational Resources Information Center
Altman, Thomas C.
1992-01-01
Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)
Fringe Formation in Dual-Hologram Interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1989-01-01
A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.
Low magnitude earthquakes generating significant subsidence: the Lunigiana case study
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Polcari, M.; Melini, D.; Cannelli, V.; Moro, M.; Bignami, C.; Saroli, M.; Vannoli, P.; Stramondo, S.
2013-12-01
We applied the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique to investigate and measure surface displacements due to the ML 5.2, June 21, 2013, earthquake occurred in the Apuan Alps (NW Italy) at a depth of about 5 km. The Centroid Moment Tensor (CMT) solution from INGV indicates an almost pure normal fault mechanism. Two differential interferograms showing the coseismic displacement were generated using X- band and C-band data respectively. The X-Band interferogram was obtained from a Cosmo-SkyMed ascending pair (azimuth -7.9° and incidence angle 40°) with a time interval of one day (June 21 - June 22) and 139 m spatial baseline, covering an area of about 40x40 km around the epicenter. The topographic phase component was removed using the 90 m SRTM DEM. The C-Band interferferogram was computed from two RADARSAT-2 Standard-3 (S3) images, characterized by 24 days temporal and 69 m spatial baselines, acquired on June 18 and July 12, 2013 on ascending orbit (azimuth -10.8°) with an incidence angle of 34° and covering 100x100 km area around the epicenter. The topographic phase component was removed using 30 m ASTER DEM. Adaptive filtering, phase unwrapping with Minimum Cost Flow (MCF) algorithm and orbital refinement were also applied to both interferograms. We modeled the observed SAR deformation fields using the Okada analytical formulation within a nonlinear inversion scheme, and found them to be consistent with a fault plane dipping towards NW at an angle of about 45°. In spite of the small magnitude, this earthquake produces a surface subsidence of about 1.5 cm in the Line-Of-Sight (LOS) direction, corresponding to about 3 cm along the vertical axis, that can be observed in both interferograms and appears consistent with the normal fault mechanisms.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
NASA Technical Reports Server (NTRS)
Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.
2012-01-01
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.
Satellite radar interferometry measures deformation at Okmok Volcano
Lu, Zhong; Mann, Dorte; Freymueller, Jeff
1998-01-01
The center of the Okmok caldera in Alaska subsided 140 cm as a result of its February– April 1997 eruption, according to satellite data from ERS-1 and ERS-2 synthetic aperture radar (SAR) interferometry. The inferred deflationary source was located 2.7 km beneath the approximate center of the caldera using a point source deflation model. Researchers believe this source is a magma chamber about 5 km from the eruptive source vent. During the 3 years before the eruption, the center of the caldera uplifted by about 23 cm, which researchers believe was a pre-emptive inflation of the magma chamber. Scientists say such measurements demonstrate that radar interferometry is a promising spaceborne technique for monitoring remote volcanoes. Frequent, routine acquisition of images with SAR interferometry could make near realtime monitoring at such volcanoes the rule, aiding in eruption forecasting.
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
NASA Astrophysics Data System (ADS)
Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis
2015-08-01
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Vossen, Caron; Paulssen, Hanneke
2017-04-01
The Groningen gas field is a massive natural gas accumulation in the north-east of the Netherlands. Decades of production have led to significant compaction of the reservoir rock. The (differential) compaction is thought to have reactivated existing faults and to be the main driver of induced seismicity. The potential damage at the surface is largely affected by the state of the near surface. Thin and soft sedimentary layers can lead to large amplifications. By measuring the wavefield at different depth levels, near-surface properties can directly be estimated from the recordings. Seismicity in the Groningen area is monitored primarily with an array of vertical arrays. In the nineties a network of 8 boreholes was deployed. Since 2015, this network has been expanded with 70 new boreholes. Each new borehole consists of an accelerometer at the surface and four downhole geophones with a vertical spacing of 50 m. We apply seismic interferometry to local seismicity, for each borehole individually. Doing so, we obtain the responses as if there were virtual sources at the lowest geophones and receivers at the other depth levels. From the retrieved direct waves and reflections, we invert for P- & S- velocity and Q models. We discuss different implementations of seismic interferometry and the subsequent inversion. The inverted near-surface properties are used to improve both the source location and the hazard assessment.
NASA Astrophysics Data System (ADS)
Jones, Cathleen; Blom, Ronald; Latini, Daniele
2014-05-01
The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of acquisition, a dramatic increase of persistent scatter density in urban areas, and improved measurement of very small displacements (Crosetto et al., 2010). We compare the L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period, to determine the influence of different radar frequencies and analyses techniques. Our applications goal is to demonstrate a technique to inform targeted ground surveys, identify areas of persistent subsidence, and improve overall monitoring and planning in flood risk areas. Dokka, 2011, The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi: J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008. Jones, C. E., G. Bawden, S. Deverel, J. Dudas, S. Hensley, Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument, Proc. SPIE 8536, SAR Image Analysis, Modeling, and Techniques XII, 85360E (November 21, 2012); doi:10.1117/12.976885. Crosetto, M., Monserrat, O., Iglesias, R., & Crippa, B. (2010). Persistent Scatterer Interferometry: Potential, limits and initial C-and X-band comparison. Photogrammetric engineering and remote sensing, 76(9), 1061-1069. Acknowledgments: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Sterzai, P.; Mancini, F.; Corazzato, C.; D Agata, C.; Diolaiuti, G.
2003-04-01
Aiming at reconstructing superficial velocity and volumetric variations of alpine glaciers, SAR interferometry (InSAR) technique is, for the first time in Italy, applied jointly with the glaciological classic field methods. This methodology with its quantitative results provides, together with other space geodesy techniques like GPS, some fundamental elements for the estimation of the climate forcing and the evaluation of the future glacier trend. InSAR is usually applied to antarctic glaciers and to other wide extralpine glaciers, detectable by the SAR orbits; in the Italian Alps, the limited surface area of the glaciers and the deformation of radar images due to strong relief effect, reduce the applicability of this tecnique. The chosen glacier is suitable for this kind of study both for its large size and for the many field data collected and available for the interferometric results validation. Forni Glacier is the largest valley glacier in the Italian Alps and represents a good example of long term monitoring of a valley glacier in the Central Alps. It is a north facing valley glacier formed by 3 ice streams, located in Italian Lombardy Alps (46 23 50 N, 10 35 00 E). In 2002 its area was approximately 13 km2, extending from 2500 to 3684 m a.s.l., with a maximum width of approximately 7500 m and a maximum length of about 5000 m. Available data include mass-balance measurements on the glacier tongue (from the hydrological year 1992-1993 up to now), frontal variations data from 1925 up to now, topographical profiling by means of GPS techniques and profiles of the glacier bed by geoelectrical surveys (VES) (Guglielmin et alii, 1995) and by seismic surveys (Merlanti et alii, 2001). In order to apply radar interferometry on this glacier eight ERS SAR RAW images have been purchased, in addition to the Digital Elevation Model from IGM (Geographic Military Institute), and repeat pass interferometry used. Combining the different passes, differential interferograms are computed and velocity map obtained. The validation of interferometric data was possible comparing them with the field glaciological data obtained by GPS velocity surveys in the years 1992-1993 (Vittuari and Smiraglia, unpublished) and 1996-1997, which resulted of about 20m/y. The InSAR results give further contributions in the estimation of the velocity field of Forni Glacier for a deeper understanding of the different flow lines of the glacier. Problems related to relief effect, loss of coherence, geometry of satellite imagery and geocoding, are also discussed.
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument
NASA Astrophysics Data System (ADS)
Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.
2016-07-01
We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.
Optical long baseline intensity interferometry: prospects for stellar physics
NASA Astrophysics Data System (ADS)
Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin
2018-06-01
More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars
NASA Astrophysics Data System (ADS)
Mérand, Antoine
2017-10-01
SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.
Laser Interferometry Method as a Novel Tool in Endotoxins Research.
Arabski, Michał; Wąsik, Sławomir
2017-01-01
Optical properties of chemical substances are widely used at present for assays thereof in a variety of scientific disciplines. One of the measurement techniques applied in physical sciences, with a potential for novel applications in biology, is laser interferometry. This method enables to record the diffusion properties of chemical substances. Here we describe the novel application of laser interferometry in chitosan interactions with lipopolysaccharide by detection of colistin diffusion. The proposed model could be used in simple measurements of polymer interactions with endotoxins and/or biological active compounds, like antibiotics.
Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies
NASA Astrophysics Data System (ADS)
Gay, J.; Rabbia, Y.
2014-04-01
We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.
Persistent Scatterer InSAR monitoring of Bratislava urban area
NASA Astrophysics Data System (ADS)
Bakon, Matus; Perissin, Daniele; Papco, Juraj; Lazecky, Milan
2014-05-01
The main purpose of this research is to monitor the ground stability of Bratislava urban area by application of the satellite radar interferometry. Bratislava, the capital city of Slovakia, is situated in its south-west on the borders with Austria and Hungary and only 62 kilometers from the border with Czech Republic. With an exclusive location and good infrastructure, the city attracts foreign investors and developers, what has resulted in unprecedented boom in construction in recent years. Another thing is that Danube River in the last five hundred years caused a hundred of devastating floods, so therefore flood occurs every five years, on average. From geological point of view, the Little Carpathians covers the main part of study area and are geologically and tectonically interesting. The current state of relief and spatial distribution of individual geological forms is the result of vertical geodynamic movements of tectonic blocks, e.g., subsiding parts of Vienna Basin and Danubian Basin or uplifting mountains. The Little Carpathians horst and the area of Vienna Basin contains a number of tectonic faults, where ground motions as a result of geodynamic processes are mostly expected. It is assumed that all the phenomena stated above has an impact on the spatial composition of the Earth's surface in Bratislava urban area. As nowadays surface of the Little Carpathians is heavily eroded and morphology smoothed, question of this impact cannot be answered only by interpreting geological tectonic maps. Furthermore, expected changes have never been revealed by any geodetic measurements which would offer advantages of satellite radar interferometry concerning temporal coverage, spatial resolution and accuracy. Thus the generation of ground deformation maps using satellite radar interferometry could gather valuable information. The work aims to perform a series of differential interferograms and PSInSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) technique, covering the target area with 57 Envisat ASAR images from Ascending Track No. 229 (32) and Descending Track No. 265 (25) captured between years 2002 and 2010. Processing involves Sarproz (Copyright (c) 2009 Daniele Perissin) a powerful software solution for obtaining differential interferograms and performing PSInSAR methodology. The area of interest to investigate the deformation phenomena is covering approximately 16 by 16 kilometers (256 sqkm). For evaluation of PSInSAR potential to detect and monitor ground displacements, PS derived time series of deformation signal were compared to the field GNSS data from three GNSS stations coded PIL1, BRAT and GKU4. By the detailed look on the deformation maps the investigated urban area of Bratislava is relatively stable with the deformation rates within the few (±5) millimeters. The comparison of PSInSAR derived time series with GNSS data indicates good correlation and confirms achievable precision and applicability of InSAR measurements for ground stability monitoring purposes. Data for this work were provided by European Space Agency within the Category-1 project ID 9981: "Detection of ground deformation using radar interferometry techniques". The authors are grateful to the Tatrabanka Foundation and The National Scholarship Programme of the Slovak Republic for the opportunity to work together. Data have been processed by the Sarproz (Copyright (c) 2009 Daniele Perissin) and visualised in Google Earth. This paper is also the result of the implementation of the project: the National Centre of Earth's Surface Deformation Diagnostic in the area of Slovakia, ITMS 26220220108 supported by the Research and Development Operational Programme funded by the ERDF and the grant No. 1/0642/13 of the Slovak Grant Agency VEGA.
Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma
NASA Astrophysics Data System (ADS)
Eddy, A. C.; Harder, S. H.
2017-12-01
The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.
NASA Astrophysics Data System (ADS)
Georges, Marc; Lemaire, Philippe; Pauliat, Gilles; Launay, Jean-Claude; Roosen, Gérald
2018-04-01
This paper, "State-of-the-art of photorefractive holographic interferometry and potentialities for space applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Goudemand, Nicolas
2006-07-01
Contrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.
The mid-IR and near-IR interferometry of AGNs: key results and their implications
NASA Astrophysics Data System (ADS)
Kishimoto, M.
2015-09-01
Infrared interferometry has been very productive in directly probing the structure of AGNs at sub-pc scales. With tens of objects already probed in the mid-IR and near-IR, I will summarize the key results and im- plications from this direct exploration. The Keck interferometry in the near-IR and VLTI in the mid-IR shaped the luminosity dependence of the torus size and structure, while the latter also revealed an equatorial structure at several Rsub (dust sublimation radius), and a polar-elongated region at a few tens of Rsub. Notably, this polar component seems to dominate the compact mid-IR flux. This component can persuasively be attributed to a polar outflow. However, interferometry, through emissivity estimations, also indicates that it is not a UV-optically-thin cloud but participating in the obscuration of the nucleus. I will discuss how to accommodate all these facts to build a consistent picture.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
A publication database for optical long baseline interferometry
NASA Astrophysics Data System (ADS)
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Resolving microstructures in Z pinches with intensity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Kroupp, E.; Maron, Y.
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less
Wang, Guochao; Tan, Lilong; Yan, Shuhua
2018-02-07
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
A real-time interferometer technique for compressible flow research
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.
Tan, Lilong; Yan, Shuhua
2018-01-01
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897
NASA Astrophysics Data System (ADS)
Axelsson, Anders; Marucci, Mariagrazia
2008-12-01
In this review holographic interferometry and electron speckle pattern interferometry are discussed as efficient techniques for diffusion measurements in biochemical and pharmaceutical applications. Transport phenomena can be studied, quantitatively and qualitatively, in gels, liquids and membranes. Detailed information on these phenomena is required to design effective chromatography bioseparation processes using gel beads or ultrafiltration membranes, and in the design of controlled-release pharmaceuticals using membrane-coated pellets or tablets. The influence of gel concentration, ion strength in the liquid and the size of diffusing protein molecules can easily be studied with good accuracy. When studying membranes, the resistance can be quantified, and it is also possible to discriminate between permeable and semi-permeable membranes. In this review the influence of temperature, natural convection and light deflection on the accuracy of the diffusion measurements is also discussed.
NASA Astrophysics Data System (ADS)
Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun
2014-04-01
This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.
Experimental determination of release fields in cut railroad car wheels
DOT National Transportation Integrated Search
1999-02-01
A new approach to the measurement of residual stresses in railroad wheels is investigated using a saw cut method of releasing stresses in the structure. High-sensitivity moire interferometry combined with Michelson interferometry provides full-field ...
Experimental Study of Residual Stresses in Rail by Moire Interferometry
DOT National Transportation Integrated Search
1993-09-01
The residual stresses in rails produced by rolling cycles are studied experimentally by moire interferometry. The dissection technique is adopted for this investigation. The basic principle of the dissection technique is that the residual stress is r...
NASA Astrophysics Data System (ADS)
Alloin, D. M.; Mariotti, J.-M.
Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1998-01-01
The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.
NASA Astrophysics Data System (ADS)
Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre
2018-04-01
This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Interferometry correlations in central p+Pb collisions
NASA Astrophysics Data System (ADS)
Bożek, Piotr; Bysiak, Sebastian
2018-01-01
We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.
Altimetry Using GPS-Reflection/Occultation Interferometry
NASA Technical Reports Server (NTRS)
Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi
2008-01-01
A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.
Global astrometry with the space interferometry mission
NASA Technical Reports Server (NTRS)
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
Recent New Ideas and Directions for Space-Based Nulling Interferometry
NASA Technical Reports Server (NTRS)
Serabyn, Eugene (Gene)
2004-01-01
This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter.
Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G
2014-07-28
We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis.
Highly sensitive atomic based MW interferometry.
Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya
2018-06-06
We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Speckle interferometry applied to asteroids and other solar system objects
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Hege, E. K.
1985-01-01
The application of speckle interferometry to asteroids and other solar system objects is discussed. The assumption of a triaxial ellipsoid rotating about its shortest axis is the standard model. Binary asteroids, 433 Eros, 532 Herculina, 511 Davida, and Pallas are discussed.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and
Detection of deoxynivalenol using biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
From a structural average to the conformational ensemble of a DNA bulge
Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel
2014-01-01
Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
NASA Astrophysics Data System (ADS)
Wang, Kuo-Lung; Lin, Jun-Tin; Lee, Yi-Hsuan; Lin, Meei-Ling; Chen, Chao-Wei; Liao, Ray-Tang; Chi, Chung-Chi; Lin, Hsi-Hung
2016-04-01
Landslide is always not hazard until mankind development in highly potential area. The study tries to map deep seated landslide before the initiation of landslide. Study area in central Taiwan is selected and the geological condition is quite unique, which is slate. Major direction of bedding in this area is northeast and the dip ranges from 30-75 degree to southeast. Several deep seated landslides were discovered in the same side of bedding from rainfall events. The benchmarks from 2002 ~ 2009 are in this study. However, the benchmarks were measured along Highway No. 14B and the road was constructed along the peak of mountains. Taiwan located between sea plates and continental plate. The elevation of mountains is rising according to most GPS and benchmarks in the island. The same trend is discovered from benchmarks in this area. But some benchmarks are located in landslide area thus the elevation is below average and event negative. The aerial photos from 1979 to 2007 are used for orthophoto generation. The changes of land use are obvious during 30 years and enlargement of river channel is also observed in this area. Both benchmarks and aerial photos have discovered landslide potential did exist this area but how big of landslide in not easy to define currently. Thus SAR data utilization is adopted in this case. DInSAR and SBAS sar analysis are used in this research and ALOS/PALSAR from 2006 to 2010 is adopted. DInSAR analysis shows that landslide is possible mapped but the error is not easy to reduce. The error is possibly form several conditions such as vegetation, clouds, vapor, etc. To conquer the problem, time series analysis, SBAS, is adopted in this research. The result of SBAS in this area shows that large deep seated landslides are easy mapped and the accuracy of vertical displacement is reasonable.
NASA Astrophysics Data System (ADS)
Moro, M.; Stramondo, S.; Albano, M.; Barba, S.; Solaro, G.; Saroli, M.; Bignami, C.
2015-12-01
The present work focuses on the detection and analysis of the postseismic surface deformations following the two earthquakes that hit the Emilia Romagna region (Italy) on May 20 and 29, 2012. The 2012 Emilia earthquake sequence struck the central sector of the Ferrara arc, which represents the external fold-and-thrust system of the Northern Apennines thrust belt buried below the Po plain. The May 20 event occurred on the Ferrara basal thrust at depth, at about 6-7 km, while, during the May 29 event, the rupture jumped on an inner splay of the Ferrara system. The analysis of the postseismic displacements was carried out thanks to a dataset of SAR COSMO SkyMed images covering a time span of about one year (May 20, 2012 - May 11, 2013) after the May 20 event. The DInSAR results revealed the presence of two deformation patches: the first one is located in the area that experienced the coseismic uplift. Here the postseismic displacements point out a further ground uplift occurring along the first three months after the 20 May event. The second deformation patch is located in the villages of San Carlo and Mirabello, where ground subsidence lasting about four months was detected. We hypothesized that both the observed phenomena are related to the pore pressure perturbation caused by the coseismic deformation. In particular, the ground uplift is due to the deep crustal deformations caused by the pore fluid diffusion at depth to re-establish the initial hydrostatic stresses. Instead, the ground subsidence is related to the compaction of the shallow sandy layers caused by the liquefaction phenomena, which widely affected the San Carlo and Mirabello area. Preliminary numerical analyses performed with the Finite Element Method and empirical relations confirmed our hypothesis.
Principal component analysis of MSBAS DInSAR time series from Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Tiampo, Kristy F.; González, Pablo J.; Samsonov, Sergey; Fernández, Jose; Camacho, Antonio
2017-09-01
Because of its proximity to the city of Naples and with a population of nearly 1 million people within its caldera, Campi Flegrei is one of the highest risk volcanic areas in the world. Since the last major eruption in 1538, the caldera has undergone frequent episodes of ground subsidence and uplift accompanied by seismic activity that has been interpreted as the result of a stationary, deeper source below the caldera that feeds shallower eruptions. However, the location and depth of the deeper source is not well-characterized and its relationship to current activity is poorly understood. Recently, a significant increase in the uplift rate has occurred, resulting in almost 13 cm of uplift by 2013 (De Martino et al., 2014; Samsonov et al., 2014b; Di Vito et al., 2016). Here we apply a principal component decomposition to high resolution time series from the region produced by the advanced Multidimensional SBAS DInSAR technique in order to better delineate both the deeper source and the recent shallow activity. We analyzed both a period of substantial subsidence (1993-1999) and a second of significant uplift (2007-2013) and inverted the associated vertical surface displacement for the most likely source models. Results suggest that the underlying dynamics of the caldera changed in the late 1990s, from one in which the primary signal arises from a shallow deflating source above a deeper, expanding source to one dominated by a shallow inflating source. In general, the shallow source lies between 2700 and 3400 m below the caldera while the deeper source lies at 7600 m or more in depth. The combination of principal component analysis with high resolution MSBAS time series data allows for these new insights and confirms the applicability of both to areas at risk from dynamic natural hazards.
Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico
NASA Astrophysics Data System (ADS)
Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.
2015-11-01
The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information about the process of fault slip associated with subsidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Review of ASTM Symposium on Surface Crack Growth: Models, Experiments, and Structures
1990-11-01
34 Extraction of Stress-Intensity Factor from In-Plane Displacements Measured by Holographic Interferometry--J.W. Dally, C.A. Sciammarella , and I...results and finite elements and find that they are essentially equivalent. Dally, Sciammarella , and Shareef use holographic interferometry and
An examination of along-track interferometry for detecting ground moving targets
NASA Technical Reports Server (NTRS)
Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott
2005-01-01
Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.
Interferometry using subnanosecond pulses from TEA nitrogen lasers.
Schmidt, H; Salzmann, H; Strohwald, H
1975-09-01
The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1993-01-01
This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.
NASA Technical Reports Server (NTRS)
Marn, Jure
1989-01-01
Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.
LISA pathfinder optical interferometry
NASA Astrophysics Data System (ADS)
Braxmaier, Claus; Heinzel, Gerhard; Middleton, Kevin F.; Caldwell, Martin E.; Konrad, W.; Stockburger, H.; Lucarelli, S.; te Plate, Maurice B.; Wand, V.; Garcia, A. C.; Draaisma, F.; Pijnenburg, J.; Robertson, D. I.; Killow, Christian; Ward, Harry; Danzmann, Karsten; Johann, Ulrich A.
2004-09-01
The LISA Technology Package (LTP) aboard of LISA pathfinder mission is dedicated to demonstrate and verify key technologies for LISA, in particular drag free control, ultra-precise laser interferometry and gravitational sensor. Two inertial sensor, the optical interferometry in between combined with the dimensional stable Glass ceramic Zerodur structure are setting up the LTP. The validation of drag free operation of the spacecraft is planned by measuring laser interferometrically the relative displacement and tilt between two test masses (and the optical bench) with a noise levels of 10pm/√Hz and 10 nrad/√Hz between 3mHz and 30mHz. This performance and additionally overall environmental tests was currently verified on EM level. The OB structure is able to support two inertial sensors (≍17kg each) and to withstand 25 g design loads as well as 0...40°C temperature range. Optical functionality was verified successfully after environmental tests. The engineering model development and manufacturing of the optical bench and interferometry hardware and their verification tests will be presented.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
NASA Astrophysics Data System (ADS)
Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-06-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.
NASA Astrophysics Data System (ADS)
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-10-01
Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-01-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue ‘Quantum technology for the 21st century’. PMID:28652493
A portable magneto-optical trap with prospects for atom interferometry in civil engineering.
Hinton, A; Perea-Ortiz, M; Winch, J; Briggs, J; Freer, S; Moustoukas, D; Powell-Gill, S; Squire, C; Lamb, A; Rammeloo, C; Stray, B; Voulazeris, G; Zhu, L; Kaushik, A; Lien, Y-H; Niggebaum, A; Rodgers, A; Stabrawa, A; Boddice, D; Plant, S R; Tuckwell, G W; Bongs, K; Metje, N; Holynski, M
2017-08-06
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 10 7 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Mayer, Larry; Lu, Zhong
2001-01-01
A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.
Accessing High Spatial Resolution in Astronomy Using Interference Methods
NASA Astrophysics Data System (ADS)
Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean
2018-04-01
In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).
Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry
NASA Astrophysics Data System (ADS)
Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen
2017-06-01
We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.
Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.
2010-04-01
Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Downs, Michael J.
2000-08-01
The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.
Evolutions Of Diff-Tomo For Sensing Subcanopy Deformations And Height-Varying Temporal Coherence
NASA Astrophysics Data System (ADS)
Lombardini, Fabrizio; Cai, Francesco
2012-01-01
Interest is continuing to grow in advanced interferometric SAR methods for sensing complex scenarios with multiple (layover or volumetric) scatterers mapped in the SAR cell. Multibaseline SAR tomographic (3D) elevation beam forming is a promising technique in this field. Recently, the Tomo concept has been integrated with the differential interferometry concept, producing the advanced “differential tomography” (Diff-Tomo, “4D”) processing mode which furnishes “space-time” signatures of multiple scatterer dynamics in the SAR cell. Advances in the application of this new framework are investigated for complex volume scattering scenarios including temporal signal variations, both from scatterer temporal decorrelation and deformation motions. In particular, new results are reported concerning the potentials of Diff-Tomo for the analysis of forest scenarios, based on the original concept of the space-time signatures of temporal decorrelation. E-SAR P-band data results are expanded of tomography robust to temporal decorrelation, and first trials are reported of separation of different temporal decorrelation mechanisms of canopy and ground, and of sensing possible sub-canopy subsidences.
NASA Astrophysics Data System (ADS)
Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Franceschini, A.
2009-10-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR™) methodology provides high-resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
NASA Astrophysics Data System (ADS)
Massironi, Matteo; Zampieri, Dario; Schiavo, Alessio; Bianchi, Marco; Franceschini, Andrea
2010-05-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR) methodology provides high resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells
NASA Astrophysics Data System (ADS)
Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi
2013-04-01
While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.
Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging
Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew
2014-01-01
Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630
Digitally Enhanced Heterodyne Interferometry
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge
2010-01-01
Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.
bol'shakov, O P; Kotov, I R; Poliakova, E L
2014-01-01
25 children aged 2 to 5 years were examined orthopedically using the methods of plantometry and holographic interferometry of three-dimensional casts of footprints. The computer maps of the foot arch surface were obtained and the graphic reconstruction of the arch shape was performed in normal cases and in children with flatfoot. Most significant deviations of the foot arch shape, probably associated with the development delay, were detected in 4-5-year-old children under the dynamic load. Some additional advantages of holographic interferometry for the early diagnosis of flatfoot in children were demonstrated.
Speckle interferometry of asteroids
NASA Technical Reports Server (NTRS)
Drummond, Jack D.; Hege, E. Keith
1989-01-01
Steward Observatory's two-dimensional power spectrum signature analysis of speckle interferometry observations is summarized. Results for six asteroids are presented. The poles and triaxial ellipsoid dimensions of 4 Vesta, 433 Eros, 511 Davida, and 532 Herculina have been previously reported. New results for 2 Pallas and 29 Amphitrite are given, as well as further results for Vesta. Image reconstruction is ultimately required to minimize biasing effects of asteroid surface features on the simpler power spectrum analysis. Preliminary imaging results have been achieved for Vesta and Eros, and images for these two are displayed. Speckle interferometry and radiometry diameters are compared, and diameters from the two occultations of Pallas are addressed.
The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.
2008-01-01
Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.
Optical interferometry study of film formation in lubrication of sliding and/or rolling contacts
NASA Technical Reports Server (NTRS)
Stejskal, E. O.; Cameron, A.
1972-01-01
Seventeen fluids of widely varying physical properties and molecular structure were chosen for study. Film thickness and traction were measured simultaneously in point contacts by interferometry, from which a new theory of traction was proposed. Film thickness was measured in line contacts by interferometry and electrical capacitance to establish correlation between these two methods. An interferometric method for the absolute determination of refractive index in the contact zone was developed and applied to point contact fluid entrapments. Electrical capacitance was used to study the thickness and properties of the soft surface film which sometimes forms near a metal-fluid interface.
Optical fiber Fabry-Perot interferometry
NASA Astrophysics Data System (ADS)
Wang, Anbo
2014-06-01
Fiber Fabry-Perot (FP) interferometry is one of the most important tools for harsh environment sensing because of its great flexibility of sensor material selection, superior long--term stability, and nature of remote passive operation. Virginia Tech's Center for Photonics Technology has been involved in the research of this field for many years. After a quick review of the typical methods for the construction of F-P sensors, emphasis will be placed on the whitelight interferometry, which is perhaps the most robust interferometric sensor demodulation technique today. The recent discovery of an additional phase will be presented and its significance to the sensor demodulation will be discussed.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Rinehart, Stephen A.
2012-01-01
The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration.
NASA Technical Reports Server (NTRS)
Breckinridge, Jim B. (Editor)
1990-01-01
Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.
Synthetic aperture imaging in astronomy and aerospace: introduction.
Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael
2017-05-01
Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.
Mask Design for the Space Interferometry Mission Internal Metrology
NASA Technical Reports Server (NTRS)
Marx, David; Zhao, Feng; Korechoff, Robert
2005-01-01
This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design
Systemic errors calibration in dynamic stitching interferometry
NASA Astrophysics Data System (ADS)
Wu, Xin; Qi, Te; Yu, Yingjie; Zhang, Linna
2016-05-01
The systemic error is the main error sauce in sub-aperture stitching calculation. In this paper, a systemic error calibration method is proposed based on pseudo shearing. This method is suitable in dynamic stitching interferometry for large optical plane. The feasibility is vibrated by some simulations and experiments.
Signal Processing in Cold Atom Interferometry-Based INS
2014-03-27
INTERFEROMETRY-BASED INS Kara M. Willis, BS Civilian, DAF Approved: //signed// Meir Pachter, PhD (Chairman) //signed// Maj Marshall Haker , PhD (Member) //signed...matter mentors, Maj Marshall Haker and Dr Kyle Kauffman, for their insights and unwavering encouragement. Kara M. Willis v Table of Contents Page
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Jürg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2011-06-01
Seismic interferometry, also known as Green's function retrieval by crosscorrelation, has a wide range of applications, ranging from surface-wave tomography using ambient noise, to creating virtual sources for improved reflection seismology. Despite its successful applications, the crosscorrelation approach also has its limitations. The main underlying assumptions are that the medium is lossless and that the wavefield is equipartitioned. These assumptions are in practice often violated: the medium of interest is often illuminated from one side only, the sources may be irregularly distributed, and losses may be significant. These limitations may partly be overcome by reformulating seismic interferometry as a multidimensional deconvolution (MDD) process. We present a systematic analysis of seismic interferometry by crosscorrelation and by MDD. We show that for the non-ideal situations mentioned above, the correlation function is proportional to a Green's function with a blurred source. The source blurring is quantified by a so-called interferometric point-spread function which, like the correlation function, can be derived from the observed data (i.e. without the need to know the sources and the medium). The source of the Green's function obtained by the correlation method can be deblurred by deconvolving the correlation function for the point-spread function. This is the essence of seismic interferometry by MDD. We illustrate the crosscorrelation and MDD methods for controlled-source and passive-data applications with numerical examples and discuss the advantages and limitations of both methods.
NASA Astrophysics Data System (ADS)
Strozzi, Tazio; Caduff, Rafael; Kääb, Andreas; Bolch, Tobias
2017-04-01
The best visual expression of mountain permafrost are rockglaciers, which, in contrast to the permafrost itself, can be mapped and monitored directly using remotely sensed data. Studies carried out in various parts of the European Alps have shown surface acceleration of rockglaciers and even destabilization of several such landforms over the two last decades, potentially related to the changing permafrost creep conditions. Changes in rockglacier motion are therefore believed to be the most indicative short- to medium-term response of rockglaciers to environmental changes and thus an indicator of mountain permafrost conditions in general. The ESA DUE GlobPermafrost project develops, validates and implements EO products to support research communities and international organizations in their work on better understanding permafrost characteristics and dynamics. Within this project we are building up a worldwide long-term monitoring network of active rockglacier motion investigated using remote sensing techniques. All sites are analysed through a uniform set of data and methods, and results are thus comparable. In order to quantify the rate of movement and the relative changes over time we consider two remote sensing methods: (i) matching of repeat optical data and (ii) satellite radar interferometry. In this contribution, we focus on the potential of recent high spatial resolution SAR data for the analysis of periglacial processes in mountain environments with special attention to the Ile and Kungöy Ranges of Northern Tien Shan at the border between Kazakhstan and Kyrgyzstan, an area which contains a high number of large and comparably fast (> 1m/yr) rockglaciers and is of interest as dry-season water resource and source of natural hazards. As demonstrated in the past with investigations conducted in the Swiss Alps, the visual analysis of differential SAR interferograms can be employed for the rough estimation of the surface deformation rates of rockglaciers and other slope instabilities into different classes (e.g. cm/day, dm/month, cm/month and cm/yr). More sophisticated SAR interferometric approaches like Persistent Scatterer Interferometry (PSI) or Short Baseline Interferometry (SBAS) are only able to detect points moving with velocities below a few cm/yr respectively several dm/yr in the Line-Of-Sight (LOS) direction, because of phase unwrapping issues. For our analysis in the Tien Shan we considered SAR interferograms with short baselines and acquisition time intervals between 1 day and approximately one year. Satellite images from the ERS-1/2 tandem mission in 1998-1999, ALOS-1 PALSAR-1 between 2006-2010 (46 days nominal repeat cycle), ALOS-2 PALSAR-2 between 2014 and 2016 (14 days nominal repeat cycle), and Sentinel-1 between 2015 and 2016 (12 days nominal repeat cycle) were used. Images acquired along both ascending and descending geometries and during summer (snow-free) and winter (frozen snow) conditions were employed. For topographic reference and orthorectification we computed in-house a Digital Elevation Model from TanDEM-X acquisitions of ascending and descending orbits. Phase unwrapping to derive the LOS displacement was attempted only locally for selected landforms with a moderate (e.g. < 50 cm/yr) rate of motion. Our inventory of rockglaciers and other periglacial processes in the Northern Tien Shan includes so far more than 500 objects over an area of more than 3000 km2. In future, our inventory will be compared to other existing inventories compiled in field or with air photos. In addition, the long-term monitoring of rockglacier motion will be performed taking advantage of the synergies between repeat optical and radar satellite data. The combined approach is useful for the confirmation of the activity, filling spatial and/or temporal gaps, computing the historical fast motion of rockglaciers from optical data and the slow motion from SAR interferometry, and to compare multi-annual rates of motion (optical data) with seasonal activities (SAR interferometry).
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni
2010-06-01
using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of
The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo
2011-01-01
Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…
Milk matrix effects on antibody binding analyzed by elisa and biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry (BLI) was employed to study the impact of the milk matrix on the binding of ricin to asialofetuin (ASF) and to antibodies. This optical sensing platform utilized ligands immobilized covalently or via biotin-streptavidin linkage, and the results were compared to those obtained...
TOPSAT: Global space topographic mission
NASA Technical Reports Server (NTRS)
Vetrella, Sergio
1993-01-01
Viewgraphs on TOPSAT Global Space Topographic Mission are presented. Topics covered include: polar region applications; terrestrial ecosystem applications; stereo electro-optical sensors; space-based stereoscopic missions; optical stereo approach; radar interferometry; along track interferometry; TOPSAT-VISTA system approach; ISARA system approach; topographic mapping laser altimeter; and role of multi-beam laser altimeter.
2016-05-01
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes
Optical Biosensing: Kinetics of Protein A-IGG Binding Using Biolayer Interferometry
ERIC Educational Resources Information Center
Wilson, Jo Leanna; Scott, Israel M.; McMurry, Jonathan L.
2010-01-01
An undergraduate biochemistry laboratory experiment has been developed using biolayer interferometry (BLI), an optical biosensing technique similar to surface plasmon resonance (SPR), in which students obtain and analyze kinetic data for a protein-protein interaction. Optical biosensing is a technique of choice to determine kinetic and affinity…
Polarimetric Interferometry - Remote Sensing Applications
2007-02-01
This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it
Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument
NASA Technical Reports Server (NTRS)
Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott
2012-01-01
We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.
Dual function microscope for quantitative DIC and birefringence imaging
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Zhu, Yizheng
2016-03-01
A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.
NASA Technical Reports Server (NTRS)
Black, D. C.; Brunk, W. E.
1980-01-01
The capabilities of several astronomical interferomenter system concepts are assessed and the effects of the Earth's atmosphere on astrometric precision are examined in detail. Included is an examination of the use of small aperture interferometry to detect planets in binary star systems. It is estimated that, for differential astrometric observation, an amplitude interferometer having two separate telescopes should permit observations of stars as faint as 14th magnitude and a positional accuracy of 0.00005 arc-sec. Instrumental, atmospheric, and photon noise errors that apply to interferometric observation are examined. It is suggested that the effects of atmospheric turbulence may be eliminated with the use of two color refractometer systems. Several sites for future telescopes dedicated to the search for planetary systems are identified.
Least Squares Solution of Small Sample Multiple-Master PSInSAR System
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ding, Xiao Li; Lu, Zhong
2010-03-01
In this paper we propose a least squares based approach for multi-temporal SAR interferometry that allows to estimate the deformation rate with no need of phase unwrapping. The approach utilizes a series of multi-master wrapped differential interferograms with short baselines and only focuses on the arcs constructed by two nearby points at which there are no phase ambiguities. During the estimation an outlier detector is used to identify and remove the arcs with phase ambiguities, and pseudoinverse of priori variance component matrix is taken as the weight of correlated observations in the model. The parameters at points can be obtained by an indirect adjustment model with constraints when several reference points are available. The proposed approach is verified by a set of simulated data.
Low energy X-ray grating interferometry at the Brazilian Synchrotron
NASA Astrophysics Data System (ADS)
Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.
2017-06-01
Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.
Plasmas with an index of refraction greater than 1.
Nilsen, Joseph; Scofield, James H
2004-11-15
Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.
Threshold multi-secret sharing scheme based on phase-shifting interferometry
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Shi, Zhengang
2017-03-01
A threshold multi-secret sharing scheme is proposed based on phase-shifting interferometry. The K secret images to be shared are firstly encoded by using Fourier transformation, respectively. Then, these encoded images are shared into many shadow images based on recording principle of the phase-shifting interferometry. In the recovering stage, the secret images can be restored by combining any 2 K + 1 or more shadow images, while any 2 K or fewer shadow images cannot obtain any information about the secret images. As a result, a (2 K + 1 , N) threshold multi-secret sharing scheme can be implemented. Simulation results are presented to demonstrate the feasibility of the proposed method.
Mishima, T; Kao, K C
1982-03-15
New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.
Dual-hologram shearing interferometry with regulated sensitivity
NASA Astrophysics Data System (ADS)
Toker, Gregory R.; Levin, Daniel
1998-07-01
A novel optical diagnostic technique, namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.
Freeform metrology using subaperture stitching interferometry
NASA Astrophysics Data System (ADS)
Supranowitz, Chris; Lormeau, Jean-Pierre; Maloney, Chris; Murphy, Paul; Dumas, Paul
2016-11-01
As applications for freeform optics continue to grow, the need for high-precision metrology is becoming more of a necessity. Currently, coordinate measuring machines (CMM) that implement touch probes or optical probes can measure the widest ranges of shapes of freeform optics, but these measurement solutions often lack sufficient lateral resolution and accuracy. Subaperture stitching interferometry (SSI™) extends traditional Fizeau interferometry to provide accurate, high-resolution measurements of flats, spheres, and aspheres, and development is currently on-going to enable measurements of freeform surfaces. We will present recent freeform metrology results, including repeatability and cross-test data. We will also present MRF® polishing results where the stitched data was used as the input "hitmap" to the deterministic polishing process.
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2018-04-01
In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 427 speckle cases. A separate paper in this issue will report the CCD measurements of the 161 other pairs.
NASA Astrophysics Data System (ADS)
Totzeck, Michael
The intention of this chapter is to provide a fast and comprehensive overview of the principles of interferometry and the various types of interferometer, including interferogram evaluation and applications. Due to the age and the importance of the subject, you can find a number of monographs [16.1,2,3,4] and book chapters [16.5] in the literature. The number of original papers on optical interferometry is far too large to even attempt complete coverage in this chapter. Whenever possible, review papers are cited. Original papers are cited according to their aptness as starting points into the subject. This, however, reflects my personal judgment. Even if you do not share my opinion, you should find the references therein useful.
Optical Distortion Evaluation in Large Area Windows using Interferometry
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.
2015-01-01
It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.
A recent history of science cases for optical interferometry
NASA Astrophysics Data System (ADS)
Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre
2018-04-01
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
An Experimental Weight Function Method for Stress Intensity Factor Calibration.
1980-04-01
in accuracy to the ones obtained by Macha (Reference 10) for the laser interferometry technique. The values of KI from the interpolating polynomial...Measurement. Air Force Material Laboratories, AFML-TR-74-75, July 1974. 10. D. E. Macha , W. N. Sharpe Jr., and A. F. Grandt Jr., A Laser Interferometry
2014-06-12
interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
A series of interference and radiation patterns are presented for radio interferometry in subsurface probing. The interference patterns are due both to a vertical magnetic dipole and to a horizontal electric dipole. Mode solutions are also presented for layer thickness equal to 1 wavelength, as well as for thin layers.
Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Wendy I.
1994-01-01
The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.
A programmable broadband low frequency active vibration isolation system for atom interferometry.
Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng
2014-09-01
Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.
An investigation of CO2 laser scleral buckling using moiré interferometry.
Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh
2002-01-01
To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.
Podoleanu, Adrian Gh; Bradu, Adrian
2013-08-12
Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Application of Radar Data to Remote Sensing and Geographical Information Systems
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2000-01-01
The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.
Monitoring the englacial fracture state using virtual-reflector seismology
NASA Astrophysics Data System (ADS)
Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.
2017-12-01
Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.
NASA Astrophysics Data System (ADS)
McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei
2017-11-01
The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.
Multi-Axis Heterodyne Interferometry (MAHI)
NASA Astrophysics Data System (ADS)
Thorpe, James
The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.
Dual-sensor mapping of mass balance on Russia's northernmost ice caps
NASA Astrophysics Data System (ADS)
Nikolskiy, D.; Malinnikov, V.; Sharov, A.; Ukolova, M.
2012-04-01
Mass balance of Russia's northernmost ice caps is poorly known and scarcely mapped. Thorough information about glacier fluctuations in the outer periphery of Russian shelf seas is both lacking and highly desired since it may constitute the relevant benchmark for judging and projecting climate change impacts in the entire Arctic. The present study is focussed on geodetic measurements and medium-scale mapping of the mass balance on a dozen insular ice caps, some large and some smaller, homogeneously situated along the Eurasian boundary of Central Arctic Basin. The study region extends for approx. 2.200 km from Victoria and Arthur islands in the west across Rudolph, Eva-Liv, Ushakova, Schmidt and Komsomolets islands in the north to Bennett and Henrietta islands in the east thereby comprising the most distant and least studied ice caps in the Russian Arctic. The situation of insular ice masses close to the edge of summer minimum sea ice proved helpful in analysing spatial asymmetry of glacier accumulation signal. The overall mapping of glacier elevation changes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1960s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. In total, 14 ERS and 4 TanDEM-X high-quality SAR interferograms of 1995/96 and 2011 were acquired, processed in the standard 2-pass DINSAR manner, geocoded, calibrated, mosaicked and interpreted using reference elevation models and co-located ICESat altimetry data of 2003-2010. The DINSAR analysis revealed the existence of fast-flowing outlet glaciers at Arthur, Rudolph, Eva-Liv and Bennett islands. The calculation of separate mass-balance components is complicated in this case because of generally unknown glacier velocities and ice discharge values for the mid-20th century. Hence only net balance values were determined for those ice caps. Other ice caps belong to the category of slow-moving or passive glaciers with simpler estimation of mass balance characteristics. Glacier elevation changes on several study glaciers were repeatedly determined with ICESat GLA06 data releases 28 and 29, and statistically compared. The root mean square difference between test determinations was given as less than 1 m rms and the lidar oversaturation effect was neglected in further work. Modern outlines of maritime glacier faces were corrected with the high-resolution optical quicklook imagery obtained from WorldView and QuickBird satellites. The research revealed the reduction of glacier area and general lowering of the glacier surface on most ice caps. Several new islets were discovered due to the glacial retreat in northern parts of Eva-Liv, Schmidt and Komsomolets islands. The cumulative mass budget in the study region remained negative while individual rates of volume change varied from -0.09 km3/a to +0.04 km3/a. Positive values of average mass balance with the maximum accumulation signal of approx. 0.9 m/a were determined on Ushakova, Schmidt and Henrietta ice caps. The results were represented in the form of glacier change maps with 50-m grid at 1:200,000 scale. The vertical accuracy of glacier change maps proved on several small and large ice caps was given as ± 0.3 m/a rms. Several resultant maps can be accessed at http://dib.joanneum.at/MAIRES/index.php?page=products. Further sub-regional comparison of glacier change maps with climatological, oceanographic, rheological, gravimetric and other ground-truth and EO data showed that spatial changes of insular glaciers are closely dependent on the frequency of precipitation events, water depth, sea ice regime, polynyas and gravity anomalies nearby. New opportunities for validating mass changes on the largest study glaciers and determining their bulk density are expected from the next release of GOCE gravity field data and CryoSat-2 radar altimetry data announced by ESA for 2012.
NASA Astrophysics Data System (ADS)
Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.
2016-12-01
The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos
2013-04-01
In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.
NASA Astrophysics Data System (ADS)
Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves
2016-04-01
Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding patches distributed over the entire slope. Typically, patches showing (full depth) snow gliding reach extensions from 5x10 metres up to 40x60 metres. Using a sampling interval of 1-3 minutes, the temporal displacement of such snow glide-hot spots can be tracked and thus revealing the individual signature of deformation. Nearly linear behaviour over several days, peaking in a final acceleration releasing an avalanche was observed as well characteristic acceleration and deceleration cycles during day and night could be captured. These cycles sometimes trigger an avalanche and sometimes reach a full stop of the differential snow glide movement. Findings of the different campaigns will be presented. We put them in the context for possible future campaigns that could be used to solve scientific questions regarding the mechanical properties of the snow pack. We evaluate the possibilities for the use of terrestrial radar interferometry for hazard management and avalanche forecast.
Radio interferometry: Techniques for Geodesy. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.
1988-07-01
BURNING PLASMA ARC BY A COMBINATION OF HOLOGRAPHIC INTERFEROMETRY AND EMISSION SPECTROSCOPY A. Shah, M. S. Dassanayake and K. Etemadi 5:03 - 5:16 NB...Free- burning Plasma Arc by a Combination of Holo- graphic Interferometry and Emission Spectros- copy, A. SHAH, M. S. DASSANAYAKE,AND K. ETEMA- DI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Design and fabrication of a brassboard optical bench structure for space interferometry mission
NASA Technical Reports Server (NTRS)
Buck, Stephanie
2006-01-01
The Space Interferometry Mission (SIM), consisting of an orbiting pair of telescopes, will be used for characterization of extrasolar planetary systems and for associated astrophysics research. To maximize the capabilities of this instrument, extensive technology development has been performed, much of it to understand and verify the performance of precision structures.
Apparatus and method for laser velocity interferometry
Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.
1993-09-14
An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.
Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model
Liu, Jie; Ru, Peng; Zhang, Wei-Ning; ...
2014-10-15
We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ valuemore » at high pion pair momentum.« less
NASA Astrophysics Data System (ADS)
Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William
2012-05-01
Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.
Precision Geodesy via Radio Interferometry.
Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F
1972-10-27
Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.
NASA Astrophysics Data System (ADS)
Wang, Huarui; Shen, Jianqi
2014-05-01
The size of nanoparticles is measured by laser diode self-mixing interferometry, which employs a sensitive, compact, and simple optical setup. However, the signal processing of the interferometry is slow or expensive. In this article, a fast and economic signal processing technique is introduced, in which the self-mixing AC signal is transformed into DC signals with an analog circuit consisting of 16 channels. These DC signals are obtained as a spectrum from which the size of nanoparticles can be retrieved. The technique is examined by measuring the standard nanoparticles. Further experiments are performed to compare the skimmed milk and whole milk, and also the fresh skimmed milk and rotten skimmed milk.
Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application
NASA Astrophysics Data System (ADS)
Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye
2017-12-01
A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2010-01-01
A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.
Ciesielski, Grzegorz L; Hytönen, Vesa P; Kaguni, Laurie S
2016-01-01
A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template.
Ciesielski, Grzegorz L.; Hytönen, Vesa P.; Kaguni, Laurie S.
2015-01-01
A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template. PMID:26530686
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
NASA Astrophysics Data System (ADS)
Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald
2015-08-01
We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.
NASA Astrophysics Data System (ADS)
Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING
2018-03-01
The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.
NASA Astrophysics Data System (ADS)
Friedl, Peter; Höppner, Kathrin; Braun, Matthias; Lorenz, Rainer; Diedrich, Erhard
2015-04-01
Climate Change, it`s polar amplification and impacts are subject of current research in various thematic and methodological fields. In this context different spaceborne remote sensing techniques play an important role for data acquisition and measurement of different geophysical variables. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surface and the atmosphere in order to characterize changes in this sensitive region. One aspect focuses on the application of synthetic aperture radar (SAR) data for glaciological investigations on the Antarctic Peninsula. The data had been acquired by the European Remote Sensing (ERS-1 and ERS-2) satellites and received at DLR's Antarctic station GARS O'Higgins. Even though recent glaciological investigations often make use of modern polar-orbiting single-pass SAR-systems like e.g. TanDEM-X, only ERS-1 (1991 - 2000) and its follow-up mission ERS-2 (1995 - 2011) provided a 20 years' time series of continuous measurements, which offers great potential for long-term studies. Interferometric synthetic radar (InSAR) and differential interferometric synthetic radar (DInSAR) methods as well as the intensity tracking technique are applied to create value-added glaciological SAR-products, such as glacier velocity maps, coherence maps, interferograms and differential interferograms with the aim to make them accessible to interested scientific end-users. These products are suitable for glaciological applications, e.g. determinations of glacier extend, and grounding line position, glacier and ice-stream velocities and glacier mass balance calculations with the flux-gate approach. We represent results of case studies from three test sites located at different latitudes and presenting different climatic and glaciological conditions in order to do first parameter adjustments for the processing. The subsequent aim of the entire project is to re-process the entire 20 years' ERS SAR archive for the Antarctic Peninsula.
NASA Astrophysics Data System (ADS)
Thiebes, Benni; Cuozzo, Giovanni; Callegari, Mattia; Schlögel, Romy; Mulas, Marco; Corsini, Alessandro; Mair, Volkmar
2016-04-01
Corvara landslide in the Italian Dolomites is slow-moving landslide on which extensive research activities have been carried out since the 1990ies, including sub-surface techniques (e.g. drillings, piezometers and inclinometers), surface methods (e.g. geomorphological mapping and GPS measurements), and remote sensing techniques (e.g. multi-temporal radar interferometry (MTI), and recently amplitude-based offset-tracking and UAV-based photogrammetry). The currently active volume of Corvara landslide has been estimated to be approximately 25 million m³ with shear surfaces at depths of 40 m. Displacement velocities greatly vary spatially and temporally, with only a few cm per year in the accumulation zone, and more than 20 m per year in the highly active source zone. Autumn rainfall and spring snow melt, as well as accumulation of snow during winter have been identified as the major displacement triggering and accelerating events. The ongoing landslide movements pose a threat to the municipality of Corvara, the national road 244, extensive ski resort infrastructure and a golf course. Over the last years, the focus for monitoring the Corvara landslide was put on MTI using 16 artificial corner reflectors and on permanent and periodic differential GPS measurements. This aimed for (1) assessing the ongoing displacements of an active and complex landslide, and (2) analysing the benefits and limitations of MTI for landslide monitoring from the perspective of geomorphologists but also for administrative end-user such as civil protection and Geological surveys. Here, we present the latest results of these analyses, and report on the potential of MTI and related investigations, as well as future fields of research.
Infrasonic interferometry applied to synthetic and measured data
NASA Astrophysics Data System (ADS)
Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.
2013-04-01
The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
Anatomy of a laminar starting thermal plume at high Prandtl number
NASA Astrophysics Data System (ADS)
Davaille, Anne; Limare, Angela; Touitou, Floriane; Kumagai, Ichiro; Vatteville, Judith
2011-02-01
We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339-358, 1954) for viscosity ratios up to 50.
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
SBAS-InSAR analysis of surface deformation at Mauna Loa and Kilauea volcanoes in Hawaii
Casu, F.; Lanari, Riccardo; Sansosti, E.; Solaro, G.; Tizzani, Pietro; Poland, M.; Miklius, Asta
2009-01-01
We investigate the deformation of Mauna Loa and K??lauea volcanoes, Hawai'i, by exploiting the advanced differential Synthetic Aperture Radar Interferometry (InSAR) technique referred to as the Small BAseline Subset (SBAS) algorithm. In particular, we present time series of line-of-sight (LOS) displacements derived from SAR data acquired by the ASAR instrument, on board the ENVISAT satellite, from the ascending (track 93) and descending (track 429) orbits between 2003 and 2008. For each coherent pixel of the radar images we compute time-dependent surface displacements as well as the average LOS deformation rate. Our results quantify, in space and time, the complex deformation of Mauna Loa and K??lauea volcanoes. The derived InSAR measurements are compared to continuous GPS data to asses the quality of the SBAS-InSAR products. ??2009 IEEE.
Fidelity and Coherence Measures from Interference
NASA Astrophysics Data System (ADS)
Oi, Daniel K. L.; Åberg, Johan
2006-12-01
By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g., spin or polarization) of the interfering particle, preparing it in states ρA or ρB in the respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as well as the locality or nonlocality of the preparations, but otherwise depends only on the states ρA and ρB and not the individual preparation processes themselves. This allows us to define interferometric measures which probe locality and correlation properties of spatially or temporally separated processes, and can be used to differentiate between processes that cannot be distinguished by direct process tomography using only the internal state of the particle.
NASA Technical Reports Server (NTRS)
Vangelder, B. H. W.
1978-01-01
Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Ice Sheet grounding lines are sensitive indicator of changes in ice thickness, sea level or elevation of the sea bed. Here, we use the synthetic-aperture radar interferometry technique to detect the migration of thel imit of tidal flexing, or hinge line, of Petermann Gletscher, a major outlet glacier of north Greenland which develops an extensive floating tongue.
Development of a femtosecond micromachining workstation by use of spectral interferometry.
Bera, Sudipta; Sabbah, A J; Durfee, Charles G; Squier, Jeff A
2005-02-15
A workstation that permits real-time measurement of ablation depth while micromachining with femtosecond laser pulses is demonstrated. This method incorporates the unamplified pulse train that is available in a chirped-pulse amplification system as the probe in an arrangement that uses spectral interferometry to measure the ablation depth while cutting with the amplified pulse in thin metal films.